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The most well known string theories are supersymmetric

Non-Supersymmetric String Theory

However, the construction of non-supersymmetric string theories is not a new subject

More recently : string phenomenology

•   since the early days of string theory : e.g. temperature

•   O(16)xO(16) heterotic string + many more examples

progress in studying radiative 
corrections to gauge couplings
+ closed form

Angelantonj, IF,  Tsulaia ’14, ’15

Nevertheless, non-supersymmetric string theories have not been exhaustively studied,
+ technical difficulties in taming their radiative corrections

made possible by new mathematical techniques for 
studying string loop amplitudes

Angelantonj, IF,  Pioline ’11, ’12, ’13, ’15



if SUSY is broken in String Theory :

Non-Supersymmetric String Theory

•   quantum corrections to couplings in the effective action

•   including the scalar potential

ALL perturbative states 
run in the loop

•   oscillators

•   Kaluza-Klein, winding states

To really make contact with low energies (Standard Model++)

one must take into account radiative corrections
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Non-supersymmetric constructions

Two fundamental questions

•   Tachyonic instabilities : either explicit, or spontaneous (Hagedorn, …)

•   Destabilisation of the classical vacuum : one loop back-reaction

V (')

'

tachyons mean that we are expanding the theory 
around an unstable point

if we were able to quantise string theory around 
the minimum, no tachyons would be found

Angelantonj, Cardella, Irges ’06
Angelantonj, Kounnas, Partouche, Toumbas ’09

IF, Kounnas ’09
IF, Kounnas, Toumbas ’10

IF, Kounnas, Partouche, Toumbas ’11

some specialised constructions exist 
where would-be tachyons are 
projected out of the spectrum



Non-supersymmetric constructions

Further questions

•   How do we break supersymmetry in String Theory ?

•   What is the SUSY breaking scale ? what determines it ?

•   What happens to other moduli in the theory ? (such as radii, etc)



(stringy) Scherk-Schwarz mechanism

A way to break supersymmetry

•   Flat gauging of supergravity

•   Spontaneous breaking of SUSY with exactly tractable worldsheet description   

•   Freely-acting orbifolds

   Scherk, Schwarz 1979 
   Rohm 1984
   Kounnas, Porrati 1988
   Kounnas, Rostand 1990



Scherk Schwarz mechanism

Deformation of vertex operators / fields by symmetry

�(X5 + 2⇡R) = eiQ �(X5)

�(X5)

Kaluza-Klein spectrum of charged states is shifted
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X

m2Z
�m eimX5/R

MKK =
|Q|
2⇡R

Q

Choose  Q=F  (spacetime fermion number)

Assigns different boundary conditions (& masses) to states within the same 
supermultiplet : spontaneous breaking of supersymmetry

Breaking scale ~1/R, tied to the size of compact dimensions



What about the potential ?

T, U are moduli at tree level

•   Scherk-Schwarz breaking exhibits no-scale structure

•   The scale of SUSY breaking is not determined at tree level

m3/2 =
|U |p
T2U2

•   Loop corrections to the effective potential may (de)stabilise the no-scale moduli

•   Dynamical determination of SUSY breaking scale

What is the morphology of the one loop effective potential 
in such models ?
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What about the potential ?

•   Fixed points under stringy symmetries (T-dualities) correspond to local extrema of the 
potential

•   Natural scale in this problem : the string scale

SUSY is recovered 
asymptotically

V (T2)

T2
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modulus trapped 
around self-dual point

typical form of the 1-loop potential
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•   SUSY is broken at the string scale

•   No hierarchy

•   Huge negative cosmological constant

•   Tachyons



What about the potential ?

•   Can we construct solutions with the opposite behaviour ?

•   Local maximum induces spontaneous decompactification

Opens the possibility for low scale SUSY breaking m3/2 ⇠ 1/
p

T2

Favours large volume : no tachyons

SUSY is recovered 
asymptotically

V (T2)

T2⇠ `2s

T2 � `2s

modulus rolls away 
from the self-dual point

non-perturbative 
effects



What about the potential ?

•   Can we construct solutions with the opposite behaviour ?

•   Local maximum induces spontaneous decompactification

SUSY is recovered 
asymptotically

V (T2)

T2⇠ `2s

T2 � `2s

modulus rolls away 
from the self-dual point

non-perturbative 
effects

V
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asymptotically For SUSY breaking at TeV range, the 
potential is still too large



What about the potential ?

exponentially suppressed vacuum energy
for large volume T2>>1

“super no-scale models”

Possible way out :                    at the massless levelnB = nF
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•   low SUSY breaking scale

•   large volume, no tachyons

•   small cosmological constant

•   small back reaction

   Itoyama, Taylor ’87
   Antoniadis ’90
   Abel, Dienes, Mavroudi ’15, ’16 
   Kounnas, Partouche ’15, ’16, ’17



What about the potential ?

•   Answer:  YES

Question : Is it possible to construct such chiral models ?

BUT

although being necessary for suppressing the value of the cosmological 
constant, the condition for bose-fermi degeneracy is NOT sufficient

I.F. and J. Rizos 2016

it turns out that non level-matched states around self-dual points crucially 
affect the shape of the potential, including its sign !

!



Example

Example : net chirality 12 and nF = nB  at the generic point

Figure 6: Numerical reconstruction of the one-loop potential for Model C as a smooth function of T
2

and U
2

within the allowed parameter space defined by eq. 6.10.

maintaining a controllable exponentially suppressed value for the cosmological constant.

To this end, we exploited the equivalence between fermionic and orbifold constructions at special

points in moduli space, in order to scan a random sample of 106 models subject to certain criteria,

such as the presence of chiral matter and an observable SO(10) gauge group factor. Working in the

interplay between the two formulations, it was possible to study the contributions of various states

to the one-loop e↵ective potential and derive a set of conditions (5.15) that guarantee its positivity.

Our central observation is that massive and even non-level matched states play a significant role

in determining the morphology of the e↵ective potential around special self-dual points. This result,

although counter-intuitive from a field theoretic perspective, was central to our analysis and resulted

in the construction of the explicit example ‘Model C’ defined in (6.5) that illustrates the desired

behaviour for the one-loop potential.

Of course, our present analysis is only a first step in this very interesting direction and there are

several open questions that deserve future investigation. On the one hand, the specific construction of

Model C is by no means unique but only a particular solution to our computer-aided scan in a random

40

for T2 >2.20, stabilisation of U2 at its 
fermionic value and the potential is 

dynamically stable

I.F. and J. Rizos 2016



Example

•   stabilisation of other moduli not participating in the breaking, e.g. U2

•   dynamical protection against tachyons

•   exponentially small cosmological constant

•   chirality and SO(10) GUT gauge group, as a first example

•   Gravitational couplings :  R,  R2

•   Gauge couplings

These are the first examples of heterotic string models with a 
dynamical attraction to low SUSY breaking scales

What about radiative corrections to other couplings ?

Until very recently, the renormalisation of gauge couplings in 
non-supersymmetric string theory was not studied in detail

I.F.  ’16

Angelantonj, I.F. and 
M. Tsulaia ’14, ’15

Kiritsis, Kounnas ’95-’99



Gauge coupling corrections



One loop corrections

Running coupling associated to gauge group

threshold correction
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Moduli Dependent Contributions

Focus on their dependence on the compactification moduli

in the case of unbroken SUSY

moduli dependence 
through KK and 
winding excitations
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supersymmetric universality



Moduli Dependent Contributions

Focus on their dependence on the compactification moduli

in the case of spontaneously  broken SUSY

non-supersymmetric universality

�1 ��2 =↵ log T2U2|⌘(T )⌘(U)|4

+� log T2U2|#4(T )#2(U)|4

+� log |ˆj2(T/2)� ˆj2(U)|4|j2(U)� 24|4

Angelantonj, I.F. and M. Tsulaia 2014, 2015

•   model independent form

•   model dependence only in constant coefficients α, β, γ

fully universal form for Δ itself (not only differences)
and also for gravitational thresholds can be obtained
by exploiting modular symmetries of string theory

I.F.  2016



The decompactification problem

Typically, the large volume limit of gauge thresholds is dominated by 6d

in the large volume scenario T2 >>1

•   if β>0, effectively decouples

•   if β<0, strong coupling regime

�a = �ka
48

Y + �̂a�+ . . .

“universal part”
“running part”

N=2 beta function coeff.
governing 6d physics

typically, one absorbs Y into a redefinition 
of the tree level string coupling

� = � log T2U2|⌘(T )⌘(U)|4 ! ⇡

3

T2 � log T2 + . . .

decompactification problem:
when T2>>1, couplings effectively 

behave as 6d ones

Kiritsis, Kounnas ’95-’99



The decompactification problem

An interesting way of curing the 6d linear growth is to remove the N=2 subsector, 
i.e. replace the theory with 8-supercharges that is obtained in the 6d limit, 
by a theory with16-supercharges (or a spontaneously broken version of it)

However, it also makes the theory non-chiral

This indeed removes the linear growth and solves the 
decompactification problem

Kiritsis, Kounnas, Petropoulos, Rizos 1996
Faraggi, Kounnas, Partouche 2014

i.e. for high enough energy scales, an effective N=4 
theory is recovered and gauge couplings do not run



A solution of the decompactification problem

Split the “universal part”  Y into its linear growth and the rest

It’s not only the “running part” Δ that grows linearly in 
the large volume limit, but also the “universal part” Y

I.F. and J. Rizos 2017
Another possibility :

�a = �ka
48

Y + �̂a�+ . . .

Observation :
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!
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Use the universal part to cancel the linear 
growth of the running part

N=2 subsector

N=1 and N=4 subsectors

In other words, choose the N=2 subsector (sensitive to Kaluza-Klein and winding) 
such that it exactly cancels the linear volume term of the “universal part”

The actual chiral matter of the theory comes from N=1 sectors, is moduli 
independent and it has the desired logarithmic running !



A solution of the decompactification problem

These conditions can be imposed at the 6d limit of the theory 
(which produces the N=2 subsector after compactification)
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NV + 2n�4NS = 2n+ 4For an SO(2n) gauge group factor at level one

After cancellation of the linear volume term, the gauge couplings run logarithmically

determined in terms of the 
twisted chiral N=1 matter

contribution of KK-winding towers
from N=2 exact + N=2—>0 remnants 
and N=4—>0, N=4—>2 sectors

Many explicit heterotic super no-scale models with chirality have already been constructed, 
where the decompactification problem is absent, according to this large volume scenario

Preliminary scan of 108 models ~ 104 do not suffer from the decompactification problem

I.F. and J. Rizos 2017



Model Classification

Comprehensive scan of 108 models, out of which 72896 satisfy initial constraints

Number of 

models

Net # families
Figure 2. Number of chiral models versus net number of generations for models with WG

0 = 0 and

V0 > 0 (positive cosmological constant at the fermionic point).

4

super no scale models with positive potential
40% do not have the decompactification problem



The fate of the Planck mass

Does the Einstein-Hilbert term renormalise at 1-loop ?

R term is still protected against moduli dependent corrections

actually, this is a property of string theory on 
Minkowski space

I.F.  2016

in curved spaces, non-trivial corrections do arise !

For unbroken SUSY, this question was answered 
by Kiritsis and Kounnas in ’95

Similarly, for spontaneously broken SUSY

in type II theories, it has a constant, topological 1-loop correction (regardless of SUSY)

�(X)

4



Outlook

  One-loop radiative corrections to gauge couplings in heterotic strings

  Supersymmetry spontaneously broken by Scherk-Schwarz flux

  Exact Universality for gauge and gravitational thresholds

  Planck Mass does not renormalise

  Chiral super no-scale models with spontaneous decompactification

  The decompactification problem is not a problem, but a selection criterion

  String model building ?

   Other couplings ?





Example 

Example : net chirality 12 and nF = nB  at the generic point

T 2 ⇥ T 2 ⇥ T 2/(Z2)
6

X1,2 X3,4 X5,6

✏(2, 3), ✏(2, 5), ✏(4, 5), ✏(5, 6)

+ a particular choice of discrete torsions

Z(1)
2 : X1,2,5,6 ! �X1,2,5,6

Z(2)
2 : X3,4,5,6 ! �X3,4,5,6

Z(3)
2 : (�1)Fs.t.+F2 �1 , �1 : {X1 ! X1 + ⇡R1}

Z(4)
2 : (�1)F2 �3 , �3 : {X3 ! X3 + ⇡R3}

Z(5)
2 : (�1)F1+F2 �5 , �5 : {X5 ! X5 + ⇡R5}

Z(6)
2 : (�1)F1 r , r : (08; 04, 1

2

2
)

I.F. and J. Rizos 2016


