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Abstract 

Total kinetic energy 3s  well as total vorticity squared arc integral quantitics which can- 
not change in the course of time in a tiiwfimerrricwd flow o f  a homogeneous, iiondivcrgent, 
and inviscid fluid when the fluid is isolatcd from the surroundings. The case is considcred 
where the fluid is defined orcr  the total region of thc surface of a sphere. The nature 
of the changes in  tinic of thc spcctral distribution of kinetic energy is discussed on the 
basis of the t w o  conservation rcquirenients mentioned above. It is found that only frac- 
tions of the initial energy can flow into sniallcr scales and that a greater fraction siniultanc- 
ously has t o  flow to components with largcr scales. The upper limits t o  the flow of 
kinetic encrzy into componcnts with scales less than a Sivcn one arc found. The con- 
scrvation theorems arc also used t o  discuss thc stability of a ccrtain stationary flow for a 
twodimcnsional motion which is not ncccssarily spherical. It is shown how iniportant it 
is for the proof of stability that not only the kinetic energy of the disturbance is supposed 
to be sniall but also its vorticitics. 

In  chapter I1 niolccular viscosity is taken into accoinit for the spherical flow. Finally 
some conclusivc rcinarks arc offered rcgardiiig the fundaniental difference betwecn two- 
and threeditncnsional flow. 

I. Twodimensional spherical flow. Inviscid 
fluid 
A twodimensional nondivergent flow of a 

homo eneous fluid defined over the total sur- 

lected in the first place. The absolute motion 
of the fluid is then governed by the equations 

face o B a sphere is considered. Viscosity is neg- 

(11 
dV 

ot  
_ - -  

- VsY-(V*VsV),  

and 
y = a univalued and twicc &f- 

ferentiablc function of the 

Total kinetic energy is obviously conserved 
for our fluid. Hence, with F denoting the total 
area of the surface of the sphere, 

spacc coordinates. (3) 

J ( V,W) dF = cons t. (4) 
F 

Here 
v =  

v s  = 

Y =  
- (V' vsv), = 

V =  -vV,yxk. (2 )  Eliminating vS y from (I)  and using (2) one 
obtains 

k =  

velocity 
spherical deloperator 
pressure over density 
convective acceleration along 
the surface of the sphere 

where V ~ Y  represents the component of vortic- 
ity perpcndicular to the surface of the sphere. 

I Perpendicular to Multiplying ( 5 )  with - v ; y  and integrating 
the sphere 2 
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over F ,  one also obtains 

(4) and (6) express two conservation theorems. 
In the following it will be shown that it is 
possible to draw considerable information from 
them as to the character of the solution of (I) ,  
(2) when the conditions are known initially. 

As is well known y may be written as a 
generally infinite sum of functions 

a3 

w =  2% ,= 1 

where yq satisfies 

(7) 

a,= q(q+ ~ I ) ;  (I= I ,  2, . . . (9) R2 R =  radius of the sphere. 

Performing the operation 7," on both sides 
of (7) and using (8) one obtains 

rn 

(10) v , " y =  -7 
aqw4. 

q =  1 

using 
/ (0, y) ' dF = / Us * w V w dF - / w 0," y dF 
and /V, .w VswdF= o 

one obtains 
F 

/ ( Osy)' dF = - [ w 0," w dF. 

Substituting on the right-hand-side of tlus equa- 
tion from eqs. (7), (10) and utilizing the orthog- 
onality condition 

F F 

.I-w,wr,dF = 0, 4 f P 
F 

one obtains: 
m 

/ (Vsy)2dF= x / . ,YW 
F q =  1 F 

while on the other hand as is readily seen 
m 

/ (V,"y)2dF = x /$y:dF. (12) 
F q = l  F 

Defining Hq from 
Hq = / a ,  y: dF 

one thus gets, combining (11), (12) with (4, (6): 
F 

W 

x Hq = const. (13) 
q =  1 

m 

xuq Hq = const. (14) 
q =  1 

The functions yq divide F into areas F, 
where y, has all over either a positive or a 
negative sign. It is a well established fact that 

F4 +o when q +m. 

The quantity 2, defined from 
I 

lq - - (IS) \'< 
will equai some average diameter of Fq and 
thus represent a typical scale of the motion 
which is determined from the streamfunc- 
tion pq. 

If, therefore, H4 is plotted against -- one 

has a representation of how the kinetic energy 
for a given velocity field is distributed over 
the different components yq with the corre- 
sponding scaIes 1,. The problem to be attacked 
in the following is to  find by the use of the 
conservation theorems ( 1 3 ) ~  (14) how given 
initial spectral dstributions of energy will 
change in time, and in particular the more 
precise upper limits for the flow of energy 
into components with scales equal to or less 
than a given one. 

The first result to be derived is that when the 
motion is not a stationary one the kinetic 
energy must change at least for three different 
components, or what is the same, on at least 
three different scales. 

I 

v a4 

To prove this let A Hq be defined from 

A H ,  = ( H q ) r  (Hq)t=o. 

Substituting . -  for the constants in (13) ,  (14), 
respectively 

q =  1 ,= 1 

these equations may be written 

m 
xa ,AHq= 0. 

q = 1  

Let us assume that the changes take place only 
for the components numbered q = p, q=r;  
with r > p .  

TelIur V (1953). 3 



227 CHANGES IN THE SPECTRAL DISTRIBUTION OF KINETIC ENERGY 

Then (16), (17) reduce to 
A H p +  AH,=  o 

a p A H p +  a,AH, = 0. 

Having r > y it is seen from (9) that the deter- 
minant of this system, a,-up> 0. Consequently 
A Hp = AHr = 0. If, however, the changes in 
kinetic energy take place for three different 
scales numbered with q = p ,  4 = r,  q = s with 
r > p ,  s > r, the conservation requirements (13),  
(14) can always be satisfied as seen from the 
following. In this case (16), (17) reduce to 

A H p +  A H,+ AH,  = o 
apAHp + a,AH,  + a,AH, = 0. 

(18) 

Hence 

a,-a 

as - a p  
AH,  =- - ' .AH,  

Because of r > p ,  s > r and (9) one obtains 

a, - a,  a,  - up 
a,-a,  a, - a p  , > 0. ~ -~ 

Therefore, in consequence of (19) the change in 
kinetic energy for the component with the 
intermediate scale will be opposite of the 
changes in kinetic energy of the two other 
components. Accordmgly a second result has 
been obtained which may be formulated as 
follows: No single of the three components 
can in this case represent a source or a sink 
for the both two remaining ones unless this 
is represented by a scale intermediate between 
the scales of the two other components. 

It can also further be understood from 

in connection with ( IS)  that the numerical 
value of the changes in kinetic energy will be 
largest for the component with the inter- 
mediate scale, and smallest for the one with 
the smallest scale. 

As an example consider 

asla, = 49 aria, = 4 
so that the corresponding ratio between the 
different scales are 

I,& = 2, lr/lp = 2. 
Tellur V (1953). 3 

Then, according to (20), 

A H p / A H ,  = 4. 

Therefore, changes in kinetic energy on a 
certain scale are distributed in the ratio 4/1 on 
the components with the double and half scales, 
res ectively, if no other components are in- 

The above result about the nature of the 
spectral changes for a two-dimensional flow 
is easily extended to the case where an arbi- 
trary number of components are engaged in 
the energy transformations. 

vo f ved in the energy transformations. 

Writing (16), (17) as 
N N+i+P 
X A H q +  X A H , = O  

(21) 
q= 1 r = N + 1  

N N i i i P  
x a q A H q +  xardH,=o 

q=1 r = N + I  

and assuming 
A H q S o ; q =  1 , 2  . . .  N 

A H , Z o o ; r = N +  I ,  . . .  N + I + P ,  (22) 

(21) may also be written 
N N+i+P 
X A H q + x A H , = o  

(23) 
q= 1 r= N+ 1 

N N+i+P 
a* X AH,  + a** 

where now because of (9) and (22) 

A H ,  = o 
q= 1 r = N i l  

Hence, consulting (9), the determinant of the 
system (23) a** - a* > 0. 

The assumption (22) is therefore not pos- 
sible. 

A problem of considerable interest now pre- 
sents itself in connection with the determination 
of an upper limit to the flow of energy into 
components having scales equal to or less than 
a given one. 

We  introduce the notations h and h, de- 

m 

q= 1 

fined from 

(Hq)t=o= hq; h= X h p  
whereas a, a*, and a** are defined from the 
equations : 

m m 

I: aqhq = a Z hq 
q= 1 q= 1 

N N 

q=1 q= 1 
XaqHq = a* I: Hq (25) 

Eq (20) is not true for any 
choice of scales (cf. Merilees 
&Warn, 1975, JFM)
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W W 

1 a4Hq = (I** C Hq. (26) 
q h i - 1  q=LY+1 

Eqs. ( 2 3 )  may then bc written formally as the 
system of cquations 

N co W 

x H q + ~ H q = ~ k ,  
q-1 q=N+1 q = 1  

\ co m 

a* H, + a** C Hq = a C k ,  
q - N l 1  q=1 

From a foriiial solution of these equations one 
obtain\ 

W N a-a* 
XH,:  C H 4 = z .  (27) 

q m i l  q=1 

H,, hq being quantities which are all positive 
or zero, and aq increasing monotonically with 
2, it follows from (24), (z5), (26) that 

al  5 a (28) 

Accordingly 
a** > a*. 

This, in coniicctioii with the fact that the ratio 
on tlic lcft-hand-side of (27) is positive or zero 
fixes a* and a** to assume values which are 
related to tlic given value of a as 

a =  * < n 5  a**. 

For tlic ratio between the kinetic encrgy 
contained within the range q 7 hr+ I ,  and the 
total ciicrgy, we get 

(3 1) 

The maximum value of this ratio is assumcd 
when a** = a. This is, as seen from (31), (30), 
only possible if 

aN+l  5 a. (3 3) 

> a, (34) 

Before we proceed to the most interesting 
case with 

we will discuss the first case in connection with 
the problem of stability of the stationary mo- 
tion 1) 

y1 must not neccssarily be the “eigen”-function 
y =  y1. (3  5) 

1) The stationarity follows from the fact that y = y1 

with the lowest “eigen”-value for the spherical 
“eigcn”-valueproblcm, ( 8 ) ,  but may be the 
“eigcn”-fL~Iiction with thc lowest “eigen”-value 
of the most gcneral twodimensional “cigcn”- 
valuc problem 

v;y,  + aqyq= 0 

y,, = o at a boundary L, 
yielding 

1 ng’l > n,, a4 > 3 ; q = I. . . . 
1 (36) aq --f 00, q --f 00. 

Whcn instead of ( 3 5 ) ,  
M 

y”r=o = y1 A ZYJ; 
q - 2  

wc may write 
N 

It + Hi 

yielding 

q - 3  

W 

nh : alh, + a,hi 
q’ z 

At any later timc we have now according to 
(32), whc11 iY is put cqual to I :  

Now, with N = r ,  eqs. (z8), (30) become 

0, = a* 
a, 5 a**. (3 8 )  

Accordingly 

00 

a,hi represents the sum of the squares of the 

vorticities of the initial disturbance. Let us as- 
sume that 

q= 2 

W 

d q h i  + 0. (40) 
q= 2 

Because of (36) it follows thcn necessarily that 
also W 

I3 hi + 0. (41) 
q= 2 

Using (40) and (41) in (37) one obtains 
00 

a + a,, when a,h; -+ 0. 
q= 2 

Tellus V (1953). 3 

satisfies eq. ( 5 )  with ao2w 1 = o, 
a t  

denominator of Eq (37) 
has a typo in the original 
paper (here is corrected)

Navid
Rectangle
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Therefore it follows from (39) in connection 
with (38 )  

co co 

Hq : h --f o when C aqhq + 0. (4.) 

This exprcsscs the result that the considered 
stationary motion y = y 1  is stable in tlie sense 
that the total kinetic energy of the disturbance, 

H,, at all times is kept below a limit which 

goes to zcro if the sum of the squares of the 
vorticities of the initial disturbance goes to zcro. 

Let us now on the other hand assume that 

q= 2 q= 2 

co 

q =  2 

as 
hi = E .  

q - 2  

By concentrating this energy on sufficiently 
small scalcs it is possible bccause of (36) to make 

t3 aqhi > P, 

where P may be chosen arbitrarily large, how- 
ever sinall E is taken. Consulting the expression 
for a in (37) it is thcrcfore understood that it is 
always possiblc, however sniall E is taken, to 
make a arbitrarily large. Particularly a niay 
be made cqual to or larger than a 2  which 
accordingly to (38) is a sufficient condition 
for the possibility of getting a** = a ,  and then 
also to obtain 

co 

q’ 2 

r x  

z H , : h = ~ ,  
q - 2  

howcvcr sniall values are taken for the initial 
kinctic energy of tlie disturbance. 

From this example it is seen how important 
it is for the yroofof stability that the disturbance 
be a~sunied to be small also as regards its 
vorticitics, and not only with regard to its 
energy, even though it is still questionable 
whether the stationary flow actirnlly will behave 
unstably if this is not the case. 

The basic flow y I= y 1  represents the coni- 
poncnt with the largest possible scale. The 
stability of this flow niay therefore also be 
interpreted as follows: A necessary condition 
for instability of a stationary motion for two- 
dimensional flow is that the disturbances bc 
rcprcscntcd also by components having scales 
which arc larger than the scale of the basic 
flow. Thus intcrpretcd, the necessary condi- 
tion for instability becomes directly connected 
with the more general results found for thc 
Tellus V (1753). 3 

changes in the spectral distribution of energy. 
I t  is also further casily extended to flows 
where thc boundary condition is not ncccs- 
sarily y =- const, as for instance a flow between 
parallel walls. Taking this as grantcd, we may 
apply thc result to a liricar flow rcprcscntcd 

2 Z Y  
L* by a streamfunction const. cos ~~ -; 05 ys H. 

The scalc of this basic flow is detcrniincd froni 

thc corrc~spoiiding +p)>-valuc gz; whereas 

the scale5 o€ the conipoiients of the disturb- 
ances are detcrniincd froni the *cigcns-valucs 

posed f& tlic dependence upon the direction 
along thc walls. T ~ U S  the liiicar flow con- 
sidered will possibly be unstable only if 

4 7 3  4x2 4 x 2 .  -+-  L2 ( Z H ) 2  <L- (43) 

We  now proceed to the case (34). The upper 
limit of thc ratio in (32) is then reached when 
a* and a** assumc their smallest possiblc values, 
which according to (29), (30) arc a, and a~ 1 ,, 
respectively. Accordingly 

01 
I-- 

a n a 
. (44) < ~~~ 

a1 O N 1  I 

- _  ~~. - 

1 - _- (l.Y- I 

a*v+ 1 

To apply (44) to a sccniingly important case, 
assume 

I, 
h = hq. 

q= 1 

The quantity a defined from (24) will now lay 
between thc limits 

01 5 a 5 flL. 

To cns~irc (34) it is therefore sufficicnt to assume 
L < 1Yi- I .  We niay now write (44) 

(45) 

f l L  - a1 <---- . . - 
(1 - 01 

q=.\, 1 fl.\-11- 01 O.Yi 1 - “1 

Y 

Hq : h 5 ~~ ~ 
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having introduced the scales defined in (IS). 
In thc considered case, thcrefore, the fraction 
of the total energy which can flow to compo- 
nents with scales equal to or less than a certain 
scale f ~ ~ + l  is less than the square of the ratio 
between the smallest scale IL, represented ini- 
tially, and IN+,. If thercfore the initial flow 
is represented by a typical large-scale velocity 
field ( L  = relatively small), the flow of kinetic 
energy into the smaller eddies will rapidly be- 
come unimportant. 

Obviously it is not necessary to assume hq 7 o 
for all q > L to obtain this result. It is sufficient 
only to have 

and L sufficiently small to get the corresponding 
field to be characterized as a “typical” large- 
scale-field. 

A 5 A L  

Here 
B(t) 2 A, 

where the equality sign is to be taken only 
when y is represented by a single componcnt, 
y = ye.  This follows easily from the defining 
equations for A and B 

m m 

C a,H, E A C Hq 

m m 

oiHq = B C aqH4 
q- 1 q= 1 

together with (9). From (46), (47), (48) one 
now gets: 

11 
AqHq= fl [h : A h ]  = a - 

m W x Hq : 
q=1 q=1 

where 
II 5 I according as B 5 A. (49) 

2. Two&mensional flow of a viscous fluid It is now easily demonstrated that eq. (27) now 
has to be written 

A* 
With molecular friction the equations gov- 

- v .  v7rV)s+ v 0,”. - - v,y- ( 

A 

11 
-_  erning the motion become 00 N 

1 Hq : x Hq = 
A ,** - - 
n 

2V q=N+l q = l  

( I t  

Since now the upper limit to this ratio decreases v = - V,Y, x k. 

Eliminating V, y one obtains the vorticity 
equation 11 

wit11 decrcasiiig U - , apart froln the steady de- 

crease in kinetic energy and vorticity because 
of friction, a flow of energy to smaller scales 
should so far (because n > I) have a smaller 
chance to be realized than for the inviscid fluid, 
for whicll a,1l = (I < 

~- aV,”w - --v . vs 0,”y 4- v 0:y .  

The changes per unit time of total kinetic 
energy and total vorticity squared now becomc 

at 

l ( v X y ) ’ d F =  -v 1 (0:~)~ dF 

/(v:Y)zdF= v/v;y. o,’ydF. 

3. Conclusion. 
The nature of the changes in the spectral 

distribution of kinetic energy in a twodimen- 
sional flow differ radically from the changes 

2; I: I’ taking place when real turbulence develops. It 
is natural to believe that this discrepancy is due 

Making use of (8) and (9) one may write these to the fact that for the development of real 
equations as turbulence it is essential to consider the motion 

in three dimensions in which case as is well 
!/(vxv’)’& = - v~/(vs+,)2&; A > o. (46) known 110 conservation requirement regarding 
dt F the square of vorticities has to be fulfilled 

The implications of (43) and its relation 
to earlier works of the author and others 

d J ( V : ~ ) z =  - ~ B / ( V : Y , ) ~ ~ F ;  B > 0. (47) will be discussed more thoroughly in an 
article to appear later. 
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