

Cosmological inflation and the QUBIC mm-telescope

S. Loucatos
APC Paris and
Irfu CEA-Saclay

2017

Radiation emitted at 3000K → cooled by universe expansion to 2.77 K

Environmet of the detectors < T_{CMB} Thermometers (bolometers) cooled at 100 -300 mK \rightarrow minimize the thermal noise (phonons)

Many pixels = imager

Planck sky scan

QUBIC

CMB: Tremendous progress over the last 15 years

1999

2016

<u>Huge success</u>: thousands of independent points fitted with less than 10 parameters and a χ^2 /ndf about 1 Theoretical curve predicted in 1987 [Bond & Efstathiou] without any data. [Also by Zeldovitch, Sunyaev et al. in 1972 !!!]

ensity Field Transfer Function

Early Universe **Primordial Density Fluctuations**

Acoustic Oscillations

Geometry

- The transfer function depends upon « simple physics » and cosmological parameters
- Allows to fit both cosmology and primordial spectra (including inflationary physics)

Planck Results: Planck (ESA Mission) ACDM firmly Established

Current step: Inflation Physics through CMB Polarization

CMB Polarization (~10%)

- Generated by Thomson scattering
 - electrons in quadrupolar motion falling into Dark Matter potential wells before decoupling
- Stokes Parameters (linear pol.)

$$I = \langle |E_x|^2 \rangle + \langle |E_y|^2 \rangle \qquad Q = \langle |E_x|^2 \rangle - \langle |E_y|^2 \rangle$$
$$U = 2 \langle \operatorname{Re}[E_x E_y^{\star}] \rangle$$

Scalar E and B fields

$$a_{E,\ell m} = -rac{a_{2,\ell m} + a_{-2,\ell m}}{2}$$
 (even) $a_{B,\ell m} = irac{a_{2,\ell m} + a_{-2,\ell m}}{2}$ (odd)

E-modes

B-modes

Scalar and tensor modes - E & B polarization

- Scalar perturbations: $P_s(k) = A_s\left(\frac{k}{k_0}\right)$
 - **Density fluctuations**
 - Temperature
 - E polarization
 - No B polarization

- = Primordial gravitational waves
 - Temperature
 - E polarization
 - **B** Polarization

⇒ detecting primordial B-modes:

- «smoking gun» for inflation
- Measurement of its energy scale

$$r = \frac{P_t(k_0)}{P_s(k_0)}$$

~ ratio between E and B modes

 $V^{1/4} = 1.06 \times 10^{16} \mathrm{GeV}$

QUBIC

New landscape for B-modes We have entered into the measurement era Before Today

Detected signal is Dust + Lensing [Planck+BICEP2]

Let's go deeper & cleaner!

Possible instruments

P. Timbie

- Imagers with bolometers:
 - ★ No doubt they are nice detectors for CMB:
 - wide band
 - low noise
 - ★ Diffraction on external optical elements, ground pickup, Polarization, ... may be an issue
- Interferometers:
 - **★** Long history in CMB
 - CMB anisotropies in the late 90s (CAT: 1st detection of subdegrees anisotropies, VSA)
 - CMB polarization 1st detection (DASI, CBI)
 - ★ Clean systematics:
 - No telescope (lower ground-pickup & cross-polarization)
 - Angular resolution set by receivers geometry (well known)
 - ★ Technology used so far
 - Antennas + HEMTs : higher noise
 - Correlators : hard to scale to large #channels
- Can these two devices be combined?
 - → Bolometric Interferometry

More than 130 members

APC Paris, France C2N Orsay, France CSNSM Orsay, France IAS Orsay, France **IRAP Toulouse, France** LAL Orsay, France Universita di Milano-Bicocca, Italy Universita degli studi di Milano, Italy Universita La Sapienza, Roma, Italy Maynooth University, Ireland Cardiff University, UK University of Manchester, UK **Brown University, USA** Richmond University, USA University of Wisconsin, USA Centro Atómico Constituyentes, Argentina GEMA, Argentina Comisión Nacional de Energía Atómica, Argentina Facultad de Cs Astronómicas y Geofísicas, Argentina Centro Atómico Bariloche and Instituto Balseiro, Argentina

Instituto de Tecnologías en Detección y Astropartículas, Argentina Instituto Argentino de Radioastronomía, Argentina

QUBIC site

QUBIC concept: Quasi optical correlator

Fringes successfuly observed in 2009 with MBI-4 [Timbie et al. 2006]

45 cm Sky

1 horn open

MBI-4 data 2009 campaign (PBO-Wisc.)

2 & 3

150 GHz bolometer array

QUBIC Main Features

- TES Focal planes
 - ★ 2048 TES with NEP ~ $4x10^{-17}$ W.Hz^{-1/2}
 - ★ 128:1 SQUIDs+ASIC Mux Readout

High Sensitivity r < 0.01 @ 95%C.L.(No foregrounds) r < 0.02 @ 95%C.L.(inc. foregrounds)

- 400 Elements Bolometric Interf.
 - ★ Synthesized imaging on focal planes
 - ★ 23.5 arcmin FWHM

Synthesized imager scanning the sky Perfect beam control

- Dual Band operations
 - ★ One focal plane for each band
 - ★ 150 and 220 GHz

Dust Polarisation contamination removal

- Switches on each horn
 - ★ Ability to reconstruct baselines individually
 - ★ Self-Calibration like an interferometer

Unprecedented control of systematics with Self-Calibration

Instrument fully designed

- Outer cryostat: Roma
- 1K Box / detectors: APC
- Fridges: Manchester
- Optics: Roma / Maynooth

1.547m high 1.42m diameter About 800kg

Integration has started

Optics

- Horn and switch assembly:
- ★ Al platelets horns: single moded at 150GHz, few moded at 220GHz (A. Mennella, University of Milano)
- ★ Electromagnet controlled mechanical RF switch (M. Zannoni, Milano Bicocca)
- ★ Status
 - 8x8 prototype built

Figure 3.6: Picture of the horn array, produced for the technological demonstrator of QUBIC (left). Close picture of a horn cut (center). Mirror, produced for the technological demonstrator (right).

Optics

- Carbon fibre sources (LAL)
- ★ Used on Planck-HFI calibration
- ★ To allow regular intercalibration of detectors

Detection Chain

- French responsibility
 - ★ APC + CSNSM / IEF / IRAP
- 2 arrays of 992 NbSi TES
 - ★ Each array: 4x248 elements
 - ★ 300 mK bath (³He-⁴He evaporation cooler)
 - ★ 3 mm size
 - **★** Measured NEP ~ 4.10⁻¹⁷ W.Hz^{-1/2}
 - ★ time constant ~ 10 ms
- 4K SQUIDs + SiGe ASIC Mux
 - ★ SQUIDs pre-amplifier+mux
 - **-** 32:1 multiplexing
 - ★ 4K SiGe ASIC (amp+mux)
 - 4:1 multiplexing
 - ★ 128 channels / ASIC
 - ★ Low noise: ~200 pV.Hz^{-1/2}
 - ★ low power: ~ few mW

Detection chain

•1 focal plane = 4 wafers of

256 TESs @300mK

- ★ Readout: Time Domain Multiplexing 128:1
- ★ 128 SQUIDs @ 1K+
 1 ASIC @ 40 K for ½ focal plane
- ★ Specifications:
 - $-NEP < 5.10^{-17}W.Hz^{-0.5}$
 - **T** < 10ms
- •2 focal planes: 150GHz and 220GHz

Detection chain

• Focal plane:

- ★ TD: 2x256 NbSi TESs (CSNSM, IEF)
- ★ Support structure and readout (APC)

Figure 3.7: Design of the 1024 bolometer array (left), one pixel of it (top right) and the TES detector with its electrodes (bottom right). See text for the explanations.

Detection chain

Warm electronics

- ★ Amplifier (APC): SR560
- ★ FPGA board (IRAP)
- ★ Status:
 - 4x SR 560 available for TD
 - FPGA board available and functional
 - Being done: increasing acquisition speed, FLL in FPGA
 - Schedule: fast FLL with TESs end of February

Cryostat and cryogenics

- Cryostat (Roma Sapienza: Silvia Masi, Paolo de Bernardis)
- ★ Shields at 300K, 40K and 4K supported by fiberglass tubes

Cryostat and cryogenics

- Cryogenic system
 - ★ 2x1W pulse tubes (to buy by Roma Sapienza)
 - ★ 40K-4K and 4K-1K heat switches (Manchester)
 - Status: prototypes built, being integrated for tests
 - Schedule: manufacture in April, assembly and tests until end of June, delivery in July
 - ★ 1K adsorption fridge (Manchester)
 - Status: prototypes built, to integrate and test
 - Schedule: manufacture in May, assembly and tests until end of August, delivery in September
 - ★ 300mK adsorption fridges (Manchester)
 - Status: fridge tested and available
 - Schedule: delivery in September

Cryostat and cryogenics

- HWP rotator (Rome Sapienza):
- ★ Equivalent to the PILOT one: warm motor, shaft, kevlar belt, HWP on ball-bearings and optical fibres to control the position

QUBIC Site: near San Antonio de los Cobres (Salta, Argentina)

- 5000m a.s.l.
- Logistics + mount : Argentina
- NEW: Access road built up to LLAMA (800m remaining)

Possible site for QUBIC: large, flat, few stones at 4869m a.s.l.

San Antonio de los Cobres (3775m a.s.l. - 5000 habitants)

. = Synthesized imager

Primary horns array

150-220 GHz, 20x20 horns, 13 deg. FWHM, D=1.2 cm

Synthesized beam (on the sky)

Synthesized beam used to scan the sky as with an imager

Map-making with QUBIC synthesized beam

Signal on bolometer d_P at frequency v (HWP modulation):

$$R(\vec{d}_{p}, \nu, t) = S_{I}(\vec{d}_{p}, \nu) + S_{Q}(\vec{d}_{p}, \nu) \times \cos\left[4\phi_{HWP}(t)\right] + S_{U}(\vec{d}_{p}, \nu) \times \sin\left[4\phi_{HWP}(t)\right]$$

- ullet where S_X is the «synthesized image» : our observable
 - FFT of visibilities in traditional interferometry
 - Sky convolved with the «synthetic beam»

Mapmaking needs to account for precisely-known but multiply-peaked synthesized beam

Data Analysis more complex but richer than with a classical imager

Complex shape of synthesized beam

Frequency dependence of synthesized beam

Map-making more complex

Spectro-Imaging

CPU...

Foregrounds!

Unique possibility de handle systematic errors

- ★ Use horn array redundancy to calibrate systematics
 - In a perfect instrument redundant baselines should see the same signal
 - Differences due to systematics
 - Allow to fit systematics with an external source on the field
- ★ Unique specificity of Bolometric Interferometry!
 [Bigot-Sazy et al., A&A 2012, arXiv:1209.4905]
- ★ Example: exact horns locations (figure exagerated !!)

Actual horn positions (red) are not well know

One uses ideal ones (blue) in map reconstruction

⇒ Systematics in maps, E/B leakage

Actual horn positions (red) are recovered thanks to self calibration (green) ⇒ E/B leakage is reduced

baselines : same

Horn position knowledge improvement

Horns positions (mm)

self-Calibration results

Expected Sensitivity:

 $\sigma(r) \sim 0.01$

QUBIC Deployment Plan

2017-2018: at APC

- Integration started
- Early 2018: Technological Demonstrator (reduced QUBIC)
 - 1/4 focal plane, 64 horns, small mirrors
- April 2018: Upgrade to full size mirrors and 400 horns

In-Lab demonstration of Bolometric Interferometry

QUBIC Deployment Plan

2017-2018: at APC

- Integration started
- Early 2018: Technological Demonstrator (reduced QUBIC)
 - 1/4 focal plane, 64 horns, small mirrors
- April 2018: Upgrade to full size mirrors and 400 horns

In-Lab demonstration of Bolometric Interferometry

2018: Argentina

- mid-2018: Integration with mount, Installation on site
- First Light Sept. 2018 with ¼ focal plane

On-Sky demonstration of Bolometric Interferometry

2019: Argentina

- Upgrade to QUBIC 1st module (2 focal planes 150 and 220 GHz)
- First Light March 2019
- Data taking: 2-3 years $\sigma(r)=0.01$

Stage III $\sigma(r) = 0.01$

2020-...: QUBIC evolves towards Stage-IV

- European extension of the collaboration
- Improved designs already being investigated
- Excellent quality site open to development

Evolution to Stage IV $\sigma(r) = 0.001$

Summary OUBIC is a novel instrumental concept

- ★ Dedicated to CMB polarimetry and inflationary physics
- ★ High sensitivity with ~2000 TES bolometers
- ★ High Control of Instrumental Systematics thanks to Interferometry
- ★ Spectro-Imaging within 2 bands (150 and 220 GHz) thanks to Interferometry

★ Target:

- First module (150 & 220 GHz): σ (r)=0.01 (incl. dust)
- QUBIC Full (more modules) (90, 150, 220 GHz) : σ(r)=0.001 around 2025 ?
- A possible contribution to CMB-S4 or CMB-E4 ?

★ Status:

- Instrument being Integrated at APC Tests at APC
- On-Sky in Argentina with 256 TES Late 2018
- On-Sky in Argentina with 2048 TES in 2019

Euxapiotú yia thy mpoodxh oas

