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Summary. The flow of wave energy in stationary, two-dimensional gravity waves of 
small amplitude in a basic current where the velocity and stability varies with height, is studied. 
The vertical flux of wave energy is found to vary with height in proportion to the wind speed. 
In layers where the wave motion of a particular wave length is of the internal type, the motion 
may be subdivided into two parts, one wave carrying wave energy upward, and the other carrying 
wave energy downward. In the case of mountain waves, the wave with upward energy flow may 
be interpreted as the incident wave, set up by the mountain, whereas the wave carrying energy 
downward is caused by reflection of the incident wave in higher layers in the atmosphere. Such 
reflection is generally found to take place when wind or stability varies with height. The reflection 
coefficients in two- and threelayer atmospheres are calculated. 

The results are applied to a distribution of wind and stability typical of situations in which 
mountain waves occur. It was found that, depending on the wave length, 65 - 100 per cent of the 
wave energy was reflected from the layers of strong wind in the upper troposphere. In middle 
latitudes in winter, wave energy may be transmitted to the lower ionosphere. 

A study is also made of the energy transfer for long quasi-static mountain waves. 

1. Introduction. When air flows over a mountain ridge, a stationary wave disturb-
ance is set up in the air current. These waves, when analysed with respect to their 
wave length, or period, fall into three categories: short waves of period much smaller 
than the half pendulum day are gravity waves; longer waves of period comparable 
with the half pendulum day ar'e gravity-inertia waves; and longer waves with longer 
periods are quasi-geostrophic, ·planetary waves of the Rossby-wave type. Mountains 
of small extent in the direction of the flow will excite only gravity waves, while the 
large mountain ranges of continental scale will excite all types of waves; however, 
if these mountain ranges are assumed to be sufficiently smooth, only long planetary 
waves will be excited. 
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The gravity-type mountain waves have been subject to several theoretical studies 
in recent years, mostly on the basis of the linearized perturbation equations. The 
wave motion depends strongly on the distribution with height of wind velocity and 
static stability. The simplest case is that of constant wind and constant static stability 
(isothermal atmosphere with pressure and density exponentially decreasing with height). 
This case, which leads to perturbation equations with constant coefficients, was solved 
by LYRA ( 1943) and QuENEY ( 194 7). It turns out that the steady-state equations alone 
do not suffice to give a unique solution; some additional principle has to be utilized 
in order to select the «correct» solution. LYRA and QuENEY showed that a unique 
solution can be obtained by introducing a small RAYLEIGH-friction, and that the 
solution thus obtained is monotoneous on the wind-ward side of the mountain, and 
oscillatory (but damped) on the lee side, in fair agreement with observed flow patterns. 
However, the method could hardly be said to be fully convincing. 

Following a suggestion by H0ILAND (1951), PALM (1953) and WuRTELE (1953) 
assumed the motion to start from rest, and found the solution to the initial-value 
problem; this solution turned out to approach uniquely the steady LYRA-QUENEY 
solution for large values of time. This method of solving the uniqueness problem is 
physically satisfactory, but also very labourious. A. ELIASSEN and PALM ( 1954) pointed 
out that the gravity waves can convey wave energy in vertical direction, and that 
the LYRA-QUENEY solution can be arrived at by selecting those steady-state solutions 
which transport wave energy upwards, and rejecting those who transport wave energy 
downwards, since the energy source (the mountain) is at the ground. This radiation 
condition has also been used by ZIEREP ( 195 7) for solving the uniqueness problem. 
WILKES ( 1949) has earlier made use of the same principle in the theory of atmospheric 
tides1 ; he likewise assumes that the source of wave energy (produced by tidal forces 
and diurnal heating and cooling) is predominantly located at low levels. WILKES 
explains furthermore the resonance which gives rise to the large amplitude of the 12-
hour oscillation as a consequence of trapping of energy in low layers, caused by re-
flection by higher layers of sufficiently small static stability. He also points out the 
analogy between the propagation of tidal waves and the propagation of radio waves 
in the atmosphere. 

The tides in the atmosphere, and mountain waves in a constant basic current are 
very similar problems; they are both steady flows in one frame of reference, and per-
turbations of the state of rest in another frame. In both problems the flux of wave energy 
is non-divergent throughout most of the fluid, outside the relatively limited regions 
where such energy is being produced, and the useful concepts of reflection and trans-
mission of wave energy may be used without difficulty. 

The matter becomes much more complicated when the basic current is non-uniform 
as in the case of mountain waves in a basic current which varies with height. Exchange 
of energy between the wave motion and the basic current is then possible, and sources 
or sinks of wave energy, depending upon the wave motion itself, may occur at all 

1 The authors are indebted to ]. S. SAWYER for bringing this to their attention. 
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levels. We shall refer to these sources as secondary, in contrast to the primary sources 
(the mountains) which cause the wave motion in the first place. With the secondary 
sources present, the concepts of transmission and reflection seem a priori to have no 
clear interpretation. Thus for instance, a part of the wave motion which corresponds 
to energy transfer downward needs not be due to reflection, but might perhaps be 
the result of secondary energy sources located at high levels. 

Yet some of the results which have been obtained in the study of lee waves in a 
basic current which varies with height are very suggestive of an interpretation in terms 
of reflection and transmission of wave energy. Thus the results by ScoRER ( 1949) 
that an undamped wave train on the lee side of the mountain will appear if the static 
stability decreases, or the wind speed increases with height, might be interpreted as a 
resonance wave due to trapping of energy in the lowest layer, caused by total reflection 
in layers above. The phenomenon might thus be very similar to the resonance suggested 
by WILKEs for tidal waves in the atmosphere. Likewise, PALM and FoLDVIK (1960) 
have computed the undamped resonance waves produced by a mountain for a realistic 
variation with height of wind and static stability. They found that the wave motion 
in the lower troposphere consists primarily of one or a few resonance waves of relatively 
short wave length which were almost completely determined by the distribution of 
wind and temperature up to about 8 km, and practically independent of wind and 
temperature distribution in the stratosphere. The wave motion in the stratosphere, 
on the other hand, was found to consist to a large extent of much longer waves, which 
depend critically upon the distribution of wind and temperature up to very high levels. 
It thus looks as if the very short waves are almost totally reflected by the upper tro-
posphere, whilst somewhat longer waves can penetrate more easily into the stratosphere. 

The present paper deals with the transfer of wave energy when the basic current 
changes with height. It is found that the radiation condition is under certain circum-
stances still of basic importance, that the reflection coefficient can still be defined, but 
that the concept of transmission needs a re-interpretation. The results are believed to 
be of interest for the theory of mountain waves, since many features of the motion can 
be explained without much calculation. The results also throw some light upon the 
question of the possible propagation of gravity waves up to very high levels. In a 
recent paper, HINES ( 1959) has suggested that certain irregularities observed in the 
ionosphere at about 80-100 km are gravity waves set up by energy sources at low 
levels. 

It is noteworthy that long quasi-geostrophic waves can convey energy in vertical 
direction in much the same way as gravity waves. The energy transfer brought about 
by such long waves in a non-,uniform basic current is discussed in Chapter II. 
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CHAPTER I 

WAVE ENERGY TRANSFER IN STATIONARY GRAVITY WAVES WHEN 
THE BASIC CURRENT VARIES WITH HEIGHT. 

2. Perturbation equations and energy equation. The air is assumed piezotropic 
(adiabatic), so tha t the density(! of each particle is a function of its pressure p. Using 
the notation of V. BJERKNES, the compressibility may be characterized by the coefficient 
of piezotropy 

y = DeJDp (2.1 ) 

where D denotes the individual differential. The velocity of sound is then y-L 
The basic flow is taken to be a stra ight current parallel with the horizontal x-axis ; 

the velocity U(z) is assumed to be a function of height ;;.. The pressure Po(z) and 
density eo(z) fulfil the hydrostatic relation 

?: = - geo = - :; (2.2 ) 

where g is the acceleration of gravity, and H the scale height. 
The density stratification may be characterized by V. BJERKNEs' coefficient 

r = deofdpo; the d ensity gradient is then 

deo dpo - = T- = - Tge0 (2.3) 
dz dz 

The static stability of the basic flow may now be characterized by t he buoyancy 
frequency (VArsALA- BRUNT frequency) JJ0 , which is given by 

(2 .4) 

The wave motion will be assumed to take place in the xz-plane and to depend only 
upon the coordinates x and z ; it will be characterized by the vert ical displacement C, 
the horizontal and vertical perturbation velocities u and w, the pressure p and the density 
perturbation (! . (Primes will be omitted, since there is no danger of confusion with 
the total pressure and the total density) . 

R etaining only first order terms, one finds from (1), (2) , (3) and (4), 

jJ 2 

e = ~ eoC + rP g 
(2.5) 
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When this equation is used to eliminate (}, the equations of motion for stationary flow 
become 

eoUu,: + eoU,w + Px = 0 

eoUwx + eovo2
( + P. + ygp = 0 

and the continuity equation 

Here we have 

yU 
ux + w, - ygw + - Px = 0 

eo 

(2.6) 

(2.7) 

(2.8) 

w = uc (2 .9) 

The wave energy equation IS obtained by multiplying (6) by u, (7) by w, (8) by p, 
and adding. One finds 

a a - (EU + pu) + - (pw) ax az - e0 U, uw (2. 10) 

where 
(2 .11 ) 

is the total wave energy per unit volume. The wave energy is made up by a kinetic part 
f eo (u 2 + w2 ) and an available potential and internal part f eo (v0

2( 2 + ye0- 2p2) . 

Equation (2 .I 0) has the following interpretation. The left-hand side is the diver-
gence of the wave-energy flux, i.e. the horizontal wave-energy flux through a unit 
vertical area is (EU + pu) and the vertical flux through a unit horizontal area is pw. 
The right-hand side represents the "secondary" source of wave energy referred to in 
the introduction; it represents a conversion of kinetic energy of the basic current (or 
rather the mean current, averaged with respect to x) into wave energy. D epending upon 
the kinematics of the wave motion, this secondary energy source may be positive or 
negative. 

In the case when no resonance waves occur, the wave energy E, (and hence, all 
perturbation quantities) tend toward zero as x -+ ± oo. Therefore we obtain, when the 
wave energy equation (2.1 0) is integrated with respect to x from - oo to + oo : 

d +co +co 

dz f pw dx = - u.eofuwdx (2.12) 
- 00 - co 

On the other hand we obtain, when (2.6) is multiplied by (e0 Uu + p) and integrated 
from x = - oo to x = + oo: 

+oo +co 

f pw dx = - u eo f uw dx (2 .13) 
- (X) -co 
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Comparison of (2.12) and (2.13) shows that 

+oo 

eo f uw dx = constant when u =!= 0, (2.14) 
-00 

i.e. the vertical flux of horizontal momentum does not change with height, except 
possibly at levels where U = 0. Hence it follows that within a layer where U =!= 0, 

+oo 
the total vertical flux of wave energy f pw dx must vary with height in proportion to 

U. Moreover, the right-hand member of (2.12), which represents "secondary" sources 
of wave energy, integrated with respect to x, is seen to vary with height in proportion to 
U,. The possible distributions with height of these secondary energy sources are thus 
strongly restricted. The vertical distributions of the secondary energy sources and the 
vertical flux of wave energy are completely determined within a layer where U =!= 0, 
when the constant momentum flux is known. 

Moreover, in a layer where U is everywhere positive, it is seen from (2.13) that the 
vertical fluxes of wave energy and of momentum are of opposite sign. If wave energy 
is transferred upwards, momentum is transferred downwards; the secondary energy 
sources are then positive where U increases with height, and negative where U decreases 
with height. 

These results are no longer valid if resonance waves occur, since the wave motion 
then does not tend to zero as x ____,. + oo. In this case the wave energy produced by the 
mountain is not only carried upwards, but also downstream. 

3. Fourier representation of the solution. We assume that the mountain 
profile may be represented as a Fourier integral with respect to x. If no resonance 
waves occur, the dependent variables (perturbation velocities, pressure, density) may 
likewise be expressed as Fourier integrals; and when resonance waves do occur, they 
can be expressed as Fourier-Stieltjes integrals. In any case, we may consider a single 
Fourier component with wave number k. Such a component will also satisfy eqs. 
(2.6, 2.7, 2.8, 2.9 and 2.10). We may now derive equations which are very similar to 
(2.12) and (2.13) except that the integrals are taken over one wave length instead 
of the entire x-axis. Denoting the average value over one wave length by a bar, we 
obtain from (2.10) by averaging 

d _ -
dz pw =- u.eo uw (3.1) 

and from (2.6) by multiplying with (e0 Uu + p) and averaging 

pw = - Ue0 uw (3.2) 

Hence 
e0 uw = constant when U =!= 0 (3.3) 
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The vertical wave energy flux brought about by a single Fourier component must 
therefore vary with height in proportion to U. 

It is convenient to express pw for one Fourier component in terms of w alone. For 
this purpose we multiply the continuity equation (2.8) by w .. and average: 

- yU- _ yU _ 
wxwz = - uxwx- -pxwx = - k2uw -- k2 pw (3.4) eo eo 

Elimination of uw between (3.2) and (3.4) gives the desired relation 

- Ueo-­
(1- yU2

) pw = ~ wxwz (3.5) 

For mountain waves it may be assumed that the wind speed U is small compared 
with the velocity of sound, i.e. yU2 (( I, so that (3.5) may be simplified to 

- Ueo-­
pw =~ wxwz (3.6) 

Comparison with (3.2) shows that when U =l= 0, e0w.,w. must be constant with height. 
This expression is seen to depend upon the tilt of the wave with height. If the phase is 
shifted upstream with height, wave energy flows upward. If furthermore U increases 
with height, then kinetic energy of the mean motion is converted into wave energy. 
If the system were confined between horizontal rigid planes, a wave of this kind would 
necessarily grow. In the present case, however, the wave remains stationary because 
the wave energy produced is transferred upwards to higher layers. 

The differential equation satisfied by w for a Fourier component of the solution 
is found from eqs. (2.6 - 2.9) by eliminating u, p and (. With good approximation this 
equation may be written (see. e.g ScoRER (1949) or PALM and FoLDVIK (1960)) 

(3.7) 

where w is defined by 
w = Real part { w(z) e+Fgz eih} (3.8) 

and 

(3.9) 

In the approximation used, r is considered constant, which is equivalent to assuming 
an exponential density distribution with height. It should be noted that this approxima-
tion does not imply that the static stability is nearly constant with height; the density 
distribution is nearly exponential, even if the static stability varies considerably. 

In therms of w, the mean vertical wave energy flux (3.6) may be expressed as 

pw = ie0 (0) Uk-1 Imaginary part{~*~.} (3.10) 

where the asterisk denotes the complex conjugate value. 
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It is noteworthy that the differential equation (3. 7) for stationary gravity waves 
is formally similar to the equation which governs the propagation of radio waves in 
the ionosphere, as was pointed out by WILKES ( 1949). In the absence of a magnetic 
field, and with sufficiently low frequency of collisions between electrons and air mole-
cules and atoms, the propagation of waves of frequency v travelling vertically is governed 
by the equation 

(3.11) 

where E is the electric field intensity, c the velocity of light in vacuum andfN is the 
plasma frequency, which varies with height in proportion with the square root of the 
electron density. Comparison between (3.11) and (3. 7) shows that a ionospheric layer 
of high electron density corresponds to a layer of small/2 in the case of gravity waves. 
The energy flow connected with the radio waves is given by Poynting's vector, which 
can be expressed in terms of E as 

- (2v)-1 Imaginary part {E*·Ez}· (3.12) 

This expression IS m close formal agreement with the formula (3.1 0) for the wave 
energy flux connected with gravity waves, apart from a difference in sign owing to the 
fact that radio waves convey energy in the direction of the phase velocity, in contrast 
to gravity waves. 

Moreover, radio waves are also similar to gravity waves regarding the conditions 
to be satisfied at interfaces between media of different properties. As a result, radio 
waves and gravity waves show similar behaviour with respect to transmission and 
reflection. Examples of such analogous behavious will be found below. 

4. Properties of the solutions in a layer of constant 12• 

As proposed by ScoRER ( 1949), it is of interest to investigate the case of constant 
/ 2, which leads to very simple solutions. 

For k2 > /2, the stationary waves will be of the external type. The general solution 
may then be written as 

w =A e!J-Z + B e-!J-Z ( 4.1) 

with 

f-l2 = k2 - f2' (4.2) 

and A, B denoting complex constants. For this solution, (3.1 0) g1ves 

pw = e0 (0) U ~ Imaginary part (A B*} (4.3) 

Thus the vertical flux of wave energy may have any value; it will vanish only 
when A and B have the same arguments, or when either A or B is zero. 
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Next we consider the case of internal waves, k2 < l2• In this case, the general 
solution may be written in the form 

with 
,12 = [2- k2, 

Application of (3.1 0) gives in this case 

.A.>O 

pw = l 1!0 (0) U ~ (lA 1
2

- IBI 2
) 

(4.4) 

( 4.5) 

(4.6) 

Thus we see that the solution exp(i.A.z), which represents a wave with the lines of 
constant phase tilted windward (assuming U > 0) transports energy upwards, whereas 
a wlution of the form exp( -i.A.z) representing waves with pha~e-lines tilted downstream, 
transports wave energy downwards (A. ELIASSEN and PALM, 1954). 

For a superposition of both types of solutions, the resulting vertical wave-energy 
flux is additive. It is noteworthy that this is a unique property of the particular funda-
mental set of solutions exp(i.A.z), exp( - i.A.z) employed in (4.4); with any other choice 
of fundamental set, the energy fluxes would not be additive. 

The additivity of the energy fluxes enables us to consider the solution Aexp(i.A.z) 
as an incident wave set up by surface corrugation or by low-level heat sources, and 
Bexp( - i.A.z) as a wave caused by reflection from higher layers of the atmosphere, 
provided these layers do not contain any forcing effects such as heat sources. V-/e may 
define the reflection coefficient r of these higher layers as the ratio of the downwards 
to the upwards energy flux, i.e. 

(4. 7) 

Thus, r is a constant within a layer of constant l 2, in spite of the fact that energy is 
extracted from, or given to the mean current within the layer. This is because the 
upward and the downward fluxes both vary in proportion to U. 

The net upward flux of wave energy is thus ( l - r) times the flux associated with 
the incident wave. 

5. Transmission and reflection in layered model atmospheres. When l 2 

varies continuously with height, we cannot in general find analytical solutions of (3. 7). 
The problem may then be solved in an approximate manner by replacing the con-
tinuous distribution of l 2 by a fitting discontinuous stepcurve, i.e. by dividing the 
atmosphere in a number of layers with a constant value of l 2 in each layer. The solution 
must then in each layer be of the form discussed in section 4; at the interfaces, they 
may be linked together by requmng 

w and wz continuous. ( 5.1 ) 
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These interface conditions may be looked upon as being purely mathematical, serving 
the purpose that the solution of (3. 7) for a step-wise distribution of l2 shall approximate 
the solution of the same equation for a continuous distribution of l 2• It is therefore not 
necessary to consider the discontinuous distribution of l2 as belonging to a real physical 
system and derive the interface conditions from the hydrodynamical boundary con-
ditions of sudi a system. 

We shall consider the propagation of wave energy for such a step-wise distribution 
of l2• The uppermost layer will be assumed to be of infinite extent. Let l!, denote the 
value of l 2 in this layer; the motion within this layer will be of the external or internal 
type according as k 2 ~ l!,. 

Consider first the ca~e k2 > l!,, so that the solution in the uppermost layer is of the 
form ( 4.1). In order that the wave energy shall be finite at z = =, we must require 
A = 0. Thus the solution in the uppermost layer of the form 

(5.2) 

It follows that pw is zero in the uppermost layer, and since pw varies in proportion to 
U (section 3), it must be zero also in the layers below. Suppose that the motion 
in one of these layers is of internal type. Since there is no vertical flux of wave 
energy, the solution in such a layer must be of the form (4.4) with jAj = jBj. Hence 
r = 1, and it follows that the riflection is always total when the motion is of external type in 
the uppermost layer. 

Consider next the case k2 < l;,. The solution in the uppermost layer is then of the 
type ( 4.4). If the wave motion is set up by mountains or by low-level heat and cold 
sources, we here select the solution which represents upward flux of wave energy, 
i.e. B = 0, since there is no reflection from layers above. Therefore, the solution in the 
uppermost layer is now of the form. 

(5.3) 

In this case, wave energy is continually lost by the lower atmosphere. The reflection 
coefficient must necessarily be less than one in all lower layers (although it may approach 
unity under suitable conditions). 

We shall now calculate the reflection coefficient for a two- and a three-layer 
atmosphere. 

a. Two-layer model. Let subscript I refer to the lower layer, and subscript 2 to the 
upper layer. We assume that k2 < l 1

2, so that the wave in the lower layer is of the 
internal type. The solution in the lower layer may then be written 

(5.4) 

where A1 is the amplitude factor of the incident wave, and B1 the amplitude factor 
of the reflected wave. 
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In the upper layer, the wave motion will be of the internal or external type, depend-
ing on k2 '5 [2

2• Consider first the case of internal wave motion k2 < [2
2• According 

to what is said above, the solution in the upper layer is then 

(5.5) 
The reflection coefficient is found by applying the boundary conditions at the 

interface. Choosing the origin of the reference system at the interface, these conditions 
g1ve 

(5.6) 

By elimination of A2 

(5.7) 

Hence 

(5.8) 

We see from this formula that if A1 = A2, i.e. l 2 is constant throughout the atmosphere, 
no reflection occurs. On the other hand, if A1 = 0 or A2 = 0, the reflection is total. 
In all other cases a partial reflection takes place. 

The case A2 = 0 forms the transition to external waves in the upper layer. For 
external waves in the upper layer, the solution is 

(5.9) 

The reflection coefficient is readily found to be 

(5.10) 

which corresponds to total reflection, in agreement with the deductions above. 
It will be noted that (5.8) is identic with the formula for the reflection coefficient 

in optics, if A is interpreted as the refraction index. The case of total reflection (5.1 0) 
may be compared with radio waves reflected from a layer with plasma frequency 
higher than the wave frequency. 

In case of internal waves in the upper layer the energy is reflected from the inter-
face itself, whereas the case of e;;ternal waves in the upper layer, the energy is reflected 
from the entire upper layer. Thus in order that strict total reflection shall take place, 
the upper layer must be infinite vertical extent, as in the present model. To apply the 
notion of reflection to wave-motions in the atmosphere, it is important to examine the 
reflection from a layer of finite depth. We are thus led to study the behaviour of the 
wave motion in a three-layer model. 
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b. Three-layer model. We shall now consider a three-layer model with l 2 constant in 
each layer. Let subscript 1 refer to the lower layer, subscript 2 to the middle layer and 
subscript 3 to the upper layer. It has been demonstrated above that if the waves are 
external in the upper layer, total reflection takes place. This case therefore needs no 
further consideration. Furthermore, as in the previous section, we assume that the 
wave in the lower layer is of the internal type. Hence, in this section k2 < l1

2 and 
k2 < l32· 

Choosing in the upper layer the solution which represents energy flux upwards, 
the solution of (3. 7) in the three layers may now be written 

w2 = A2 ei.l.,z + B2 e_iJ.,z 

w2 = A 2 ef.!.•z + B 2 e-f.!.,z 

(5.11 ) 

(5.12) 

(5.13) 

where A1 is the amplitude of the incident wave and B1 the amplitude of the reflected 
wave. Applying the boundary conditions at the interfaces, A2, B 2 and A3 may be elimin-
ated and we end up with a relation between A1 and B1, from which the reflection 
coefficient is obtained: 

A22 (,1.1 - A3)2 - (A2
2 - A12) (A32 - A22) sin2 A2h 

r = A2z (A.l + ~)2 - (..1.22 - At2) (?'32 - A22) sin2 A2h 

if k2 < l22 

r = 
fl2

2 (A.l - ..1.3) 2 + (flz2 + A12) (A32 + fl22) Sin2 fl2h 

fl 2
2 (At + ?'3) 2 + (ttz2 + A12

) (~2 + flz2
) Sin2 

fl2h 

if k2 > l 22 

(5.14) 

(5.15) 

It will be seen that (5.14) is identic with the formula for the reflection coefficient in 
optics if A. is interpreted as the refraction index. The formula ( 5.15) corresponds to 
the reflection coeffi cient for radio waves in a three-layer model where the plasma 
frequency in the middle layer is higher than the wave frequency. 

In order to obtain a formula for the reflection coefficient suitable for graphical 
representation, we introduce 

( 5.16) 
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z 

layer 3 

-- ----.---------~ 

layer 2 

----- -'--------. 

layer 1 

0 

0 a 

Fig. !. The three-layer model. 

The interpretation of x and a will be clear by inspection of Fig. I. The reflection 
coefficient now takes the form 

sin2b v--=-x + (V~ - Va - x)2 

-x a 
r = if x < 0 

sin2b V- x + (VT""=X + Va - x)2 
(5.17) 

- x a 

(5.18) 

Figs. 2, 3 and 4 show the reflection coefficient r asa function of x (i.e. of wave number), 
for selected values of a and b. It should be kept in mind that x > 0 and x < 0 corre-
spond to external and internal waves, respectively. The curves reveal that the reflection 
power of the middle layer is :mainly determined by the parameter b. In Fig. 2, b = I, 
and the amount of energy reflected is relatively small, except for x-values close to those 
corresponding to external waves in the lowest or upper layer. For increasing values 
of b the reflection power for positive x increases, as revealed by Figs. 3 and 4. For 
negative values of x, r is an oscillating function of x, the oscillations becoming more 
rapid as b increases. 
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-10 -.5 .5 I 0 

Fig. 2. The reflection coefficient in the three-layer model as function of " (a = f, I , 2, b 1 ). 

-1.0 

c . 
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.5 1.0 

Fig. 3. T he reflection coefficient in the three-layer model as a function of" (a = ! , !, 2, b = 3) . 

b.S 

;;( 

1.0 
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6. An illustrative example. We shall now make an attempt to apply the 
concepts of transmission and reflection to mountain waves, and shall take as an example 
a ca~e studied by the Sierra Wave Project (HoLMBOE and KLIEFORTH, 1957). The 
actual distribution of l2 up to 11 km, as shown by the full curve in Fig. 5, is based on 
observed winds and temperatures on a day when pronounced mountain waves occurred 
on the lee side of Sierra Nevada. Above 11 km a probable distribution of l 2 has been 
computed on the basis of mean curves of wind and stability for the season, and is shown 
by dashed curve in Fig. 5. The wave system for this distribution of l 2 has been exam-
ined by PALM and FoLDVIK (1960). It will be seen that l 2 decreases with height 
in the troposphere as a result of the increase of westerly wind with height. Above the 
tropopause, l2 increases due to increased static stability and decreases because of 
increasing wind speed up to 50 km. 

I 
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l I 
I 
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E' I 
I 

~ I 
\ 

1,0 :<:: I 
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"' I :t 
I 12 
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\. 
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.5 .5 

Fig. 5. 12 as function of height. Solid line is computed from observed winds and tempera tures in the 
Sierra Nevada regions, d ashed line from the mean values of wind and tempera ture, and dotted line is 
obtained by interpolation. The 12-curve sep arates the regions of internal and external waves. T hin line 
shows the values of 12 for a four-layer model. 
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In order to examine the reflection of wave energy flux due to the low values of 
l 2 in the upper troposphere, we have calculated the reflection coefficient for a hypo-
thetical discontinuous distribution of /2 shown by the thin solid line in Fig. 5. It should 
be noted that this distribution does not approximate the values of /2 in the higher 
stratosphere, and consequently does not give reflection from these levels. One may 
assume, however, that the step-curve will yield realistic values for the reflection from 
the troposphere. 

The reflection coefficient was computed from this four-layer model for four different 
wave numbers. The result is shown in the following Table 1, which also gives the wave 
lengths corresponding to the four selected wave numbers. 

Table I. 

k2(m-2) I I X J0-8 I 6 X J0 - 8 1,4 x J0 - 7 I 0,8 X J0-6 
----------

L km 

I 
63 

I 
26 17 

I 
7 

r 0,65 0,82 0,97 I 

The values of r are also shown in Fig. 5. 
Waves shorter than about 26 km (k2 > 6 X 10-8m- 2) are of the external type 

in the upper troposphere. These waves are seen to be very effectively reflected by the 
upper troposphere; for waves shorter than about 17 km, the reflection is almost total. 
These short waves are therefore confined to the lower and middle troposphere, and 
very little energy is transmitted into the stratosphere. When such total reflection occurs, 
the reflected wave will interfere with the incident wave and give horizontal nodal 
planes where w = 0. Resonance waves wiii occur for those wave lengths, for which 
the phase of the reflected wave is such that ground becomes a nodal plane; the wave 
lengths of the resonance waves may be calculated on this basis . . 

It follows that the short waves which are trapped in the lower troposphere must 
be completely determined by the distribution of l 2 in the troposphere and thus be 
independent of the conditions which prevail at higher elevations. This was also found 
by the case by PALM and FoLDVIK ( 1960). 

Waves longer than 26 km (k2 > 6 X I 0- 8m-2) are seen to be of the internal type 
throughout the troposphere and up to very high elevations. For these waves, the re-
flection coefficient for the troposphere was found to vary between 0,65 and 0,82, 
depending upon their wave length. A considerable part of their energy will therefore 
be transmitted into the stratosphere. The motion in the stratosphere will thus consist 
primarily of such longer waves. These waves will depend upon the distribution of 
wind and stability up to very high altitudes. 
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7. Remarks concerning the use of the radiation condition and the possible 
propagation of waves to very high altitudes. It was assumed in section 5 that l2 

was constant in the uppermost layer, so that no reflection takes place there. The radia-
tion condition then requires that the solution for internal waves is of the form (5.2). 
Such a mathematical model implies that the wave energy is lost to an infinite outer 
space. This is of course not possible in the real atmosphere; in fact, it is easy to show 
on the basis of the model that the ratio between perturbation pressure and total pressure 
increases upward as eo -L The ratio will thus increase by a factor of I 00 from the ground 
up to about 70 km, and by a factor of 1000 from the ground up to about I 00 km. It is 
well known that the linear theory must for this reason break down at sufficiently high 
levels. Many mountain waves have a considerable amplitude already in the troposphere 
so that we must expect the breakdown to occur in the upper mesosphere and lower 
ionosphere. At these levels, non-linear terms must become important, and the wave 
energy will be transferred to other wave lengths. It is conceivable that the wave energy 
can be converted into turbulent energy and ultimately into heat. 

It thus seems plausible to assume that these non-linear effects should cause an 
absorption of wave energy, and not a reflection. If this is so, we are justified in applying 
the radiation condition at levels just below the absorbing layers, and the motion 
below will take place just as though the wave energy were radiated into an infinite 
space. 

The amount of energy absorbed by the upper atmosphere in this manner depends 
upon the reflection caused by the atmosphere below (i.e. upon the distribution of 
l2 from the surface to the level where the energy is absorbed) and on the wind profile. 
It has been shown above that the vertical flux of wave energy varies with height in 
proportion to U. A necessary condition for application of the radiation condition seems 
to be that U stays positive at all levels from the surface to the layers where the energy 
is absorbed, up to 80 - 90 km, say. According to MuRGATROYD (1957), this happens 
normally only in winter when the westerlies prevail from the surface and up to 90-100 
km. At other times of the year, the westerlies change into easterlies at much lower 
levels. To the authors' knowledge, the problem of the steady-state mountain waves 
has not been solved for the latter case. The level where U = 0 represents a singularity 
in the differential equation (l2 = =) which in a statically stable atmosphere cannot 
even be removed by addition of friction; it is likely that the problem requires non-
linear treatment. However, below the singular level, the upward flux of wave energy 
must vary with height in proportion to U and must therefore tend to zero when the 
singular level is approached. On this basis, transfer of wave energy from the lower 
westerlies to the upper easterlies seems very unlikely. 

We must therefore conclude that transfer of energy by stationary mountain waves 
into the high atmosphere is probably possible only in mid-winter. On the other hand, 
non-steady gravity waves, which may be generated when the wind speed over 
mountaneous areas varies with time, may reach the ionosphere at all times of 
the year. 
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8. Definition of reflection coefficient when l2 varies continuously with 
height. In a layer of constant l2, the reflection coefficient ( 4. 7) may be expressed as 

where 

=liA-s~2 
r iA. + s 

wz 
S=-

W 

(8.1) 

(8.2) 

This formula may be used to define the reflection coefficient also in layers where l2 

is not constant, provided k2 < l2• To justify this, we note that the vertical energy 
flux (eq. 3.10) depends only on wand wz; furthermore we note that A and Bin formula 
(4.4) can always be chosen such that at any given level w and wz obtained from this 
formula will be equal to w and w, for the exact solution. 

Although r is defined only at levels where k2 < l2, the function s is defined at all 
levels. The change of s with height is governed by the Ricatti equation: 

(8.3) 

This is verified by substitution of (8.2) and application of (3. 7). 
Since w and wz are continuous even where l2 changes abruptly, it follows that s 

is continuous everywhere except at nodal lines where w = 0. 
If it can be assumed that the solution (5.2) or (5.3) holds at a sufficiently high level, 

we obtain at this level 

s =- fl 
s = iA 

when k2 > l2, 

when k2 < l2• 
(8.4) 

Starting with these values as boundary conditions, s may be determined at lower levels 
by numerical integration of (8.3), and r is then obtained from (8.1 ). For a resonance 
wave, s becomes infinite at the surface. 

CHAPTER II 

LONG QUASI-STATIC STATIONARY WAVES. 

9. Perturbation and energy equations for stationary quasi-static waves in 
a non-uniform basic current. 

a. Basic current. For simplicity, the motion will be referred to a beta-plane with 
horizontal Cartesian coordinates x east,y north. Pressure pis used as vertical coordinate. 
The basic current is a straight westerly flow with velocity U(y,p). Geostrophic and 
hydrostatic equilibrium is expressed by 

(9.1) 
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(9.2) 

Here J is the Coriolis parameter, e0(y, p) the equilibrium density and <P(y,p) the 
equilibrium geopotential. Derivatives with respect to x, y and t are understood to be 
taken at constant p. 

Elimination of </J between these equations gives the thermal wind equation 

(9.3) 

b. Perturbation equations. Let u, v denote the perturbation velocities, w the individual 
rate of change of pressure, and q; the perturbation geopotential. The perturbation 
equations for stationary, adiabatic and quasi-static motion without friction then are: 

Uux + ( Uy - f) v + UPw + q;x =0 (9.4) 

fu + Uv, + ([!y =0 (9.5) 

- JUPv + aw + Uq;px =0 (9.6) 

u, + vY + Wp =0 (9.7) 

The coefficient a appearing in the thermodynamic energy equation (9.6) is a 
measure of static stability, defined by 

a= _::a= (;;J2 = (R~Yo r (9.8) 

were () is equilibrium potential temperature, T temperature, R gas constant, and 

Yo = 1 / ~ ae v 8 dZ 
(9.9) 

is the buoyancy frequency. The basic current is assumed to be statically stable (a > 0). 

10. The flow of wave energy. Multiplying (9.4) by u, (9.5) by v, (9.6) by 
a- 1q;p,(9. 7) by q; and adding, we find 

- JU 
(EU + q;u)" + (q;v)y +1(q;w)p = - UYuv - Upuw + _ P v ([!p (10.1 ) 

' a 
Here 

( I 0.2) 

is the wave en~rgy per unit mads (kinetic plus available potential energy) . The left-
hand side of (I 0.1) is the wave-energy flux divergence, and the terms on the right are 
source terms; the two first of these represent conversion of kinetic energy of the basic 
current into wave energy, and the last source term represents conversion of available 
potential energy of the basic current into wave energy. 
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Since x corresponds to longitude, the motion will be considered periodic in x. 
Denoting the average over one period (zonal average) by a bar, we obtain from (10.1) 

by averaging, since a = 0, 
OX 

( cpv)y + (cpw)p = - Uruv- Upuw + JUP vcpp 
a 

(10.3) 

We shall now derive a relation between the meridional fluxes of energy and momen-
tum. Elimination of w between (9.4) and (9.6) gives 

( 10.4) 

Multiplication of this equation by [Uu + cp - a-1 UUp<pp] and averaging gives 

cpv = U [a-1 Up V<pp - uv] 

Next we multiply (9.4) by ( Uu + cp) and average: 

(f - Uy) ( Uuv + rpv) = Up ( U uw + cpw) 

Elimination of cpv between ( 10.5) and (I 0.6) gives 

qxo = U [a-1 (f- Uy) vcpp - uw] 

( 10.5) 

(I 0.6) 

( 10. 7) 

The formulae ( 10.5) and ( 1 0.6) relate the horizontal and vertical wave-energy 
fluxes to the meridional eddyflux of sensible heat and to the meridional and vertical 
flux of momentum. The first term in the brackets of (10.5) gives a meridional wave-
energy flux in the same direction as the flux of sensible heat when /U/ increases with 
height, and in the opposite direction if lUI decreases with height. 

The first term in the brackets of ( 10. 7) gives an upward flux of wave energy if the heat 
flux is positive (northward), corresponding to a westward tilt of the waves with height, 
and a downward energy transport if the heat flux is negative (assuming U, (f- Uy) and 
a positive). The last terms of the brackets of (I 0.5) and ( 10. 7) represent horizontal and 
vertical energy fluxes in directions opposite to the corresponding momentum fluxes. 

When the expressions ( 10.5) and ( 10. 7) for the energy fluxes are entered into the 
energy equation (10.3), we obtain 

i_ - 1 - - i_ -1 - - -oy[a Up V<pp - uv] + op[a (f- Uy) V<pp - uw] - 0 (10.8) 

We may therefore write 
-1 - -a Up V<pp - uv = VJp, (10.9) 

Thus we have arrived at the result that the components of the meridional energy flux 
(10.5) and (10.9) can be written in the form 

(10.10) 
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The curves 1p = constant are streamlines for the flow of wave energy in the meridional 
plane. The flux of wave energy in a channel between two adjacent streamlines is not 
constant, but varies along the channel in proportion to U as indicated by arrows in 
Fig. 6. Thus if energy flows towards increasing values of U, the wave energy flux is 
divergent and wave energy is being produced from the energy of the basic flow through 
the source terms on the right of (l 0.3) . The opposite energy conversion takes place in 
regions where wave energy flows towards smaller values of U. The distribution of the 
energy source terms on the right of ( l 0.3) is thus strongly restricted and related to the 

"""' 
' 

"' \ 
\ t 

' \ t t 
ENERGY SOURCE 

I 

/tit; t!.,. I 
I I 

PRIMARY SOURCE (fviOUNrAtN) 

U= 0 

Fig. 6. M eridional flow of wave energy. Solid lines: isotachs of zonal wind. Dashed lines: Wave 
energy streamlines. Arrows indicate wave energy flux. 

distribution of zonal wind in the meridional plane. We notice in particular that wave 
energy flows along each streamline in the same direction throughout the whole length 
of the streamline within the region of positive U in the meridional plane. 

The differential equations for stationary wave motions have a singularity in points 
where U = 0. The wave-energy flux tends towards zero as one approaches a singula r 
line U = 0 in the meridional pl'l-ne, so that it seems that wave energy cannot be trans-
ported across such a line. 

So far we have only made use of the q uasi-static approximation, and the results 
obtained apply to quasi-static gravity-inertia waves as well as planetary waves. 

If we restrict our consideration to waves long enough so that their period is con-
siderably longer than the half pendulum day, we may apply the quasi-geostrophic 
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approximation. This may be done by replacing the convective acceleration terms in 
(9.4) and (9.5), as well as the meridional temperature advection term in (9.6) by their 
geostrophic values. Proceeding as before, we now obtain instead of ( 10.5) and ( 10. 7) 
the following expressions for the flux of wave energy: 

rpv = U1pp = Uj-2 rpxrpy = - Uuv (10.11 ) 

rpw =- U1py = Ua-1 fPxfPp =- U~~ T v (10.12) 

It follows from ( 1 0.12) that long quasi-geostrophic stationary waves will transport wave 
energy upwards if the flux of sensible heat is directed northward, i.e. if the waves tilt 
westward with height (assuming U and a positive). In this respect, quasi-geostrophic 
waves are similar to short gravity waves, although the mechanism connecting wave 
tilt and energy flux is quite different for the two types of waves. 

11. The long stationary waves in the atmosphere. Normal weather maps 
show a predominantly zonal circulation with a superimposed system of stationary 
long wave disturbances. These are generally believed to be set up by the large mountain 
barriers (CHARNEY and A. ELIASSEN 1949) and by geographically fixed heat sources and 
sinks, mainly at low levels (SMAGORINSKY 1953) . From these primary sources of wave 
energy, located mainly within the zone of westerlies, wave energy must flow upward 
and possibly also to the sides (north and south) in the meridional plane, within the 
region of westerly flow. 

It is important to note, however, that the stationary motion displayed by the normal 
maps satisfy time averaged equations, which contain a number of eddy terms repre-
senting the effect of transient motions upon the stationary waves. This influence cannot 
be assessed quantitatively at the present time, since the necessary statistics have not 
yet been computed (as far as the authors know). Considering that the basic flow is 
normally unstable, it does not seem unlikely that part of the wave energy formed by 
the primary source will be absorbed by transient growing disturbances. There may 
thus be important sinks (and perhaps also sources) of the energy of the stationary 
waves, other than those appearing on the right (I 0.3). With this reservation, we may 
nevertheless attempt to apply the theoretical considerations of the preceding section 
to the long stationary waves in the atmosphere. 

E. ELIASEN ( 1958) has performed a Fourier analysis of the stationary disturbances 
up to 500 mb. He found a pronounced westward tilt of the waves with wave numbers 
I, 2 and 3 in January, corresponding to an upward flux of wave energy according to 
( 1 0.12). His calculations for July gave an eastward tilt, however, corresponding to a 
downward flux of wave energy, in apparent contradiction to the hypothesis that the 
primary source is located at or nea r the ground. The contradiction is resolved if it 
can be assumed that the geographically fixed heat sources and sinks are important 
in the layer from the ground and as high as 500mb., because (10.12) is no longer true 
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in a layer where heating is significant. In such a layer additional terms will appear 
on the right of (10.12), as will be seen by repeating the derivation of this equation 
with a stationary heat source term added on the right of (9.6). The vertical flux of 
wave energy may therefore still be upward at all seasons, as required by the theory. 

The horizontal flux of wave energy should, according to (10.11), be directed oppo-
site to the "standing" flux of momentum uv. According to E. ELIASEN ( 1958), the 
horizontal momentum flux is predominantly northward up to 50°N for wave numbers 
I, 2 and 3, with the largest values in winter. This agrees with values given by STARR 

and WHITE ( 1952) for 31 °N. Their figures are indicative of a significant southward 
flux of wave energy in the troposphere from the middle latitudes into the subtropics. 

Another part of the wave energy may flow into the stratosphere, and may penetrate 
to great heights in the winter season, when the westerly flow extends to the lower 
ionosphere. 
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