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Abstract 
It is shown that the large-scale quasi-stationary disturbances of the middle-latitude westerlies 

are produced by the forced ascent of the westerly current over the continental land masses. 
Friction is found to have an important modifying effect on  the motion. Using these re- 
sults a numerical method is devised for predicting the height profile of the 500 mb pressure 
surface at a fixed latitude. The method involves the use of the notion of an “equivalent- 
barotropic atmosphere” and of the geostrophic approximation. Six actual forecasts are made 
for a period of one day and the results compared with observation. The accuracy obtained 
is thought to justify incorporation of the method into day-to-day forecast procedures. 

I. Introduction 

In an article by one of the co-authors,3 a 
program for numerical weather prediction was 
outlined in which it was proposed to consider 
a hierarchy of atmospheric models whose 
study would lead to an increasing com- 
prehension of the physical and numerical 
aspects of the forecast problem. The most 
elementary model was a barotropic atmosphere 
in which the motion is regarded as consisting 
of small perturbations on a zonal current. The 
problem of forecasting these perturbations 
constitutes the simplest non-trivial instance 
of a numerical forecast problem. It is the 
purpose of the present article to discuss this 
case as a step towards the realization of the 
general program. It is also hoped that the treat- 
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ment of motions corresponding closer to 
reality than those previously dealt with will 
prove of value to .the forecaster in the field. 

In prcvious investigations of this barotropic 
model, kinematic constraints were always 
imposed in order to permit the use of simple 
mathematical techniques. For example, the 
infinite wave train on a plane earth served as 
a model for the upper air cyclone trough and 
the point source as a model for thelocalized 
action of solenoidal fields. C.-G. ROSSBY 
(1945), pointing out that the study of purely 
periodic or isolated systems does not suffice to 
explain phenomena associated with energy 
transfer, introduced the concept of dispersion 
into meteorology. But this concept too is 
applicable only to a restricted class of mo- 
tions, namely motions that can be described 
as wave trains with slowly varying wave- 
lengths and frequencies. In order to deal with 
the most general types of interaction between 
systems, it is clear that all kinematic constraints 
must be dropped. In so doing, numerical 
methods must replace the purely analytic 
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mathematical techniques, which no longer 
suffice to deal with the complexities of the 
motion. Although there is a loss in elegance 
of treatment in using numerical methods, the 
gain in generality more than compensates; it 
becomes possible - for the first time - to 
treat actual initial and boundary conditi0n.s 

A preliminary step was taken in (NWP) 
where a method was given for predicting the 
actual height profile of the 500 mb pressure 
surface at a prescribed latitude on the assump- 
tion that the disturbances could be regarded 
as perturbations of infinite lateral extent on 
a uniform zonal current. The agreement of 
an actual 24 hour forecast with observation 
was better than had been expected, but there 
was also a marked discrepancy. A deep and 
extensive trough in the western Pacific and a 
wedge in the eastern Pacific were predicted 
to move rapidly westward but were observed 
not to move at all. 

The persistence of the Pacific trough and 
wedge system suggested the explanation that 
tine motion is composed of a traveling “free” 
perturbation and a permanent “forced” per- 
turbation produced by the action of geo- 
graphically fixed perturbing forces. The 
authors were thus led to a study of the 
quasi-permanent atmospheric perturbations. 
It was found that the observed mean dis- 
turbances at the 500 mb level could be ad- 
equately explained as an effect of the forcing 
of a zonal current over the continental eleva- 
tions, providing surface friction and the lateral 
variation of the motion were also taken into 
account. 

Having been convinced that the main dis- 
crepancies in the forecast could be elimin- 
ated by taking into account topographical 
and frictional factors, the authors devised 
a method for incorporating these factors into 
the forecast equations. Applying the method, 
24 hour forecasts were prepared for the period 
Jan. 8-13, 1946, and were compared with 
observation (see Figs. 8-13). In most cases the 
accuracy appears good enough to justify in- 
corporating the method into routine fore- 
casting, and in no case are the errors as great 
as in the original forecast (Fig. I). The method 
is objective and can therefore be used to supple- 
ment forecasts of a more subjective character. 
In certain cases it is believed to yield a better 
forecast than the standard method of extra- 

polation, particularly where deepening or 
filling due to horizontal energy dispersion 
takes place. 

11. The equivalent-barotropic atmosphere 

It is a matter of experience that the large- 
scale perturbations in the atmosphere have the 
character of “external” waves in which the 
shape of the streamlines (or isobars) is approx- 
imately the same at all levels, and where the 
increase of wind with height is similar along 
all verticals. These properties make it possible 
to deal with the large-scale motion approx- 
imately as a two-dimensional problem by 
using a method given in (NWP). The deriva- 
tion of the method will be indicated briefly 
here. 

The vorticity equation can be written with 
good approximation 

f = 252 sinpl, 

d 
dt 

in which the operator - denotes the indivi- 

dual rate of change with time. ( is the ver- 
tical vorticity component relative to the earth, 
f is the Coriolis parameter, tl is the compo- 
nent of velocity in the x-direction (east), u is 
the component of velocity in the y-direction 
(north), e is the density, 52 is the angular 
velocity of the earth and pl the latitude. Here 
( is considered as small compared to$ and 
the solenoid term is combined with the diverg- 
ence term to give the mass-divergence. Form- 
ing the average (denoted by a bar) of the 
vorticity equation in the vertical direction 
with respect to pressure and utilizing the ten- 
dency equation, we find 

where the subscript “0” is used to denote 
surface values, and H = RT,,/g is the height 
of the homogeneous atmosphere. iv is the 
vertical velocity component, p is the pressure, 
T the temperature, R the specific gas constant, 
and g the acceleration of gravity. It should 
be noticed that the effect of vertical solcnoids 
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does not occur explicitly in this equation, 
which, so far, involves only a slight approxima- 
tion. It is now assumed that the velocity field, 
with sufficient approximation, can be written 

(hence 2 = I), and that the vertical motion 
for the large-scale systems is so small that its 
effect can be neglected in the individual de- 
rivative of the vorticity. With these assump 
tions, (2)’ can be rewritten as 

>t+  (2 u - + v -  -:y) ( f + A 2 5 ) =  ar 
- .f dP0 f _--__ 

Po at H ~ O  (4) 

According to the assumption (3), there must 
be a certain level where A ( i )  = A= I ;  at 
this level we have u = u, v = v ,  and 5 = 5, 
so that equation (4) may be written 

- - - 

---__ f aP0 f - 
P o  at H ~ O  

at the level p =i.  In a barotropic fluid, we 
have A(p) f I, so that equation ( 5 )  (with 
A2 = I) holds at all levels. Equation ( 5 )  can 
therefore be interpreted as stating that an 
equivalent-barotropic atmosphere can be defined, 
whose motion corresponds to the motion 
of the baroclinic atmosphere at a certain 
level. This level ( p  = p ) ,  where equation ( 5 )  
holds, will be called the equivalent-barotropic 
level. 

According to CHARNEY (NWP) a proper 
value of A2 in the atmosphere is 514 and the 
value of lies between 500 mb and 600 mb; 
the value 500 mb will be chosen here as a 
matter of convenience since the data at this 
level is given explicitly in synoptic reports. 

- 

111. The quasi-geostrophic approximation 

The large-scale perturbations in the atmo- 
sphere show a rather slow speed of propaga- 
tion relative to the air. This fact indicates that 
these perburbations are of the type called 

“planetary” by ROSSBY. Besides such lanetary 

permit solutions which may be characterized 
as combined gravitational, inertial, and sound 
waves; such waves will have a speed of pro- 
pagation comparable with the speed of sound.’ 
The fact that the equations permit as solutions 
such fast-moving perturbations will cause 
certain difficulties for numerical integration of 
the equations. CHARNEY (1948) has shown, 
however, that by making use of the geo- 
strophic approximation one can derive a 
system of equations where the fast-moving 
perturbations in which we are not interested 
are eliminated. The geostrophic approxima- 
tion is applied after having eliminated the 
horizontal divergence in the vorticity equa- 
tion by means of the equation of continuity. 
ELIASSEN (1949) derived virtually the same 
equations by udizing the geostrophic approx- 
imation in a somewhat different manner. Using 
CHARNEY’S method, we simply introduce the 
geostrophic approximation into the vorticity 
equation ( 5 )  for the equivalent-barotropic 
level. This gives 

motions, however, the equations o 4 motion 

- - f apo f 
p o  dt HWo’ 

where ,!? = dfldy, ug, vg are the components 
of the geostrophic wind, and 5, the geostrophic 
vorticity, at the equivalent-barotropic level. 

In the following, we shall deal with the 
motion in an isobaric surface and shall therefore 
replace the pressure as dependent variable by 
the height z of the isobaric surface. We 
then have 

The geostrophic vorticity is, with good 
approximation, 

I It should be emphasized that we are here concerned 
with very long, external waves only, and that such small- 
er scale phenomena as frontal waves are disregarded. 
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The pressure tendency is 

(9) 

When (7), (8), and (9) are substituted into the 
vorticity equation (6), an equation in z alone 
results, except that it contains the tendency 
and vertical velocity at the ground on the 
right-hand side. In the case of motion over 
level ground, zoo =o ,  but the tendency at 
the ground still remains. When the computa- 
tions were started, this indeterminacy was 

removed by making the assumption - = -. at d t  
It was later recognized that it is more con- 
sistent with the assumptions made previously 

az, az 

az,, az 
at at 

to write - = x -, where x is the ratio of 

the surface geostrophic wind to the wind at 
the equivalent-barotropic level. However, the 
difference is insignificant, since the whole 
term may be dropped without noticeable 
effect on the results. 

IV. A preliminary forecast attempt 

The motion at the equivalent-barotropic 
level (500 mb) is considered as consisting of 
small perburbations superimposed upon a 
constant zonal current U. For the time being, 
the height perturbation z of the 5 0 0  mb 
surface will be considered as independent 
of y. Assuming motion over a level ground 
(yo = o), the quasi-geostrophic vorticity equa- 
aon (6) for the equivalent-barotropic level 
becomes 

where 

Strictly speaking, the factor U' =x2U = 5/4 U 
should be used in place of U in (10). How- 
ever, it was not found to be worth while to 
make this distinction, since U is not uniquely 
determined from the data in any case, but 
depends on the method of averaging. 

Equation (10) is assumed to hold at a re- 
presentative latitude. It is convenient to use I 
day as the time unit and the radius of the 

latitude circle as the unit of length. The 
solution z (x, t )  must then be considered as 
periodic in x with the period 2n. By means 
of FOURIER analysis we find the solution in 
terms of the initial distribution z (x, 0) in 
the form 

z (x + ut, t )  = 

zn 
== z (x, 0) + 1 z (a, 0) I p  (X -a, t )  dor (12) 

where the influence function (or GREEN'S 
function) I p  (x ,  t )  is defined by the FOURIER 
series 

0 

n= - m  

in which 

b = p + A z U  (14) 

In the units used (x in radians of longitude, t 
in days) we find 

p = qn cos2 p, 

where Y denotes the earth's radius. 
Taking = 45' as the representative latitude, 

p = 276, A2 = 2.5 

The factor b varies with the current velocity, 
but this variation is very slight since U is 
always of the order of 1/3 radian per day. 
One may therefore consider b as a constant. 
In the computations the value b = 7 was 

ad;\:dieries (13) for the influence function 
converges rather slowly, so that the straight- 
forward computation by evaluatin a sufficient 

laborious task. However, the authors' associate, 
G. HUNT, has given a method by which the 
com utation can be done without too much 
worl!. Equation (13) may be written 

(16) 

number of terms in the series wou f d be a very 

I p  (x, t )  = 

n = - m  
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where 

+ m  

f , ( x , t )  = ~ ~ ( 6 " - 1 ) e i ' "  2n (18) 
t i= -m 

is the influence function for non-divergent 
planetary motions. The first sum on the right- 
hand side of (17) converges so rapidly that 
it is sufficiently accurate for our purpose to 
sum from - 20 to + 20, as an estimate of the 
remainder shows. As to the function I,, (18) 
may be written 

Io(x,  t )  = - -+ n2 
n- - m n = - m  

+ a  + m  

n=-m n = - m  

The four first series can be summed exactly; 
they represent polynomials in x of the first, 
second, third, and fourth degree, respectively. 
The number of such terms to be taken is a 
question of economy and depends on the 
accuracy wanted. The convergence of the 
last series is so rapid that summation from 
-20 to + 20 will give more than sufficient 
accuracy. 

In this way, the functions lo (x ,  t )  and Ip(x  t ) ,  
were computed for t = I day accurately to 
two decimal places.1 The results are given in 
table I, and Iz.5(x, I )  is graphed in Fig. 5 .  
The prognostic formula (12) was tried out 
on an exampie from the carefully pre- 
pared and well-analysed Historical Weather 
Maps series published by the Air Weather 
Service of the U. S. Air Force. The height 

I A more accurate computation of a GREEN'S func- 
tion for non-divcrgent planetary waves, for several diff- 
erent latitudes and time intervals, has been made inde- 
pendently by G. E. FORSYTHE in a paper to be published 
in the Journal of Research of the National Bureau of 
Standards. 

z (I00 ft.) 

AZ (I00 tt.) 

12 Jan. 1946 
0400 GMT 

Fig. I. The upper curve gives the observed height pro- 
file of the 500 mb surface at 45O N forJanuary 12, 
1946, 0400 GMT. The lower continuous curve gives 
the observed change in the following 24 hours, and the 

lower dashed curvc the predicted change. 

of the 500 mb surface along 45' latitude for 
January 12, 1946, 0400 GMT was taken as 
the initial distribution of z ;  and the correspond- 
ing profile for January 13, 1946, 0400 GMT, 
was computed by means of equation (12) 
with U = 20' longitude per day. The integral 
in (12) was approximated by summing over 
intervals of IOO longitude. The profile of the 
500 mb surface along 45O latitude on January 
12, and the computed and observed 24 hour 
changes are shown graphically in Fig. I .  

The zonal profile of the 500 mb surface may 
be described as an almost stationary, very long 
wave pattern, upon which is superimposed a 
system of shorter, migrating waves. The long 
wave, stationary pattern consists of two main 
ridges at the west coasts of Europe and North 
America, and of troughs over the North 
American east coast and the western Pacific. 

The computed forecast is not bad, as far as 
the shorter waves are concerned; but the 
formula gives a rapid propagation of the 
very long wave pattern toward the west, in 
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long.) 

0 

I0 
20 

30 
40 
50 
60 
70 
80 
90 
I00 
1 I 0  
I20 
130 
1 4 0  
1.50 
160 
1 7 0  
I80 

-6.70 0.30 
-3.27 0.34 
-1.12 0.39 

0.14 0.43 
0.78 0.47 

0.94 0.52 
0.74 0.53 
0.48 0.53 
0.22 0.51 

-0.02 0 . 4 8  
-0.22 0.43 
-0.36 0.37 
-0.45 0 . 2 8  

-0.48 0.19 
-0.47 0.09 
-0.42 -0.02 

-0.24 -0.24 

0.98 0.50 

-0.34 -0.14 

- 6.64 
- 3.44 
- 1.66 
- 0.68 
-0.17 
0.06 
0.16 
0. I8 

0.16 
0.14 

0.17 

0.12 

0. I I 

0.10 

0.11 

0. I 2  

0.13 

0.16 
0.14 

0.36 
0.44 
0.50 
0.53 
0.54 
0.54 
0.53 
0.51 
0.48 
0.44 

0.37 
0.34 
0.30 

0.4 I 

0.27 
0.24 
0.2 I 

0.18 
0.16 

Table I 

-5.78 1.22 

-1.17 0.98 
-2.65 1.10 

-0.41 0.86 
-0.13 0.71 
-0.02 0.58 

0.03 0.38 
0.03 0.30 
0.02 0.24 
0.01 0.18 
0.00 0.14 
0.00 0.10 

-0.01 0.07 

0.02 0.47 

-0.01 0.05 
-0.01 0.03 
- 0.01 0.01 

0.00 0.00 

0.00 0.00 

-5.32 1.68 
-2.17 1.31 
-0.86 1.02 

-0.30 0.76 
-0.07 0.56 
-0.01 0.41 

0.02 0.29 
0.01 0.21 

0.01 0.15 
0.00 0.10 

0.00 0.07 
-0.01 0.05 
-0.01 0.03 
-0.01 0.02 

-0.01 0.02 

0.00 0.01 

0.00 0.01 

0.00 0.00 

0.00 0.00 

-5.06 1.94 

-0.69 0.96 
-0.22 0.64 
-0.04 0.44 
-0.01 0.28 

0.01 0.19 
0.00 0.13 
0.00 0.08 

-0.01 0.05 
-0.01 0.04 
-0.01 0.02 

-0.01 0.01 

0.00 0.00 

0.00 0.00 

0.00 0.00 

0.00 0.00 

0.00 0.00 

0.00 0.00 

-1.86 1.35 

The influence function l a z  (x, I) for a2 = 0, 2.5,  6, 10, 14, and 18. 

contradiction to the observed persistence of 
this system. 

As an explanation for the discrepancy, it is 
assumed that the very long waves are forced 
perturbations, set up by some geographically 
fixed disturbing forces. There are two conceiv- 
able ways in which the motion can be effected 
by the underlying surface: by thermal action, 
or by the forcing action of continental eleva- 
tions. The former has been suggested by 
ROSSBY (1939) and HAURWITZ (I940 11), but 
is here tentatively discounted on the ground 
that the reversal in phase of the fixed perturba- 
tions, which should be expected to accompany 
the reversal of the heat and cold sources 
from winter to summer, is not observed to 
occur. The latter is therefore assumed to the 
dominating effect, and we are led to consider 
the nature of topographically forced perturba- 
tions. 

V. The effect of continental elevations 

Instead of putting the vertical velocity at 
the ground in equation (6) equal to zero, we 

ah ah 
dX aY 

now write wo = ug, - + vg, -, where h is 

the height of the ground above mean sea level. 

43 

-4.88 2.12 

-1.64 1.36 
-0.55 0 . 8 8  
-0.16 0.53 
- 0 . 0 2  0.33 
0.00 0.20 

0.02 0.12 

0.01 0.07 
0.00 0.04 
0.00 0.02 

0.00 0.01 

0.00 0.00 

0.00 0.00 

0.00 0.00 

0.00 0.00 

0.00 0.00 

u.00 0.00 

0.00 0.00 

0.00 0.00 

The perturbation equation for stationary 
motion independent of y becomes 

where h(x) is the mountain profile along the 
latitude circle in question. Assuming U,,, the 

eostrophic zonal current at the ground, to 
f e  a certain fraction x of the velocity U at 

Table I1 

-3 
-2 
-1 
0 
I 
2 

3 
4 
5 
6 
7 
8 
9 

- 0.070 
- 0. I 0 0  

-0.506 
-0.212 

0.305 
0.119 
0.177 
0.065 
0.095 
0.034 
0.049 
0.017 
0.023 

-0.051 
- 0.080 
-0.433 
-0.182 

0.314 
0.112 

0.149 
0.051 
0.065 
0 . 0 2 2  

0.030 

-0.037 
-0.064 
-0.382 
-0. I 6 I 
0.316 
0.102 

0.123 
0.038 
0.047 
0.014 
0.016 

Numerical constants An in the forecast equation (45). 
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the 500 mb level, we get after dividing through 
by U and integrating: 

From this equation it follows that over the 
oceans, where h = 0, the stationary perturba- 
tion must take the form of a pure sine wave, the 
wave length of which is 2 n d ,  ROSSBY'S 
stationary wave length. 

This result may be compared with the nor- 
mal pressure profile at 20,000 feet along 45O 
latitude for the month of January, taken from 
the Normal Weather Maps series of the U. S. 
Weather Bureau. This normal profile, which 
is shown converted to height units at 500 mb 
in Fig. 4 (solid line), may be considered as 
approximating the stationary profile. As 
expected, the profile is roughly sinusoidal 
over the oceans; but the wave length is 140'- 
150' of longitude, whereas an estimate of the 
zonal wind speed shows that ROSSBY'S sta- 
tionary wave length is about 80'. We are 
therefore forced to the conclusion that (21) 

is not the correct mathematical expression of 
the stationary motion. 

A more correct explanation of the stationary 
pattern follows from the consideration that 
the lateral variation of a topographically 
forced perturbation must be determined by 
that of the continental elevations, and these 
are more closely approximated in meridional 
section by the crest of a sine wave than by a 
horizontal line. Accordingly we allow for 
the meridional variation by assuming that the 
perturbation has a sine variation in the north- 
south direction with a half-wave length cor- 
responding roughly to the effective lateral 
extent of the land profile across the zonal 
current, about 25' of latitude. The motion is 
therefore of the type studied by HAURWITZ 
(1940, I). Putting 

in the expression for the relative vorticity (S), 
we obtain, instead of equation (21), 

where 

In the length unit used (degrees of longitude 
at 45') s represents the number of stationary 
waves encircling the 45' latitude circle and 
m = n / D ,  where D is the north-south half 
wave-length of the perturbation. The value 
of s must be approximately 2.5 to correspond 
to the stationary wave length of 140' longitude 
observed over the oceans (see Fig. 4). The 
value of U measured from the normal weather 
map is 0.29 radians per day or 17' longitude 
per day. With the value = 2n we find that 
m2 must be about IS. This corresponds to a 
halfwave-length D of 3 3  degrees of latitude, 
which agrees well with the value 25 estimated 
from the shape of the continents. 

The solution of the non-homogeneous 
equation (23) is unique when we demand that 
z ( x )  and its first derivative be continuous 
and periodic with the period 2n. By means 
of FOURIER analysis, the solution may be 
written in the form 

ZZ 

z ( x )  = xA2J h(a)@,(x -a) dor (25) 
0 

where 

n = - m  

Strictly s eaking, 03) has been so chosen 
that the P unction represented by the integral 
(25) is not the solution to (23), but is rather 
the deviation of the solution from its mean 
valve around the latitude circle. 

Equation (26) may be summed to 

@,(x -t 232) = @,(x) (27) 

With s = 2.5, this function is represented 
graphically .in Fig. 2. 

The formula (25) was applied to a function 
h(x) ,  determined from The Oxford Advanced 
Atlas (J. BARTHOLOMEW 1942) in the.following 
way: The height along the latitude circles 
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Fig. 2. The GREEN'S function @., ( x )  for the stationary 
perturbation. The dotted au;ve represents the function 
for the case of no friction, the dash-dotted curve for the 
case of moderate friction, and the dashed curve for the 

case of strong friction. 

40°, 42O, 44O, 46", 48", 'and soo was estimated 
from the contour lines of the map by taking 
points at IOO intervals of longitude. The 
arithmetic mean of the six values along the 
meridian x was taken to represent h(x) .  This 
function is represented graphically in Fig. 3.  
With s = 2.5  and x = 0.4 the correspond- 
ing stationary profile of the 500 mb surface 
was computed from (25) by approximating 
the integral by a sum in steps of IOO of longi- 
tude. The result is represented by the dotted 
curve in Fig. 4. The agreement with the 
solid curve, representing the normal profile, 
is seen to be poor, and we must again re- 
examine the assumptions. 

We notice that equation (23) gives resonance 
with infinite amplitudes for the solution if s 
is an integer. This is a property of linear 
mechanical systems with no energy dissipa- 
tion. In general one can say that such systems 
are extremely sensitive to small continuously 
acting forces. To remove t h i s  artificial sen- 
sitivity it is natural to consider the effect of 
friction. 

VI. The effect of surface friction 

With U = 0.29 radians per day, it will take 
an air particle three weeks to travel all around 
the latitude circle. It seems likely that frictional 
damping will be significant after such a long 
time, so that the greater part of the disturbance 
given to the air by a certain mountain will 
probably have disappeared when- the air 
returns three weeks later to the same mountain. 

Fig. 3. Topographical profile at 45" N. The elevations 
represent the mean height of the earth's surface, averaged 
for the interval 40' N to 30' N, as a function of longitude. 

It is therefore reasonable to assume that we 
have to take friction into account in order to 
explain the stationary perturbations. 

One way of doing this is the following: 
From the theory of the motion in the friction 
layer near the ground, viz., the theory of the 
EKMAN spiral, one can compute the total air 
transport in the friction layer. The formulas for 
the transport are given by BRUNT (1941). The 
total mass transport along the isobars is, in 
the first approximation, proportional to the 
geostrophic transport, and will therefore be 
approximately non-divergent. The mass trans- 
port across the isobars towards lower pressure 
may be written 

where Po and vg, are the density and geo- 

Fig. 4. Normal height profile of the 500 mb surface at 
45O N for January together with computed stationary 
profiles for u = o (no friction), for u = 0.25 (moderate 
friction) and for u = 0.50 (strong friction). For purposes 
of comparison the heights are represented as deviations 

from their respective means. 
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strophic wind in the friction layer, k is a unit 
vertical vector, and F is given by 

Here cc is the angle between the isobars and 
the surface wind, and K is the “eddy-diffus- 
ivity”. The transport across the isobars means 
that the horizontal pressure forces will do 
work on the air in the friction layer which will 
compensate for the dissipation of kinetic 
energy in this layer by friction. The flow 
across the isobars in the frictional layer will 
produce compensating currents across the 
isobars in the air above the friction layer, 
which in the present case will result in negative 
work being done by the horizontal pressure 
forces and a corresponding decrease in the 
kinetic energy. By this mechanism, the dis- 
sipating effect of surface friction can be transfer- 
red to the air above the friction layer, even 
though the frictional stresses in that part of the 
atmosphere are negligible. 

As an illustrative example, we consider a 
barotropic linear current u along the x-axis 
with constant velocity above the friction layer. 
In the friction layer there is then a mass 

H -  
transport D = --FeOu, in the y-direction. f 

J 

Assuming that the current has a finite lateral 
extent, this means an accumulation of mass 
to the left of the current and a depletion of 
mass to the right, so that the horizontal 
pressure gradient will decrease at all levels. 
In response to this decrease, the air above the 
friction layer will begin to travel across the 
isobars towards higher pressure. This cross- 
isobar current will increase in strength until 
it approximately compensates the mass-trans- 
port towards lower pressure in the friction 
layer; then the pressure field will become 
nearly stationary. This balance is expressed by 

H 
evdz = - D = - - &,u, where the in- 

tegral is taken upward from the top, zl, of 
the friction layer. Assuming the cross-isobar 
component L, above the friction layer to be 

i 21 f 

F 
constant, we find v = -- u.  Since friction f 

is supposed to be negligible above the fric- 
tion layer, the x-component of the equation 

du 
of motion is - = f v .  Hence we obtain 

dt 
du 
dt 
- = - F u  

This equation implies an exponential decrease 
with time of the current velocity, the loga- 
rithmic decrement being F. Adopting the 
values used by BRUNT, viz., CI = 22.s0, K = 10 
m2 sec-l, and putting f = I O - ~  sec-l, H = 8,000 
m, we obtain F = 2.0 x 10-6 sec-1 = 0.17 
day-l. This means that the velocity decreases 
to I/e times its original value in six days. It 
should be noted however that the decrease will 
be slower in a baroclinic current, where the 
current velocity increases with height. In this 

case, we obtain, instead of (30), -- = - Fuo, 

where the bar means mean value with respect 
to pressure, and uo is the velocity at the top 
of the friction layer. For instance, assuming 

- = 2 2, one obtains a logarithmic decre- 
dt dt 
ment of 0.085 day-’. 

Similar effects of friction are dealt with by 
A. EINSTEIN in a suggestive essay in his book, 
Mein Weltbild. He points out that friction is 
responsible for the “meridional” circulation 
observed in a cup of tea when the contents are 
set in rotation. He also shows that in a curved 
river, the same frictional effect will cause a 
lateral circulation which i s  important for the 
explanation of the meandering of the river. 

Since there cannot be any significant accu- 
mulation of mass in the friction layer, we have, 
with good approximation, div D + enwo = 0, 
where eo and wo are the density and vertlcal 
velocity at the top of the friction layer (1,000 m 
above the ground, say). Hence, from (28), 

- 
du 
dt 

- au au 

I H 
too = - - div D x - FCg, (3 I) 

P O  .f 
Thus, ground friction will cause ascending 
motion in regions of cyclonic vorticity near 
the ground and descending motion in regions 
of anticyclonic vorticity. For instance, putting 
H = 8,000 m, F = 2.0 - 10-* sec-1, and C,,=f, 
which means an intense cyclonic vortex, we 
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obtain iv0 = 1.6 cm sec-1. Surface friction 
may therefore be an effect of some importance 
for the maintenance of the typical vertical 
circulations in cyclones and anticyclones. 

The vertical circulation caused by friction 
will give rise to a damping of the perturba- 
tions in the free atmosphere in systems with 
little change of phase with height. For instance, 
in a region with relative cyclonic vorticity 
there will be .horizontal convergence in the 
friction layer, a corresponding ascending 
motion at the top of the friction layer, and a 
nearly compensating divergence above the 
friction layer. This divergence gives a decrease 
of the cyclonic vorticity.1 This effect can 
easily be incorporated into the equivalent- 
barotropic model when we assume that this 
model' applies to the air above the friction 
layer. For the vertical velocity w,, in (6) we 
substitute the value (31). In addition to the 
vertical velocity due to friction, however, 
we have the vertical velocity due to topo- 

raphy, so that the equation of the equivalent 
farotropic model becomes 

This equation was derived under the assump- 
tion' that the shape of the streamlines does 
not change with height, and that the horizon- 
tal velocity is of the form v(x, 7) A(p). This 
assumption implies that we may write the 
velocity and vorticity near the ground as a 
certain fraction x of the velocity and vorticity 
at the equivalent-barotropic level, i.e., 

I l g ,  =; xu, vg, = w, Cg, = xc ( 3 3 )  

Hence ( 3 2 )  becomes 

I There is no corresponding increase in vorticity in 
the friction layer, because there the frictional forces will 
cause a decrease in vorticity which will approximately 
compensate for the increase due to convergence. 

VII. Explanation of the forced stationary 
perturbations 

We now return to the stationary mountain 
perturbations. By using ( 3 4 )  in linearized form, 
we are able to take friction into account in the 
treatment of the motion. In deriving the 
perturbation equation from ( 3 4 ,  the basic 
current is supposed to satisfy the corresponding 
homogeneous equation (h  = 0). It should 
be noticed that this will not be true if the 
basic current is assumed to be of limited lateral 
extent; then the friction term will not vanish, 
and the basic current velocity will decrease 
exponentially with time. Since such a damping 
is not observed, one has to assume that the 
frictional dissipation is compensated by some 
mechanism not implied in ( 3 4 )  (e.g., probably 
by a slow thermally produced meridional 
circulation), so that as a result the westerlies 
are maintained. This reasonin suggests that 
we may neglect friction in ( 3 4 7  when dealing 
with the basic current, and consider only fric- 
tional effects due to the erturbations. In 
any case, this problem is formally avoided 
by assuming the basic current to be constant. 
Doing so, and assuming the perturbation to 
have a sine dependency on the y coordinate 

, we arrive at the following 

peiturbation equation for stationary flow, 

where, as in section IV, we set 2; = I. The 
following abbreviations are used : 

The solution is unique when it is demanded 
that z(x) and its first and second derivatives be 
continuous and have the period m. It may be 
written 

zn 
Z(X) = ~ i l 2  1 h(X)@, ,  (X -a) d ~ l  ( 3 7 )  

0 

where the GREEN'S function @&) is given by 
+ m  

n= -m 
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To evaluate this series, we first determine its 
sum, @: for rn = 0. We obtain 

- ?  ( x - n )  
e 2  

@; (x) = - -- cos [s’(x - n) - 61, zs‘M 

0 I x 5 2n, 

where 

\/sinh2 (: n)cos2 (s’n) + cosh2 - n sin2 (s’n) (: ) 

M 

After having determined @“,x), D0(x) was 
calculated by taking 7 terms in the series 
for Q0(x) - @:(x), which converges rapidly. 
The calculation was performed for s’ = 2 . 5  
and for u = 0.25 and 0.50, corresponding to 
values of K, the eddy diffusivity, in the ob- 
served range. The associated GREEN’S functions 
are graphed in Fig. 2 together with @,,, the 
GREEN’S function without friction (u = 0). 
We remark that the curves can be interpreted 
as the stationary height profile caused by an 
infinitely narrow mountain range located at 
x = 0. With this interpretation we may con- 
clude from the figure that a narrow mountain 
range will set up a sinusoidal wave with a 
shar ridge at the mountain. The waves will 
be Bamped downstream in the case of friction 
and undamped in the case of no friction. 
Since a continent of arbitrary profile may 
be regarded as a sum of infinitesimal “point” 
mountains, we may interpret (37) as ex- 
pressing the general stationary disturbance 
as the sum of the infinitesimal disturbances 
produced by these “point” mountains. 

Using the GREEN’S functions for u = 0.2s 

and u = 0.50, the stationary profile of the 
500 mb surface corresponding to the urountain 

profile shown in Fig. 3 was computed from 
(37). The value 0.4 was chosen for the reduc- 
tion factor x ;  this value seems reasonable from 
wind observations. The resulting stationary 
profiles are shown in Fig. 4. A glance at  the 
figure shows that the agreement between the 
computed and observed profiles is very much 
better when friction is taken into account than 
when it is not. Indeed, the agreement in the 
former cases, especially for u = 0.50, is as 
good as can be expected from a linear theory. 
It may therefore be considered established that 
the stationary perturbations in the westerlies 
are forced perturbations created by the forced 
ascent of the westerly current over the con- 
tinents and modified by friction. 

The value u = 0.2s corresponds to BRUNT’S 
value K = 10 m2 sec-1, whereas u = 0 . 5 0  
corresponds to K = 40 m2 sec-1. It is known, 
however, that the probable error in the deter- 
minations of K is so high, and the geographical 
variation of K so great, that correspondence of 
K with observed values in order of mapirude 
is all that can be demanded from the theory. 

VIII. The revised forecast method 

Having arrived at an explanation for the 
persistence of the very long-wave components 
in the observed flow in terms of topogra’ 

factors into the forecast equation. Accordingly 
we replace equation (6) by (32) or (34). 

Again considering small perturbations on a 
zonal current U, (34) can be linearized to 

and friction, we proceed to incorporate t P ese 

where, as in the case of the stationary per- 
turbations, we have assumed a sine variation 
of the perturbation with y given by the rela- 
tion (22). 

In the following, the term “forced perturba- 
tion” is used to denote any solution of (39) and 
the term “free perturbation” is reserved for a 
solution of the corresponding homogeneous 
equation (h  = 0). The most general motion 
satisfying (39) can be regardcd as the sum of 
a forced stationary perturbation and a free 
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moving perturbation. Having discussed the 
forced perturbation in section VII, we now 
turn to a consideration of the free perturbation. 

tf we consider an elementary wave solution 
of the homogeneous equation of the form 
z(x, t )  = Aei(nx-vf), we find 

n2 + m2 
iv = xF -+ inU 

n2 + m2 + 1 2  

n2- S 2 

n2 + m2 + P 
where, as before, s is the stationary wave num- 
ber (24). Thus, a consequence of (39) is that 
the traveling free perturbations are damped, 
with. a logarithmic decrement approximately 
xF. Using the values of x employed in the 
treatment of the stationary perturbation, xF is 
found to be of the order 0.1 day-I. This 
shows that after a few weeks the traveling 
perturbations would be damped out and only 
the stationary perturbations would remain. 

This damping is, of course, not in agreement 
with the observations. The main reason is 
robably that the traveling perturbations are 

formed as unstable waves, which are able 
to grow in amplitude at the expense of the 
energy of the basic current.’ 

As we are here concerned only with 24 
hour changes in the motion, the effect of 
friction will in any case be slight and may be 
ignored. The case is different for the permanent 
motions; there the entire history of an air 
par!sel in its travel around the earth must be 
considered, and the effect of friction is decisive. 
We will therefore consider the solution of 
(39) with F = 0. 

We have earlier considered the general 
solution as the sum of a free perturbation and 
a stationary forced perturbation, which to- 
gether satisfy the observed initial conditions. 
One may also regard the solution as made up 
of a free perturbation, which alone satisfies the 
observed initial conditions, and the forced 
perturbation produced by the topographical 
forcing of an initially undisturbed zonal 
current. The latter point of view is preferable 
in principle for the motion is then treated 

purely as an initial value problem, or as 
RICHARDSON called it, a “marching problem”. 
This method makes it unnecessary to determine 
the stationary perturbation, which is a roblem 
“in the large”, and enables us to loo K at the 
forecasting problem as a “local” problem, the 
solution of which depends only on what is 
happening within a limited region. 

Adopting the latter point of view we 
obtain the solution of (39) (with F = 0) by 
putting 

cn( t)einx, h(x)  = an einx 
u= - m 

z(x, t )  = 
n=-m 

Substituting these expressions into the differ- 
ential equation, we obtain a differential equa- 
tion of the first order for cn(t) .  Solving this, 
and adjusting the constants so as to satisfy the 
initial condition, we finally get 

2 (x $. ut, t )  = 2 (x, 0) + 
+ f 2 (a,o) 1,s (x-a, t )  da + 
+ x A2 f h (a) J (x -a, t )  da, 

Z7I 

0 

2 1  

(40) 
0 

where 

inbt + m  

2n 
n =  -m 

inbt 

/(x, t)’ -- 
2n n2 - s2 

n=--8 

and 

(43) 

1 The instability may be attributed to the horizontal 
shear+ of the current (H. L. KUO, University of Chicago, 
in a paper to be published in the Journal of Meteorology) 

Let us consider the first in (4O). 
This is the solution of the homogeneous 
eauation satisfvinp the initial condition. The 

- /  0 or to  its baroclhicity (J. G. CHABNBY, 1947). In both 
cases the very long wave forced perturbations are stable 
and are therefore subject to the full damping effect of 
friction. 

Auence function I,* (., t )  is he 
Same as with in section IV, the Only 
difference being that 1 2  is replaced by a2, since 
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Fig. 5 .  The influence function laz (x .  I )  for 02 = 2.5 
and 02 = 10. This function represents the 24 hour 
height change of the 500 mb surface, relative to a co- 
ordinate system x traveling with thc mean current, pro- 
duced by a concentrated initial disturbance at x = 0. 

we now consider perturbations with finite 
lateral extent. In the study of the stationary 
perturbations we found that m2 should be about 
IS; consequently, we should expect u2 = 18 
to be a proper value. The influence function 
was computed in the same way as shown in 
section IV, for a time interval of one day 
(t = I), and for u2 = 6, 10, 14, and 18. The 
results are given in table I, and, in the case of 
u2 = 10, also in Fig. 5 .  There turned out to 
be very little difference in the forecasts made 
with the influence function for u2 = 10, u2 = 
= 14, and u2 = 18. The value u2 = 10 used in 
the following was based on a previous estimate 
of m which differs somewhat from the value 
given in section V. Because of the relative 
insensitivity of the forecast to changes in m it 
was not found necessary to revise the results. 

It will be seen that the influence function 
for one day is almost zero in the greater part 
of the region (- 180' to I~o"), and has an 
appreciable value only in the vicinity of the 
origin. It is therefore not necessary in (40) to 
integrate all around the latitude circle; it is 
sufficient to take the integral over a certain 
influence region around the point x. This 
procedure is in asreenlent with group velocity 
considerations (CHARNEY, NWE') and means 

that it is not necessary to know the data for 
the entire world in order to make a 24 hour 
forecast in a small region. In this respect, it 
seems preferable to use the influence function 
with u2 = 18 since then the influence region 
would be smaller. 

The last term in the forecast formula (40) is 
a solution of the non-homogeneous equation 
and represents the disturbance produced by 
the continents after the time t in an initially 
undisturbed current. This part is therefore 
independent of the initial profile z (x, 0) and 
can be determined once and for all as long as 
s and U remain the same. 

In order to com ute the GREEN'S function 
J ( x ,  t)', we write ( 2 )  in the form 

n =  + co 

The first two series can be summed exactly, 
and the last series converges so fast that sum- 
mation from - 20 to + 20 gives sufficient 
accuracy. In this way, the function J(s, I )  was 
computed for u2 = 10 and U = 0.3s radians 
per day or 20" longitude per day. The result 
is shown in Fig. 6. The shape of the curve 
shows that there is a finite influence region 
for the mountain influence also, which means 
that the forecast is not influenced by mountains 
very far away. The width of the influence 
region is about the same as for the influence 
function I,, (x, I) for free perturbations. The 
function J (x, I) may be inter reted as the 

current after 24 hours by an infinitely narrow 
mountain range situated at x = -zoo. The 
reason for the two discontinuities in the curve 
is that the air between the discontinuities has 
passed over the mountain during the period, 

disturbance produced in an initial P y undisturbed 

I The method given for calculating](x, f )  fails when 
z is an integer, corresponding to resonance for the sta- 
tionary perturbations. Howcver, J ( x ,  t) i s  finite in this 
case too and can be determined by a different method. 
That J ( x ,  f) niust bc finite is obvious from energy con- 
siderations. 
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0.1, Jb.3 

Fig. 6. The GRseN's function I (  x, I) for the 24 hour 
height change of the 500 mb surface at latitude 45' pro- 
duced by the forced motion of the current over an 

irregular surface. 

whereas the air outside the discontinuities has 
not. 

The corresponding 24 hour disturbance 
produced by the actual mountain profile is 
represented by the last term of (40). This 
term was computed with x = 0.4 for the 
mountain profile h (x) shown in Fig. 3. The 
result is shown in Fig. 7. 

It is interesting to note that the Rocky 
Mountains act approximately as an infinitely 
narrow mountain range. The computation 
shows that the topographical influence on a 
24 hour change in the pressure field is small. 
In fact, in applying (40) to actual weather 
situations, it was found not worth while to 
take the topographical term into account for 
a 24 hour forecast, even though it would have 
improved the forecast slightly. It should be 
remembered, however, that the effect of 
topography will be larger for a longer forecast 
period. 

Without the effect of topography, and 
with a limited influence region, the prognostic 
formula (40) becomes 

z ( x  + ut, t )  = z(x, 0) + 
+ f z (a, 0) L a  (x -a, t )  da. 

x + x2 

x-XI 
(44) 

This formula was tricd out on some actual 
situations taken from the U. S .  Air Weather 
Service map series Historical Weather Maps for 
January, 1946. The function z (x, t )  was identi- 
fied with the height of the 500 mb surface at 
45" latitude. The zonal wind U was taken to 
be 20" per day, and the value a2 = 10 was 
used in the influence function. The integral was 
taken over an influence region of 120' longi- 
tude (xl = 30°, x2 = 90") to insure accuracy, 
although ..in practice it would be possible to 

evaluated by means of SIMPSON'S formula 
using steps of 10" of longitude. The formula 
actually used was 

z ( x  + zoo, I) = z(x ,  0) + 
4 - 0  

+ X A . J z ( x +  N - I O ' , O ) .  (45) 
N = - 3  

The values of the coefficients A N  are given 
in table I1 for aa = 10, 14 and 18. In this 
way, a forecast for a region of 90°, say, can 
easily be computed in a half hour. Since the 
influence function has the mean value zero, 
we may subtract any constant from the height 
z in computing the sum. In order to prevent 
having too large a value for z, this quantity 
was reckoned from the level 18,000 feet, 

IX. Discussion of results 

The results of 6 forecasts are presented in 
Figs. 8-1 3. The upper curve in each diagram 
shows the initial profile of the 500 mb surface 
along the 45" latitude circle. This curve was 
obtained from the 500 mb maps by reading 
off the heights at every 10" of longitude to 
within 10 feet. The two curves in the lower 
part of each diagram show the computed 
(dashed curve) and observed (solid curve) 
local changes in the following 24 hours. 

In judging the results, it should be borne in 
mind that, owing to the scarcity of aerological 
data, the 500 mb maps involve errors which 
often may be of the order of 200 feet. Since 
the data on which the analysis is based are most 
extensive in the region 130' W-80" E, the ana- 
lysis will presumably be most reliable in this 
region. This is also the region where the 
method gave the best results on the average. 

Fig. 7. The 24 hour height change of the 500 mb 
surface at 45" N, produced by the motion of an initially 

straight zonal current ovcr the continents. 
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Figs. 8-13. In each figure, the upper curve represents the observed height profile of the 500 mb surface at 
45" N for the date indicated in the upper right hand corner. The lower continuous curve gives the observed 

change in the following 24 hours, and the dashed curve the predicted change. 
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The diagram for January 13 shows an obvious 
example of a disagreement between the com- 
puted and observed changes due to erroneous 
analysis. The map for January 14 shows a 
tremendous filling of the entire Pachc trough, 
which is probably fictitious since there is 
very little data to substantiate it; moreover, 
it deepened again the next day. The large 
"observed" pressure rise in the region 90" E 
to 180' E, which is shown in the dlagram for 
January 13, is therefore entirely wrong; in 
this case, the computed forecast was probably 
much better than the analysis for January 14. 

Besides the errors due to erroneous analysis, 
we have to consider errors due to 
non-fulfillment of the assumptions un erlymg 
the forecast. The forecast equation was derived 
for small perturbations on a zonal current, and 
one cannot expect good results when the 
amplitude grows too large. Furthermore, the 
perturbations were assumed to vary in a 
certain regular manner in the ydirection; 
this assumption made it possible to represent 
the two-dimensional pressure field by a profile 
along one latitude circle and thereby to treat 
the problem as a one-dimensional one. When 
the actual perturbations do not show such a 
regular variation in the y-direction, there is 
always the possibility of an advection of 
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Fig. 1 3 .  

vorticity from the north or south which 
cannot be predicted from the shape of the 
profile at one latitude. The strong dee ening 
that took place in the Atlantic (4O'Wf from 
January g to 10, and which the method failed 
to predict, may be due, at least partly, to the 
advection of strong cyclonic vorticity from the 
north. 

Errors may also result from an im roper 

the derivation of the forecasting formula was 
made for a constant U along the latitude 
circle, it is ossible to a certain extent to 
account for s P ow variations of U with longi- 
tude. This is so because the forecast is independ- 
ent of the zonal current outside the influence 
region. The best way to choose U has to be 
determined more or less empirically. The 
authors' choice of a constant U equal to 20' per 
day for all six cases is of course a very rough 
estimate and could probably be im roved. 

The errors mentioned so far are B ue to the 
assumption that the motion can be dealt 
with in one dimension, usin the linearized 

minated when it is possible to integrate the 
non-linear equation for two horizontal dimen- 
sions with arbitrary initial conditions. (This 
will probably be possible in the near future, 

choice of the current velocity U. Even t K ough 

equation. These errors will t a erefore be eli- 
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but the computation will be very elaborate 
and will require high-speed and high-capacity 
computing machines.) It seems ver likely 
that a computation by means of t i e non- 
linear, two-dimensional equivalent-barotropic 
equation would improve the forecast consider- 
ably. Since some success is obtained by using 
the simplified one-dimensional linearized equa- 
tion, we may be justdied in concluding that 
the quasi-geostrophic approximation and the 
equivalent barotropic model are legitimate 
approximations that render sufficient accuracy 
to make them useful tools in numerical 
forecasting. 

X. General remarks on the stationary 
perturbations 

It has for some time been recognized that the 
quasi-stationary perturbations of the atmosphere 
are caused by geographically fixed perturbing 
forces, but the exact nature of these forces has 
not been well understood. ROSSBY (1939) was 
able to show that their effect would be to 
excite a system of free perturbations, whose 
dimensions are in qualitative accord with 
the observed large-scale stationary erturba- 
tions in middle latitudes. The esta I! lishment 
of the continents as the primary perturbing 
influence enables us to fill the blanks in the 
picture and to determine not only the mean 
wave lengths of the system but also the posi- 
tion of the individual troughs and wedges. 
These are not anchored by solenoid fields 
along coast lines, as has been sometimes 
thought, but are determined by a world-wide 
adjustment of the zonal flow to the shape of 
the continents. 
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The relationship between zonal index and 
mean circulation gives the possibility of 
explaining the general longitudinal variation 
of climate as a function of the zonal index 
for many surface climatic factors are cor- 
related to the upper flow, which is in turn 
determined by the index. Thus, because 
of the horizontal barotropy of the large- 
scale stationary perturbations, we may say 
that the mean surface temperature is correlated 
to the mean 500 mb height - except in those 
cases where the surface temperature is not 
representative of the free air temperature. 
Similarly, since the mean position of the polar 
front parallels the upper current, cyclone 
tracks are also determined by a knowledge of 
the stationary circulation pattern. 

In this way, we have established a physical 
relationship between the zonal index and the 
main weather type, a relationship which has 
hitherto been considered mainly from a sta- 
tistical point of view. This result has far reach- 
ing consequences. If it should prove possible to 
forecast the variations of the zonal index, it 
would also be possible to make at least an 
elementary forecast of the change in world 
weather. The consequences of the relation- 
ship for longrange weather forecasting, as 
well as for the study of climatic changes, are 
obvious. 
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