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Stability of linear flow
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It is shown that a finite disturbance independent of the streamwise coordinate may lead to instability
of linear flow, even though the basic velocity does not possess any inflection point.

It was shown by Rayleighl that a necessary condition
for instability of linear flow in an inviscid, nonstratified
fluid is that the velocity profile possess an inflection
point. The criterion was sharpened by Fjgrtoft® and
Hgiland® who showed that, in addition, the numerical

value of the vorticity must be a maximum at the inflection

point. Rayleigh and Hgiland base their analysis on a
normal mode expansion in time whereas Fjgrtoft avoids
this assumption. The normal modes do not usually form
a complete set in these problems, and Fjgrtoft’s proof
is therefore far more general.

These results were obtained by considering infinites-
imal two-dimensional perturbations. We show in this
note, however, that three-dimensional disturbances may
lead to another kind of instability, independent of the
existence of an inflection point, which may possibly be
responsible for the breakdown of laminar motion. This
type of instability was originally suggested by Hgiland. 4
He did not, however, draw the full conclusions from his
idea.

The fluid is assumed to be inviscid, incompressible,
and nonstratified, bounded by two horizontal paraliel
planes. The basic velocity U(z) is directed along the
horizontal x axis and dependent on the vertical z coordi-
nate only. We consider a disturbance independent of
the x coordinate. The disturbance is, however, not
strictly two-dimensional since it contains a velocity
component along the x axis. With this assumption the
momentum equation for the x component of the total ve-
locity reduces to

Du/dt=0 . (1)
Similarly the x component of the vorticity £ is given by
DE/dt=0 . (2)

Let v and w denote the velocities in the y and z direc-
tions, respectively. Since 8u/8x is zero, we may write

v=0y/02, w=-2y/y

where § is a stream function.
ing (1) and (2), we have

For the moment lineariz-
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where V% is the two~dimensional Laplacian. I follows
from (4) that vZyp, and therefore w is independent of
time. Equation (3) may be integrated to give

u=u(0)-wl't, (5)

showing that » increases linearly with time. We there-
fore deduce that the basic flow U(z) is unstable for this
special kind of infinitesimal disturbance.

Equations (1) and (2) may, however, also be solved
for finite perturbations. Equation (2) may be written
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A well-known class of solutions is that satisfying

viv=r(y), ov/8t=0 , (n

where f is an arbitrary function.
function, one solution is

Choosing f as a linear

Yv=Asink,y sink,z . (8)

Here, A, k,, and &, are constants and k, must be chosen
properly to satisfy the boundary counditions. Equation
(8) represents a set of closed, steady streamlines.
From (1) it follows that « is conserved for the projection
of the motion into these streamlines. Let us assume
that initially » is equal to the basic velocity U(z). A
particle in its orbit in the yz plane will, therefore, al-
ways have a u velocity equal to the value of the basic
flow at the initial position of that particle. This value
may, however, be very different from the local value

of the basic flow. The difference is largest for stream-
lines with large vertical extent. The # velocity thus ex-
periences a complete redistribution, the variation of «
with y and £ becoming just as dominant as the variation
with z. Although the motion at a fixed point is periodic,
the period is different for different streamlines. The
entire motion is, therefore, aperiodic. This last effect
must lead to large gradients in u, i.e., large vorticity
concentrations.

We notice that this distortion of the basic profile is
independent of the initial amplitude of the disturbance.
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The time for development of the motion will, however,
increase when the amplitude decreases. Since the
asymptotic motion is very different from the basic flow,
we conclude that this is unstable. It is possible, of
course, that the developed motion is unstable. Owing to
the large vorticity concentrations this indeed seems
very likely so that the motion already discussed is valid
only for a short span of time. Also, this possibility
means instability of the basic flow.

In Egs. (1) and (2) it is assumed that the disturbance
is independent of x. The equations are also valid if the
basic flow is oblique to the x axis. For sufficiently
small angles, the reasoning will be the same as in the
case already discussed. For larger angles, however,
the streamline field will contain a noticeable component
of the basic flow, and the streamlines are usually not
closed. The local changes in # will, therefore, be much
smaller, and an initial small disturbance will not lead
to a large distortion of the mean flow, even for a large
span of time. However, for sufficiently large distur-
bances the concentration of vorticity will be significant
and may lead to local breakdowns of the basic velocity.

Equations (1) and (2) may be applied to find exact solu-
tions of the problem. Such a solution is

) (9)

Y=A sink,y sink,z + B cOskz

where

K= R34 k2

and A and B are arbitrary constants. u is then found
from the linear equation (2). Equation (9) represents a
basic velocity proportional to sinkz, superposed on a
finite disturbance. Steady solutions of (1) and (2) for
f(¥)=exp(-2p) have been discussed by Stuart.® Equa-
tion (8) also describes a finite disturbance in a channel
flow, i.e., a flow bounded by vertical as well as hori-
zontal planes. By similar reasoning we obtain the re-
sult that an inviscid channel flow is always unstable for
perturbations independent of the streamwise coordinate.

The same result is also true for the flow in a circular
pipe. This is seen by considering the solution

P=Ad,(kr)cosnd (10)

(n+0), where J, denotes a Bessel function and » and
are polar coordinates.
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Flow in the entrance region of noncircular ducts
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A remarkably simple method of solution is given for an ecigenvalue problem arising in laminar flow
in ducts which uses eigenfunctions of the Helmholtz equation. The only computation involved is the

determination of zeros of a series to obtain the eigenvalues.

This note should be considered as a follow-up to Refs,
1 and 2 from this journal. We propose a somewhat dif-
ferent and considerably simpler analysis of a boundary
value problem occurring in laminar incompressible flow
of a fluid in the so-called entrance region of a straight
duct with arbitrary but unchanging cross section, We
suppose that the fluid has constant properties and take
the flow axis in the positive z direction with x and y the
cross-sectional coordinates, The flow is governed by
the momentum and continuity equations, We assume
the velocity to be zero at the duct wall and equal to the
average at the duct entrance. The problem to be con-
sidered results from application of a linearization of the
momentum equation given in Ref., 1 which is apparently
the most useful and accurate analytical analysis of this
problem to date. (See the references for further appli-
cations and a history of this and related methods. )

We avoid restating the problem and the transforma-
tions (stretching the axial coordinate to linearize and
making variables nondimensional) and state that the
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final model to be solved involves writing the velocity as
U=Uy +Upg (1)

where u;; is the fully developed velocity and u, is the
entrance perturbation. We seek a solution of the form

Ue = Zaigi exp(- afz) , {2)
i=1
and this leads to
9g;
Vg, + alg, = i £igs 3)

with g; =0 on the duct boundary C. Solutions are pair-
wise orthogonal and orthogonal to unity so that the g; in
(2) are easily determined using the entrance condition.

At this point we consider the vanishing or nonvanishing
of the line integral in {3). In Ref, 2 it was implicit and
unstated that it did not vanish, To assume that it does
vanish leads to valid g;’s and ¢;’s as far as (3) is con-
cerned and these would apparently contribute to the solu-
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