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PREFACE

This course of analysis is intended for students who have a
working knowledge of the calculus and are ready for a more
systematic treatment. Only a quite exceptional mathematician
will then be mature enough for an axiomatic development of
analysis in metric spaces, and he can be left to teach himself,
The others normally follow a stlaightlorward course based on
the idea of a limit, and this book is an attempt to provide such
a course. I have stopped short of Cauchy sequenccs, upper and
lower lirnits, the Heine-Borel theorem and uniform convergence;
in my experience many men understand those topics more
readily if they are lcft to the next stage.

I am indebted to Profeisor G. E. H. Reuter and to Dr H.
Burkill for their careful scrutiny of tlie manuscript.

september 196I 
J' c' B'
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NUMBERS

1.1, The branches of pure mrthematics
This is a text-book of mathematical analysis, It is necessary

first to say what is included under this heaiing. fo tfri, 
"nj 

*o
slart with a short survey of the branches of pure mathernatics_
We are not concemed with mechanic, o. -y otfr", .ppli"uiion
of mathematics to natural science.

.Mathernatics as taught to the middle and upper forms of
schools includes arithmetic, algebra, geometry, irigonometry
and the calculus, No hard and fast boundaries are-set uo be-
tween these subjects and to solve a problem a student may
employ ideas and methods from any of them.
.. A .distinguishing feature of the ialculus is that it rests on
limiting processes. The gradient of a curve ut 

" 
poiot F i, tt"

limit of the slope of a chord pe as p approaches p al.; ;;
::*". Il symbols, if the equation of the iurve is y _ lGl,'tfr"othe gradient is the derivative, dyldx ot f(x), defined by " 

- -

r@):fi^f('+h);{O
The integral calculus also rcsts on the notion of limit. A basic
problem of it is the calculation ofan area bounded by a curved
line. The only way in which such an area aun U. 

"uotu.a 
f.oru

the areas defined in geometry is as the limit of the ur""r-of
polygons which approach the curve.

The idea of a limit is also encountered in the chapter of
algebra on progressions, where it is 6een that certain geJmetric
progressions can be summed to in6nity. In a well-defi-ned sense
which is easy to grasp, the unending series

++++* +.. . ,
whose nth term is 2-", has sum l. This means that we can rnake
the sum ofr terms as near to I as we like by taking 

" 
t ;;;

sufficiently large number.
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The notion of a limit rests on that of afwctioz. The curve of
which we were finding the gradient was specified by the function
/(x), The sum so ofthe first z terms of the geometric progression
,is expressed as a function of n by

8^ - | -2-4'

The idea of a function in its turn rests on that ofn,anber. The
equation y : f(x) of the curve expresses a connection between
the number x and the number y. The sum s* of tle geometric
progression depends on the number n (which does not vary
continuously as the x can do but is restricted to be a positive
integer).

1.2. The scope of mathematical analysls'We 
can now describe mathematical analysis as including those

topics which depend on the notion of a limit. Thus it includes
the differential and integral calculus, and you may ask whether
a new title is necessary ; does not /ft e calculus adqrately specify
the subject matter? In a sense it does, and it is mainly by usage
and tradition that analysis has come to denote a rather more
formal (or more 'advanced') presentation, witl greater atten-
tion to the foundations and more insistence on logical de-
duction. The use of the word analysis has the advantage of
clearly including the summation of infinite series (which the
schoolboy would reasonably regard as algebra rather than
calculus).

Operations which are complete in a finite number of steps,
such as the evaluation of a determinant, belong to algebra, not
to analysis. The binomial theorem is a theorem of algebra
if the index is a positive integer; othefwise it belongs to
analysis.

Geometry is a subject separate from analysis, developed from
its own axioms. Its only impact on analysis is that we shall often
find it suggestive and helpful to use geometrical language and
illustrations.

In the light of what we have said the subject trigonometry is
seen to fall into two parts. The solution of triangles, 'height and
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of trigonometric func-
o[ practical geometry.

distance problems' and the properties
tions needed for them form a kind
Results like

, ,n" :  
" - I+- { -3 !  5 !

which every one will recognise as being more exciting, belong
to analysis. After a first course in trigonometry, the viewpoint
must be changed. The sine and other trigonometric functions,
originally defined as ratios of lengths of lines, are seen to be
highly important functions of analysis, and the sin x should be
defined in terms of the variable x by the infinite series as it will
be in chapter 6 of this book.

Some knowledge of the trigonometric functions (and the ex-
ponential and logarithmic functions too) will be useful in earlier
chapters, but for the sole purpose of giving variety to the
examples. All references to the functions before chapter 6 could
be removed without affecting the sequence of theorems.

1.3, Numbers
We have seen that the logical order of development of mathe-

matical analysis is
Number

Funltion

Lilnit

Infinite series Differentiation Integration

rvhere the blank spaces in the last line can be filled by limiting
processes other than those already mentioned.

The first topic for investigation is number. When treated
exhaustively this is a difficult subject, with problems which have
roots both in mathernatics and in philosophy. As this is alrst
course in analysis we shall keep the discussion of number as
simple as we can, so long as it gives a firm foundation for the
structure of later definitions and theorems that will be set upon
it, The reader who wishes to go more deeply into the idea of
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number may consult H. A. Thurston, The Nwnber-System
(Blackie, 1956); or E. I'anda'u, Fowdations of Aralysis (Chalset
Publishing Co., 1951).

,Setr. Before embarking on a discussion of number, we must
say what is meant by a ret. We often have to envisage all those
persons or things having some assigned charaoteristic in com-
mon. Illustrations are: (i) all males of British nationality who
are at a given time at least 18 years and less than 60 years old,
(ii) all mountain-tops on the Earth over 10,000 feet high, (iii) all
positive integers, (iv) all equilateral triangles in a given plane.
Such collections determined by some defining property we shall
call sers. The words class ard aggregate are also used with the
same meaning. We emphasise that a set is known without
ambiguity whenever the rules defining it enable us to say of any
proposed candidate whether it is or is not a member of the set.
For instance, some readers are included in the set (i) and others
are not, but the rules are clear and no one is left in doubt.

The examples (ifiiv) illustrate the distinction betw*n finite
arrd infnite sets. The sets (i) and (ii) are finite; with sufrcient
knowledge and patience a complete list could be provided of
the members of each of them. The sets (iii) and (iv) on the other
hand are infinite; in (iii), however many positive integers we
write down, there are more to follow.

A defining property may be proposed which is riot possessed
by anything. The corresponding set then has no members; it is
empty (ot null). Tha sets of mountaius on the Earth over
3q000 feet high or of real values of x satisfying ;f + I : 0 are
empry.

Integers. Wo take for granted the systerr of positive integers

1 ,2 ,3 , . . . ,

stressing only thoso facts which are the most important for
further extensions of the number-system.

Positive integerr a, b car be added or multiplied and there
are positive irtegers c, d such that

a l b : c  and  & -d ,
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The integer I has the property that, for every positive integer a,

La :a . l : a ,

The integers have an order expressed by < or >.
The letter n will always denote a positive integer.

The principle of induction, If a statement P(n) is
(i) true for n : 1,
(i) true for n+l whmeuer it is true for n,

then it is true for eDery positiue inleger n,
The principle of induction is often useful as a method of

proof (see exercises I (c)).
We have mentioned addition and multiplication of positive

integers; we turn to subtraction, and afterwards to division.
In the system of positive integers the equation

a+x  :  b

can be solved for x only ifa < b. If it is to have a solution when
a : b or a > b we must introduce zero and the negative in-
tegers. We shall then have widened our number-system to con-
tain all integers, which can be arranged in older

. . . ,  - 3 ,  - 2 ,  - t ,  0 ,  l ,  2 , 3 ,  . . . .

Rarional numbers. Ifa and b are integers, the equation

bx=a

is not in general satisfied by an integral value of x. If this
equation is always to have a solution (b not being 0) we must
widen the system to include rationals alb. ln the system of
rationals the operations of arithmetic are straightforward and
familiar to the reader.

A relation of order nat.urally suggests itself for the rationals.
Supposing that , and d are positive integers we define

ac
b 'd

lo mean ad > bc.
Bel'rveen any th)o rationals there is another (and, hence, in-

fnitely many others),
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I To prove this, we remark that, if 6 and d are positive integers,
the rational a+mc-b+md

lies between alb and cld for any positive integer m.
We may describe this property of the rationals by saying that

they arc dense in any interval.

Exerclses I (c)
Notes on these exercises are gioen on p. 17O.

The method of induction may b€ used for 1-6,

1. X rr = +n(r + l) (2r+ 1), where ! rr means l'+2t+,,,+trt.

2 .  1 r+3r+  5 t . . .  + (24-  1 ) r  =  ?

3 .  1 . | + 3 . 2 + 5 - 2 ' + . . . + ( 2 r + l \ 2  =  A + ( B + C n ) 2 ,  w h € . e , { , , a n d  C
are coostants (not dependiog on z) to be found.

. e x r - ' l l
a '  

l r  1 -  * *  
=  

1 - r -6 ; '

5 . 2 > r f i f n > 9 .

6. 5r'-62+8 is divisible by 9.

7. lf b, d, q ate positive integers and

o D c
E' a' a,

prove that positive integsrs m, n can be found such that

2 _ m4+ nc
q mb+nd'

Construct a numerical example and solve it.

8, The density property of the rationals amounts to sayiDg that there is
no rational which is r"rt to another. Obssrve the following plan of
arranging the positive rationals (not io order of magnitude) which does
assign a deonite place to each

*; ?, l ;  l ,  i , l ;  t ,*,1,* t, ....
Prcre that plq occupies the {t(p+q-l) (p+q- 2) +4}th place. (Each

rational occurs in-finitely often; e.g. I appears as +, i,3, ,..,)
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1,4. Irrational numbers
It was realised by the Greeks more than 2000 years ago that

there is an incompleteness about the system o[rational numbers,
The diagonal of a square with sides of unit length has alength
which is irrational. In algebraic language, the equation for x

l z _ -

has a rational solution only for exceptional values ofthe rationa.
number a (for exarnple, 4 or 419) and is not so soluble if, say,
a i s2o r3o r5 l9 .

The first theorem ofthe book will be a formal proof that the
square root of 2 is irrational. According to our criterion of
$ 1.2, it is really a theorem of algebra rather than of analysis,
But it earns its place, first, by its historic interest-it was proved
by Pythagoras or one of his school-and secondly, by the neat-
ness and economy of its argument.

Theorem 1,4. No rational number has square 2.
Proof Suppose, on the contrary, that the rational a/b has

square 2, where a and 6 are integers having no common factot.
Then

ao : 2bz.
Since 2 divides c2, the integer a must be even.
Write a : 2c, where c is an integer. Then

)r2 : lf

Then 2 divides b2 and so b must be even.
Thus a and b both have the factor 2, wliich contradicts the

hypothesis. | (We use this thick vertical stroke sometimes to
denote that the proof of a theorem is complete.)

We have so far presented only the simplest specimens of
numbers which are not rational. We add others which are less
simple.

(i) x is the positive number which satisfies the equation
f :  x  +7 .

(It is possible to prove that there is just one such x,) By
methods of the theory of equations, x can be expressed in terms
of cube roots of rational numbers,
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(ii) x is tle positive number which satisfies tho equation

f  :  x+7 .
We might expect that x could be reprcsented by some com-
bination of roots of rational numbers, perhaps fifth roots. But
this is not so. A difficult theorem of algebra shows that roots
of equations of degree higher than four cannot generatly be
so expressed.

(iiD The number z, the ratio of the circumferenco ofa circle
to its diameter.

A method of proving that z is irrational is outlined in
exetci* 7 (f), 7 . It can be proved (by a more difrcult argument)
that z does not satisfy any algebraic equation with integer
cooftcients, So it is a number which is, in a seose, even less
easy to grasp than those in (i) and (ii).

Exercises I (r)
Noies on these exercises arc gloen on p. 170

1. Adapt the argument of tlrcor€m 1,4 to shon, that no rational number
has its cube equal to 16.

2. Extend the result ol I to show that a rational number r/4 in its lowest
terms can be the cube of a rational number only if? and 4 are cubes of
integcrs.

3. Prove the morc general theorcm (Gauss, 177?-1855)that,ifA,p*.,.,p,
are integers, the only possible ralional roots of the equation

x"+ prxn-r+ prx^-t* ...4 p" = Q

are integers which divid€ p..

4, Solve the e4uations:
r{-xl-l6x'+4x+48 = O,

4d-8:f -3.r+9 = 0.

1.5. Cuts of the rationals
In $ I .4 we showed the need of completing the number-

system by 'filling the gaps' which occur among tho rationals.
It is possible to give diferent constructions for filling the gaps;
we follow the procedure of Dedekind (1872).

Before stating it in general terms, we think it helpful to show
how a particular irrational number, say J2, is fitted in among
the rationals.
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In trying to isolate a number whose square is 2, we first
observe from theorem 1.4 that the positive rational numbers fall
into two classes, those whose squares are less than 2 and those
whose squares are greater thau 2. Call these classes the left-
hand class tr and the right-hand class R, corresponding to their
relative positions when represented graphically on a horizontal
line. Examples of numbers I in L are 7/5 and 1'41, and of
numbers r in R are l7ll2 ar.d 1'42. The reader will convince
himself that any r is greater than any / and-with a little more
thought-that there is no member / of I, which is greater than
all the other members and there is likewise no r which is the
least member of R.

The statements in the last paragraph become more concrete
if we use the arithmetical rule for square root to find, to as
rnany decirnal places as we please, a set of numbers /

1 ,  1 .4 ,  1 .41 ,  1 .414 ,  1 .4142 , . . . ,

each of which is greater than the preceding (or equal to it if the
last digit is 0) and each having its square less than 2. More-
over, the nurnbers got by adding 1 to the last digit of these
nurnbers / form a set of numbers l

2,  1.5,  142, 1.415, 1.4143, . . . ,

each having its square greater than 2 and each less than (or
equal to) the preceding.

If now we are given a particular rational number a whose
square is less than 2, we shall by going far enough along the
set of numbers 1, 1.4, 1.41, 1,414,... come to one which is
greater than c. (Alternatively, this can be proved by the method
of exercise I (c), 1.)

If, then, we are building up a number-system starling with
integers and then including the rational numbers, we see that
an irrational number (such as ̂ /2) corresponds to and can be
defined by a cutting of the rationals into two classes l, R of
which Z has no greatest member and It no least member. This is
Dedekind's definition of irrationals bv the crt.
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Ererclses 1 (c)

Notes on lhese exercites are gioen on p. 770.
1. Prove that, if mln is an approximation to J2 from below, then
(m+2n)l(n+n') is a closer approximation from above. Hence write do$,n
approximations to./2, obtaining two which differ by lecs than l/10,000.

2. Find similarly approximations to J3,
3, Prove that, if a,4 c, dare rational and

a+^lb = c+^/d,

then either (i) a = c, b = /, or (ii) b and d zre both squares of rational
numbrs.

4, Prove that, if a,4 c are rational and

s+ b^12+ c.l3 = O,
t h e n  a = b = c = O .

5. lf a, b, c are rational and

a+b42+c44 = O,
what conclusion can you draw?

6. lf a, b, c, d are rational and.x is irrationat, in what circumstances is

dx+ b
cx+d

rational ?

1,6. The feld of real numbers
In $$1.3-1.5, starting from integers, we have sketched the

building-up of the system of real numbers. To fill in all the
detail could be a term's work. We should have to prove that
the numbers obey the familiar rules of algebra, of which

a(b + c) : a6a'ot

is one insiance. Any reader who would like to amplify this
cursory treatment of the subject should consult one of the books
mentioned in $1.3.

Our plan at this stage is to make a list of the basic properties
which the real numbers satisfy. As we offer no proof of these
properties, we treat them as axioms. They fall naturally into
thre€ sets covering respectively algebraic manipulation, order
and completeness.
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The reader who is studying motlern algebra at a similar level
to this course of analysis will find there tlat the first set of
axioms are those which define afeld.

A system, in algebra, means a set of things or elements,
together with operations on them, A field, denoted by d is
by definition a system whose elements a, b, c, ... are subject to
two operations -f and x, satisfying the following algebraic
axioms A l -11 ;

Al. Every two elements a, b in F have a sum a+b in F.
42 .  a+b  :  b+a .
43 .  (a+b )+c  :  a+ (b+c ) .
A4. There is an element 0 in F such that 0+a : a for

every a.
,4'5. For every a in F there is:r in F such th^t a+x = 0. We

write -a for this (unique) ;c,
The axioms A6-10 which follow are the analoeues for the

operation x ofAl-5 for +.
A6. Every two elements a, b it F have a product ax b in F.

Following ordinary usage we can generally shorten a x b inlo ab.
A7. ab = ba.
48. (ab)c : a(bc).
A9. There is an element I in Fsuch that la : a for every a.
A10. For every a in F except 0 there is y in .F such that

al : l, We write lla for this (unique) y.
The final axiom A1i links the two operations +, x.
A l1 .  (a+b )c :  ac  +  bc .
From the axioms A1-ll the familiar rules of manipulation of real

numbers can be deduced, As illustrations, we give proofs of thrce.
(i) For eYery a we have 0a = 0.

Proof. 1a+0a = (l+0)a (All)

= ta (42,4).

Again, fronl (A2,4), Oa = 0.
(ii) The cancellation law,If ab = ac a\d a + 0, then 6 - c.

(Aro) =jt ,ol <otl

(eiven) = (l .) " tlal = 
".

/ l  \
b = l : a l b

l _

Proof.
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(iii) 'Tlvo minuses make a plus'. (- a) (- b) = ab.

Proof. qb+ a(- b) = a(r+(-6)) (All)
= 4 0 = 0 .

Similarly (-c) (-r)+a(-r) = (-a+a) (-t) = 0.

From A'5, db = (- a) (- b).

In a general field there is no relation of order by which we
can say that, of any two elements, one pretedes the other.
Since the field of real numbers does possess an ordering relation
(that of >), we add now the relevant axioms O for an ordered
feld:

Ol. For every a, birr Fone and only one of

>b ,  a :b ,  b>a
ls true.

02. If a > b and b > c,then a > c.
03. I f  a > b,  then a+c > b+c.
04. lf a > b and, c > 0, then ac > bc,
From our knowledge of the rational numbers we see that the

axioms A and O are appropriate to them and that they form an
ordered field. Observe that the integers do not form a field,
because they do not satisfy A 10,

To lay down a set of axioms for the real numbers, as distinct
from the rationals, we must add one expressing completeness,
in the sense that the gaps among the rationals are filled.

The axiom of cofipleteness, which we shall state in the form
due to Dedekind, is necessarily more intangible and abstract
than the axioms A and O. You should read it now and turn
back to study it again when it is used in proofs of theorems
(e.e. 1.8).

Dedekind's axiom. Suppose that the system of all real numbers
is diuided into two classes L, R, euely member I of L being less
than euery member r of R (and neither class being empty), Then
there is a rliuiding rumber {with the properties that eoery number
less than { belongs to L and euery number greater than { belongs
to R. The nonber E itself may belong either to L or to R. If it is
in L, it is the greatest member of L; if it is in R, it is the leasr
member of R.
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Such a division of the real numbers into two classes by
means of some rule is called a Dedekind cut.

1.?. Bounrled sets of numbers
Consider the following sets of real numbers:
(l) All prime numbers.
(2) All positive integers less than 1000.
(3) All integers greater than 1000 which are perfect squares.
(4) All rational numbers x such that I < x < 3.
(5) All real numbers .r such that I < x < 3.
(6) All real numbers x such that I < .r < 3.
Observe that these sets are infinite with the exception of (2)

which has a finite number, 999, of members. Examples ( I ) and
(3) might give an impression that an infinite set has to contain
members which are large numbers; examples (4) to (6) would
correct this false impression.

The sets (5) and (6) are ofan important and simple type, and
each is called an interual. The former, in which the end-points
I and 3 are members of the set, is a closed interval; and the
latter, in which the end-points are excluded from the set, is an
open inlewal An interval a < x < b or a < x < D will often
be written (a, 6).

Some writers usc distinctive notations which show whether an interval
is open or closed, e.g, (a,6) for an open interval and [a,6] for a closed
interval. We shall not adopt atry such conv€ntion in this book, but the
reader may do so if he wishes.

An interval (a, b) will be called a finite interval. The set of x
for which x > a form an infinite interval.

The greatest and least nwnbers of a ser. If S is a set consisting
of finitely many different real numbers, plainly there is one
member of the set which is greater than all the others and one
member which is less than all the others. Convenient abbre-
viations for these greatest and least numbers arc max and min.

Illuttration. If S consists of all three-figure even integers, max,t is
998 and min S is 100.

If now S is a set with infinitely many members, there may or
may not be a member of S which is greater than all the others



14 NUMBERS 11.7

(or one which is less than all the others). We illustrate by
examples.

(1) If S is the closed interval (-1, l), i.e. the set of x for
which - I < x < l, then the number 1 is greater than all the
other members of S.

(2) If S is the open interval ( - l, l), i.e. the set of rfor which
- I < x < 1, there is no member of S which is the greatest.
If & is any member of S, then & < +(l+k) < I and f(l +&) is
a member of S greater than /c.

(3) If S is the set of integers which are perfect squares, i,e.
1,4,9,,.. there is a least member but no greatest membef.

Dertn ions, Let ,S be a set of real numbers. If there is a
numbor K such that, for every membsr x of S,

x<K ,
we say that ^S is bounded abooe. K is called az upper bound of S.
Similarly, if there is a k such that x > ,lr for every x in S, then
S is bounded below, and k is a lower bound of S.

If ^l is bounded both above and below we say simply that it is
bounded. A set which is not bounded is called *rbounded.

Ill...strations. (l) Any finite set S is bounded; and max,9, miu S can be
taken as upper aod lower bounds.

(2) The set of numbers, 
'

1 2 3  n
2 '  1 '  4 '  " ' '  , r+  1 '  " ' '

where r takes all positive integral values, is bounded. The number ] (or
any smaller number) serves as a lower bound, and I (or any greater number)
as an upper bound. Note carefully that the set has no greatest mamber.

(3) Th€ set -1, -^12, -,13,..., -,1",... is bounded above but is not
bounded below.

If K is an upper bound of a set S, then any number greater
than K is also an upper bound. If all that we desire to assert is
the boundedness ofa set, one upper bound is as good as another.
If we want to make the sharpest possible statement, confining
the set as closely as we can, we shall aim at choosing the least
upper bound, i,e. a number 1( which is an upper bound but such
that K-e (where e is any positive number however small) is
exceeded by some member of the set S. Similarly we should
s@k lhe greatest lower bound.
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We shall prove in $ L8 that, if a set S is bounded above, it is
ahvays possible to make this most economical choice of an
upper bound.

Illustrction. In (2) above, I is the least upper bound. Any number less
than I is exceeded by the member r/(D+ l) of the set if r is large enough
(e.g. the number 0.99, less than 1, is exceeded by nl(n+ l\ when z > 99).

1.8, The least upper bound (supremum)
The next theorem is one of the foundation-stones of analysis

and, in any orderly development of the subject, it must be
found near the beginning. The reader should master its meaning
and should test its truth by constructing for himself examples
(such as those at the end of this section). If he finds the proof,
based on Dedekind's axiom, natural and comprehensible, so
much the better. Ifhe finds it more diflicult to follow than the
arguments that he has so far encountered in mathematics, he
need not be disheartened, but should read the succeeding
chapters and return later to a study of the foundations.

Theorem 1,8. If S is a (not-empty) set of numbers which is
bounded aboue, then of all the upper bounds tlrcre is a least one.

Proof. Divide the real numbers x into two classes l, .R by
these rules.

Pu tx inL i f  t he re  i s  a  member  s  o f  Ssuch tha ts  >  x .
Put x in R if, whatever member s of S is taken, s ( .:r.
Then every .r goes either into I, or into R. Moreover, neither

L nor R is empty. For, if s is some member of S, then (say)
x : s- 1 is in 1,. And, since S is bounded above, any upper
bound K, for rvhich s ( K for all s, is in R.

Any I of L is less than any r of ./?- For there is some s which
is greater than I and this s is less than or equal to r.

By Dedekind's axiom there is a dividing number { such that,
for every posi t ive e,  (-e is inI ,and{+e in R. In the Dedekind
axiom, { itself may belong eithcr to a or to R. We shall prove
that, in the present application, ( belongs to R.

Suppose, if possible, that ( belongs to L. Then there is a
member s of S with s > {.

Tlre number I : +(; + {) satisfies s > tl > tt q is in R since
it is greater than the dividing number 6. So s < 7 by the rule
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for R. This contradicts our earlier inequality s > 7. So (
belongs to R.

We have proved that ( satisfies
(1) s (  SforeverysinS.
(2) (-e being any number less than 6, there is an s for which

r > g- €.
The property (1) shows that 5 is an uppet bound of S, and

(2) that it is the least upper bound. The theorem is proved.
Illustrcrions. (l) I,et ,t be the rational numbers .r for which 0 < .r < f.

Then + is the least upper bound, It is also the $€atest member of ,t
(2) Let S be the rational numbers x for which ;f < 2, The number J2

is the least upprer bound.

The least of the upper bounds of a set is so vitally felated to
it as to merit a name of its own. Some writers call it the upper
bound (distinguished from the indefinite'an upper bound');
otJrers use the initials Lu.b, A term which is expressive and
concise is supremun, abbreviated sup. 

'We 
can sum up as

follows.

Definition, If, gioen a set of numbers S, there is a nurnber K
such that

(7) s 4 Kfor eoery s in S,
(2) for euery positiw e, there is an s in S for which

s > ,l(- e.
,hen we vtrite K = sup S.

Theorem 1.8 proved tle existence of rK when the s€t ,S is
bounded above.

By reversing inequality signs, we set up an analogous theory
of lower bounds and the greatest of the lower bounds (the
inf m un, abbreviated rh/).

Defmition. If, given a set of numbers ,S, there is a number &
such that

(1) s > k for every.r in S,
(2) for every positive e, there is an s in ^S for which

then we write k : inf S, 
s < k+e'

A set S which is bounded below can be proved to have an
infmum.
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Exerclses I (d)

Notes on these exercises ate given on pp. l'l0-1.
Note, The relations of inequality in exercises 5-8 are repeatedly useful in
analysis and it pays to be familiar with them. They may already be known
to tho reader as results in algebra. Proofs are given on pp, 170-1.

1. If a and b are numbers. and

a < b + :

for every positive integer 'l, prove that a < ,.
The same is true if, iq place of l/r, we write €, where € can take eyery

value greater than 0,

2, l-Et A a\d B be two bounded s€ts of roal numbers. l,et I v B denote
the set of all numbers which are in .4 or in B (or in both). Prove that

sup (,{ v B) = max (suP ,4, sup 8)'

Is there any corresponding result fot A ^ B, the set of numbers which
are in both A ard B?

3. kt I and B be bounded sets of real numbers. kt C be the set of alL
numbers c, \f,here c = d+, and a is any member of ,4 and 6 any member
of ,. Prove that

sup C = sup ,,1+sup B.

Is there a correspondiog result for the set D of numbers d wh ere d = ab?

4, What are the sup and inf of the set of numbers 2-. + 3-n, where n and
r tak€ all positive integral values?

5, (The inequqlity of the aithmetic and geometric means.) If qbar,...,qn
are positive aod

,  _  a r + a r + , . . + a n

then A >

Q = (ara2 .. ,  a)rt",

G,

with equality if and only if the a. are all cqual.

6, (Cauchlfs inequality.) For any two sets of real numbers ar, 4r, ...,4n
6 n n  A  A  A

(Za,b,)' < (ta) (tr)

with equality if and only if there are constants k, , such th t kq, = lb, for
all r (i.€. if the a, and ," are proportional).

7. If a> | and r, r are rationals with r > r > 0, then

a ' -  l  q ' - l
f t

8. Ifa < I and r, r are as in 7,

l - a '  |  - a '
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1.9. Complex numbers
The system of real numbers is comprehensive enough to

carry very many theorems of mathematical analysis, It may be
asked what we should miss by not admitting at any stage
numbers other than real numbers, In answering this question
it is customary to point out that some quadratic equations, of
which the simplest is-  xu * l :O

have no roots in the system of real numbers. This is a depri-
vation rather than a disaster. It is indeed satisfying that the
introduction of complex numbers enables us to prove the
theorern tiat every algebraic equation has a root. But an even
more cog€nt case for admitting complex numbers rests on tleir
bringing to light close connections between some of the most
common functions of analysis, the exponential function on the
one hand and the trigonometric-sine and cosine-on the other.
If the variables are real these functions are for ever unrelated.
The case for including complex numbers in ordinary analysis
is finally won by the beauty and generality of some of the later
theorems which are based on them (beyond the scope of this
course),

We now sketch a method of introducing complex numbers
into analysis. We can extend the field of real numbers by
adjoining one or more new elements which are combined with
the original members ofthe field by the operations + and x in
accordance with the axioms A. The new element which must
be adjoined to yield complex numbers is r, where i by definition
satisfie$ i!+ I : 0. The numbers c+Dr, where a and b arc rcal,
which are elements of the extended field are added and multi-
plied in accordance with
number a+0i behaves

algebraic axioms A l-1 1. The
every respect like the real

the
in

number a.
No axioms of the type O (order) hold in the extended field.

It is not possible to arrange complex numbers in an order of
magnitude in the way that real numbers can be so arranged.
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Exercises l (e)

Notes on lhese exercises are giaen on p. l'11,
l. Prove frcm tlre axioms that, if a, r, c, d are real and. a * bi = c + di, then
a =  c a n d b  - -  d .

2. The inverse (A10) of a+bi is (a- bi)lb2+ b2) provided that a and ,
are not both 0.

3, Prove that, if the product of two complex numbers is zero, at least one
of them is zero.

4, From the addition formulae for the cosine and sine deduce that
(cosd + i sina) (cosd+isin/) = cos(d+ d) + t sin(A+ d).

5. By induction or otherwise prove de Moivre's theorem
(cosr+l sinr)' = cos n0 + i sin n0.

6. Extend de Moivre's theorem taking the index to be (i) a negative
integer, (ii) a rational plq.

1.10. N{odulus and phase

The usual notation for a variable complex number is
z : x+yi, where x and J, are real. We remarked in $1.2 that
geometrical illustrations often help in analysis. The geometrical
representation of complex numbers is particularly suggestive,
Taking a plane with a pair of rectangular axes Ox, Oy, we repre-
sent the complex number z : x+yi by the point whose co-
ordinates arc (x, y). The number x is called the real part and y
the imaginary part of z, written

, , - i - -
) /  

-  r t t t . .

The main advantage of this representation is that the sum of
two complex numbers zr and zz corresponds to the point P
where the vector OP is the sum of the vectors from O to the
points lepresenting z, and, zr.

If z : x*yi, the positive number / : ^,1@2 + l2) is called the
modulus of z, written lzl. The angle d such that cos 0 = xlr and
sin0: ylr, where r + 0,isthe phase of z,ph z; some writers
call it amplitude or argument. The angle 6 is indeterminate in
the sense that any multiple of 2r catbe added to it. It is often
convenient to have a principal ualue of the phase, and this is
defined to be the value of 0 such that -z < d < z' Thus

z :  x+ yi  :  r (cos 6+i  s in d).
2-2
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The numbers x+yi and x-yi are called conjugates and de-
noted by z and V. Observe that the sum and the product of
two conjugate complex numbers are real, and also that

Theorem 1.70. (Modulus of product and sum).
If z - x+yi ^Ld w : u+ui, then

(1)  lzwl :  lz l . lwl .
Q) lz+wl < lel + lwl,

and the sign : holds if and only if the phases of z and w are the
same (or difer by a multiple of 27t).

Observe that the geometrical counterpart of the sum-
theorem is that one side of a triangle is less than the sum of the
other two. We must of course give an analytical proof.

Proof. (1) To prove the statement about the product zw, we
have

lzwlz - (zw) (zw) : (zz) (ww) = lzlzlwl2,

and taking the square root gives the result since all the moduli
are positive.

Q)  l z+w lz  :  ( z+w) (z+w)
: z2+(Zfr+wZ)+wfi
: lzl2 +2 re (zw) + lwlz.

Now - l"pl < re (zw) < lzwl

and re (lfr) : lzwl if and only if zfi is real and. positive, i.e.
if z and w have the same phase . So lz+wl < lzl + lwl, and the
sign : tro16, if and only if z and w have the same phase. l

Fwther extensions of the nurnber-syslerz ? The reader may well
ask whether it will be profitable to extend the notion of number
beyond that of complex number., As the space in which we
move has three dimensions it is tempting to suppose that the
mathematical description of natural phenomena could make
good use ofnumbers of the fonn .x + yi + zj, where x, y, z are rea)
cartesian coordinates and j is some element which, like i, can
be adjoined to the field of real numbers. The answer turns out
to be that, extensions, though possible, are not useful. The price
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to be paid in extra complexity and loss of desirable properties
is too high. We already paid the price of sacrificing the order
relation in the step from real to complex numbers. A further
step would in fact lead us to the system of quaternions of the
fornt x+yi+zj+ wlt.; these numbers have some interesting pro-
perties but they have the heavy disadvantage of not obeying
the commutative law of multiplication ab : ba.

Exerclses I (/)

Notet on lhese exercises are gh.ten on p, l7L

l. Taking a simple value of z (such as 2+ i), mark in a diagram th€ poiltts
representing z+ l, 22, iz. l lz, i, z+ z, zr.

2. What are the loci
l z - l l  =  k l z +  t l +  I

for the pai6 of values (/r, /) = (0,2), (1,0), (2,0), (t, l), (1,3)? How is
each locus related to the points z = l, z = -l?

3. Solve the equations:. (r) zn = 28+96i,

(i i) z3-32'+2 = O,

(iii\ 223 +i3 = 3.

4. Prove that the roots of
z2+3p22+3qz+r  =  O

form an equilateral triangle if and only if p' = q.

5. Prov€ that, it la,l < 2 for I < r < 4, then every root of

l + a r z + . . . + a " 2 "  =  0

has modulus greater than +,

6. If a and c are teal, what is the locus

azZ+ b2+ bz"r c = O?

7, On the sides of a triangle ZtZ2Zs are constructed isoscelcs triangles
ZzZs lyb ZtZLlyr, Z 122 Wa,lying os'side the ftiangle Z 122Zy The angles
at Wb W2, Ilrarcall2t13, Prove that the triangle ly\ W2wsis eqluilateral,

8, l,et a + O and, aa * ce. Prove that a root of

azz+bz+c = O

has modulus I if and only if
' . ' . , '
lab - bcl = laa-ccl.

2l
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9. If., is a complex root of x?-l = 0, €xprcss the oth€r six roots in
terms of u. Find a quadratic with real coefficients having a root , + rr, + rr.
Prove that

n 2 t 3 t l
cos  

t -cos  T+cos7 
=  

2 l
. rr 2tt 3tr-stn 

?+sln j + strr 7 
= ,\t t.

In excrcises 10-13, P(z) denotes a polynomial in z

qzn + orzn-r+ ...+ an,

where the coefficients s , ..., oo are complex (unless they are given to b€
real).

10. Prove thatP(z) = A+Bi,wlrcre A and rare polyoomials in*andy
with real coemcients.

ll. Prove that a rational function R(?), defined as the quotient of two
polynomials, can be reduced to the form X+Yi, wherc X and y atc
rctional functions of x and y with real coemcients.

12. If the coefficieDts of powers of z in R(z) are real and

R(x + ti) = X+ Yi'

prove that R(x - yi) = X- Yi.

13. If the coefhcients a , ..., dn i\ P(z) are real, prove that the roots of th€
equatioq P(") = 0 are real or consist of conjugate pairs,
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SEQUENCES

2.1. Sequences
In chapters 2-4 we shall operate with real numbers only,

Complex numbers will be needed in chapter 5. A sequence is a
set of numbers occurring in order, that is to say, there is a first
number, a second number and so on. If the sequence is un-
ending, or, in other words, if, whatever positive integer n be
assigned, there is a corresponding rth nunber, we have an
infnite sequence. In simple cases a sequence is defined by an
explicit formula giving the nth number in terms of n. The nth
number of a sequence is conveniently denoted by s" (or t,. or
tl., etc.),

Illustrations.
(l) r" = 1/a. The sequeoce is 1, 1, J, ....

(2) s" = (-r)l^!n. (3) s" = zr.

Sequences provide the easiest introduction to the idea of
limit, which, as we said, is fundamental in mathematicaL
analysis. We discuss particular examples as a preparation for
the ensuing formal presental.ion.

2,2. Null sequences
In illustration (l), the nth member (or term) of the sequence,

namely l/2, becomes smaller as n becomes larger, and, by taking
n large enough, we can make s,, as close as we like to zero. To
take a numerical illustration, s" is less than 0.0001 for every
integer n greater than lOa. Such a sequence is called a ral/
sequence. The illustration (2) gives another null sequence; the
numbers do not decrease with every step from n to n+l as
those of (l) do, but the requirement of arbitrarily close
approach to zero is fulfilled. You are now ready for a precise
statement.
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Defnition. s,, r c null sequence if, to nery positioe number e,
there corresponds an integer N such that

lsnl < e for all t:alues of n greater than N.

You should study this definition with care and frame ex-
amples by which to test it. Observe that the criterion for a
null sequence may be displayed by writing values of e and lV
in two columns. In the above illustrative example (2), entries
in the columns might be

(4) sin nn,

(5) sin |nz,

N

ls
l0r0

(6) z-r sin |zz,

Q) nl(nz+r).

0.001
0.00001

and, in fact, we can make the rule that iV can be chosen to be
any integer not less than 1/e2, It is not necessary to assign the
smallest possible value of N. The symbol e (and sometime d or 7)
is an established notation for a small positive number. It is to
be assumed without explicit mention that € > 0.

You should decide of each of the following sequences whether
or not it is a null sequence,

The following points should be noted.
(a) The alteration of the. values of s," for any finite number of

values of n will not affect the question whether it is a null
sequence, Suppose, for instance, that so : 1/(z- l0). Then s"
is not defined for n = 10, and the natural course would be to
start the sequence at n - 11. It is a null sequence.

Alteration of values for infinitely many n would, however,
make an essentially different sequence. For example, suppose
that s,, : lln for all values ofz e/cept powers of2 and s, - I
for n - 2,4,8, 16, ...; then s,, is not a null sequenc€.

(b) A null sequence may or may not actually take the value
zero. The two possibilities are illustrated by two of the pre-
ceding examples.

(l) s" : 1/2. No number s," is equal to zero.
(6) s" : 2-r g;t 1rz. r* : Q when z is a multiple of 4.
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2.3. Sequencc tending to a limit
A null sequence is one whose terms approach zero. It is easy

to adapt the definition to a sequence whose terms approach any
number s,

Illusialion. The numbels of the sequence l, l, f,, ..., n/(r + l ), ... approach
the value l.

Defnition. A sequence so is said to tend to the limit s if, giuen
ony positiae e, there is N (depending on e) suth that

l , t " -" I  .e foral ln > N.

We then write

Notes,

lim s," = "1.

meaning

(l) Clearly, lim.r, : s ;1a16 only if r" - s is a null sequence.
(2) The inequality ls,-sl < e is equivalenr ro the two

inequalities-  J -€  <  J , r  <  S+6.

This expanded form is often clearer. Thus s,, is bounded.
(3) There is a short and expressive notation, the arrow,

J a + J

lim so : 3.

(4) There is a further symbolism which saves much writing
and which you may adopt rvhen (but not before) you have
mastered its meaning. The above definition may be written
r "+ r i f  e>0 ;  3 , l y ' .  l s , - . r l  <e  fo r  a l l n>  N .

In this notation, whatever is given is written before the semi-
colon. Here'given 6 greater than 0'.

The symbol 3 (reversed E) taken together with the next
following stop means 'there is (or there exists)...such that'.
Here 'there exists ly' such that ls,, - sl < e for all n > N.'

In this book symbolism of this kind will be used from time to
time, but not on every possible occasion. It is the experience
of many students of mathematics that arguments are easier to
follow if brevity is not made the prirne consideration and if
symbolic statements are relieved by verbal sentences.
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(5) You may find that a graphical r€presentation helps to
clarify the notion of limit. Referred to axes Ox, Oy, a sequence
can be represented by a set of isolated points whose :r-co-
ordinates are 1,2,.,.,n, ,,,, the y-coordinate of the nft point
being s",. Drarv the line y : 5 and the parallel lines 7 : s-6
and y : r+€; the part of the plane bettveen these parallels
forms a band of width 2e.

Then the statement J, -r J means tlat, however small e is,
there is a vertical line ;c = N such that all representative points
of the sequence to the right of it lie inside the bard between
y :  s-€ and l ,  :  S+€.

Exerciscs 2 (a)

Notes on lhese erercises are giuen on p, 172.
l. Define a sequence J" satisfying the following requiremeots:

(a) 0 < s" < I for all n,
(6) there is no z for which s" = {,
(c) sn -) l as a -+ co.

For each of the sequences defined in ?-6, state whether or not it tends
to a limit. If a sequence has a limit, make an (e, N) tablc as in $ 2.2, takiog
€ = l0-3 and aoy other values that you like.

^ 3 n
t ,  S i =  - .

t ? t \ s
3. o" = l -nl  .

\,.F J,'

4. sr= l lnif nka primenumber;.rn = 0if n is not prime.

5. s, = ./(z+ l)-n/2.

6. s" = 1741n1, *1t re f(z) is the number of int€gers which are facto$ ofn
(counting 1 and tt as factors),

7. Prove that, if r" -+ 0 and lt"l < lsnl for all n, then t" '+ 0.

8. Prove that a sequence cannot tend to more than one limit (as has been
tacitly assumed in $2.3). i.e. prove that, if r" + .r and .rn -+ s', then s - s'.

2.4. Sequences tending to inffnity
We need a concise description of the behaviour of a sequence

Iike r,  ̂ 12, ,13, ..., .,1n, ...,
the members of which exceed any assigned number for all large
euough values of z.
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Definition. The sequence s, is said to tend to infrnity if, giDen A
(howeuer ldrge), there exists N such tlwt

s.> A for al ln > N.

We use the arrow notation and write

J". + CO.

We must emphasise the difference between s,, -+ J and
s, + co. In the former, s is a number and we can if we wish
measure the closeness of s, to s by the smallness of s,,-s.
hfinity (<n) is not a nwnber and the word 'infinity' has not yet
any meaning in this book exccpt when it follows the words
'tends to'. Any attempted manipulation of the syrnbol co such
as sh-co would be nonsense. The reader is reminded that the
adjective infnite wits used in $2.1 meaning 'unending' and not
in any scrrse as measuring magnitude.

We have explained s,+co. The phrase'n tends to infinity'
and the corresponding statement in symbols 'r -+ co ' likewise
express the unending growth oln which is thought of in all the
definitions we have laid down. to cover in turn

s, -> 0, Jr, -> 5, 5, -> c4r.

After all this, you should not need to be warned again that
.n = co' is nollsense.

The more exDlicit notation ..
i$s" 

= s

is sometimes used instead of lim s" = r. For an illustration of its utility
see exercise 2 (d), 10 (p. 34) in rvhich there are two variables x and r.

We go on to consider other possible modes of behaviour of
a sequence sa as r? -> co.

Suppose that r, : 1000*2a.

Here s, is negative as soon as n is greater than 9 and, if n is
large enough, , can be nrade numelically greater (algebraically
less!) than any assigned nurnber. The following definition is
appropriate.

Oetinition, .r,r -> -oo as n -'> a if

A ;  1 N .  s , - < - A  f o r  a l l n  >  N .
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In situations in which it is necessary to shess the distinction
between J,, + oo and s," +-o, the former Inay be written
Jn +*co.

Sequences such as s," = (- lX or s" : (- 1)" z do not tend
to a limit or to +co or to -co. It is convenient (but not vital)
to have a name for such sequences.

Defnition. If so does not tend to a limit or to +@ or to -@, we
say that Jn oscillates (or is an oscillating sequence). If s*
oscillates and is bounded, il oscillates finitely. I/ J" oscillates
and is not bounded, oscillates infinitely,

N.B, so - (- l)'/z is not an oscillating sequence,

Exercises 2 (r)
Notes on these exercites are gioen on p. 172,

For each sequence s" defined in l-6, state whether it tends to a limit
(finite or infinite) or oscillates.

l. 100/r-r+(- I)", l0O+(-l)"x-r, 100+(-l)"r.

2. a+6(-l)", where a and, are consbnts.

3. r '{ l + (- 1)"}, n' + (- l)" n, sn2 + b(- l)" n.

4. The r€mainder when r is divided bv 3.

5.  *+++i+. . .  +Gr.
6.  ( l  +2+ 3+. . .  + r ) lnL ,  { l  -2+  3-4+ . . . - ( -  l )n l ln .

7. Give a value of N such that, if n > N, tf -4n > lU.

Establish the truth or falsity of the statem€ots in each of &10. This
means that ifa statement is true you haye to prove it; ifit is false, construct
a counter-exemple, i.e, an example satisfying the hypolhesis but not the
conclusion,

8. If Jo+r - rn oscillates finitely, then Jn oscillates.

9, If .r"*1-.r, oscillates infinitely, then sn oscillates infinitely,

10. If, given .( (however large), we can find 1V for rvhich rd > K, tben

2.5. Sum anil product of sequences
The theorems of this section are of every-day use in questions

such as the following.
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Example. How does nz+4n -3
,7f in+5

behave as n -+ co ?
We think intuitively that the multiples of z and the constant

terms will be negligible for large n in comparison with the terms
in 22, and so the sequence will have the same limil as ntl2nz,
that is to say '. A less rough argument would be to start by
wri t ing 

^ 1+(4ln)-(3ln)'"= zliin+GtFl
If we then assume that the limit of the sum of two or more

sequences is the sum of the separate limits of the sequences we
can sav

and similarly the lilnit of the denominator of s. is 2.
If we further assume that the limit of the quotient of two

sequences is the quotient of their limits we have

l ims " :1 '

We shall now give formal statements and prools of theorems
such as have been used in this example,

Theorem 2,51. If s,, and tnare null sequences so is s^+t^,
The truth of this is patent. On analysing to ourselves why

this is so, we argue that by taking ,? large enough we can make
so arbitrarily small and also /,, arbitrarily small, and this im-
plies the smallness of r", + t,,. We have to express this formally.

Proof. Given €, we can find lf, such that
-e ( Joce  f o ra l l z  >  N r .

We can find lr', sr.rch that
-e 1t^< e for al l  n > y ' f r .

If N is the greater of N, and lr'r, i.e. in the notation of g L7,
N = max (lr'r, Nr), then, for n > l{, both the above sets of
inequalities hold and we have, adding them,

2:!)

t" ' (r+j-1,) = r+rm1-nm1= r+o+o = r

- 2 e < s n + l n < 2 e ,
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(Observe now that, when e is allowed to take any positive
value, the 2e serves just as well as e for 'any positive number, as
small as you like',) Therefore r*+t, is a null sequence, and the
theorem is proved.

Theorem 2.52. If sn is a null sequence and tn is a bounded
sequence, then s*t* is a null sequence.

Proof.

Also, e

Therefore

1 K. V"l < K for all n,
>0 ;  3N.  l s " l  <e  fo ra l ln  >  N.

ls"t"l < Ke for all z > N.
Therefore J,, t," is a null sequence. (Note the rernark in

brackets at the end of the last proof.)

Corollary, IJ's, is a null sequence and c a cowtant, then cs*is a
null sequence.

We shall now step from null sequences to general sequences.

Theorem 2.53. If s" --> s and tn-.> 1, 7fts1

(i) r,+r, -> s+ t,

(ii) s" r" + rr.

Proof. (i) so-s and tn-t ^re null sequences; therefore so is
their sum s,l + r,, - (.r + t). This proves (i).

(ii) snto-st : (s,. -s) tn+s(ttu-t).
In the first term on the dght-hand side, so - s is a null sequence

and tn is bounded; therefore their product is a null sequence.
The second term, being the null sequence /"-t multiplied by
the constant J is a null sequence. So the right-hand side, being
the sum of two null sequences is a null sequence and therefore

snt''-> st.

Theorem 2.54. If s^-> s and tn-+ t, where t + O, then

r " r {

Proof. We shall prove that
1 .1

l n l
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and theorem 7.54 will then follow from theorem 2.53 applied
to the product of the two sequences s* and llt*.

We wish therefore to prove that

I  I  t - l

;  . - :  ,  t ha t  i s  t o  say  
' ,  

, " ,

is a null sequence.
We can choose .ly' such that, for all n > N,

and so

> +ltl
2'F lu '

Then t - t,, is a null sequence and 1/t" t is a bounded sequence
and theorem 2.52 shows that (t-tn)lt,Lt is a null sequence. I

Exercises 2 (c)

Notes on these exercises are gioen on p. 172.
l Discuss the behaviour as z + co of the sequences rvhose rth terms are

1 z - 3 \ t  / 3 x + l \ 3  n ( n - l )
\ 3 r +  l /  '  \ z - 3 l '  ( n - 2 ) ( n - 3 ) Q t - 4 ) '

2. Discuss the behaviour as z + co of the seneral rational function of n

R(tt) =

where p and q are positive integers.

2.6. Increasing sequences
Defnition. If sn*, 2 s,for all ualues of n we call s, increasing.

11 is useful to regard increase in the wide sense, allowing the
possibility of equality at any of the steps from n to n+1. If
Ja+r ) f,n for all n, we call s,, strictly increasing.

If s,,*1 ( s" for all values of n, we call s, decreasing. A word
which usefully covers either increasing or decreasing is mono-
touc.

Examples.Which of the following sequences are increasing or decreasing ?
,  ' 2 A . |

( 1 ) , , , + 1 ,  @ : j - ,  ( 3 )  l ,  ( 4 )  n + ( - 1 r " ,  ( 5 )  2 r + ( - l ) " .

l r  I

I
I; ;I

anne+af le - r+ . . .+ae
bono + brno-r + .,.+ be
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We shall prove that a monotonic sequence has the very
important property that it must tend to a limit or to +oo or
-co. In other words, a monotonic sequence cannot oscillate.

Theorem 2,6. An increasing sequence tends either to a limi! or
to +@.

Proof. Let s* be the sequence. There are two possibilities.
Either

(l) a number A aan be found such that s* ( A for all n; or
(2) whatever number I is taken, there is a value of N for

which s1y > l.
Let us deal first with the possibility (2). Since s" is increasing,

so > .l not merely for z : lV but for n >- N, Then, straight
from the definition, s" +oo.

Take now the case (1). The number ,{ is an upper bound of
the.ro. By theorem 1.8, there is a number s : sup rn with the
properties

s- < s for all n
and Jn > J-€ for some particular value ofn.

Since s,, is increasing, the second inequality will hold also for all
values of z beyond that particular value, The two inequalities
show that so + s. The theorem is proved.

The most useful case of the theorem may be summed up in
the statement

A bounded increasing sequence ,ends ,o a limit.
The corresponding theorem that a decreasing sequence tends

to a limit or to -@ can be proved, either by an analogous
argument or by using the fact that if so decreases then -s-
increases.

2.7. An important sequence a'
Let s* : &, whete a is a constant. The behaviour of the

sequence as ,, + co depends on the value of a.
(1) I f  4:  l , .so = 1 for al l  z and l ims,, :  1.  I f  c=0,

l ims" :  L
(2) Suppose a > l. Let a: l+k, where k > 0.

Then s'" : (l +&)" > l+nk
(by taking only the frst two terms of the binomial expansion).
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Asn+oo, l+nk-->a and therefore J,->co.
(3) Suppose 0 < a < l .  Leta-t :  l+/ ,  where /  > 0.

rhen ocs" :d-r r . -1, .1r ,

As z + co, 1l(l + nl) -., O and therefore s,. + 0.
(4) Suppose a to be negative. If -l < c < 0and a: -b,

so that 0 < b < l, it follows from (3) that ,4 + 0 and hence
s , :  ( -b )a  +  0 .

lf a:-1, r, takes the values -l and 1 alternately and
oscillates finitely.

Il a < -1 and a:-b, b > l, then from (2) we have
D" +co. So s" : (-b) takes values, alternately negative and
positive, numerically greater than any assigned number. That
is to say, ra oscillates infinitely. Summing up, we have

a" ->a (a > 1),

a " -> l  ( a :  l ) ,

a" "->0 (- l  < a < 1),

a" oscillates finitely (a : -l),

a" oscillates infinitely (a < -l).

Exercises 2 (d)

Notes on these exercises arc gioei on p. 172.
1. If 11 > 0 and .ro*1 > -l(rn, where f > l, for all values of '|, thcn
Jn -) + CO.

2. If, for alt values of n, l.r"*11 < Kls,l, where 0 < ,( < l, then rn -+ 0.
The conclusion remains true if the hypothesis is satisfied only for n > N.

3 .  I f  t * * =  t ,  - r < t < r ,

provo that Jn -+ 0.

4, Discuss the behayiour, as n -+ @, of the sequence a"lnb, where k is
a positive integer.

5, Prove that, if a > 0, then {a -+ 1 as z -+ co.

6, Prove that {l + (l lrr')}" increases as z increases and that it tends to a
limit. Clhis limit is the very important number e-see chapter 6.)
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7. Provc that {h decreares as ,t irsr€ss€s, and dcduco that it ton& to thc
limit l.

8. Give examples of soqu€,nces r" for which

tm,n+t _ 1
J i

and (a) ,r,r -+ o, (D) s" + 3, (c) t '+ 0,

9. If x(z) has the meaning assigned to it in oxercise 2 (c), 2, prove that'
if -1 < t < 1' |im.R(n)t'= o.

Discuss the behaviour ss ,, .+ co of.R(t!)x" for othcr values of x.

10. Prove that, ifi * -1, then

""@)=#
tcnds to a limit as ,| -+ oo. Show in a diagram the graph of

y = ltun 4"(x).

11. Provo that, if -l <t< I,

a" - m(m-r).:!m-n+l) * = H *
tends to zcro as n -+ .o.

12. Investigate whether the following sequ€nces bevc limits 8s ,t -t oo ond'
if so, give the limits,

(i) {3"+2'), and cxtend to numb€rs othcr than 3,2;

,n _ ,ri

(ii) ffi ,where a > 0 and 6 > 0;

4 n n
\ . . . , , r f  + l '  n r + z ' ' . . '  n t + I ,

(iv) Y(n !);
(v) n-^l@+o, (n+ bJt
(vD 2f ln!.

2.8. Recurrence relatlons
Hitherto we have supposed s,, to be given by an explicit

formula in terms of z, In practice a sequence is often deter-
mined by a relation connecting two or more su@essive members
of it, and it may or may not be possible to 'solve' this for s".
We illustrate by examples of useful types.
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Example | . The linear recurrence relation(or dffirence equation)
with conslant coefficients. Suppose that we are given that

sn: sn-a+ sn-z (n > 2)'

t o :  l ,  s l  :  1 .

(This is one ofthe cases in which r? : 0 is a more appropriate
starting value than n : 1, because it is useful-as is shown in
books on algebra-to associate with the sequence a generating
function so+ sfi + srx! + ....)

The data enable us to wdte down as manv terms of the
sequence as we please

1, t ,  2,  3,  5,  8,  13, . . . .

We shall obtain an explicit formula for s,,. To do so, sub-
stitute the trial solution

s":  Aq!+Bf",

where l, B, a, B are constants. We see that s,, : sr_l+J,,-z if
a and p are the toots of the equation

t2 - t - 1  : 0 .

Knowing a, p, we can then determine I and .B from the given
values so = 1, sr : 1, We find

a: !(1+^ls),  P: +(r-^ ls).
A+B -  1 ,  Ao.+Bp =  |

and hence
I r  / l  +, /5\ , r+1s" = ri {l---=-l

v J t \  4  /

-(=f)*J
Example 2. Investigate the sequence defined by

s,*1 : /(s, + a), s, : D,
where a and D are given positive numbers.

Remarks, (i) There is no way of obtaining a compact
formula for J,, in terms of n.

(ii) If we provisionally assume thal r, tends to a limit s, we
can say what the limit must be. For let r, + co and we have

r :  J ( r+c ) .
3-2
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Since every r" is positive,.r is the positive root of the quadratic
s2 :  s+a .

(iii) Sequences obeying a simple recurrence relation are very
comrnonly monotonic. See whetler s,"*, -,so has a fxed sign.

Solution of example 2. Let a be the positive root of the
ouadratic'  J "  -  S+d .

We have s?,*t-sl :  a+sn-f*,

If s, > c, the right-hand side is negative and so

.f"41 ( Sr1.

Also fn 1-a2 = (s"+a)-(a+a)

:  sn-d'

This shows that, if so > 4, then s*+r ) d.
Suppose that b - \ > a. Then, by induction, s,, forms a

decreasing sequence with s, > a for all n.
By theorern 2,6, so tends to a limit s where s 2 a, and,by the

argument of remark (ii), s : cr.
Similarly if s, < cr, then s" forms an increasing sequence with

limit cr. If s. : d, every stu : &.
Graphical representation. For recurrence relations of the

special form s,*1 : .;f(s) the movements of s,n may be traced by
drawing the $aphs of the curve C and the line Z whose re-
spective equations are y : f(x) and ), : x and making the
following construction. (See fg. 1.)

Let P, be the point on C whose x-coordinate is sr. Its y-
coordinate is tlerefore 

"f(sJ 
: s* Through Pt draw a hori-

zontal line to meet Z in Qr, tlren through Q, a vertical line to
meet C in &. P, has coordinates (s, .rJ. We continue from P,
as we did from Pr.

Exerclses 2 (c)
Notes on these exercif,es arc gbm on p. 173.

Inv€stigatc the behaviour as z + @ of r" if .r, is givon by the recurrenco
relatioN stated in 1-6.

1. 3.r" = 2J"-t-1so-r (16 = 7,3. = 3;.

2. f,o+r = 2/(I +r") (rr = 0),
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3, .r"*t = sl.17s, where 0 < /r < 1 and rr lies betwe€n the roots of th€
equation xr-x+& = 0.

4. ,-,, = 2(t"11) 1", = 3y.

< "  - 1
5. s,+r = L* 

f 
(sr = 2).

Consider also other values of s1 (e.g. s1 = +). What happens if rr = +?
6. s" = (sl-. * s"-, + 2)1/3 (s, = l,sr = *),

Fis. I

7. Prove that, if ^
ttt = 3 and zn*, = (4"+5)1/r,

then ll, tends to a limit /, and givc / to two decimal places.
ProYe that

0 < a1n*1-/ < 30-"(a.-/).

Note. In numerical applications ofanalysis, it is vital to know with what
rapidity we can rely on a sequence approaching its limit. This information
is giYen by the last inequality.

8. Discuss the possible limits of the ssquerce defined by

t", = H.
ProYe that, if ro > 3, then 

sl+ 1l '

(i) 3 < s"*1 < t", (ii) f,n+r-3 ( r? (""-3).

9. Prove that. if

ct) bt) 0 and a,*1 = t{a"+b"), b"a = za"bJ@"+b"),

then a. > a,+t ) bn+r > ,a. Prove that, 39 7 -+ co, cn and ," both tetrd
to the limit .,/(a!rJ.
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2.9. Infinite series
It is likely that you have learned from books on algebra

that, if the common ratio of a g€ometric progression is numeri-
cally less than l, the progression has a'sum to infinity', The
simplest illustration of this is

++++*+r! +.. . .
Here the sum s,, of the first z terms is

so :  l -2a'

As z +o, s" + 1 and the sum to infinity is 1. So there is no
new idea in the summation ofan infinite series; we have only to
examine the behaviour, as n -+co, of the sequence of numbers
Jn, where so is the sum of the fust r terms, We shall state this
formally.

Let u* be defned for all positit)e integal oalues of n. Defne

sn :  uL+uz+.. .+u, l

or, more shortly, sn : > ,.
r - l

If, as n -> a, sn tends to a fnite limit s, we say that the infnite
series q+q+us+ . , .

or I u^ converges (or, is convergent) and that.r ,:r jtJ sum.
n - l

The number a,, is the nlh term of the infinite series and s" is
the sum of the first z terms. (It may sometimes be more appro-
priate to start with a term with zero suffix 26, for example, in
the series ao+atx+azxz+.,.; s^ will then denote the sum of
z + I terms.)

You should note carefully that, when applied to infinite
series, the meaning of the word srnz has been widened from its
use in algebra. Hitherto it has meant tlre number which is got
by adding the numbers contained in some given finite set; Now
it can be the limit of a sequence. The main reason for this
cautionary remark is to guard ourselves against tacitly assuming
that properties of a sum (in the restricted sense) carry over into

12,9
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properties of a sum (in the general sense), For instance, if
a + b + c : s, then by the associative law of algebra,

ka+kb+kc :  ks.

The corresponding property is in fact true of the sum of ar_
infinite series, i.e. if ur+u2+us +... converges to sum J, then
kur+ kur+ Icu"+ ... converges to sum frJ. But it is a property of
limits and must be proved as such.

An inllrrite series which is not convergent is called, diuergent.
For example, each of the series

l+1+ l+ . . .

and  1 - l +1 - . . .

is divergent. From $2.4 we see that for a divergent series there
are four different possible ways in which s,, may behave; it
may tend to +co or to -co or may oscillate finitely or in-
finitely. If a series does not converge, it is generally enough
just to label it as divergent, but it is sometimes easy and con-
venient to incorporate further information. For instance. we
could say that the series X( - l)n oscillates and the series

diverges to -co.
r{-  I  +(-  l r }

The words conlierge and dfuerge are commonly applied to
scquences as well as to series, e.g. if r, = 2 - (j)", then s, con-
verges to the limit 2, Ifs, does not tend to a finite limit we call
it divergent; a more specific statement may be made such as
that s,, : -2" diverges to -co.

Before we discuss general properties of infinite series it will
help the reader to be thoroughly familiar with some particular
series of simple types which will illustrate the later theorems.
We shall take two important series, the first being the geometric
series.

2,10. The geometric series Exa
Theorenr 2,10. The inJinite series

l+x+x2+ . . , +x "+ . . .

conDerges if and only if -1 < x < l.
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Proof, Hete uu : t"-1 and

t2.10

(.r + l),

= l ) .

I fx = l ,  J 'n+cp as r-+oo. I fx *  l ,

l x "
l - x  I  - x '

From $2.7, x"+0 if -l < x < I and the series converge$ if
- I < .r < 1, its sum being l(l -x).

If r > l, x'r -> co and J,, -+ co,
If .x : -1, s. : I if r is odd and 0 if tt is ever &nd so

oscillates finitely.
If x < - 1, sn oscillates infinitely.
Hence the series converges only if -l < :r < L

2.11. Tbe series Ea-t
Observe that the meaning ofa power z* is determined by the

index laws of algebra only if & is rational. The extension to
irational & is best deferred until chapter 6 (p. 108). Meanwhile
we shall assume that the indices of any powers with which we
deal are rational. The theorems concerned (such as theorem
2.11) remain true whether the indices are rational or irrational.

Theorem 2J1. T'he infnite series

t , l , l ,  , 1 ,
7* ' t  T1 *r  ""r*-  " '

(where k is a constnnt) conuerges ifk > | and diverges ifk < l.
Remarks. If k : l, the terms are in'harmonic progression'

and the series >(l/z) is often called the harmonic series.
The geometric series of the theorem 2,l0 was easy to deal with

for the reason that we could find a simple explicit formula for
.r,, in terms ofz. This is not possible for tbe series )(l/zr) even
for simple values ofk like I or 2. In practice, given an infinite
series, it is most unlikely that a simple expression can be found
for the sum of r tems. Some sort of approximation is nearly
always necessary, The reader will see in a moment the device

[r-,.
{ '-l
tn ('r
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by which it can be carried out for this particular series. More
general methods will be developed in chapter 5.

We shall prove theorem 2.11 first for the 'border-line' value
k : l, which is the greatest value of k giving divergence. This,
being the case of the theorem in which the issue between con-
vergence and divergence is most finely balanced, might be
expected to be the most difncult. In fact, on account of the
simplicity of detail, it is as easy as the other cases,

Proof of theorem. We wish to prove that the series

1+'+++++; ++++ +++.. .
diverges. This will be done ill by taking enough terms, we can
make their sum larger than any assigned number, The following
inequalities use the fact that the terms decrease

t+*  >  2><*  - *  , ,

i++++++ > 4*t :  1-"
++rro+.. .  +r l+r la > 8 x 11" = 1

and so on. The sum ofthe terms in each ofthe successive blocks
of2,4,8, 16, ... terms is greater than ]. Taking in now the first
and second terms 1 and {, we have proved that the sum of the
first2+2+4+8+ .,.+2--1 (i.e.2.) terms of the series is greater
lhanl+\m. Therefore the series )J(l/n) diverges to +m.

Suppose now lhat k < l. Then l/nk > l/n, and so the sum
of any set of terms of Z(llnk) is greater than the sum of the
corresponding terms of E(lir), This latter series has just been
proved to diverge to +co. Tlterefore so does X(l/zr) for /< < L

Take now k > 1. We have to prove convergence. The same
device, of grouping terms in blocks of 2,4,8,... succeeds, but
we must now find approximations which are greater tharr the
sums of the blocks. We have

4L

r l 21
2r+* 

t  
7:  F: t ,

r 1 l 14 l
4 *+  y+4+  j i  t  

+=  ouv
l t  181

Vn  g r+  " ' +  15 r .  
<  g r  :  g r - r .
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Now the series
t .  I  . "  I  -  I  -' ' 2k-r ' 4t-r ' 81-r ""

12.tl

is a convergent geometric series, with sum to infinity t say. Then
suy, the sum of the first N terms of 2(l lnk) increases with N and
is always less than r, So, by theorem 2.6, sx tends to a finite
limit as l{+oo. That is to say, the series converges. I

Note on the case k < l. Instead of deducing this from the
case & = 1, we could argue directly

and nr-r + oo.
t+*+. . .+* ,  

" (* )
Numerical illustration. Find a value of r large enough to

make the sum of z terms of

greater than 20. I  +++++...
The reader should not disdain numerical work, which keeps

him in touch with reality. We will work this example for him,
The proof showed that the sum of the fust 2- terms is greater
than I + +/rr. So 238 terms will certainly be enough. Now
238 > 1011 and a twelve-figure number in this context is sur-
prisingly large, We naturally sacrificed accuracy in approxi-
mating to the sums of blocks of terms. But more refined
methods would show that the number of terms which must be
taken to grve a sum greater than 20 exceeds lS. These calcu-
lations show, in homely language, that the diuergence of this
series is slow.

Exercises 2 (/)
Not.t on these exerciset are given on p. 773.

l. For the series tl/zr estimate a value of ff which will ensure that the sum
of all terms after the Nth is less than 10r,

Mak€ the same calculation for the geometric series:(0.99)i. What do
you conclude about the relative 'slowness-or quickncss-of convergenc€'
of the two series?
2. Find for what values of r the following series converge, and sum them

r t
'  '  

l + r ' ( l + f ) '  ( l + f F  " ' '
rl rl .,

r l -  r  -  - J -'  
l  + rr 

'  ( l +rt)r (l + rr)t 
'  " ' '

1+2r+3r t+4r t+ , . , .
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3. Estimate the sum 
,!Jr"

4. Prove that, if a> 0and, > 0, the series whose nth t. ' fmis l l(a+nb,
diverges.

5. Sum to m tertns and to infinity the series whose zth term is

I
n<*Tl-<*zl'

Deduce the convelgence of Xr-3. Extend this to a denominator which is
a product of & instead of three consecutive integers.

2,I2, Properties of infinite series
The following properties of infinite series are, for the most

part, immediate adaptations of results about limits of sequences,
and proofs can be supplied by the reader.

(l) The conuergence or dioergence of a series is unafected if a
fnite number of terms ore inserted, or suppressed, or ahered,

Illustrution. If lan convcrges to sum J, then ).) converges lo sum
1 /.+ 1

s - ur- ,., - uh. If the former series diverges, so does the latter.

(2) If q+u2+... conaerges to sum s and q+D2+.., cou.)erger
to sum l. then the series

(u r+u )+ (u r+o r )+ . . .

conDerges to sum s + t.

Exercise. Prove, more generally, that the series whose rth te.m is
aun+ bu,, where s and 6 are conslants, converges to sum dJ+rt.

(3) If uL+uz+ ... conuerges, then lim un : Q.
Proof, uo: Jz-Jz-r. Both ,s, and s,-1 tend to the same

limit s. Therefore, by theorem 2.53 (i), hmu. exists and
l imu^ :  s -s  :  0 .  I

Note carefully that the converse of (3) is false. The example
u" : lln shows that it is possible to.bave lirn u^ : O and Eun
divergent. In other words (see exercise 2 (g), l)

The condition lim a, : 0 is necessary but not sufficient for the
contergence of Zun

@) If >u" is conDergenl, tlren so is any series whose terms are
obtahed by bracketing tlrc terms of 2u, in any manner, and the
two series haue lhe same sunt.
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It is thus legitimate to insert brackets in a convergent series,
but not to omit them. The series I - I + I - I +... oscillates, but
the series

( l  -  l )  + (1  -  l )+ . . .
converges to sum 0.

(5) If u" 2 O for euery n, then 2u. either conuerges or dioerges
to +6.

A necessary and suficient condition for conoergence is thal
a

there exists K such lhat tu* < Kfor all N; and then lu" < K.
l t

This is a restatement of theorem 2.6.
(6) If, for eoery n,

(i) u^ > O, u" >- 0,

(ii) u, < Ko,, where K is constant,

(iii) )run conoerges,

then 2uo conoerges, Also Zun < KX4,.
The reader should deduce this from (5) and should formulate

a corresponding result for divergence,
We shall take up in chapter 5 the more systematic investiga-

tion of infinite series,

Exercis€s 2 (g)

Notet on these exercises are giuen on pp, 1734.
l. (N,8.) Explain necessary condition, t llcient condition. Which of the
following are (a) necessary, (r) sufficient, for the real numb€rs p,q to be
equal ?

(i) p'+q' = zpq, (i i) pz = q!, (i i i) p+!=q+!-.' q ' p

2. Say of each of the following conditions whethcr it is (a) necessary,
(D) sufficienl

(i) A ,t condition that the year r is a leap year is that r is a multiple
of 4.

(ii) A' condition thatpq = 0 is thatp = 0 andq = 0.
(iii) A r' condition that the coresponding angles of two triangles

,48C, D,E'F are equal is that

BC CA AB-EF= 
FD:  DE '
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3. Say of each of the following series whether it convergps or divcrges

1 . 2 . 3 ,  .  n
3t 5'f 1'r.."rfr;1? 

'. '

I , 1 .  I  ,  I  ,

l  -  l  ++- '++- l+* - *+ . . . ,
, . 1 , 1  l ,
r + t ! + t f f l + . . . .

4. Prove that, if 0 < a" < l, then the series s +arx+..,+anxn+...
c o n v e r g e s f o r 0 < x < 1 .

Extend ihe result, assumiog that la.l < &.

5. Sum the 6nite series

3 l+a r+b
:1 ;U+2) (*4)' 

"!1 
r1ra1],1"a27'

Deduce the sums to infinity.

6 .  (N.B. )  l f  /  r \ ,  /  r \_ ,
s" = (l +:, una t" = tl 

-,J

prove that r" is an increasing and t" a decreasing sequence. Prove further
that, as '' "+ co, t"-J" -+ 0 and that J, and ,n tend to the same limit.

7. If.r, and r" oscillate finitely, in what ways is it possible for r"+tn to
behave (in r€gard to limits or oscillation) ? Give an example of each.
Answer the same question for r"rn.

8. Simplify the product
2 s _ l 3 3 _ l 4 3 _ l  n 3 _  l
F+ tF+ t+ t+ t ' ; 5+ t '

and prove that it tends to a limit (to be found) as z -+ co.

9. lt is given that t,"+r = *fu"+ A'lu"), where ,, = 1,2,3..., and
O < A < u l . P r o v e t h a t

(i) u"*, > A and u,*, < u^i
(iD d"*. = dl,where d^ = (u"-A)l@"+A)i
(iii) as a tends to infinity, rri tends to /4.

Taking ,4r =99, ut= 10, calculate y'll correct to four places of
decimals.

10. Show tbat, if,'0 and I are positive numbers, and

. lrna1l : = 2A,

then the condition,4 > I is necessary for the conv€rgence of the scquence
rn; show that it is also sufrcient in the case of ro > l, by verifying that
f. > I for every n, and, for a suitable c > l,

c "  l r " -c l  <  l ro -c l .
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U. Define (if possiblQ an oscillating re4uencc satisfying

&t! -.1' 1.
J,

Answer the same questiou with -* in place of l.

12. Prove that, if . ^ .'  1 . 3 . 5 . . . ( 2 n - t )u" = -2A 
s-.:.ix'- '

then rai is an increasing sequence and (n+t)4 is a decreasing sequence.
Deduce that nrf. tends to a limit.

13. Rstablish the truth or falsity of each ofthe statements (0-(iii).
(i) If the se4uence .ro increascs, so does the se4uenc€

(.q * s1* ... *,ro)/n
(ii) For all ,r, it is kno$'n that r, > r,+b ,i < tn+r and rn > t",

Then both s€quenc€s so, ,o tend to limits, r, , and r > t.
(iii) If s"*, -.r" oscillates infinitely, then s" oscillates iDfDitely.

14. Prove that, if rn tends to the limit $, then

Jr+Jr+ . . ,+S,

also tends to r.

15. Find the sum of the first 4+ I t€mrs of the s€ries

I  +2x+ 3 .d+. . .+ (z+  l ) . x i+ . . . .

Prove that, if l.rl < l, the series converges to the sum l/(l -.t)t.
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CONTINUOUS FUNCTIONS

3.1. Functions
You are familiar with the dependence of one real number y

on another real number x which is commonly determined by
formulae such as

.y = 1/("r '+ l)  or y: , , ! { (2-x)(x-t)} .

In the former y is defined for all values of x and in the latter
only for 1 < x < 2. In either case, if a value of x is assigned,
we can calculate the value ofy which corresponds to it and there
is only one such value of y (if it is understood that the ./ is
positive). Here r may be described as the independent uariable
and ), as the dependent uariable.

These two examples are simple illustrations of functions. We
go on to express in general terms the meaning of function.

Let X be a set of numbers x and Y a set of numbers y. If
rules are given by which, to each x in X, a corresponding 7
in I is assigned, these rules determine a function defined for
xin X,

Noler. (1) Obserye that, to a given x, there is just onc corresponding ),
The same / may correspond to more than one x, Fo! instance, in thg
example / = 1/(r '+l), y = ! corresponds to both.r = I and x = -1.
In other words, the correspbndence between X and yis in general many-
one and is only exceptionally one-one.

In the ordinary graphical representation, no line parallel to O/ cuts the
cuNe in more than one point.

(2) You may come across in mathematical literature other words and
phmses equivalent to those used here, A function defined in X with
values in I is often called a transformation, or a mapping, of X into y.
According to the definition, y may include values which are not taken by
/ for any value of x, If every value of I' in y is taken for some ,. in X,
we can say that the mapping of X is onto Y.

(3) The usual notatjon for a function is the letterl If more letters are
needed, g, C, Fare commonly used, The value ), which a function/takes
for a particular x in X is written/(r), so that / = /(r).
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(4) Strictly speaking, the function /is the set of all pairs of numbers
(r, y) which are related by the rules defining the conespondence. /(x) is
the 'function-value' for the number -r. It is conveni€nt, and does not lead
to error, to sp€ak sirnply of the function f(*).

A few further illustratiom will bring out the full meaning of the
definition of function. In each of thesg satisfy yourself that the rules are
adequate to determine a uuique value of/ for each value ofr concemed.

. / = 0

f o r  o< . r<1 ,

for r<0 and for r> 1.
In physical applications the independent variable is commonly the timc;

this function could represent, for example, a force of unit magnitude which
&cts for unit time and then ceases.

(2) Suppose that rt = t this equation assigns values to / for t > 0,
and, if .x > 0, there are two values of/ equal in magnitude and of opposite
signs. We said in tbe definition that a function is to be sizgle-aalzed. So
y' = x docs not define in our s€nse), as a function of .r. We may, however,
di$ect it into two functioDs f = +^lx and y = -^!x each defined for
x>o .

(3 )  y=7+.
r^ - t) (.r-2)'

This function is defined for all values of x except .x = I and x = 2.
(4) r = the large'st prime factor oft
This statement has meaning only when .r is ao integer.
(5, s" = lln, where n is a positive integer. Sequences are functions of

a special t'?e, in which the indep€ndent variable is restricted to be a
positivc integer. The same defining formula with r replaced by r, namely,
y = !lx, may defrne a function for values of r otber than positive int€gers
(here, for all values of x except r = 0).

(O .Y = 0 when x is irrational,

Y= 1 whe! x fu ntional.

An 'utrnatural' function like this may seem to have little interest. Such
functions are, in fact, of use in analysis in deciding for how wide a class
of functions some propos€d theorem is true. We sball come across iuus-
tratious of this later in the book.

(7) / is fhe t€mperature in degre€s at time r at a giv€Nr place.
This type of function is very common in scisnce and in everyday Uf€.

It differs from the exampl€s (lXO in that there is no analytical formula by
wbich it can be represcnted. In practice the function-valuec may be given by
a graph (drawn, say, by a pen attach€d to a recording thermometer). These
values are then knowu withiq thc limits of accuracy which can b9 attained
io obs€rvatioD.

(D  Y=r



3.21 CONTINUOUS FUNCTIONS 49

3.2. Behaviour of/(.r) for large values of .t
We described in chapter 2 the various ways in which a

sequence s," may behave as the variable n tends to infinity. The
same descriptions apply to a function;f(x) as x+co. For
example,

Definition. f(x) -> a as x -+ @ if

A; 1X. .f(x) > A for all x > X.

You should also define, following $2.3, the meaning of

f(x) -> I as x -> o.

(We singled out null sequences as forming the simplest intro-
duction to limits of sequences, Now we need not move so
slowly, and can omit special mention of'null functions' for
which / : 0.)

The variable x rnay take arbitrarily large negative values, and
we have, for example,

Defnition. f(x) -+ I as n -> -@ d, giuen e, there is X such that

l.f(x)-ll .e for all x < -X.

There is a further limit situation which does not occur for
sequences s' but which presents itself for functions of x. To
exemplify it, consider Iy -  

xJ .

As x approaches 2, taking values greater than 2, y + co. (Also,
as x approaches 2 through values less than 2, / + -o.) We can
denote tlte approach of x to a number c through values greater
than c by writing x -+ c+ (and through values less than c by
x -> c-).

Defnition, /(.x) + co as x -u c + if, giuen A, therc is 6 s ch that

. f ( x )>  A  f o ra l l x i n  c<x<c+8 .

3,3. Sketching of cunes
It is a good exercise in appreciation of functional dependence

to sketch some simple curves. The reader should aim at deter-
mining, with hardly any calculation, tbe genercl shape of the
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curve. By asking himself ttre right questions he can do this very
quickly. (If a more accurate graph is required, points can be
plotted later in the usual way.)

Information under the following headings gives a good start:
(l) the rauge of x for which y is defined, and any simplifying

features such as syometry about an axis;
(2) values ofy when .x is large (horizontal asymptotes);
(3) any values of x for which y is large (vertical asymptotes);
(4) any particular points on the curve which can be seen at

a glance, e.g, points on the axes,

\
\ \/!

(x- 1) (x-3)
Exampte t. ), = 

Gc_ilix_6,
(1) y is defncd for all r €xc€pt 2 and 4.
(2) As.r+o or r+ -@, y+1. Draw the horizontal asymptotc

.y = |. Also it is clear that, if x is large and positivg .r- I > x-2 and
x-3 > x-4, so the curve approsches the asymptote from above as
x - + @ .

(3) x = 4 and .r = 2 aro vcrtical arymptotcs. From the signs of the
factors in the numcrator and denominator,

8 a  t - t 4 + ,  / + + @  a n d  a s  x - - 4 - ,  y - +  - q i

a s  x - + 2 + , . r + + @  a n d  a s  x * 2 - ,  y - +  - q ,

(4 )  y=0 gvcs  . r=  I  o r  3 , )

x = o giv€s .y = *. l 
Mark these Poin$'

It is often worth while to find where the cuwe cuts its horizontal
ssymptotc, Hcre y = I gives x = t (and, what is more importalt, no
othcr point).

We have by now a good idea of the shape of the cuwo (69. 2a).

Fis,, 2
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Example 2, " .  ty  =  x ' + 7 ,

(l) Since y is unchanged when -x is put io place of r, the curve is
symmetrical about Oy. y is defined and is positive for all x except 0.

(2) As .r -+ + co or Jc + - @, y -+ c.. Moreover, when x is large, / is
a little greatcr than x2, so we sketch the parabola / = xr as a guide for
large x.

(3 )  As  . r  -+  0+ orx '+0- ,J . ,+co .
(4) The curve does not cut either axis. When r= tl, /= 2, (see

frs. 2b).

Exercises 3 (o)

Sketch the general shapes of the curves given by the following equatioos.

5 1

l . Y = x * .

4 .  y  = : .

y l f  I

o Y = (i-1) (x 4,

8. yr = -i . .

2. y = 76-to. 3. J, = xro+x-ro.

l .  v  =  - - - - -- x x '

9. y1 = -i-= .
x +  I

3.4. Continuousfunctions
The reader will have acquired from examples the impression

that the common functions can reasonably be called continuous,
though some of them may present discontinuities for particular
values of x, For instance, he would regard the function whose
graph is sketched in example I of $3.3 as being continuous
except at x : 2 and x -- 4. He would think of a function as
continuous so long as its graph can be drawn without taking
the pencil off the paper.

We must now refine these rough ideas into analytical con-
cepts. The reader, after reflection, will (we hope) agree that for
a function/to be continuous at a value x - c he requires that
(l) /(c) is defined, (2) as x approaches c, the value of /(x)
approaches /(c). Thus the assertion of continuity is nothing
nore or less than a statement about limits, namely that

lim /(x) : lim f(x) : f(c).
2-+ ' )+  r i+C-
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We need not keep the c+ and c- separate and can now set up
two basic definitions, the former dealing with the limit of a
function and the latter with continuity.

Definition, f(x) --> I as x -t c tf, gioen e, there exists I such that

l , / ( x ) - r l  . e  f o ra l l  x r z  0  <  l . x - c l  <d .

The d depends on the e, and, in general, the smaller the value
of e, the smaller must be the value of d. The dependence may
be emphasised if we wish, by writing d(e).

Note that the value .r : c is excluded from the set of .r for
which the e-inequality is required to hold in the above de-
finition. The statement concerns behaviour as x gets near to c,
not behaviour at c.

Defnition. The functionfis continuous at c y'/(r) -->f(c) as x -> c.
Combining the last two definitions we see that the following

is an equivalent definition of continuity,
f is continuous at c if, gh.ten e, there is 3 such that

l f (x)- . f (c) l<e for lx-c l  <6.

The values ofx such that l.r-cl < d, in other words, the
open interval (c - 4 c + d) may be aptly alled a neighbourhood
of c. More generally we can apply this word to an open interval
c-8, < x < c+d2, where dr, d, may be different. It is worth
while to state this as a definition.

Defirtdoa. An open interaal is called a neighbourhood of any
one of its points.

The definition of continuity of f rt c then states that, given
any ueighbourhood N, of/(c), there is a neighbourhood N, of c
such that, if x is in 1Vr, then /(x) is in /V,.

We have defned continuity of f at c, that is to say, con-
tinuity at a point. We go on to define continuity in an interval.
Suppose first that tbe interval is closed.

Defirtion. f is said to be continuous in the closed interual
(a, b) if

(1) for each c in a < c < b, f is continuous at c;
(2) lim /(.r) - f(a), tim f(,) :.t(b).

.+a+ .+b-
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The purpose of the special treatment of the end-points 4 anc
D is clear; we wish to avoid any mention of values ofx outside
(a, b). lf we are defining continuity in an open interval say
a < x < b or the infinite interval .r > a. there are no end-ooints
and no condition (2).

Definition. f is said to be continuous in an open interual if it is
continuous at each point of the interual.

3.5. Examples of continuous and discontinuous functiom
We shall amplify and make more precise the remark made at

the beginning of $3.4 that the common functions of x are
generally continuous,

Bounds off. Suppose that x is allowed to take any value in a
set X, In practice Xis usually an interval, which may be closed
or open. The values of/(x) for x in X form a set ofnumbers, I
(sometimes denoted byl(X)). If the set I is bounded (g 1.7) we
say that the function / is bounded in X. Also the sup and inf
of Iare called the sup and inf of the function / for x in X.

Continuous functions. In the following theorems, the con-
dition ofcontinuity may refer to a point or to an interval (closed
or open) so long as it is given the same inlerpretation in the
hypothesis and the conclusion.

The sum of two continuow functions is continuous,
The product of two continuous functions is continuous.
The quotient of two continuous functions is continuous for any

aalue of x for which the denominator is not zero,
The reader should, satisfy himself that these constantly used

facts can be proved by arguments following those set out for
the fundamental theorems on sequences given in $2.5.

We have further
If n is a positioe integer, the functiot, * is continuous for all

ualues of x; x.-" is continuous except for x - O,
This can be proved directly (by proving that x"-c'is small

if x-c is small) or alternatively by induction, applying the
theorem about the product ofcontinuous functions to ra-r and r.

We can now build up sums of multiples of powers of ,r to give
Any polynomial is continuous for all ualues of x.
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Aq otient of two polynomials is continuous /or all oalues ofx
for which the denominator is not zerc.

A more general and much-used result is the following, which
asserts the continuity of the function obtained by compounding
two continuous functions.

Iheorem 3.5. Suppose that
(l) 3(x) r:r continuous for x : { and g(Q = q;
@ f(y) is continuous for y : ,1.

Then f{g(x)} is continuous for x : (.
Proof. Wite'  CIE+ n) -  q+K,

Given (, we can find 8 such tat

lk l : ls(€+h)-c(Ol  <6 i f  l l ' l  <d.
Given e, we can find E such that

va+D-fQDl<e i f  l& l  <( .
These statements combine to give

lf{s(€+41-7919}l < e if Url < 6' I
Some discontinuous functions. For continuity at c it is neces-

sary and sufficient that f(c +) : f(c) : f(c-), where /(c+) is
written for fts lirnil6fjf(v) as r+ c+. Example.s may be con-
structed in which one or more of these necessary conditions
fail, giving a discontinuity at c. We give two illustrations.

(1) Let /(x) = [.1] : ths greatest integer less than or equal
to .r.

This function is continuous if x is not an integer. If x is a
positive integer z,f(n+) : f(n) : n,f(n-) : n-1.

(Z) f(x) : sin (1/x). This function is not defined for x : 0.
If the definition is completed by assigning a value to /(0), the
function would be discontinuous for x : 0, whatever ttre value
of/(O). For/(x) does not tend to a limit as x + 0, since it takes
all values between -l and I (inclusive) for values of xas near
to 0 as we wish, e.g. if (l/x) : (2n+L) t, sin (l/x) - 1 and by
taking n large euough this value of x is arbitrarily close to 0.
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Exercises 3 (6)

Nolet ora these exercises are gioen on pp, 171-5,
1. State any values of r for which the following functions are discootinuous

^lKx- a)l(b-x)1, l/J(*r+ 1),
tan r, sec r, U(l +tan r),

2. Sketch the graph of the 'saw-tooth function'

x- [r] -].

3. Sketch tbe graphs of the functions

lxl, ty'xl, dtxt,
pointing out for what values of x there are discontinuities.

4. Proye that the function defined by

,f(x) = x sin (t/*) (x * 0),

/(0) = o
is continuow for all values ofr, Sketch its graph.

5. Provo that. if -
x r -6x+5

J(x) =:t;F:';T-i8,

and /< * I, there are two values ofx for which,t"(x) = &, Illustrate by a
graph.

6. Prove that x,-2x+ |
xry2x+2

is bounded for all values of;r, and find its supremum and infimum.

7. ArBwer the same question for
4x2+3
x ' + l '

8. Inwstigate the limit as { + I of

* -3x+2
7z= z,z t3 p 11 2'

9. Investigate the limits as x -+ 0 of

10. Find numbers ?' 4, r such that

n*4  *  ! -' x f
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gives the closest possible approximation for large values of x to the given
functions

, . . x xn, ;r;;Tl , (") 
J(Ix-+ O 

.

3.6, The intermediate-value property
Theorem 3,6. Suppose that f is continuous in the closed interual
(a, b) and that f(a) + f(b). Then f takes euery oalue which lies
betweenf(a) andf(b).

Remarks. Suppose that /(a) < f(b) and that ? is a number
such that /(4) < T < .f(b). The theorem asse s that the curve
y = f(x) cuts the line y = t1, i.e. that there is a number { be-
tween a and D for which/($:7. (There may be more than
one such 6.) Taking the intuitive view tlat a continuous
function is one whose graph can be drawn without lifting the
pencil off the paper, we can have no doubt that the theorem is
tme.

We must, however, provide an analytical proof, and a little
reflection shows a likely approach to one. Let x take values
increasing from 4 to 6. While x is near enough to a, f(x) will
still be less than 7. When x is near enough to b, f(x) is greater
than 7. If we take the suprernum 5 of the numbers x for which
f(x) < ,1, we may hope to prove tJl'ai f(0 : tt.

Alternatively we could have expressed this groping for a
proof in the language of a Dedekind section. However, we have
at our disposal theorem 1.8, asserting the existence of the
supremum (which was proved by a Dedekind section), and it is
more economical to use it. The formal details of the oroof now
follow.

Proof of theorem 3.6. Let ,S be the set of numbers x in
d < x < b for which /(x) < ?. ^S is not empty, since a is in S.
By theorem 1.8, the set S has'a supremum, E say.

We prove first that a < € < b. By continuity of f at a,
there is an interval a < n < c throughout which /(-r) < 7.
Therefore { >. c > a. Similarly there is an interval d < :r < 6
throughout which f(x) > ,li these points are not in S and so

E<d<b .

We now prove (i) ,/(O < T a d (ii) f(O > T.
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By the definition of supremum, for every positive e, there is
a member x' of S with (-e ( .r' ( 6. For this x', f(x') < 11.
Since/is continuous ̂t €, fG) ( q, which is (i).

We now prove (ii). Any x greater than 6 is not in S and so
.f(x) > tt. By continuity, /(() is the limit ofl(x) as x tends to {
through values greater than E, and so f(E) > 7. This is (ii).

3.7. Bounds of a continuous function
We go on to establish other general properties of continuous

functions.

Theorem 3,71. Iff is continuous in the closed interual (a, b), it is
bounded in (a, b).

Remarks. It is essential to the truth of the theorem that the
interval should be closed. The function lix is continuous in the
interval 0 < x ( l, open at the left-hand end. By choosing x
near enough to 0, we can make I /"r arbitrarily large, so it is not
bounded above in 0 < x < l.

We shall establish the existence of an upper bound forl i.e.
a number I{  such that f (x)  < K for c( :r(b.  A corre-
sponding argument shows the existence of a lower bound. The
proof has some likeness to the proof of the intermediate-value
theorem, in that it uses the supremum of a suitably defineci
set of values x in (a, b).

Proof. Let Sbethe set of numbers.r, in a ( x, < b such that
the function-values /(x) are bounded above for 4 < .x < xr,
Then ,S is not empty since a belongs to S; and the members of
S are less than or eqnal to D. Therefore the members ofS have
a supremum {. There ale three possibilities

(i) a < €< b, (ii) € : a, (iii) E : b.

We shall prove that (i) and (ii) lead to contradictions. We shall
obtain the contradiction in (i) by producing a member of S
which is greater than 6. Since/is continuous at {, there is an
interval (( - d, 5 + d) inside (a, 6) within which

f(x) < fG)+1.
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(Any positive number in place of I would serve just as well-
if we take the appropriate d.) Since 5 is the supremum of
the nunbers in S, we can find K and an xr of S for which

f ( x )  <  K  f o r  a<x<x t

and xr > 6- 8.
Therefore

f(x) < max{K,f(€)+l} for a <.r < 5+*d.

So the number 5+*d is in ,S, which contradicts the defrnition
of { as the supremum of numbers in S.

We prove next that the assumption (ii) t : a leads to a
contradiction.

Since/is continuous (to the right) at a, we can find d such that

f(x) < f(a)+r
fora < x < a+d.

So a+]d is in S which contradicts the assumption 5 : a.
We are therefore left wilh (iii) 5 : D, and we have to deduce

from this that/is bounded above for c < x < 6.
Since/is continuous at b, there is a d such that

f(x) <f(b)+l for &-6 < x < b.

Since D is the supremum of numbers in S, there is /( and an
x, of S for which

f ( x )  <  K  f o r  c< . r<x ,

where
Therefore

f ( x ' )  <  max {K , f (b )+1 }  f o r  a (x (0 .  I

Thcorem 3.72. A ftmction continuous in a closed intenal attains
its bounds. In symbols, if f is continuous for a < x 4 b and
M : stJp f(x), then there is a oalue x, in a 4 x, < b for which
f(x',) : ttt (witn a similar statement for m : inf/(x)).

Remarks. Just as for the last theorem, it is essential tlat the
interval should be closed. For instance, the function x+2 is
continuous; its bounds in the open interval 0 < x < I are

x1 > b-8.



t,1l coNTrNuous ruNcrroNs 59

M : 3 and, m : 2; thereare no values of : in 0 < r < I for
which the function:r+2 takes these values.

We give two proofs. The first is short, but rather tricky, The
second is an illustration of a very powerful general technique-
the method of bisection-which the student mav well master
now.

First proof. Suppose that there is no x for which

a< r<b  and  f ( x )  =  M ,

Then  M - f ( r )  >0  fo r  a l l  . x i n  c<x<0 .

From $3.5 the function I
U-nx'xl

is continuous for a < x ( D, since the denominator does not
vanish,

So by the last theorem it is bounded and there is & such that

I

M -J \X)

Th is  g i ves  f ( x \  <  1 t1 - : -  f o r  a<x<&,

which contradicts sup/(x) : ff I
Second proof (by the bisection method), Bisect the interval

(a, D). The key to the proof is that there is at least one of the
two halves in which sup/(.r) = ]l1. Select this half (or, if
sup/(x) = M in both halves, select (say) the left-hand halQ.

We thus have an interval, which we letter (ar, br), where either
ar = a ot Dr - D, such that

br- a, = \(b - a).

Now bisect the interval (ar, br) and repeat the argument. We
obtain an interval (ar, b) in which sup/(x) : M, where

br- a, - l(b -a).

Continue the process indefinitely. It givcs an infinite sequence
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of intervals (an, b), in every one of which sup/(r) = M, such
that

a ( a t ( 4 r ( . . . ,

b >- br >- br 2 ...,

bn- an = (b - a\ll*.

The last three lines show that the increasing sequence, an anc
the decreasing sequence D* tend to the same limit, t say. (Notc
tlrat ( may be a or b,)

It is easy to see that/(O : M. A formal proof is:
Suppose, ifpossible, thatf($ : k < M. Ctoose &, such that

k < k, < -&/. By continuity off(x) at €, we can fnd an interval
(6-4 6+d) in which /(x) < &r. But, ifz is large enoueh, the
interval (a", 6) lies inside the interval (5-4 6+0). The in-
cquality /(x) < ftr contradicts the fact that, i! (a* b),
slupf(x) : M. I

3.8. Unffonn contlnulty
Suppose that, in ao interval (a, D),

sup/(r) = M and inf f(x) : a.

The number M - m meits a descriptive word and we shall calL
it the /eap of the function in the interval. (. Oscillation' is sorre
times used but it has the drawback of suggesting a wave-like
function,)

In this book the theorems of this section rvill be needed only
in chapter 7. Theorem 3.82 will then be found to be vital in
setting up the integral of a continuous function.

Theorcm 3.81. Suppose that f is continuous in the closed interxal
(a, b). thm, gh:en e, the intenal can be dioided into a fnite
rumber of parts in each of which the leap of f is less thaa e.

Remark. Suppose that c is the mid-point of (4, 6). If both
of the intervals (a, c), (c, D) can be divided into a fiii1s nun6..
of parts in which the leap of/is less than e, these parts forrir a
subdivision of (a, D) with the same property. So the theorenr
Iends itself to proof by bisection.

Prool Suppose the theorem false. Bisect the interval (a, 6),
There is at least one balf for which it is false. Ctoose this
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half (or the left-hand half, if it is false for both halves) and
denote it by (a" b), Repeat the bisection. We have an in-
creasing sequence ao and, a decreasing sequence D" with a
common limit 6.

Since/is continuous at 6, there is an interval (5-4 6+d) in
which the leap of/is less than e. (If 6 is a or D, the interval is
(a, a+ 8) or (b- 4 &), respectively.)

But, if n is large enough, the interval (6-4 6+3) includes
(a", D"). From the defnition of (a", D,) it cannot be divided into
a finite number of parts in which the leap of/is less than €. This
is a contradiction. I

Theorem 3.82, Lct f be continuous in the closed interual (a, b).
Giuen e, there is t such that, if x, and xzare any two poin* of(a, b\
with lxr- xrl < 3, then

lf(x)-f(x")l < e.

Proof, From the last theorem, we can divide (a, b) into a
finite number of subintervals in each of which the leap of/(x)
is less than ]e. Take d' to be the length of the smallest of these
subintervals. If l4-.xrl < d', then x1 and x2 lie in the same
subinterval or in adjacent ones. In the former case

lf(x1)-f(x,)l < le .

In the latter, if c is the common end-point of the two sub-
intervals.' 

l/\xr)-J\x)l
< ll(x) -/(c)l + | f(c) -f(x)l

< +e+re = €. J
This is called the theorem of uniform continuity. The reader

may treat this phrase merely as a label until (beyond the scope
of this book) he comes across the notion of uniformity in other
contexts in analysis.

The point of the theorem can be conveyed by the following
remarks. Continuity for a value r ensures that, given €, there is
d such that, if -r, and xrare anypoints in theinterval (x- d, x+ d),
then lf(xr) -f(x)l < e. This d depends on e and also on the
particular value x. Theorem 3.82 states that it is possible to
choose a d which will serve for every x in (a, 6),
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3.9. Inverse func{iore
You will have met situations in which, uncritically, a function

has been constructed as the inoerse of an already known
function, For example, the equation x : sin / is used to define
/ as a function arc sin .x of .r, This illustration shows that the
procedure requires care, because, for a given .r, there are in-
finitely many values of1 and if we are to keep to single-valued
funotions we must inpose some restriction on the permitted
values of y,

We shall now give al existence theorem which assures us lha!
if certain simple conditions are fulfilled, we can obtain a new
function inverse to a kf,own function.

Defnirton. /rs increasing for a < x < b if f(x) < f(x) for
all x1, x2 such that 4 ( rr < xs < b. If f(x) < f(x), we say
that f is s|aic/.ly increasing.

Tlrcorcm 3.9. Let f be continuous @td strictly increasing for
4 < ;r < b. I'et f(a) : c, f(b) : d. Tlpn there is a ftotction g,
continuous and strictly hcreasing for c 4 y < d, su& that
fie$l = y (so that gO) is the function inoerse to f(x)).

Remarks. The situation is easily appreciated graphically.
Moreover, we can see that the hypotheses are natural. If/were
not strictly increasing (or strictly decreasing) tlere could be
values ofy corresponding to more ttran one value ofx, and then
there would not be a single-valued inverse. If / were discon-
tinuous, we might have, for some €, f(€+'l : tt > I = f(€-\
and an interval (,\, p) ofy in which tlere is no inverse function.

Proof. l*t k be any number such tbat c < k < d.
By theorern 3.6, there is a value fr such that

.f(h) _ k,

and, since;f strictly increases, there is only one such lr corre-
sponding to a given &.

The inverse function g is then defined by } : g(/<).
It is easy to see that g is strictly increasing. For a formal

proof of this, let !, < yn and y, : /(.r), yz : f@), From tle
last paragraph, x, and x, are uniquely defined. Ifx, g xr, then,
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since / is increasing, f(x") < f(rr), i.e. yz 3 yy which contra-
dicts the assumption /r < ./2. So x, < x, ar.d g is strictly in-
creasing.

It remains to prove that g is continuous.
Withe > 0, let

.f(h-u) : k1 and f(h+e) = kr-

Then, since/is increasing,

k l  < k < k 2

and h-u . g(y) < h+e if kt < ! < kz.

Since e is arbitrary, g is continuous at y = k.
Here k is any number in the open interval (c, {. A similar

argument establishes one-sided continuity at the end-points c
and d.

Ex€rcises 3 (c)
Noles on lhese exetcises are gil)en on p. 175,

1. Discuss the continuity of the following functions:
(i) f(x) = llq wheo x is a rational number plq in its lowest terms,

,f(x) = 0 when x is irrational;
(ii) /(x) = x log sin'zx (x + o), /(0) = 0;

t l
l  l l  l ( -x l  = -  cosec -_

x - a  x - a

2, Construct a function which takes every value/in 0 < / < I once and
once only for values ofr in 0 <x < I and which is discontinuous for some
v a l u e s o f x i n 0 < r <  l .

3. /is bounded for a ( x < b, and, Mk) is the suprcmum of the values
oflio the closed interval (a, x). Prove that, iflis continuous for a value
xo in a < xo < ,, and ifl(xo) < M(ro), then there is an interval containing
xo in which M(x) is constant,

4. Can a function be continuous for one value ofx and discontinuous for
all other values ?

5. In theorem 3.82, take f(.x) = xtt3, a = -1, D = l,e = rt and give a
value of d.

6, Which of the following sets of data (i)-(iii) are sumcient to determine
the value /(0) ?

(i) /is continuous at x = 0 and in any neighbourhood of x = 0 it
takes both positive and negative values;
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Gi) girtn c, thcrc tu tsuch that l/(r)l < efor0< l.rl < f;
fui) as i -t Q /(i) -+ a aad

flh)+f(-hr-2f(o, - ,

7. /is bounded for a < x < t atr4 for cvery pair of vslues xt, .r with
a < x1 < x1< b' 

/{}(x1**J} < }{,f(rJ+,f(xr)}.

Prov€ that /b continuous for a < r < 6.

8. /is deEacd for all r and

lf(x)-f(x)l I' alx- x'l

for all r and.r/, wbere the constint c is lcss tbaD l. TbG scqucn@.rr, .a , ...
fu d€0ncd by a given ro aod

x, = f(x"-) (z = 1,2,...).

Provo that x" -t g a3 4 + co, whero

€=fl i l .
ProY€ also that, ifl(o) > q thcn

f(o\  - , -  f io l
i ; ;<E€i ' ; '

13.9
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4

THE DIFFERENTIAL CALCULUS

4.1. The derivative
If, for a given value of x,

{f,:-D:f@
h

tends to a finite limit as lr tends to 0, this limit, denoted by
/'(x), is called the deriuatiue or diferential cofficient of f fot lhe
value of x. The function;f is said to be dffirentiable for that
value of x.

To state the geometrical counterpart of this definition, sup-
pose that P is a given point on the curve y = f(x) and Q is a
variable point on the curve. If, as Q approaches P along the
curve, the gradient of the line PQ tends to a limit, the curve has
a tangent at P whose gradient is/'(x),

The definition calls for a number of remarks,
(l) An expressive notation is to write ft, the change in x,

as d;r (d':r is a single symbol; it is not d'muitiplied by x). The
corresponding change in y, namely, /(x + 0x) -/(x) is called dy.
The derivative is then the limit, as d'x tends to 0, of the ratio

d'v
ox

The derivative rnay be written
ay
dx'

where dldx is, for the present, to be understood as a symbol
specifying an operation to be performed on whatever follows
the d in the upper line. (The dy and dx ̂ rc not the numerator
and denominator of a fraction.)

(2) A function, defined for a set of values of r, may be
differentiable for all those values or for none or for some and
not others,
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Illusrrations. (i) /(r) = rt

f'(t) = 2:c for all valucs ofr.
(ii) .f(r) = .t (t ntional),

0 (t irational)'

/(.r) is not differcntiable for any value of x,

l(x) = lxl.
f'(x) = | it x > 0 and /'(.r) = -1 if.r < 0. ,f ig not difreaentiablc for
r=0 .

(3) A necessary (but not sufficient) condition for / to be
differentiable for a given value of .r is that /is continuous for
that value.

For 8y/0x can tend to a finite limit as 8x -+ 0 only if dy -+ 0,
i.e. if/is continuour.

The function lxl is continuous but not differeotiable at x = 0.
(4) The following trot€s are, in part, suggested by the

examples in (2).
In the definition of the derivative we coul4 if wo wished,

consider separately l + 0* and i -+ 0-, defining what might
be called the right-hand and left-hand derivatives. If they are
equal there is a derivative in the ordinary sense /'(x). The
function l/ of (iii) above has at x - 0 right-hand derivative I
and left-hend derivative - l.

Consider next another example ofa power of r. lff(x): xl,
then , fo rx :q

(iiD

f@if$: n_+

and this tends to +oo as fr + 0. Geometrically, the curve
./3 : x has a vertical tangent at (O 0). In defining the deriva-
tive we specified that the limit should be fnite, and in accord-
auce with this definition we say that .xt is not differentiable for
x :0 .

The decision whether to admit or exclude infinite derivatives
is based on convenience. The exceptional cases that have to
be stated in theorems if inftdte derivatives are allowed sway
the balance in favour of exclusion, For instance, if, for a certain
value of x,/'(r) were +@ and g'(.r) were -o, it can be shonm
by simple examples that/+g might have a derivative with any
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value or need not be differentiable; so the rule to be given in
$a.2 (1) for differentiating the sum of two functions would lose
the simplicity that it has for finite derivatives.

Exerclses 4 (a)

Notes on these exercises arc giuen or p. 175.
1. Find the equation of the tangent to the curve / = r!-4 at esch of its
points of intersectioo with (i) the x-axis, (ii) the /-axis.
2. Find the equation of the normal to the curve 2/ = (xa2)r at each of
the points on it where , = 2.

3. Find the equation of the tangent at the origin to the curye

Y = x'(x-l)2+3x.

Prove that the tangent touches the curve again at a sccond point.

4. Prove that the equation of the tangent to the parabola /r = 44x at the
poirLt (at,,2At) t" 

,, = 
"*orr.

5. Give an example of a function which is continuous for all values of r
and is differentiable for all values of x excapt I and - l.
6. State for what yalues of x the following functions fail to be (a) con-
tinuous, (r) differentiable.

(i) [.t], (defined on p. 54).
(x - l  (x  <  l ) .

(ii) /(x) = I 
'

{ x r - l  (x  >  1 ) .

7. Find the angles of intersection of the pair of curves

(i) 2Y = f' Y = x2(2- xr,
Also of the pair' (ri) ZY = x!, 2x = Yt.

4.2. Differentiation of sum, product, etc,
We assume that the functions/and g have derivatives for the

values of x considered. The proof of (l) is left to the reader.
(l) f s(x) = f(x)+g(x), then s'(x) = f'(x)+g'(x).
If t(x) : kf(x), then t'(x) = 74'1*1.
(z) rf f(x) = f(x) g(x), then rf'(x) : f(x) e'G) +I'g) s@).
Proof oJ (2). We have

cJt t !)_M : I@ :Jls@tA_Ins\n
hh

.,  . , , . ,g( .r+ h) -  g(x) .  _, . , f (x + h) - f (x)
:19+n1-= - f ,+8 \x ) '> - .

5 . 2
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Consider the fust term in this last sum. Since / is differ-
entiable at x it is continuous at x and so/(x + ft) +/(x) as I + 0.
The other factot {g(x+h)-e@)}lh has limit g'(x). Since the
limit of a product is equal to the product of the limits,

s1* a 1;18(X!_Q:EG) _> f(x) g,(x) as I + 0.h
Similarlv' 

s@tyl+3\x)_>g(x)f,(x) as ft+0.

Finalln we appeal to the theorem that the limit of the sum of
these two functions of I is the sum of the limits. I

This formula for differentiating a product is typical of those
which are used over and over again in the differential calculus.
The proof has been set out fully to stress its dependence on tle
repeated application of the theorems about limits.

(3) tf Q@) : lls@) and g(x) + o, thm

q'1*1 : - "49)-'
This fo[ows from 

{g(x)}''

: e@)-s(x+ h)
hs@) s(x+h)'

(4) rf$@) : f(x)ls(x), then

i@+h)-d@)
h

6,61:t@s@_t. . .!pl@
combine (2) and (3). 

{g(x)}n

(5) Function of a fwrction.
1*1 u - g(x) and y : f(u), so that

y -.f{slx)} = 0@), say.
rhen Q'@) : f'{s(x)} s'(x),
o\ in other notation, dy dy du

7 ; :  T ITY '

Proof. Let 8x be a change in r, 0z the corresponding ohange
in z by the functional relation u : S@). Let 8/ be the change
inyfromT:/(u),Then

a4 : {g(x) + e} dr,
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where the number € (which depends on r and 0.r) tends to 0 as
,x tends to 0. Similarly

sy = {J'@)+etlsu,
where er + 0 as 3a + 0. Here we must observe that, ifg'(x) + 0,
8u is different from 0 if d:r is small enough; but, if g'(x) : 0, 8u
may possibly take zero values for arbitrarily small dx; if dz = 0,
e, fails to be determined by the equation connecting dy and du,
and we then define e, : g.

The expressions for 8z and d'y give

6y : {f'Q|+e} {g'(x)+e} dx.

Divide by 0x and let dx -+ Q. ;
(6) Inuerse function.
Let y : f(x) be continuous and strictly increasing for

a < x < b. If, for a gioen x in a < x < b, f'(x) + O, then the
inuerse function x : gU) is dffirentiable for lhe corresponding
ulue of y and r

c,(y) : 
^x).

Proof. The inverse function exists by theorem 3.9.
If i (not zero) is given, define & by

y+k - :  f ( x+h ) .
Then /c * 0 and, ifk is given, lr is determined uniquely from

g(y+k ) :  x+h .

z(v + k\ - s(t'\ h-" - ' i-". = -*:
f(x + h) -f(x)'

Lct k+0. Then, since g is continuous, ft+0. I

4.3. Dillerentiation of elementary functions

If m is rational, t'n has deriualiue mxn-r, except for (i) x : 0
when m < | and (ii) x 4 O when n7 : plq (in its lowest terms)
wilh q an euen inleger,

Proof Suppose first that the index is a positive integer n.
Then, if ft * 0,

G+h\" -x "* ' ' rA  .  :  nx l - t  + rn(n- l )  x " -2  h+. . .+hn- \ .

So
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As fr -+ 0, the limit of each of the z- I terms on the right after
the first is zero.

If now the index is not a positive integer an argument on
these lines is less easy, A binomial expansion would be an
inffnite series; and we have so far no theorems covering the
limit as i + 0 of the *m of infniteQ many terms each of which
tends to 0 a8 ,r -+ 0. We adopt a different approach.

Suppose that the index is a negative integer -n. Then

(x+h)^-x-^ f -(x+h')n---E-: 
WWx*

If r + Q the limit as l, -+ 0 of the right-hand side is
-n/,t-Llxe" or (-rr) ra-l, which is what we want.

Suppose finally that nt i$ a rational numberp/4 wherep and 4
are integers, q > 0, and the cases (i), (ii) are excepted. The
easiest proof is by use of 94.2 (Q, as follows.

Writey: ul,x - ue so nty: xe./c. Then

: eg :2 ulc-c - m{-r. Ique-L q'

We are now able by $4.2, (l){a), to differentiate any poly-
nomial p(x) - aote + ar*-r +,.. + an

and any rational function of x, namely, a quotient p(.x)/q(x) of
two polynomials, for any value ofx for which 4(.x) is not zero.

To provide a greater variety of exercises it is convenient to
assume a knowledge of the following derivatives

d  -  -  d .  I
Are:4 ,  

: * rogx: i  (x>0) ,

dd
dxgrn X -  Cos.r ,  

ACOsx: 
-8rO.r

A more systematic investigation of the properties of exponen-
tial, logarithmic and trigonometric functions (and their de
rivatives) is best postponed until chapter 6 after further dis-
cussion of infinite series.

dy dv du dv ldx-dx: 
iu-dx- irlA,,
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Exercises 4 (6)

Noles on these exercises are giten on p. 176.

t. Differentiate

1xr + a1'n' x,+a{ G,+ a\ir '

2. Evaluate the following limits

... x2 - 4.t + 3( r )  - . . :  ^  a s  x - + 1 ,
x ' + z x - t

,.,. xa-a'
{n) _-; aS x-+.l,

. . . . .  J (2 . r+3) -J (x+6)(Ii) ' .- :___:: '_:_: :, as x r 3.
{ (x+  r r -z

3, Prove by induction that the derivative ofx" is rx"-l, r being a positive
lnreg€r.

4. lf yr,yr,,..,/. are functions of r, prove that, if y = yry",.-y",lhen

I t l y _ l d y , ,  , I d y "
,A i -  iE - "  - y "E '

where x has a value for which y is not zero.

5. Prove that, if a polynomial p(x) is divisible by (x-a)t, then p'(x) is
divisible by r-a.

6. Prove that, if p'(.r) is divisible by (x-a;'-t and p(x) is divisible by
.r-a, then p(x) is divisible by (x-a)".

7. Show how 6 is of use in searching for multiple roots of equations.
Illustrate by solving the equatiol

xo -3x'+2 = 0.
8. Prove that the equation

l l t ^
x - a  x - o  x - c

can have a prir of equal roots only if a = b = c,

9. Prove that, if p(x) is a polynomial, then betiveen any two roots of
/(x) = 0lies a root ofp'(x) = 0.

(This is Rolle's theorem for polynomials. It will be proved for mor€
general functions in S4.5,)

fxz sin (l/x) r + 0,
10. If f(x\ = I

t  0  x=0 ,
prove that /'(x) cxists for all v;rlues of x and give the values of /'(x) for
,i + 0 aod ofl'(o). Prove that/'(x) is discontinuous at n = 0.
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11. Tbe elemcnts of a determioant of order z are functions of x. Prove
that iB derivative is the sum of the r determinants formed by differentiating
the elements of one row only leaving the other rows unaltered.

12, Prove that, ifr, 4, r are polynomials in .r of degree not greater than 3,
then

p . l f

y ' q ' r '

p ' { /

is a po[ynomial of dcgree not geater than

4.4. Repeateil differentiation
Let y - f(x) be differentiable. The derivative/'(.x) may itself

be differentiable. Notations for this second derivative of/(x)
arc fryldf or f'(x). Notice that the existenc€ of the second
derivative implies the continuity of the first. The zth derivative
may be written la)(x). No new principles are involved.

There is a theorem of interest on ttre zth derivative of a
product.

Lcibniz's ,heorcm. If f and S are functioru of x haoing n-th
deriuatiues, then

U:g)(,t, : f6rg+ iqf@-l,9' + ...+ nctfb'-ng:f, + ... +j!'gtfui.

Thc proof, by induction, is left to the reader. The algebraic
lernma

*1L, : nC,+ nC,-,
rs requrreo.

Exercls€s 4 (c)
Notes on these cxercises are gioen on p, 176,

In calculating an rth derivative it is necessary to adopt the Eethod which
will give the result in the most compact form.

l, Find the nth derivativ€s of

x - l  x + l
vi=4' G='f.

2, Show that the value of

W) ir=-l
for r = 0 is 0 if r is cven and -nl if z is odd and grcatcr than L
3. Prove that the nth dcrivntive of sin x is sin (.r+ lnz) and invcstig&t€
corrcsponding results for cos.r, sin &r and €". sh b.r.
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4. Find the rth derivative of sir 3r sin 5x. (Do not use Leibniz's
theorem !)

5. Find the dh derivative of al(ar - xt).

6. Find th€ nth derivative of a/(a! + x!).

4.5. The sign of /'(r)
Defnition. The function f is said to be strictly increasing at c ,/
there is a neighbourhood of c in which

. f ( x )< - tG)  fo r  x<c

and f(r) ,.f(") for x > c.

There is a corresponding definition of 'strictly decreasing
a t  c ' .

Theorem 4.51. If f'(c) > 0, then f is strictly inueasing at c,
Proof Since

f(c + h) -f(c)

tends to a limit greater than 0, its value is greater than 0 for all
sufficiently small ft. That is to say, the numerator and de-
nominator have the same sign. I

Exercises. (l) Prove that, iflis strictly increasing at c and/'(c) exists,
then/'(c) > 0.

(2) Cive examples of functions satisfying the following conditions:
(i) / is neither strictly increasing nor strictly decreasing for any

value of x in (a, b).
(ii) / is strictly increasing at c, but it is not true that /'(c) > 0.

The following important result is known as Rolle's theorem.
Rolle gave it for the particular case of a polynomial (see
exercise 7(b), I l).

Theorenr 4.52. (Rolle). If
(l) f is conlinuous in lhe closed inlerual a < x 4 b,
(2) f'exists in the open interual a < x < b,
(3\ f(a) = f(b),

then there is a oalue c, with a < c < b, for which

I'G) : o.
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ProoJ l*t M: snp f(x) aad m - inf/(x) for a <.r < b.
l*tf(a): k.

If M = m - ,t, then/(c):0for every c between a and D.
Suppose that either M > k or m < k, say the former. By

theorem 3.6, there is a value c, with a < c < b, for which
f(c) = M.

BV Q) f'(c) exists. We sball prove that/'(c) : 0.
lf f'(c) > 0, by theorem 4.51,/is strictly increasing at c and

there are values of r to the right of c for which/(x) > /(c). This
contradicts the fact tlat 1,1 = f(c) is the supremum ofl

Similarly, if f'(c) < O there would be a value of x to the left
of c at which/(.r) > ll1.

Therefore/'(c) must be equal to 0, t
Geometrically, Rolle's theorem Btates that there is for some

value of x between a and b a tangent to the curve y = f(x)
which is parallel to the chord joining the points where x - a
and x : D. In the theorem the chord is horizontal. The next
theorem is the extension wherein the chord mav have anv
gadient.

Ercrdr€. 4 (d)
Notes on thesc exerclsct arc glucn on p, 176.

l. Find a value for c in Rollds thcorem whon/(r) is
(i) (.r-a)" (.r- 6). (rn and n positive integers);
(ii) sin (rlx) in (llm,llmr).

2. Iffi.r) is a polynomial, provc that thcrc is a root of

P'(J)+ l@(x> = o

bctwccn any two rcal roots ofr(r) = 0.

3. If a and D arc successivo roo& of ,(x) = O then thc numbcf of roots
betwccnaand6of-- 

P'(x)+k^x) = O
(each countcd according to its multiplicity) is odd.

4. Provc that thc €quation
t  d \ ,  ,  .
[6J (f-r) '= o

has z rcal roots, all diferent snd lying bctw€en - I and l.

5. What information docs a kaowlcdgc of the rcots of ,.(, = 0 givo
about thc roots ofp(r) = 0?
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Prove that the equation

Yl Yl
t - x+ i - j+ . . .+ ( - r ) ' ;  =  0

has one real root if z is odd and no real root if a is even.
6. Prove that the equation

x"+kx+ l  =  O
has at most two real roots when ', is even and at most thre€ when n is odd.

4.6. The mean value theorem
Iheorem 4.61. (T'he mean t:alue theorem). Let f satisfy the con-
ditions (1) and (2) of Rolle's theorem. Then there is a ualue c-
u/ith o < c < b,for which

f(b) - 
"f(a) 

: (b - a) f, (c).

Proof. Write Q@) : f(x)-kx
and choose the constant & to make

c(b): Q@\
This gives -f(b)-f(a) : k(b-a).

Rolle's theorem gives c such thal $'(c) : 0, i.e. f,(c) - k. 1
It is ofteD convenient to write the result, with b : a+h,

f(a + h) = f(a) + hJ,@ + 0h';,

where d is some number such that 0 < d < l.
The mean value theorem has important consequences under

further assumptions about/'(:r).

Corollary 1. If f'(x) = 0for all x in a < x < b, then f(x) is
constant for a < x < D.

Proof. If x, and x, are any two points with

c<x r<x r<0 ,

then .f(x)--f(x,): (x"-x)f,(xs),

where xt < xB < xz,
and this is 0. l

Corollary 2. fff'(x) > Ifor a < x < b, then f(x) is a strictly
increasing function in the interual a < x < D.
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Proof. Wehave to prove that, if xt and x, are any points with
d ( Xr ( x, < 6, then /(.xJ < /(xJ.

f(x)-.f(*r): (x,-x)/(x.) (x1 < rs < nJ

>0 .  I

It is often useful to be able to apply corollary 2 under slightly
more general hypotheses. We can allow one value c at which
the only requirement is the continuity off even the existence
of/'(c) is not assumed.

To prove that /(x) is still strictly increasing in (a, D), apply
corollary 2 to the two intervals (a, c) and (c, b't. If .q is in (a, c)
and x, in (c, b), then/(x) < f(c) <.f(x). I

The extendcd statement holds for any finite number of ex-
ceptional points c.

Corollary 2 should be compared carefully with theorem 4.51.
It assumes more and proves more. If, as in theorem 4.51, we
know only that / is increasing at a point, there need be no
interval throughout which / is an increasing function (see
exercise 4(fl, l3).

The following extension of the mean value theorem to two
functions will be useful later.

Theorem 4.62. (Caucl1y's mean ualue theorenr). Suppose that
both the functions f and g are continuous in the closed interual and
diferentiable in the open interoal (a, b). Suppose that g'(x) ir
rliferent from 0 for all x in a < x < b. Then, for some c with
a<c<b ,

f'(c\
c'G)'

Proof. (Obsewe first that it is not sufficient to apply the
mean value theorem toif and g separately, because we get two
different c's.)

Defrne {(x) : f(x) .kg(x)

and choose the constant & to make /(6) : C@), i.e.

f(t) -f(a) : k{g(b) - s@)}.
By Rolle's theorern, there is c such that

f(b) -f(o)

s(b)-s@)

Q'k) -f'(c)-kg(c) :0.
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Next, g(b) -g(a) * 0, for, if it were, Rolle's theorem would
give a nurnber c, for which C'kr) : O, which contradicts the
hypothesis.

Equate the two values found for ft, I

Exercises 4 (e)

Notes on these exercises are gioen on pp. 176-7.
l. In each of (i)-(iii) find, if possible, a number c satisfying the mean
yalue theorem, In any example in which no c can be found, which of the
conditions of the theorcm is not satisfied?

(i) /(x) = x(x-2) (x-4) (a = r, b = 3);
(i i) f(x) = l lxz (a = -t, b = 3);
(iii) f(x) = xtt. (a = -1, b = l).

2. Taking /(r) to be (i) xt, (ii) x", prove that, as i -+ 0, the number d of
the mean valuo theorem tends to a limit.

3. lf f 
'(x) -+ I as x + cu, prcve that f(x)lx + L

4. Discuss the following argument.
Let f'(x) exist for a < x < b. l.f,t a < c < ,, Then, if q < c+ h < b,

the mean value theorgm gives

tgl_!\!(a =f,(c+oh).
h

let h->O. The left-hand side tends to /'(c). So the limit of f'(c+qh),
as t -+ 0, exists and is equal to /'(c). That is to say, /'(r) is continuous

5. Take in theorem 4.62

f ( t )  =  t " ,  e f t ) =  4 t s - 3 t t  ( a < t < 6 )

and find whether a c exists when (i) a = O,b = l; ( i i) a = -1, b = 2;
(iii) a = -1, 6 = 3. Illustrat€ geometdcally on the curve r = ,r,
y = 413-3t1.

4.7, Maxima and mhima
Definition. f is said to haae a maximum at c if there is a neigh-
bourhood of c in which f(x) < f(c) except fot x : c.

We define a minimum by substituting > for < .
A phrase covering either a maximum or a minimum is a

turning ualue.
(The use of the words maximum and minimum applied to a

continuous function will not be confused with their use in 01.7
for a finite set of numbers.)
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Theorcm 4.71. If f'(c) exists, a necessary conilition that f has
a turning tsalue at c is that f'(c) - 0.

Proof. Frcm theorem 4.51, if f'(e) > 0,/is strictly increasing
at c. lf f'(c) < 0, /is strictly decreasing at c. Eitier of these
contradicts c being a turning value. I

Notes. (l) A function may have a turning value for a value
of r at which there is no derivative, e.g, lxl has a minimum for
x=0 .

(2) The condition of the theorem is not sufficient, e.g. if

f(x) : f ,f'(o): 0 and/is strictlv increasing at.r : 0.
The following criterion serves to distinguish a rraximum

from a minimum.

Thcorem 4.72, If there is a neighbourhood of c in whichf'(x) > O

for x < c and f'(x) < 0 for x > c, then f has a maximwn for

Proof, Theorem 4.61, corollary 2, shows that/decreases as .x
increases from c and also as x decreases from c. I

Alternatively the second derivative may be used to investigate
whether a value of c for which /'(c) : 0 is a maximum or a
minimum of/or neither.

Theorem 4.73. Izt f'@) - O. If f(c) < O, then x : c Siqes a
maximum of f(x). If f'@ > 0, x : c gioes a minimum.

Proof. By theorem 4.51/'is strictly decreasing at c. Therefore
there is a neighbourhood of c in whichf'(x) > 0forx < cand
/'(x) < 0 for x > c. Apply theorem 4.72. I

Exercises, I[v€stigate maxima and minima of the functions
(i) lxl, (ii) .r(l+.d),
(iii\ (ox + b\lGx+ d), (iv) (x+a) (x+b)le-d @- br,
(v) 4 cos.r+, sin r, (vi) 4s€cx+tcosecx.

4.8. Approximatlon by polynomials. Taylor's theorem

The simplest class of functions with which a mathematician
has to operate is the class of polynomials, that is to say,

4o+qx+. . .+anx*,

where aq, ,..,a,,ate given numbers, The value ofa polynomial
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is calculable exactly by additions and multiplications for any
assigned value of the variable x.

More general functions are commonly expressible as limits of
polynomials; in other words, the function can be expressed
approximatelyby means ofa polynornial. This section deals with
the form that such an approximation normally takes,

Lemna, If f(x) is the polynomial

qo+ alx+ . , .  + ant,

1
then a,: ,.fa)(O) 

(0 S r ( n).

Proof. The value of a" is obtained by differentiating r times
the polynomial expression for /(x) and putting x : 0. I

Thus we have, if/is a polynomial of degree z,

n, ,  ̂ '  . -2
f(x) : f(o) + xf'(O) +i,/"(0) +... * 17t,'10).

t"* *"*"r, ,f we write x l'" o * or, *nuJotis fixed, we have
for the polynomial /

t,2 hn

f(a + h) = f(a) + h[' (a) + Vf" @) + ... +' ni f,") 
(a).

We may reasonably expect that, if we discard the hypothesis
that/is a polynomial but assume that it is a function possessing
derivatives of the relevant orders, then the right-hand side of
the last equation will be a good approximation to the value
/(a+l). This result is contained in theorems 4.81 and 4.82. They
are seen to be forms of a mean value theorem of the nth order
The general mean value theorem is usually called Taylor's
theorem after Brook Taylor (1685-1731) who investigated the
expansion of a general function /(a+i) in powers of I. The
case a : 0 is commonly called Maclaurin's theorem,

In theorem 4.81 the existence ofthe nth derivative is required
only for the single value a. The existence of f@(a) implies the
existence of f@-D(.x) in a neighbourhood ofc;and this implies
tlre continuity of/t"t(x) for r 4 n-2 in a neighbourhood of c.



80 rEB DtFrEtENttAL cALcuLUs t4'8

Theorum 4.81. (Young's form of lhe general mean oalue lheorem)'

Suppose that f'(a) exists. Then
Ln-L hi  ,  - .  - .  -

f(a + h) : I@) + hf ' (a) + . -' + 
1r:5 l"-' to) +'6 lI'"' 14 + e I'

where e '+ O as h -> O.
Prool SuPPose first that i > 0' Define

O(h\ : f(a+h)-f(a)-hf'(a)- "'
h"-,_ 7*_,t 1 a.,1 _ \ | fd (a) _ rt\,-  

(n- l ) ! "  \ ' '  nt  v

where 7 is a Positive constant.
Then C(0),d'(0), ..., /tn-tt(0) are all zero, and

00tr(o) _ lt.

By th€orem 4.51, 6t^-1'(h) is increasing at h : O and so is

positive in an interval to the dght of0' -. .
By corollary 2 to theorem 4'61, applied to 0(n-')(")' tnrs

function is positive in an interval to the right of 0'--nip"", 
tire argument. We find finally that, for sufficiently

small positive ft, O(h) > 0, that is to say'
Ln-l hn

f (a + h) > l(a) + nf ' @) + .. . + ffi I 6 -t' (a) +' il. {.1\"' (a) -'t l'

SimilarlY

f(a + h) < f(a) + ry' @) + ..' + ffi 
/.-" 1o1 +\ gi'"' {o) + n\'

A corresponding argument applies to negative values of ll'

Collecting our results, we have proved the theorem'

Apptication to maxima and minima' To illustrate the use of

tfreoiem +.gf the reader should establish the following extension

of the conditions given in theorem 4'73'

Suppose that

f ' (c) : f ' (c)  -  . . .  - l r - l ) (c) :0 '

la)(c) + 0.

Then (l) a necessary condition for c to give a maximum or

minimum ofl(x) is that z is even; (2) supposing that n is even'
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if fQL)(c) < 0, then c gives a maximum ofl(x), and iflar(c) > O,
thencgivesaminimum.

The next theorem is the direct extension to general z of
theorem 4.61.

Theorem 4.82. (Taylor, s theorcm) Suppose that f and irs furiu_
atiDes up to order n-1 arc continuous fol d < x < a+h, and
fto exists for a < .x < a+ h. Then

f(a + h) : f (a) + hf , (a) + ... + 
#;. f h -,, (4 + q /.n) @ + 0 h),

whereo<0<1 .
Proof. Define,for 0 < r < l.

OO : f@+t)-f(o) - tf'(o)- ...- -y-..f",,(o)-t;. B,

where we choose .B to make /(ft) : 0.
From the definition of /(r), we see that

0(o), 0'9, 0"Q), ..., 01"-D(o)

are all zero. Now use Rolle's theorem (4.52) n iimes.
Since /(0) : 0@ :0 we have Q'$r) : 0 (O < ht < h).
Since /'(0) - 0'Q) = 0 we have OrQd = O' (O < h,; h).
Finally,

since C(',-r)(o) : ftn-rr(hn) = 0, we have Qb, (h,) = 0,

wle_re 0 < hn < hn-r.... < h andso h, : 0h (0 < d < l).
fow /t")!r) = f(n)(a+t)-8, and so .B = Ttnt(a+hh).

_ Put t - h, O@) :0, and this value of A in the fiist line or
the proof. l

_A different proof of theorem 4.g2 can be given, which has the
ldyanllge of yielding alternative expressions for R,,, the term
in 1". The form hn

R": 
n_.f(d(a+ 0h)

is known as Lagrange's form of remainder.
- For brevity we shall give this second proof in the Maclaurin
fo rmwi tha :0 .
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Thcorem 433. (Taylor's theorem with Cauehy's form
mainder). ,yith the hypotheses of theorem 4.82 (and a :

re) : f(o) + hf, (o)+ ... + Gg;l" 
-1)(o) + Rn,

o=u-%#r{uo'* (o<d<r).

- I @ r - fd(a)-F;G)'

14.8
of re-
0),

where

Proof. Defiie

F(t) : I@) -f(t) - (h - t) f'(t) - ...-(4:i)"-'1"-'r1;1.

Then it is easily verified that

t h - r\^-L
F'(') : -Y-\r l")(')'u t  - r r l  -

all other terms in the differentiatiou cancelling in pairs.
Write th _ r\po0): r(O-(:fr ) r(0),

where p can be any integer such that I < p ( n. Then

o(0) = o(n) :0.

By Rolle's theorem (4.52), there is a value dl with 0 < d < 1
for which O'(d,) : Q. 3tt1

a' @h) : r'@n1 +t!!:91 PP1.

This gives a value for R* which reduces to Lagrange's form when
p : n and. to Cauchy's form stated in this theorem when
p= l ' l

4.9. IndetermiDate fotms
We shall extend theorems 4,81 and 4.82 to two functions.

(Compare tleorem 4.62, when n : 1,)

Thcorcm 4.91. Suppose thatf@r(a), Ci;t(a) exist anilstd (a) + 0.
Then, as h -> O,

Proof, Apply theorem 4.81 to each of the functionsJ g. I
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Theorem 4,92. Suppose that f and g and their deriuatiues up to
order n - 1 are continuous for d < )c < a * h. For a < x < a + h,
sltppose that f\n)(x) exists and lhat gtn)(x) exists and does not take
the oalue 0. Then

a+h)-f(a n - l
a + h) - s(a) - hs' (a) - ... -

fat@+0h): g"_d@+AD,
where O < 0 < L

Proof. We use the method of theorem 4.62. Define

Q@) : f(x)-kg(x).
Choose k to make

Q@ + h1 - Q@) - h4' 1a1 - ..' - r{l 4o 
-rt 

1.,1
\ n -  1 ) !

equal to 0.
By theorem 4.82 the last expression is equal to

h^

;Q@@+6h) '
- -,1 rL-.-f^.^

ft"\ (a + 0h) - kgYt (a I 0h) : O.

Equate the two values found for &. I

Corollary. lltith the hypotheses of theorem 4.92, d

f(a) = f'(o) : ... : f(l'-tt(a) = o

and g(a) : g'(a) = ... : 8'(4-1)(d) : 0,

and +#1 - l  asx->a \ora+ or  a- ) ,
8'^',(xl

. fG\
then 

f f i  
r l  ot  x->a (ora+ or a-) .

We now indicate a field of application of these theorems.
Suppose that / and g are continuous in the closed interval

(a, b) and thal f(a) : c@) :0. The limit as r + d+ of the
quotient .ftx)lg@) cannot be ascertained directly by putting
r : a. Such an expression is traditionally called an indeterm-
inate form (0/0). On suitable assumptions about the deriva-
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tives of / and g, the limit of f(x)lg(x) can often be found by
theorems 4.91 and 4.92.

It is to be observed that the hypotheses of theorems 4.91 and
4.92 are different, and neither tleorem includes the other.

Illwtratior. Inoestigate lhe llmit as x -+ O of

tan kx- k lan x
I ] inx -s inE '

.Sotttrbr. Writing tbe fraction as /(x)/g(x), we have

f ' (x ) -kser . ' kx -ks t r f : x ,
g'(x) = kcosx-kcnskx.

If we us€ theorcm 4.91 it is necessary to differentiate twice more, since
g"' is the derivative of lowest order which does not vanish at x = 0.

Theorem 4.92 (corollary) is, however, applicable to give

f ' (x )  cosx+coskr ,  ^ ,
id) 

=;6Fr.*;a;'; t* + 't'

and this tends to 2 as r to 0.

Exerclses 4 (/)
Noles on lhese exercises are giuen on p. 177.

1. Find the limits, as x tends to +, of

,^ (l -x)'-x"
v/ (1=F=; '

where m and ', are pogitive int€ggrs;

-.., I +cos 2z.r
o u  ( k _ l F .

2, Find the equations ofthe tangent and normal to the ellipse x - acos0,
y = 6 sin d at the point d.

A tangeut to an ellipse meets the ax€s at P and O. Find the least value
ot PQ.
3. By writing y = tr obtain parametric €quations for the curv€

xt+)" = 34xY'
Obtain the equation of the taogent afthe point with parameter t, and

fnd th€ parameter of the point where this tanSent cuts the curve again.
What happcns as , -+ - I ?
4, Stetch the locus (the cycloid) given by

.x = a(r-sin l), / = 4(l -cos ,)
for values of , b€tw€en 0 and 2a
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Prove thai thc normals to the curve are tangents to the curye

x = a(t + sin t), ./ = -a(l -cos t),

and sketch this second curve in your diagram.

5. Investigate maxima aod minima of

oH, sin x
"' '  sin (x -a)'

and sketch the corresponding graphs.

6, Prove that, if 9b > a > 0, the function

a sin x+ b sin 3x

has a maximum for somc value of r betwe€n 0 and ]2. Taking a = 6,
b = l, find the greatest and least values of the function for 0 < x < jz.

7, P is a point on the circle whose equation is

(x-h)'9+b/-h)2 = q2,

where lr > d, artd PM, PN are the perpendiculars on the coordinate axes.
Find the positions of ,l' for which the area of the triangle PMN is a
maximum, and show that there ar€ two maximum positions or one
according as , is less or greater than aJ2.

8 .  I f  y=ax '+bx2+cx+d,

what condition must be satisfied by the coemcicnts a, b, c, d, if, cor-
responding to any value ofy, there is only one value of x?

9. ll p(x) and q(x) are quadratic, and the roots of 4(x) = Q x16 qqmp1g^,
prove that the maximum and minimum values ofp(,r)/4(r) are the values of
k for which p(x) - k4(x) is a perfect squarc.

10. An open bowl is in the form of a segment of a sphere ol metal of
negligible thickness. Find the shape of the bowl if its volume is greatest
for a given area of metal,

11. The centres of two spheres of radii a and b are at a distance . apart,
where c > a+r. Wbere must a point source of light be placed on thc line
of centres between the two spheres so as to illuminate the greatest totaL
surface ?

12. A flat piece of cardboard has the form of an equilateral :Jiangle ABC
of height 3r. Points P, O, R are marked on the medians lG, BG, CG or,
opposite sides of G from A, B, C, with GP = GQ = cR. The iriangles
BCP, CAQ, ABR $e then cut away, and the rcmaining pieca of cardboard
is folded about the edges of the triangle PO-R so as to form the surface of
a tetrahedron. Proye that the volume of this tetrahedron cannot €xceed
(318)rh6.

13. Construct a function / for which /'(0) > 0, but there is no interval
(- h, h) in which / is an increasing function. (Try x, sin (l/;r) + &x, rvhere
k is a suitabl€ constaDt,)
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14. Discus ,lverror's method of approxlmatioz, that, if .rr is ncar to a root
a of the equation /(x) = q then

"= "' 
l(x)'-7G6

is likcly to b€ a better approximation to a,
Show in particular that if, in (a- h, a+ h), lf'(x)l > k > 0 and f(x)

has constant sign, then xl lies between x, and o if/(.r) andf(a) have the
same sign.

Approximale to the root near z of thc c4uation sin x = ?.r, wherc the
constant ? is smsll.

13. The rule of prcpotional pa s. If the values of a function /(.r) ar€
tabulated at inlcrvals ,. and o+k lies bctween two successive entries
4, a+r, thc rule is that approxiEatcly,

Ik + k, - ̂ a, = juKo + n1 -n"17.

To obtain an upper bound for tho crror, suppose that /'(x) cxfuts for
4 < r < a + f r . W r i t c

fh+ t\- fh\
e@ =,_=::i__!--! (0 <, < 4afxcd),

Provo that
D€duce that

( ' ( t )= $ '@ (0<'<r) .

wherea < r < a+h.
Hencr provo that the error in thc valuc found by tho rule of proportional

parts b at most lMrf, where M = gup l/'(x) | ,
16. Prove that thc nth deri tivo of tanr is a polynomial in tan r of
tho (tt + l)th dcgrrc.

17. Provc lhat

#H='-Dntfr, l. lx),
lyhere r'"(r) is tho polynomial formod by the first (z+1) tenns of thc
cxpaosioo ofcr iu poweB of r.

lt. Prove, by induction or otherwisc, that, if z is a positivc iutcgpr,
sin (2zr+ l)A and cos(2n + l)A/cos d can be oxpressed 8s polyromials ir
sin A.

tf y = si^(2tn+lr9 andr = sin4 show that
(l- {) (yrr = (2nt +l). O-./)

and (1-r)l i+rr-(22+l)Il '+!r+(2r!+l)i-rf l ld =O,

Provs tbat
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19. A twice differentiablo function is such that f(a) = f(b) = 0 and
/(c) > 0, where a < c < b. Prove that there is at least one value E
between a and D for which/'(g) < 0.

20. Prove that, as,' ->0,

if the right-hand side exists.

21. Investigate the limits as r +0 of
t l

(i) F-;i""r' (iD

22. Investigate the limit as x + I of

arc sln t-$n r
tanx-arctanx '

x - (rr+ l') xn+r + nJ(n+'
0 -x)'

23. Find a pair of functions /(x), s(.r) for which /(0) - !'(0) = 0 and, as
x -> O, ̂ x)lgk) tends to a limit but /'(r/g'(.r) does not tend to a limit.
That is to say, prove that the converse of theorem 4.92, corollary (for
z = l) would & falsa. Ei -a discontinuous /'(x) is given in cxercisc
4 b), to.

A. (A theorem of Darboux.l lf f(x) is difrerentiable for a < .r < 6, then
/'(x) takes every value betwe€n./'(a) and/'(6). (A derivative need not be
continuous, but it has the prop€rty €stablished in theorem 3.6.)
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INFINIT;  sERIEs

5.1. Series of lmsitive terms
In chapter 2 we defined convergence of infinite series and gave

some properties which followed quickly from the definition.
Two particular series Xr' and )n-* were studied. We now need
a wider knowledge of infinite series.

We recall that a series of positive terms Xa," either converges
or diverges to +co. Throughout $5.1 wc shall assume tiat
uo >- 0.

The reader is asked to refer to the closing result (6) ofg2.l2.
It e rnciates a comparison principle by which it may be possible
to infer the convergence of a proposed series )zo from that of
a series )u," which is known to converge. We proceed to tum
this comparison principle into readily applicable forms.

Theorem 5.I1. (Cauchy's test for conuergence.) Suppose that
d!" tends to a limit I as n-+q, Then, if I < l,}u,' conuerges;
ifI > l,2u" diverges.

Prool Suppose that,/ < l. Choose r with I < r < 1.
By the definition of limit, there exists N such that, for all

n > N' t4P < r, i,e. u* < r*.

But, since r < 1, the geometric series Xr" converges. There-
fore so does )ro.

If / > I, then, for all n greater than some l{,

u!,!" > 1, i.e. u* > I

and so 2a" diverges. I
Note carefully that, if/ : 1, no conclusion can be drawn.
A criterion which is often easier t6 apply than theorem 5,ll

is the following.

Theorcm 5,12. (d'Alembert's test). Supposi that u^ > O and
unrtluo tends to I. Then, if I < 1, 2u" conuerges; if I > l, I'u"
diverges.
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Proof Suppose that / < l. Chooserwith/ < r < 1.

3 17. !1nd < r for all n > N.
u^

Therefore
, ,  _  I n  U n - t  U u t

. . .  -  
- . -  UN < lNf  " -" ,

un_t u^_, uN

i,e. u. < Kr", where K is independent of n.
Since Xr" conveiges, so does >rJn.
If / > l, the terms increase after a certain value rV, and

divergence is plain. I
As in theorem 5.11, if / : l, no conclusion can be drawn,

Excrcises 5 (a)

Noles on lhesa exercises are gi\en on p, 17'1.
l. Investigate tbe convergencc or divergence of the series whose rth
terms are

jz-"'r '  7' 
2-t" x"'

(n l ) "  -  1  .3 .5 . . .  (22  -  l  )  -
i2n) t '  

'  I  AJ  - ( in -Dx '
wh€re x > 0.

2. Prove that lhe serics whose nth term is

(a+1,  (2a  +  l \ . , . (na  +  l )
(b + t) (2b + t)-. -i;b + t ')

convergcs ifO < a < b and diverges if a > D > 0.

3. Prove that, if ay" g 
" 

< I for all n > N, then >|l, conv€rges.
Show that this statement provides a test which is more general than

theorem 5,1l.
Discuss the series

a + b + a . + b . + a r + b 3 + . . . .

w h e r e 0 < a < b < l -

4. State a test for convergenca which is more general than d'Alembert's
test in the same way that exercise 3 is more general than Cauchy's test.

5. Prove that d'Alembert's test doe8 Dot determine the convergence of thc
series in exercise 3.

6, Discuss the following statemen!.
The tcsts of Cauchy and d'Alembcrt, being derived from comparison

with a geometric progression, cannot detcrmine the convergence of the
series trt-r, which converges more slowly than any geometric progresrion
($2.1I, exercis€).
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7. Prove that if, for all n, an*6/ao is less than &, whero /< < I, then lz.
convefges. Generalise.

L Establish the truth or falsity of thesc st t€ments:
(i) lf (u"lv") -+ | as n -+ @, then la" and Eo" both convergp or

both diverge.
(ii) If n" - u" + 4 theo Ez" and Eun both convergB or both diverge.
(iii) If (r"*Ja") > & > 1 for infinitely many r, then lao diverges.

5.2. Series of positive and negative terms
We turn to the problem of settling the convergence or diver-

gence of a Eeries which has infinitely many positive and infinitely
many negative terms (for example, the series I -+++-*+...).
The criteria of theorems 5.ll and 5.12, applicable to series of
positive terms, depended on inequalities between the terms of
the series under investigation and those of a series whose
behaviour was known, A little thought shows that no such
'comparison principle' holds for series of terms of arbitrary
sign.

We ask, then, whether our knowledge of series of positive
terms can be turned to account. If we are given any series >r,',
there is one series of positive terms which suggests itself as
being closely related to jt, namely, the series of absolute values
of the terms, >la"l. This observation leads to a satisfying
theorem.

Theotem 5.21. If Zlu^l conoerges, then >un com)etges.
Proof, Defne'  

t  uo i f  un2 O,
u - : 4" l. 0 if 2,, < 0.

[  0 i tu^2 0,
w_ : i"  

l  - u "  i f a "<0 .
Then u. ) 0, r" > O and the series iu" contains those terms of
lz" which are positive (or zero).

Also
url : o^-l9',

lunl : uo+wo.

If now llz,l converges, then lo,n and )w* both converge.
Tlrerefore so does I(o,- w"), i.e.2u*. I
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Defnition. If l,lu) is convergent, lhe sefies Zuo is called
absolutely convergent.

Exerclse. Give three examples of series which converge, but not abso-
lutely. (An example is I - I +,-*+ l- $+.... Theorcm 5.22 wil l suggest
many others.)

If we have to determine whether a series Xu," converges, the
first step is to look at > lu"l. If I lu"l converges, the matter is
settled. If X la"l diverges we have to try other methods,

The most common distribution of signs in series is + and -
alternately. The following is a very useful theorem on such
'alternating series'.

Theoren 5.22. If ao decreases and tends to zero as n -+ a, then
the series ao -a r+az -a3+ . . .

conuerges. Also its sum lies belween ao and ao-ar.
Proof. If-  J n  :  a o - a r ' t . . . * \ -  t ) " a n ;

then Jzn+r - Jza-r : a2o-A2ng 2 0,

Szn-Szo-z = -azn-t*azo 4 O.

The sums with even suffix
,9s, ,92y J4r ..,

thus form a decreasing sequence. By theorem 2.6 this tends to
a limit or to -co,

Similarly the sequence of sums with odd suffix
J11 S31 J5y . . .

increases and tends to a limit or to +co. But

Sen+t- Szn = -a2n+l -+ 0.

Therefore the odd and even sequences must have the same
finite limit, and so rn tends to this limit.

Finally, so : ao and s1 : do- dr So the sum of the series lies
between these two numbers. I

Illusttution, For what valucs of k is the series

l t t l
r - t " - * - t - . , ,

cotrvergent?
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If& > I, the series iE absolutely crnvcrgent (theorem 2.11).
If 0 < /( < 1, it converges (theorem 5.22). Note that it is tto, absolutely

convergent.
If & < 0, the rth t€rm does not tend to zero, and the serirs diverg6.

Exerclses 5 (6)

Notcs on thesc exerciset qre gioen on pp. 177-8,
1. &" ir a convergent series of positivs terms. Prove tltat

(i) if lr.l < a", then 16" is absolutely convergent;
(ii) :a"x' is absolutely convergent for -l < r < l;
(iii) Ea" cos ad and &o sia zd are absolutely convergent,

2. For what valu€s of & is t(-1)"/(22+ l)e absolutcly convergent? For
what values of & is it conYergent?

3. For what values of x (if ary) are the following sert€s convergeni but
not absolutely convergent;

(i) tr", (ii) >x"/z?

4. Discuss tbe convergenc€ of the series:

( i )  1-*+*-*+r%.. . ;
( i i )  l - *+ l -3+ i? - . . . ;
( i iD  l - l + * -3+* - " ' '

lhe r€spective deoominators beiDg of the forrn 8n,2, a'id nt.

5. Discuss the convergetrce of the s€ries

a  b , a  b ,  ,  a  b
7- r ' "  3 -  4 ' f  

. . . - f  
h_r -2 i , - . . . ,

where a and , are positivc constants.

6. Find two numbers diffedng by not more than I betwe€n which thc
sum of the series

r - 1 + 3 - 1 * l - l * . . .
must lie.

?. Establisb the tmth or falsity of the following stat€meDts:
(i) U a" > O and an tends to 0 as r "+ @, then the series

ao-ar+a. -a .+ . . .
converg€s.

(ii) If &r" is absolutely convergent, and there is a coostant ,{ such that
- Alu"l < z" < I lu"l for all z,

then t,r" is absolutely convergent.

53. Conditional oonvergence
Definition. If l,un converges and Elu"l diverges, then 2u^ is
said to be conditionally oonvergent.
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Illustrction- The series
1 -1+1 - *+ . . .

93

converges conditionally.

The meaning of the word conditional here is that the sum to
which the series converges is conditional on the order in which
the terms are taken. If the terms are rearranged the sum.is in
general altered. As an illustration, rearrange the last series so
that two negative terms always follow one positive term

r -+-+++-*-*+... .
Suppose that the surn of ihe original series is s (in fact, s : log"2
but we do not need to know this), We shall prove that the re-
arranged series converges to sum +r. Let s, and /, be the sums
of the first n terms of the two series. Then

-  11  I  I  I
l -  :  l -  -  ) -  . l, s ^ :  | _2 -  4 . r . . . _ ; 1_  42q_4n .

In each block of three terms (two negative and one positive)
subtract the first of the negative terms from the preceding
positive term, and we have

t l l l  1  I
2468 "  4n -2  4n

: tt'"'

Therefore, as n -> co, t"n-> \s; lr,,*, and ts,+2 tend to the same
limit. So the rearranged series converges to sum b.

This change ol sum by rearrangement is not paradoxical, as
sn and t^ are different functions of n. The more striking fact is
that, however we alter the order of the terms of an absolutely
convergent series, the sum is unchanged.

Theorent 5,3. If 2u" is absolutely cont)ergent, euery series con-
sisting of the same terms in any order has lhe sanrc sum.

Proof. We prove the theorem first in the special case in which
all the terms are positive (u" >. O).

Let Xai consist of the same terms as Xz, with the order
rearranged in any way.

I a f

s^ :  Lun ,  s  :  2u . ,  t ^ :  Zu i , .
1 1 1
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Every term of Xzi occurs somewhere in Iu,", Therefore, given
m, we can find 4 such tlnt so contains every term of t-. Since
the term6 are positive, !- ( Jc < s, As ra + o, t''| tends to a
limit t where I < s. We can now argue the other way round
and prove s ( ,. This establishe8 the result for series of positive
terms. I

The theorem must now be proved when Eu" is any absolutely
convergent series and Eui a rearrangement of it.

As in theorem 5.21 define u,. and -w. to be the positive and
negative terms of Zr*; a''id o',,, wi to have the same significance
for tle series lai.

Since I [z"l converg€s, Xu, and )w", both converge,
Then lai and lwi are'reaxrangements respectively of the

convergent series of positive terms Xa" and Xn".
The result follows from the special case of tle theorem. I
Exercrse, If .r" is the sum of thc first r terms of th€ s€ri€s

. r t t

and t" is lh€ sum ofthe ffrst r terms of lhe scries r€arangrd by taking two
positive t€rms foUowed by one negative term

. . 1  I  I  I  t- 
f 4'r "' '

prove that t!. > r.n+--I-' 
r/Gr - 1)

and dcduce that thc s€cond serics diverges to + @.

5.{. Sertes of complex temts
The notions of limit of a sequence and convergence of a

series can be extended from real to complex numbers.
Irt

s,,+it": pr0t,+io).

Defnition. We say that s,.+ itn -> s + it and Z(un+ ion) con-
verges to sum s+it if

l ( r+r0-(r"+rtJ l  -+0 as n +o.

This is equivalent to saying that

s ' ! -+ t  and , .+ t ,
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because
l " - r " l  <  l (s -s" ) - r i ( t - r " ) l  <  l " - r , ,1  +V- t "1 .

Defnition. We say that the series 2(u"+ iu") is absolutely
conoergent if 2lu"+ iu,,l is convergent.

This is equivalent to saying that both Zun and Z,un are
absolutely convergent for (as above),

lu"l < fu"+ iu"l < la"l + lu"l.
Many results for real sequences and series can be extended to

complex sequences and series, and the prools offer no di{ficulty,
We need, for instance, the following analogue of$2.7.

The seEtence z" ([or fxed z) tends Io a limit as n->a if and
on l y i " f z : l o r l z l <1 .

Prol Suppose thal zn -.> l. Then z"+\ -> /. But the limit of
z"+1, i.e. of (z) (z') is the product of z and the limit of 2", i.e, zl.
So

This is true if and only if either z = 1 or / = 0.
But z' + 0 if and only if lzl"+ 0, i.e. (from 92.6) if and only

i f  lz l  < 1.  I
This knowledge of the behaviour of z' enables us to discuss

the convergence of the geometric series

| -t- 
" 

-t- -L tn J-

If z : l, the series diverges.
lf z i l, s,, : (l - z")l (l - z) and we have seen that this tends

to a lirnit if and only if lzl < l.
So the values of e for which the sedes converges are the

points inside a circle in the complex plane. We shall see in the
next seclion that this 'circle of convergence' exists for a wide
class of series.

Exercises 5 (c)

Notes or these exercises are given oa p. 178.
1. Find the sum to n terms of the series

1  +  22  +  3z t  +  . . .  +  (n+  l )zn  + . . . .

Prove that, if lzl < 1, the series convergcs and find its sum.
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2. Prove that the s€ries
1  z  , l  z  \ r  /  '  \ !1-r-"*(r i  - ( r - , )  *" '

converges if snd only if re z < !. What is its sum?

3. Decide tlle cotrvergence or divergence of the series whose ath tcrms are

. . .  i "  . . . . ( l + D .  . . . . .  F(rr;, ( l l , -;-, {ur) ;.

5.5. Power series

A series ) a"z. of multiples of powers of z is ca,lled a power
n -0

series. In practice the variable z and the coefficients a,, are often
real, but we can discuss the series with nearly as great ease if
they may have complex values,

Theorcm 5.51. A power series may conoerge (l)for aII ualues ofz,
or (2'1 for z in some region in the complex phnc, or (3) for
z : O only.

Proof. Nl we have to do is to produce examples of each
possibility.

(l) Ifa" : 2nlnr.,2u. is absolutely convergent for all values
ofz. For, whatever the value ofz,

t , ,  I  t " lt ; r+ l l  _  t . l_  +0
lu" l  n+ t

and d'Alembert's test (theofem 5.12) gives the result.
(2) The geometric series lzn was proved in $5.4 to converge

ifand only if lzl < l.
(3) If a" = nl z*, and z + o, lu"l ->@ as z +@ and 22,

cannot converge.

Theorem 552. If a power series com)erges for a partitular oalue
of z, say z : zr then it conoerges absolutely for all oalues of z
in the circle ltl . ltrl.

Proof. Since Xa"zf converges, t.herefore the zth term aozf
tends to O ($2.12 (3). So we can find K such that la^zil < K
for all z. Then

1o^,"1 . xlll"
t z r l
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and the convergence of Zlanznl follows from that of the
geometric series X lz/211".

Exetcise. Show that the conclusion of theorem 5.52 is true under tho
wider hypothcsis that :a^z" oscillates finitely for z = 21.

5.6. The circle of convergence of a power series
Theorem 5,61. A power series either

(l) conuerges absolutely for all z, or
(2) conuerges absolutely for all z inside a circle lzl = R and

diuerges for all z outside it, or
(3) conuerges for z = O only.
Proof. Let x be a positive real number (x > 0).
Let S be the set of x for which the power series >ddru con-

verges. x : 0 is certainly in S; from theorem 5.51, S may or
may not contain members other than 0. By theorem 5.52, if
any x, is in S, so is every Jr with 0 < x < xt.

If all positive real numbers are in S we have the case (l) of
the conclusion.

If S does rot contain all the positive numbers it has a finite
supremum R (where R > 0).

If R > 0, we shall prove that Ea,zi converges absolutely if
ltrl = R. For choose Ro with lzrl < R0 < R. Then ne is in S
and so the series converges for z = Ro. By theorem 5.52,
X la"zil converges.

Next we prove that, if lzrl > -R > 0, the series cannot con-
verge for z : za. For take now no with R < Ro < fzrl. If
\anzl were to converge, then, by theorem 5.52, Xc"Rfr would
converge, which contradicts l? : sup S. I

Definitions. The circle lzl : R rs called the circle of conver-
gence of the power series and its radius /re radius of con-
vergence.

It is to be noted that nothing has been proved about con-
vergence or divergence of the series for values of z on lhe circle
of convergence. This is more delicate and requires special in-
vestigation for any particular senes.

The following sirnple formula for R applies to many cornmon
sefles.
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Thcorcm 5,62. If la*1la,l tenib to a limit I as 4-+o, then the
radius of conoergence of 2a"4 is 1ll.

Prool By d'Alembert's test we have absolute convergence if

^lSl.,'
i.c. if Vl . !t.

And, if lzl > l/1, ta or+rl
l iml: '4r- l \  t

I  t t nz *  1 -  
' '

so that the zth term a,nz' does not tend to zero and convergence
is impossible. I

. ,lVole. Wc have supposcd rfinito and not zcro. The read€r should consider
tho €xccpted cas€s.

Illsstrqtions. Esch of tbo scri€s
2*, 2(f ln), z(z"ln\

bas radius of convergencc l. Thc first scrics converg* at no point on tho
circlc lzl = l; the third is absolutcly convergpnt at all points of thc circl€.
Thc sccond div€rgps for z = 1, and it can be shown to conv€rgp at all other
pointc oo the cidc lzl = I tty thc dwice suggcstod in exercisc 5 (d),8.
The systematic teatm€nt of th€ quGtion of convergencc of &.zi on its
circlc of convergencc is outside thc scopo of this book-

Ercrcbes 5 (d)
Nolec on these cxerctses arc gloen on p. 178,

1. Find tho radii of convergence of the pow€r s€ries of which thc general
lcnns are

(i) nzi (D rfrtnt Au, 0+)',
(iv)z!2", 0)q#l, $)#,
(vii) ztzn (viii) t3+(-1)").t

2. Provc tlEt, if la"lt," .' l/r as I -.o, thcNr the rcdcs &"2" ha! ndius
of conv€rgpncc r,

DirsulE thc convcrgence of the s€rics

whcro 4 is o constant . 
fuf zr

3. If thc soriei Ia" z" has radius of convergcnco .R, in what region of tho
z-plane doca the s€ri$ >a"(z-zo)i convcrge? Alsw€r the sams qucstion
for thc s€rica >a.z-".
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4. Prove that the series
l + z + z ' + . , . + 2 " + . . .

converges for all values of z for which the series

2 + 2(22 - 1) + 2(22 - t) '  + .,. + 2(22 - rr" + ...

converges, and has the same sum.

5, lt for all n, la"l < &, what can you say about the radius ofconvergence
of 2anz"'t If, further, la"l > I > 0, what thcn follows?

6. If, for all r, la"l < l, then the equation

|  =  o rz+arz .+ , - -

cannoi have a root with modulus less than +. If it is satisfied by

z = +(cos d+ i sin 0),

theo a- = cos n0 - i sin n0.

7. If thc radius of convergence of lcn zn is / and of >b, zn is J' what can
you say about the radius of convergcnce of

z(a"+ b")2"?

8. By considering (t-42Q"tn't when lzl = I or otherwisa, prove that

X (z'/r) converges at all points of the circle lzl = | 61ssp1 2 = l.

9. Discuss the convcrgence of the power series whose rth term is

rl.l..|(?n.:t) -"
t  . 1 .  |  . . . l J n -  z )

5.7. Multiplication of serieg
We may wish to multiply two infinite series together and to

know whether it is legitimate to write, say, the product of two
power series

(ao+ arz +a222 + ...) (bo+ brz + brzz + ...\

as the power series

aobo+ (arbo+ aob) z + (a2bo + ait+ aob) z2+....

This is the extension to infinite series of the product of two
polynomials.

Since the process of multiplication involves freedom to
arrange the terms ofthe product in the required order, we may
conjccture that a sufncient condition for its validity will be the
absolute convergence of the two series. We shall prove the
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correctness of this conjecture. The theorem will be stated for
series which need not be power series.

Theorem 5.7. IfEu" and }tso conuerge absolutely to sums s and t,
then the series Zunt: o, consisting of the products (in any order)
of euery term of the frst series by eDery term of the second,
conoerges absolutely to sum st,

Proof, T}ale products of pairs of terms form a doubly infinite
array

uoDo uotL uooz ...

UlDg 11101 U1D2 ...

UzUo UyUL Uz0z ...

The sum of all these terms can be ananged (in infinitely many
ways) as a single series. For example, we may take the terms
urts o, where p 1Q : z in the order of increasing z, namely

uouo+(uLuo+ uoD) + (uzt)o+quL+ uoo) + ....

This may be called diagonal summation, Or we may 'sum by
squares 

" 

as in

uauo+ (qoo+ u\Dr+ uo}) + (uzoo+ u2l.j,r+ uzoz + upz+ uoo) + ...,

taking zouo, then terms with a sufrx I and no greater, then those
with a suffix 2 and no greater, and so on.

Whatever the arrangement, the sum of the moduli of any
number of terms of the product does not exceed

and so the series 2aoao converges absolutely.
By theorern 5.3 (which remains true for complex terms), its

sum is the same whatever the order of the terms. But ttrere is
one particular order, namely, sumrnation by squares, in which
the sum is evident. For the sum of all terms with sumxes not
exceeding n is

Qt!+ ua+ ... + u") (oo + o, +... + o")

atrd the limit of this is rr. I

($ u"r) (f r,"r),
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Corollary. If 2a"2" and Ebnz" haue radii of conuergence R
and S, then their product is

L (a^bo+ a,-rbt +,.. * arJb ^) z"

.for lzl < 
"ti" 

tn, Sl.

5.8. Taylor's series
A theolem of fundamental importance states that, if /(r)

satisfies ceftain conditions, then it can be expanded in the
pos,ei 'ser ies

f lx)  :  f to)  + xf ' (0) +. . .  +^ |  / , ' ' (0)  +. . . .

We proceed to prove this,
As the notation indicates, the variable is real. There is indeed

an analogous expansion of/(z), which is even nore far-reaching
tJran the expansion of/(x), but it belongs to a later stage in your
mathenatical education.

Where has anything Iike this expression for /(x) occurred in
this book so far? Theorem 4.82, a mean value theorem of the
nth order, expresses /(x) as a polynomial in x, of which the
coefficients up to that of x"-1 are those of the power series. The
passage from the polynomial to the infinite series is valid under
the hypotheses of the following theorem.

Suppose that/(x) has derivatives of every order for

a - l c<x<a+k .

Then we know from theorem 4.82 that, if lftl < k,

where

and

f ( a+h ) :  S "+R" ,
n - r  h ts, : x f'ld(a)

a,  : l !yn1o+0n1.

In the last line B is a number between 0 and I which depends
on a, lt and n.

If, as n-+ co, R,.>0, then S" -',f(a+ h). So we have the
followins result.
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fheorcm 5.8. (Taylof s series). If, in thzorem 4.82, R^ (the term
in l{) tends to 0 as n tends to @, then

f(a + h) : f(a) + hf ' (a) + ... + X 
j\r(a) + ....

In accordance with the remark on p.79, the expansion for
a : 0 could be called Maclaurin's series.

The binomial series. As an example of the use of theorem 5.8,
we shall prove the binomial tleorem for/(.x) = (l + x)n, where
rz is a rational number, positive or negative,

f( i ' (x)  -  mQn-l)  ' . . (m-n+l)( l+xY-

and we shall prove that, if - 1 < x < l,
. lm\ /m\( l  +x) -  =  l+ l ' , ' l x+ . . .  +1" ' l x '+ . . . .

\ t , f  \ n l
If m is a positive integer, fn+tr(x) = 0 and we have a poly-
nomial of degree m. In the general case

vn lm\ XtrR":"lfr't(ox) : \i) .6an ,
where d depends on n.

If now 0 < x < 1, (l +02a1"'" > l for n > m, and,as stated
in exercise 2(d),ll,

( ! \o- ,o as z- 'oo,
\n l

so that R,| -+ 0,
If .r is negative, this argument breaks down since I +dr is not

greater than I . We have recourse to Cauchy's fonn of rernainder
(theorem 4.83) which applies for the full range -l < .x < l.
This gives 

-  m@-l) . . . (m-n+l)(1-01-t*^" : -IllllG.-lJ- (lTatt-",-m'
Now (l - d)/(l + dx) is less than I and so

ln";  '  r - l /n-r \ l r -r"
r \z - t71 r " t  '

where K- depends on m (and x) but not on n. Again from
exercise 2(d), ll, R"-+Q as z+ao. I

Other well-known Taylor's series will be found in the next
chapter.
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Exerclses 5 (?)

Noles on these exercises are gioen on p. 178,
1. Discuss the convergence of the series whosc ,rth terms arc (with a, ,, c
positive)

(ii) a"J(b" + cn),

103

(i) 1- cos (z/z),

I
* " ' (a r t+bn+c)* '

(v) (- l)'avi (a > 0), (vi) (- l)"{r/(rf + 1) -d,

2, Provc that, if a > l, the series

1 . 2 . '  4 .-8-.
a + l '  a , + l  

' d + l  '  
a r + l  '  " '

converges to the sum l/(a- 1).

3. If u" > n"*, and lrn convergps, prove that lim rtr, = 0.

4. From the serics l(l/z), every term which contains a sp€cified di8it
(say 7) is removed. Prove that the series formed by the remaining terms
converges.

5, The s€ries >anzi converges to sum /(z) if lzl < l. Prove that, if
sn=ao+ar+.,.+ai ahd lzl < 1, the series rrnz'converg€s to sum

. f(z\|a.r-z).
Hence give a proof of the binomial theorem when the exponent is a

negalive integer.

(iu) 
Gdi.,#TT,
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THE SPECIAL FUNCTIONS
OF ANALYSIS

6,1. The special functions of analysis
One of the ultimate applications of mathematical analysis is

to solve in a form adapted to numerical calculation the pro-
blems which present themselves in natural science, engineering,
economics and other branches of knowledge. Commonly the
step from the experimental data or the hypotheses to the
conclusions that they can be made to yield lies in solving
dffirmtial equations. Relations are given connecting an un.
known function with its first or second (or higher) derivatives,
and the function has to be found. The analyst is led to keep a
stock of such functions as occur repeatedly. He will investigate
their properties, tabulate their numerical values, and have them
ready for use. Such functions may be called the specialfunctions
of analysis. The list of special functions is not fixed, once and
for ever, One mathematician might suppose some particular
function to be of so little interest that he would not accord ir
a place in a list or think that the labour of tabulating its values
would be justified. Another might encounter problems in
which just that function played a leading part. There are, how-
ever, certain functions which are of vital importance to every
one. Among them are the exponential, logarithmic and trigono-
metric furctions; we shall develop their principal properties.

The functions which arise first from the foundations of
analysis are those which are generated by a finite number of
operations on the variable x. Such operations yield successively
the function x", polynomials in x, and then rational functions
ofx. To obtain functions other than rational functions, we must
remove the restriction to a finite number of operations, or, in
other words, we must admit limiting processes. We can then
expect to define interesting functions as the sums of infinite
series.
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6.2. The exponential function
Define yz

exp  x  :  I  +x+ :2 t+  . . * ; f  * . . . .

From theorern 5.51, the series converges for all values ofx, real
or complex. We shall suppose, until further notice, that x is
real. The function exp x will be proved to have properties of
striking simplicity.

Theorem 6.2. exp )rxexp1,: exp (r+y).
Proof. If we use theorem 5.7 (corollary) to multiply the two

series for exp x and exp /, the terms of degree n in x and y are

,o _ _r,. _y:_' _ , r" _ (x+.f)' ,
n l . -  

-  r i .  12 -4 , r  " ' t  n t  
=  -  

, !  |

The following lacts are immediate.
exp 0 : l.
exp (-x) : l/exp x. (Put y = -x in theorem 6.2.)
exp r never vanishes. (For then, from the last line, exp (-"r)

would be unde{ined.)
We shall next prove that

d ,
; (exP x) : exp x.
a x -  '

We see that if we write down the derivatives of the successive
terms of the series for exp x, they are indeed the terms of exD x
So the result loolcs right, but it is important that the reader s-hall
understand why cale is necessary here in constructing a proof.
The next section on refeated l',rlts is inserted to explain the
issue.

6.3. Repeated limits
We know from $4.2 that the derivative of the sum of a finite

number of functions is the sum of the derivatives of the seoarate
functions. But we have proved no such theorem about the
derivative of rhe sum of an infinite series; and this is the result
we should need in order to deduce that the derivative of exp x
is exp x.
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To see what is involved, write so(x) for the sum of the fust z
terms of a convergent infinite series, whose tcrms are functions
of x, and dx) for its sum, Then dx) - lirn s"(x). We wish to
assert that

s'(.r) : 1;6 t;1*1,

i.e. lg{dP=}g{m"o*?-9,
*' **{,ts*94} =Jg{***4@}
So we have got down to the root of the matter. The truth ofthe
theorern depeuds on interchanging the order of the two limiting
operstions lim and lim

n-+0 /,.-+6

applied to the particular function of n and i (and also of x,
which remains fixed while n alLd h vary),

All we can say is that the interchange of order of two limiting
operations in generel gives different results, It is only when the
function to which they are applied satisfies restrictive conditions
that the interchange is valid. A simple illustration in which the
order of thc two limits sffects the result is the following:

g'{:s ii#} : }:r(-r) : -r'
.. 1.. | -nhr
tim llim; .*l = tim (1) : l.

r-+- h-+o I *nftl ,.-+.' 
'

General tlmreme on interchange of limits are beyond the
scope of this book. From time to time we shall have to deal
with repeated limits of simple functions, and we shall give the
most straigbtforward argument available in each particular case.

6.4. Rate of imeese of exp x
We prove the theorem which led us to discuss repeated

Iimits.

Theorcm 6.11. d(ery x)ldx = exp r.
Proof, Using theorem 6.2, we have

exp (x+l)-exp x exo h-l
h 

: exP x ---7- '
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Now

I H E  S P I C I A L  F U N C T I O N S  O F  A N A L Y S I S

exoh- l  -  h  hz
t  - L - - L - - ] -

h  - ' 2 l ' 3 l ' " '

ro7

: 1+t!(h), say.

We wish to prove that /(l) + 0 as h -> 0. We have

t+hl
| -t+hl

+0  as

(it lhl < 2)

l+0 .  I
Corollary, exp x is a continuous function,
This follows from $4.1 (3). Alternatively it could be proved

directly by an argument similar to that used in the theorem.

Theorem 6.42, exp x is a strictly increasing function and, if
y : exp x, y takes euery oalue greater thanofor one oalue of x.

Proof. If x > 0, then, at once from the series, expx > L
If;r < 0, e x p x = l / e x p ( - . n ) > 0 .

Since exp;r has a derivative which is positive for all values
of x, it increases strictly.

As x + co, plainly expx -+ co.
As r -+ -ao, expx : l/exp(-r) + 0+. I

Theorem 6.43. (TlE order of magnitude of expx.)
For any fxed k (howeoer large)

exp Jr
=F- 

->@ as x->@.

Proof. Let z be the integer next greater than *.
If x > 0, exp x > x"ln!, since this is just one term of the

series defining expx. l
You should acquire a vivid appreciation of this important

facl. For large x, the function exp x is larger than any power of x
(see fig. 3a, p. 110).

6.5. exp * as a power
Scrutiny of the series does not reveal that expx is the xth

power of a constant. This fact will be shown to follow from
theorem 6,2.
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Defnition. e : exp 1.
The number e, namely

_r l l
|  - L - .  J - -  - L  - L - . - L'  l !  2 !  ' " " n1  " "

is one of the fundamental constants of mathematics. Its value
to ten places of decimals is 2.7182818285. It is easy to prove
that e is irrational-the proof is sketched in exercise 6(a), l. A
more di{ficult argument (outside our range) is required to prove
that e is not an algebraic number, that is to say, it is not the
root of any algebraic equation with integral coefficients.

Theotem 6.5. If r is rational, exp r : er, where the right-hand
side is the positiue rth power of the ntmber e.

Note. To understand why the meaning of e' is specified,
observe that a* (say) has two values (t1.6487...), whereas
exp| is uniquely defined (by the series).

Proof. lf r is a positive integer n, theorem 6.2 gives

expn : (exP l ) r : ea .

If r is a negative integer - n, then

exD( - r )  =  I  :  ! :  r - " .
expx etr

If r is a rational p lq, where p and 4 are integers, then

{exP (P/q)}" : exPP (bY theorem 6.2)

Therefore

: eP fiust proved).

exp(pl): ePtc l.

Irrational powers. What do we mean by (say) 3r'3? It is
likely that the reader, ilhe looks back over the work on indices
which has so far been put befole him, will find that no meaning
has yet been given to it. Numbers like 3?/6 were defi,ned in such
a way as to obey the index laws such as atoa : cm+4. These
laws do not provide a definition for 3vs.

It is natural to suggest that, as ^/2 can be approached as
closely as we wish by rational numbers (see $1.5), we could
define 3r'3 as the limit of 3" as r runs through a sequence of
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rationals with d2 as limit. This course, though possible, makes
heavier going than one migbt expect, We should need to prove
that the numbers 3'haoe a limit; and, further, that the limit is
the same for two different sequences both of which approach

We have then to think how best to elucidate the general
power a'. There is one particular value of c for which the pre-
ceding work indicates what to do, namely a : e.

Defnition, If x is irrational, e! is defined to mean expx.
We have already proued that, if x is rational, e' : expr. So

this equality holds for all values of :r.
We postpone until $6.6 the further discussion of a, when a

has a value other than e.

Exercises 6 (a)

Notes on lhese exercises are giuen on p. 179.

l. Prove that ; -t . *.1-.
m+r  n l  mQnt )

Deducc that e is irrational.
2. Prove that, as ,r --> co, 

/. . l\"
( l+ :J  - ->  e .

3. lnvestigate the limit, as r -+ co, of
/  - r r
( ,  * ; ,  '

wher€ r is any real number.
4. Lel k be a constant such that 0 < & < l. Sketch the graph of the
function t t^

e* \ t+x+ r+ . . . ++ ) - k .

Prove that there is just one positive root x" of the equation

l + x + ; t + . . . + : ,  =  k e " .

Show also that (k remaining fixcd) x. increases as, incleases.
5. Find approximately the large root of the equation

ea _ xroth-
6. Arrange the functions

x-r exp("/x), x exp{(log x)r}, r'exp{(log x)l}
in order of magnitude for large values of x,
7. Is it possible to find a function which, as .r -+ @, tends to innnity more
slowly than e6" for every d > I and morg rapidly than x" for every z?
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6.6. The logarithmlc function
Theorems 3.9 and 6.42 enable us to define a function of a

real variable which is the inverse of tle exponential function,

De;finition, If x > O,u)ritey: Iogxif x: ev,
The following properties follow from the coresponding pro-

perties of the exponential function, and tle reader should go
through the steps of tle deduction, We always suppose that
the number following the symbol log is positiva

, -c rp t
a

Fis. 3

log x is continuous and differentiable and

!*0""o -f,.
log (ab) : loga+logb,

log.r+co as x->co,

log.r-+ -oo as x+0+.

$r..o as ;->@.

This last property (correlative to that at the end of 96.4) is
important. In words, logx tends to infinity as x tends to in-
finity, but more slowly than x raised to any positive power
(however small). The general shape of the graph of y : 169 I ;t
shown in fig. 36.

There is a sirnple representation of log (l +t) as a powcr
series.

t6.6

I f& > 0,
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Theorem 6.6. If --1 < x < 1

-2 -A ttu
l oe  ( l  +x )  :  x - i  +a  - . . .  + ( -  l ) ' - r  ̂  + . . . .' 2 5 ' n

The proof is left to the reader. Starting from Maclaurin's
theorem it follows very closely the proof of the binomial
theorem given on p. 102. Lagrange's form of remainder will
serve for ppsitive x, but Cauchy's form is to be used for nega-
trve Jr,

Note, The result of theorem 6.6 is also true for x = 1. This is most easily
proved using integration and following the method of theorem 7.9 (see
p. 136).

The general power a'. At the end of $6.5 we had defined a'
when ;r is rational and also for irrational x in the special case
a = e. We have still to attach a meaning to a' when x is
irrational and a + e. We adopt the following definition,

Defnition, If a > 0 and x is irralional, a' means

e'Loc a '

This is consistent with the definition of e' given in $6.5, and
the relation a, : ertoe a holds when x is rational, The reader
can verify that the index laws

a, x a1/ = aa+v, (aa)u : Axy

hold for a > 0 whatever the values of x and y.

Exercises 6 (6)

Notes on lhese exercises are giaen on p, 179.
l. Prove that, as r -+ co,

4(xr/"- l) -' log x.
2. Prove that, if r > 0,

-r-,x' < log(l +n) < x- j,r '+ !.f.

Give an extension of these inequalities,

3. A differentiable f'rnction.f (not identically 0) satisfies the functional
equat ion

f(xy) = f\x) +fty).
Prove that/'(r) = ,4/.r.
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4. Prove that, ifl > 0,

rcs' = z (fi+t (i#)'.I (il*,)'* ).
Use this s€ries to calculate log 2 to thre€ plac€s of decimals.

5. Find the limits, ag .r -+ 0 and as I -+ co, of

,., Iog(l+c.E) ..., ac- b.(r, -=.-., \u) ;-._d",

where a, b, c, d arc positive and c + d.

6.7. Trigonome&ic functions
As predicted in $ 1.2 we base our account of the trigonometric

functions on the definitions

"o'": r-{+fi-...,

, i n " :  
" -  

t '  I- 3 !+ t -  " "

These series are absolutely convergent for all values ofx (real or
complex). Among the properties that we should €xpect to
establish at an early stage are

sin (x+Y) : sinx cos/+ cosx sin/,

d
Asmx: cosrc.

The first of these, involving multiplication of series, could be
proved by the same principles (though with detail which is a
little more troublesome) as theorem 6.2. T1ne proof that the
derivative of sinr is cosx would follow closely that of theor€m
6.41.

Instead of writing out afresh proofs of trigonometric formulae'
modelled on those of exponential formulae, it is more satis-
fying to observe that, in the setting of complex variables, the
trigonometric and exponential functions are very closely re-
lated.

writ ing expz - t+z+fi+..-+z)+...t

t6.6
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we see that theorem 6,2 is true for complex variables, and, if we
define the derivative of f(z) as

,.* f(z+h)-f(z)
rrrrr -_--_---- r
n+0 n

noting that l, can now assume complex values, then theorem 6.41
is also true. The discussion of the exponential function from
theorem 6.42 onwards supposed the variable to be real.

6.8. Exponential and trigonometric functions
From the ser.ies concerned we see that

exp(tz) : cosz + i sinz,

exp ( - t z ) :  cosz - i s i nz '

or expressing cosz and sin z in terms of the exponential function,

sasT : l{exp (iz) + exp( - tz)},

.  t .
sine : ... {exp (r) _exp(-iz)}.

These formulae, 
"oniin.a 

with the properties of the ex-
ponential function, enable us to develop the results of analytical
trigonometry, in so far as they do not involve periodicity or the
number z. We append a short list, which will illustrate the
nrocedure cos(-z) :  9657, coso = l ,

sin(-z) : -sinz, sin0 : 0.

The addition formulae (x and y may be complex)

sin(x+Y):  s inx cos/ +cosx sin / '
cos (x +y) = costcoslr-sinxsin/.

To prove, say, the former, we have

2i sir'(x + y) = exp {tG +/)} - exp{- (r +y)}
: exp (,4 exp (ly) - exp ( - ix) exp ( - r,

(from theorem 6.2)
- ]{exp(r;r)-exp(-*)} {exp(i) + exp(- l7)}

+ +texp(rt + exp( -,")] {"*p (rr) - exp( - i)},
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grving sin(x+y) : sinx cosy+cos* sin y. I

costx + sifx = l.

From the last tes:ult, if now x is real,

-1 < cos.r  < l ,  - l  (  s inx (  I '

Periodicity of the trtgonometric functions. This is a surprising
property. No one could divine from inspection or simple mani'
pulation of the series for sinx and cosx that they repeat their
values at regular intervals of x. We prove a theorem from which
periodicity will follow very easily.

Theotem 6.81. There is a enallest posith)e constant lo (where

nlT < *- < ,13) nch that cosla = O.
Proof. lfO < x < 2,

.  I  r f \  t# x7\.Lnx = (x_3!, + (Si_zt,p *...

>0 ,

since the positive term in each bracket is greater than the
negative term.

So, for 0 < )c < 2, cosx, having the negative derivative
-sinx, is a decreasing function.

The theorem will be proved when we have shown that
cosy'2 > 0 and cos/3 < 0. If rfe bracket the terms of the
series for cos x in pairs, as we did those of sin x, the first bracket
is 0 for x = rt2 and all tbe others are positive.

Again' rz { If f\cosx: r-i,+f,r-(A-n)- "
the succeeding terrns being bracketed in pairc,

When r ...
x - J3, r-fi+?i: r-Z+t < o

an4 as before, the first term in each bracket exceeds the
second. I

Corolby. sinlo : !.

For sinrlo+coszfo - | and sinlo is positive.
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Theorem 6,82. If o is the number defned in the preceding
theorem, then, for all ualues of x,

( l )  s in(x+]o) :  cosx, cos(x+lo) :  *s inx;

(2) sin(x+o) = -sinx, cos(.rc+ a) : -cosr;

(3) sin(x+2o) = sinn, cos(x+ 2o) = sqs*.

The proof is immediate from the addjtion theorems. We have
thus shown that the functions sinx and cos.x have period 2a,
and it is easy to see that no smaller number is a period.

In these two theorems we have adopted the notation ?r (an
alternative way of writing the Greek letter pi). The number ta
will (in $7.9) be identified with the ratio of the circumference
of a circle to its diameter. Anticipating this identification, we
shall henceforward write z instead of o.

The remaining trigonometric (or circular) functions are
defined in terms of the sine and cosine in the usual way

s inz l l l
l a n  z  =  - .  C O L Z : : - .  S e C z :  - .  C O S e C z  =  - .cosz'  Lanz'  cosz'  s lnz

From the periodicity of the sine and cosine, the relation

exq (iz) : cosz+i sin z

shows at once that expz has the (imaginary) period 2ni.

Exercises 6 (c)

Notes on these exercises qre giuen on pp. 179-80.
l. Refine the argument of theotem 6.81 to giye closer bounds for {2, for
example, 1.5 < lzr < 1.6. (The series for cos x and sin.x do not provide
a practical way of obtaioing accurate approximations to z. For better
methods se€ $7.9.)
2. Prove the statement following theorem 6.82 that 2I is the smallest
period of cos x and sin x,
3. If a ard , are positive constants and x is rcal, provo that

.f(-r) = c cot r+6 cosec x

takes all real values if a > 6, and all real values except for a certain range
if a < b.

Sketch graphs of y = f(x) for a > b, a = b, a < b.

4. Prove that, as ,l -+ @,
lqss :) _) a_1...
\ n l
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6J. Tle lnverse trigonometric fimctions
Thcotem 6.91.. The eEuation x : sinl dcfnes an inoerse function
written

.Y - arc srn-t

such that y increasesfrom -fu toln as x increases from -1lol.
Also

dv l
- ! - - -e - J6rD'

Proof. dxldy - s6sy > Qfor -|z <y < *n.
Therefore siny strictly increases from -l to I as y increases
from -|z to tn, By tleorem 3.9, tlere is an inverse function
with the range of values stated. Also, by ga.2 (6),

dy l l l
.tx dxldy cos.y .V(l _ 19 '

wh9r9 th9 positive square root is to be taken since cosy is
positive for y between -.|z and fur. I

Notes on theorem 6.91. (l) The equation .r = siny defines infinitelv
nany values ofy for each x such that -l < x < l. For, by the pcriodicitv
ofsin /, any- integral multiple of2z can be added to the va.lui oty wfricn ii*s
b€lweq -+z and jz. In th€ theorem wo have singled ot ti" prii$i
oalue of arc sin x.

- (2) Similarly the e4uation x = cos/ defines y = arc cos x, where y
decreas€s from z to 0 as r increases from - I to l. Here

a=_ r
e- -IT=t.

Iheorcm 6.92. The equation x = tny delnes on imserse ftmction
y = arc tanx dertned for all x. y is an increasing function and

j:-r: -tr, 
lyyr = tn.

Also dY : I
dx I  +xr.

Proof. dxldy - ssczt = l*.x1
tany is a continuous increasing function for _\n < y < +7tand, as y -+ + tv, x --> 1oo, respectivd. The exiitence of tie

inverse function and the value of its deriyative follow from
theorem 3.9 and ga.2 (6). I
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Nole. As in theorem 6,91, we are defining a principal value. If, for a
given value rr of r, the value / = ),r satisfies .t = tan /, so does yr+ nt,
whcrc ,r is any positive or negative integer.

6.10. The hperbolic functions and their inverses
Define the hyperbolic cosine and sine by the formulae

coshz : +(d + e_),

s inhz:,(d_e_).

Thus coshz: cosz and is inhz -  s iniz.

In nearly all applications z ls rcal. The functions get their
names from the fact that the point x : cosh t, / : sinh, traces
out a branch of the hyperbola xl^yz : I (whereas r = cost,
./ : sint traces out the circle x2+yz : 1).

The hyperbolic functions have properties analogous to those
of the circular functions cosine and sine. The f<rllowine are
among the most useful.

d
dx 

COSnX : Slnn.{,
d . .

A 
slnnx = cosnx,

coshrx - sinh2x : l,

coshzx+sinhz;r : cosh2x,

2 cosh;r sinhx : sinh2x.

The reader can supply proofs and can construct other formulae.
He should also sketch graphs of the functions.

The inverse functions will be useful in integration. lf
n : cosh/, then fronl the definition

ez !_2xev+ l  : 0 ,

giv ing e! :  xt ,J@z-l)

and so y = log {:r t J(:r'- l)},
which is the same as

r : t log {x +^i(xs- 1)}.

If we take the + sign, y is defined for all x >- 1 and is denoted
bY .y : arg coshx.
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Thendv l l l
d;= anO: ffit: JG':i)'

For sinhx the discussion is simpler. If x: sinh/, then x
increases from -o too as y increases fron -co toco and there
is a unique inverse function

.Y = arg sinhx'
or, as a logarithm, .' y = log {x+J(rt+ l)}.

Ercrc&€s 6 (O
Noles on these ererciset qe gioen on p. IEU

l. Find the sum I cosh(c+ 2rO.
r-o

2. Prove that the equafion 
.r = 2+logx

has two positive root!, 8ay a and t
Thc sequ€nce r, is defircd by

; "+r  =  2+ lo8* r  @= 1 ,2 ,3 , . . . ) ,

where a <.xl < 0. Provo that:" +6.

3. Provo that, if -1 <r< l,

1 + r cos o + ... + r,r cos z0+ .., = @,_"**r,

r sin a+... +2. sin rr0+ tsinO' "' = 
l=r. @;6+,''

4. Investigate results liko those of 3 for hypcrbolic function$
5. Prove th.t, if/ = e-'l'r, then

l"+1+rl"+rr+ (r, +l)'rd = 0.
Tho functions./l arc d€6ncd by

t  (x) = (-t .dd #,Qin.
Provc that

(i) l:+r = (n+l)f,b
(D fa = xf,-fi,
(iii) 4+r-xl,+r+(n+ l)l. = 0,
(iv) Ji is a polynomial of dcgree z.

6. Obtain orpansions in powcr-series of the foUowing functions. Find thc
geD€ral term if you can, otherwiso the 6rst three non-vanishing terms.

(i) cosr r, (ii) tan r,
(iD (arcsinrf (iv) sin (m arc sin x),
(v) e. co62x, (vi) cos log (1+r).
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THE INTEGRAL CALCULUS

7.1. Area and the integral
Historically the concept of a definite integral was developed

to represent an area bounded by curved lines, This geometrical
equivalence helps one to visualise the meaning of the analytical
expressions which occur in the definition and manipulation of
integrals.

Let f be a function defined in (a, b). The area which we pro-
ceed to measure is that bounded by the curve y : f(x), the
ordinates x -- a and, x : b, and the .x-axis. (There may be a
gain in clarity if you think of/as taking only positive values in
(a, b), but the following analysis holds if/can take values of
either sign.) All that we assume for the present about/is that ir
is bounded. In practice / is usually continuous, and that
assumption wili be made at the stage at which it simplifies the
discussion.

Our method will be to obtain approximations from above
and from below to the curved area which yre wish to measure.
We must start with a number of definitions.

Definitions. Given an interval (a, 6), then a finite set of
numbers a, xa, xz, ..., xr._l, ,, such that

4 ( x r ( x2< . . . <x^_ r<b

is called a dissection of (a, b). Each x, is a point of diaision.
To complete the scheme of suffixes we can write a = xo and

b :  x ^ .
Each of the intervals (x,_r, x) for r : l, 2, ..., n is a sub-

interual of the dissection. Let d" be the length of the rth sub-
interval.'  ot :  Xr- Xr-t.

The length of the greatest subinterval

3t : max 3r

is called the nornz ol the dissection.
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We next defing upper and lower approximatiue sums.
Suppose that M, and rz" are respectively the supremum and

infimum of/(x) for x in the rth subinterval taken closed, i.e. for

x r - r< .x< .x , .

Write S: >M,t,
,-*,

and t : 2_r*,6n

Then the upper sum S is the sum of the areas of n rectangles,
of which the /th has base (x"-r, :r,) and height ll1,. The sum of
these areas is greater than or equal to the area R contained be-
tween the alrr ,e y: f (x)  and the l ines x:a,  x:b,y:0,
Similarly the lower sum J is less than or equal to the area R.

If now (, is any value of x in the rth subinterval,

xr-r  (  5,  (  x,  ( r  :  1,2, . . . ,n)

and if we form the sum
o - >f(4) 8t

r-t

s (o (s .

Our ultimate aim is to prove that, if/is a function of one of
the commonly occurring types (including continuous functions
and monotonic functions), the sum r tends to a limit as 0*
tends to 0. We shall define this fimit to be the integral of the
function / over (a, b).

You will observe tlat this limiting proc€ss is of a less simple
kind than those which we have so far encountered, If the
function/is given, the number a depends on the x, and the $;
in fact, a is a function whose domain is a set of dissections. In
the passage to the limit, we suppose 8+ to take a sequence of
values tending to 0, and the permitted dissections are pro-
gressively restricted by the requirement that their norms are to
be less than 8*.

On account of the complexity of the limit-operation, we fust
take an easier approach to the integral though the botmds of
the sums ,S, s for all dissections,

then
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1.2. The upper and lower integrals
lf M, m arc the supremum and infimum of/(x) in a < x < ,,

and ii giv€n any dissection 9, we construct the sums ̂ S, s as
above, calling them S(9) and s(9), it follows from the in-
equalities'  M ,  (M  and  m ,>m ( r  =  1 ,2 , . . . , n )

that m(b-a) < 49) < S(9) < M(b-a).

So the set of numbers S(9) corresponding to all dissections
9 of (a, b), being bounded below by m(b - a),has an infmum, J
say, Similarly the set of numbers .r(9) has a supremum jf'.

Our aim, achieved by theorem 7.22, is to proye that J > j.

Theorem 7,21. The introduction of a new point olf diaision de-
creases the upper sum S.

Proof Suppose that S(9r) is the upper sum for the dissection
9r. Let the dissection 9, be formed from 9, by the intro-
duction of a new point of division .ri into the interval (x,-r, x,),
Let M:, Mi be the suprema of /(.:r) in the closed intervals
(x,-r, x), (.rj, x"), respectively. Then M: < M, afi, Mi 4 M,.

The contribution of the interval (x,-r, x) to ^S(gJ is
M,(x,-x,-). Its contdbution to,S(9r) is

Mi@:,- x,-) + Mi@,- xt)
< Mlx,-x,-).

Since the contribution to .S(9J and S(9) of each subinterval
except (x,_D .r,) is the sarne, we have

s(e) < s(e).
Corollary, lf 9b 92 are dissections of (a, b) for which every

point of 9, is a point of 9r, then

and sinrilarly

s(er) < s(e)
s(92) 2 s(9').

Defnition. lf 9, and g" are related as in the corollary, we
may call 9" a refnement of 9r.



TEB TNTEOI{L CALCULUT II.2

Theotem 7.22, J > j.
Proof. l*t 9'and 0rbe any two dissections of (a, D),
l*t 9s& the dissection whose points of division are all the

points of division of eithler 9, ot 9". So It is a refinement both
of 91rnd of 9* The corollary to the last theoren give$

S(e) < s(e) afi 4e) > s(e).
But s(e) > 4e),
being upper and lower sums for the same dissection. Combining
all these inequalities we have

s(s) > 4s).
Since this is true for all dissections 9t,

J : inf s(e) > 4e).
Since tie last line is true for all dissections 9e

J >- sttP dQ) : i' 1

If we assume about / oaly what we have assumed alreadn
that it is a bounded function, then it is possible for J to be
greater than j or equ4l to j.

Illustrction An o(ample in which J > J. De6no

f(x) = | 
'rt 

; is rational

/(.t) = 0 if x is inational,

and tsko th€ intcrval (a, D) to be (O l).
Thcn, whatever disscctiotr I is takcn, every M, = I and S(9) = l

Evcry  m,  =  0and. r (9 )  =  0 .  SoJ= land j -0 .
Herc y = /(.r), far from repr€scDting a curvc in a Ntraightforward scnso

capablc of bounding an er€a, is discontinuous for w€ry value of r.
Etercrse. Givo tho simplest examplc you can think of in whicb J = ,/.

The numbers "1,J, being approximations from above and from
below to our intuitive notion of an integral, are often called
upper and lower integrals. They can be represented by tle usual
integral sign with a bar above or below. We shall ae1 96 ia16
further detail about upper and lower integrals, but shall confine
ourselves to the most useful c.ase in whioh J = J aad there is an
integral in the ordinary sense,



7,31 rrrB TNTEoRAL cALcuLUs 123

7.3. The integral as a limit
Defnition. If, with the notation of$7.1,

" = f,r<*lt,
r-\

tends to a limit as d* -+ 0, then/is said to be integrable in(a, b)
and the limit is written

fb fb

I f(x) dx ot I f.
J r  J a

The latter, shorter form is usually appropriate in the dis-
cussion of general properties (e.g. those of $7.5). If a particular
function is being integrated, the specification of it must take the
form p rr

I f(x)dx, e.s. l (x2+3)dx.
J a  J 0

Theorem 7.31. f S-s + 0 as 6* -+ 0, then f is integrable in
(a, b).

Proof. Given e, there is d such that

S -s<e

for any dissection such that d* < d.
Now 5_5 = (.t_./) + (J _j) + (j _ s),

and each term on the right-hand side is greater than or equal
to 0.

Then J-j < ,S-s < e

if the norm of the dissection is less than d,
But "I andj do not depend on e, and therefore

J-j : o.

Thus both ,S and s tend to J as d* + 0, and so does a, which
lies between .S and r. I

The converse of the theorem also holds.

Theorent 7.32. Iff is integrable tu (a, b), then

,S -s+0  as  d+ -+0 .
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Proof. If I is the value of the integral, then, given e, there is
d such that, if I is any dissection of norm less tlan d,

I - e< \ , f (N )8 ,< I+e ,
t - l

where $ is an arbitrary point of 8,.
If lly', is the supreoaum of/in 8," we can choose 6, such that

.tG) > M,_?., n

Therefore
> M,8, < >f(L) 'r+e

t - l  r -1

< I+k.
n

Similarly lrn"8, > I-2e.
, - l

Hence ̂S-s < 4e, and so ̂ 9-s + 0 as 8r + 0, I

7.4. Continuous or monotonic functions are integnblc
The condition of theorem 7.31 is easy to establish for con-

tinuous functions and for monotonic functions,

Tlporem 7.41. A fnetion f contiraous in the closed interval
(a, b) is integrable,

Proof. By theorem 3.82, given e, there is 6 such that

Mr-^, a J-
D - A

for every subinterval of any dissection g with norm less than d.
Then s@)-xg) : z(M,-n+) t,

. 5!;2s,: u. t

Theorem 7.12. A futtction f monotonic in the closed interoal
(a, b) is integruble.

Proof. Ne may suppose / increasing.
Then, in Ji_r ( r ( x,,

M, = f(x) and m, - f@,-).
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g-s = X(M,-n,) d.

< d*>(M,-m")
= t*{f(b)-f(a)}. )

Exercises 7 (a)

Noter on these exercises are given on p, l8O,

Calculation of simple integrals from the definition,
IL

1. Calculate I xdx by disse-cting (0, l) into n equal parts.
J O

f b
2. Calculatc I x.dx, where k > 0, by dividing (a, ,) into r parts in geo-

*"tri" p.ogr"'rion 
"t 

the poiots 44, 44r, ,.., aq'-r, wherc aqn = b.
l c

3. Calculate I sin rd-:r by dissecting (0, a) into equal parts.
l o

4. By the method of2, prove that

12 dx I
Jr r '=  r '

Deduce that
, .  I  r  I  I  )  I
, l l f  i t r*r l ," tr*a"+ "+ pn1,l  = 2'

A theorem of Darboux.

5, With the notation of $?.1, S '+ J as 8* + 0.
This is an important theorem, showing that the number "I which was

defined as a bound is in fact a limit. As the proofis a little mole difncult
than those of any results in the text, we have developed prope ies of the
integral independently of it.

7.5. Properties of the integral
In defining the integral we supposed that a < b. lf a > b,

we define ft ra
I f(x) dx = - | f(x) dx.

J a  J b

The following properties are constantly used,
(l) If a < c < d < b and f is integrable in (a, b), rhen f is

integrable in (c, d).
Proof. Given e, there is from theorem 7.32 I such that,if I

is any dissection of (a, 6) with norm less than 4 then

S(9)-s(9) < e.

t25
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lr.:t I' be any dissection of (c, d) with norm less than d. By
adding appropriate points of division in (c, c) and (d, D), we
obtain a dissection I of (a, b), of which I' is a 'part'.

S(e')-s(e') = Z(M,-m) 3,

summed over the subintervals of 9'.
All the tenns on the right-hand side are contained in

S(9) -d9) and so
s(9') - s(9') < S(9)- 49) < e

provided only that the norm of 9' is less than 8. Therefore, by
ltt

theorem 7.31, 
J" /exists.

Q) If a < c < b, and f is integrable in (a, b), thm

fb fc lb
l f : l f+ l f .

J a  . t d  J o

Proof. l*t I be a dissection of (a, 6) having c as one of its
points of division,

Then, in a notation which explains itself,

> f(€,) 8, : 2 f(€,) 8,+2, f(6) 8,.
(a,b,  (o,c)  (c,  b)

Take the limit as the norm of I tends to 0. I
G't Ifk is a constant,

fb fb

I kf : kl ,t
J d  J d

The proof is easy.
(4) Iff and g arc integrable in (a, b), so is theb sum

s : f+9,
fb fb fb

and | ": | .f+ | g.
J a  J o  J a

Proof. For any dissection I and arry choice of $ in d,

ll

I s(5,) d, : 2/(f,) d,+ X s(6,) 6.
r - l  f - l  r -1

Each of the two sums on the right-hand side tends to the
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corresponding integral as d*+0. Therefore f's exists and is

equal to the sum of the integrals of f and C. 
tl"

In inequalities such as (5) and in other contexts in which the
sense requires it, we suppose a < b, ln a statement such as (5)
it is plain that/is understood to be integrable and we need not
say so explicitly.

G)r fm<f4M, rhen

Proof. For every dissection

n(b-a) < t/(5,) 4 < M(b- a). I

Corollary l. Iff > 0, then

lorro.
J d

Corollary 2. If f is continuous, then, for some { in (a, b),
fb

I "f 
: f(€) (r - a)'

(6) Iff and g are integroble in (a, b), so is the product fg.
Proof. lf we prove that the square of an integrable function

is integrable, the result will follow from (3), (4) and the identity

afc: U+d"-(-d".
We will prove, then, that/'!is integrable in (a, b).

Let M,,m,bethe sup and inf of/and M',., m', those of fz in 6,.
Given e, there is d* such that

Z(M,-m) 3" < e if max 0, < d*.

If K = sup lfl in (a,6), we have (for any signs of M,, n,)
Mi-m| < 2K(M,-n).

Hence t(Mi-m',) 3, < 2Ke if max d, < d+,

and this implies the integrability of/r. I
(7) (Extension of (5)). If, furrher, g >- 0, then

f t  fb tbnJ"s <)."fs = ,J,t .

n(b-a)<f f"ufu-O.
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Proof. Apply corollary I of (5) to (f-n) S.
(8) Iff is integrable in (a, b) so is lfl @td

I i'rl " |"'trt.
l J d  I  J a

Prool Note that, in any interval,

supl/l-inf l/l < sup/-infl
(9) Schwarz's inequality

Ul")'" ffi)ff:.)
Proof. Thts may be deduced from Cauchy's inequality

(exercise I (d), 6) or from the fact that

fb fb fb tb

l"Of+lrdz 
= A2)"f +2M)"-fs+p"J"{

is greater than or equal to 0 for all values of the constants
A, p.

7.6. Int€gBtion ss the inverse of rlifferentiation
Suppose that/is integable in (a, &) and write

l!

r (x )= l f ( t )d t  (a  <r<D) .
J A

Theorcm 7.61. F is a continuous function.
Proof. rx+tl

F(x+h)- F\x) : 
), tOl at

With the notation of$7,5 (5), the absolute value of the right-
hand side does not exceed max (lmil, lM&l). So

F(x+h)- F\x) -"> 0 aslt +0. I

If we make the additional assumption of continuity ofJ we
cao prove a sbarper resulL

Thcorem 7.62. If f is integrable h (a, b), then, for ay oalue of x
for which f is continuous,

F'(x) : f(x).
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Prool Suppose that ft > 0. Let now

M: supf(t), m: inf f(t)
for x < , < x+h. M and ln then depend on :c and l. By
$ 7.5 (5),  k+h

^h 
" J, fQ) dt < Mh.

^ F(x + /r) - F(x)Theretbre ,n < 
- \'-:-l---:--:-l-' < M.

n

Let ft -+ 0+. Since/is continuous at x, both m and M tend
to /(r). A similar argument holds when h --> O- . I

Theorem 7.63. Let f be continuous in (a, b). Suppose that ( is a
function hauing the property

Q '@) : f ( x )  f o r  a4x {b .
f x

r hen  
) " f < t l a t :Q@) -C@)  f o r  a<x<b .

Proof. From theorem 7.62, the function F-l has derivative
0 fo ra  <  x  <  b .

By theorem 4.61 (corollary 1), ,F-l is a constant and, since
F(a) : 0. we have F(x):  Qg)-Q@). I

The existence of a function / having a given continuous
derivative / is established by theorem 7.62, Such a function
which, by theorem 7.63. is determined except for an additive
constant is called an indefnite integral of f, written

If@) a''
An indefinite integral may or may not be readily expressible in
terms of known functions; if it is, theorem 7.63 provides the
normal method of calculating the defnite integral

fb

I f(x) dx.
J a

A number of illustrative examples follow in $$7.7, 7.8.

7.7. Integration.by parts and by substitution
The systematic search for a function if we are given its de-

rivative employs methods which you are likely to know from
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your earlier work in the calculus. The emphasis is on technique
and not on foundations of analysis, and we shalt treat it rather
summarily. In this section we shall state two general methods
of which repeate.d use will be made. They both arise from tle'inversion' of a formula in differentiation to yield a formula in
integation,

Integration by pa s. This is the inverse operation of differ-
entiating a product,

lf u, o arc fuoctions of r, then
d(uu,) du . du-E- = u 

A;+o dx.
By integrating we have

If dultlx, duldx are contirluous, then

Ldu ,  I  du ,
Ju&or :  n_ 

Jo 
_dxdx.

Integrution by substitution. This comes from the re.sult of
differentiating a function of a function

Wrinng dylik : /(:r) and r : 8(r), we have
If f(x) and g'(t) are continuous thm

It6l*: Iftslo\s,(t)dt.
Taylor's theorem with remairrder an integral. By integrating

an appropriate integral by parts we can establish anothei forrn
of the zth order mean value theorem (94.g) which is sometimes
useful. For brwity we replace the a of theorems 4.gl and 4.g2bv o.
Theonm 7.7. Izt f6, be continuous for O < x < h, Then

f(h) : f(o) + ... +ffi t"-tol * O,
- h n f lv'hefe R" - 

GinJ. 
g_in-tftr(th)itt.

Proof. By substituting rl = u,
l r h

R" = 

"-1nJ. 

(h_u)rrJt">(u)du.

dy dy dx
dt dx dt'
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Integrate by parts and we have

_ h " - r - l t h
R,  :  - ; :  , - / ( r -1 \ (0 )+ .  -  

1 \ ,  |  ( l  - r ) ' -2 f tn - t ) (u )  du .'  ( / r - 1 . ) ! -  "  ( n - / ) t J o

The last integral is R,_, in our notation, If we integrate r, - I
times by parts we arrive at

-  l r " r  f hR, : _#,r( '-,)(0)_... _r/ (0) + | I '@) du.
\ n - t ) ' . '  Jo '

Write /(l) -/(0) for the last integral and rearrange the ternrs. I
Applying $7.5 (5) corollary 2 in two different ways to

theorem 7,7, we first reconstruct the term in frz given in theorem
4.82 (assuming however the contiriuity and not merely the
existence ofl"l). The second corollary gives lhe remainder term
of theorem 4.83.

Corollary 1.
- h a f r L nn" : 

6;1y.f",(0h) ) oQ 
- r)"r dt : '1.1tt(0h).

Corollary 2. o*
R.  :  

6=| ) l  Q-?)n- t f (n)Qh).

7.8. The technique of integration
We recapitulate the methods in most common use, illustrateo

by examples.
Rational functiotrs. To integrate a rational function, put it

into partial fractions. A real root d of the denominator gives
constant multiples of (x-a)-", where n ) l.

I f r >1 .  l - ! 2 . :G -a ) t - ]
J  \ x -a ) "  t -n

Ifn : t. I 
d, - {log(x-a) 

(x > a),
'  

J x-a [ log(c-x) (x < a.1,
or, conveniently, in one formula,

f dx
) ; ; =  

t og l x_a l .

A fraction whose denominator is a quadratic with complex
roots is integrated as follows.

9-2
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t 4x-l
I 3 x e - 4 x + 5 " '

The derivative of tfte denominator is 6x-4. writc the numerator 4x- I
as l(6x-4)+f. The first term gives

2 t  6x-4
; I 3#5 

y'r = | log (3xr-4x+ 5)'

The secoud gives

5 l  d x  5 l  d x
9J.r i - tx+*  9/  (x-3) '+*

5 3  x - |  5  3 x - 2= 
45arctanf f i  

=  
f f i4c lan ^  

'

To integrate a partial fraction of the form

T!!Lx"+2a*T* @ > D'

write the numerator rc p(x+a)+(q-ap) and the problern is
reduced to integrating 1l(x2 +2ax+ b)^. This is achieved by
successive 'reduction' of the index n; see the paragraph below
on reduction formulae.

Trigonometric functions. (a)To i\lqgrate a product of cosines
and sines, turn the products into sums and differences by using
formulae like

2cosa cosD : cos (a + D) + cos (a - D).

Examples. (i) J cosr.r cos 4x dr.
(ii) J sid .r cost x dx.

In (D, cost x cos 4x = t(l+cos2x)cos4.x
= +cos 4x+* cos 6r+1 cos 2r.

Hencc tbc intesral ig
I sin 4r++ sin 6J+t sin 2x.

In (ii), the odd power of cos x sugg€sts the substitution !l = sin r, giviDg

Jzr(l 
-ar)d/ and so * sin8.r-+ sin! x.

(b) The integral of any rational function of cosr and sin.x
can be transformed into the integral of a rational algebraic
function by the substitution Ianlx : r for which

7-t2 2t dx 2cosx -  
l+-ts '  

s lnx:  
l+rr '  7t  

= 
6;r .
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Examgle. , )_ r,r)r

J s *o l"-t t 
: 

I ;i 
= I arc tan (+ tan lx)'

Reduction formulae. Suppose that we require

I sin^ xdx'

This comes under (a) above, but it is more easily found by step-
by-step reduction of the index ,r. A reduction formula is nearly
always derived by the appropriate integration by parts. Here

I sin" x dx : f isin"-r-x; sinxdx

: -  s in"-rxcosx+Jtz- I )  s in"-ax cos x cosxdx

: -s in"-rrccosx+Qr- l )  Jsin"- 'zx( l  
-  s in 'x)  dx,

and so
n [s in" xdx = -s in ' -rrcosr+(n-\Jsin"- txdx

and we have connected the integral of sin".r with that
sin"-'x. This integral is particularly simple if the range
integration is (0, jz), for then

of
OI

fb r l t
nl-  s in^xdx: (n-1) l -  s in"-2 xdx.

Jo  ' Jo

By repeated application of this reduction formula we find that

l- sin"xd:r is
J O

( n - l \ . . . 4 . 2  / z - l \ . . . 3 . 1n
n  . . .  5 . 3  n  . . . 4 . 2  2

according as n is odd or even.
Irrational funclions. We take only the simplest cases,

ExamDle.
t d x
I t-+q JG+6'

Thc function under the 
"/ 

sign is linear, and the substitution x+.b = u.
gives the inte$al of a rational function of ll.

Next consider the square root of a quadratic px2+zqx+r.
The change of variable u -- px+q reduces the irrationality to
one of the forms

nl@n - x"), ,J$'- a'), l(xz + a2).
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The trigonometric or hyperbolic substitution which will get rid
of tle { is respectively

x:4sinu, x:  ac.oshu, x:  asinha.

Exanple. JJ(8f + l)dr.
Tte sub,stitution x = (sinh r)/2./2 givcs

*1r!.o"o'u* 
= 

1! Jtr +cosnz,laz = 
o| {z+ sinh u cosh z),

and so, on r€verting to .r,
I

qj2arc sinh zx,1za +xy'(8xr + l).

Thus an integral like n

J ̂ l@xz+2bx+c)dx

can be expressed in terms of (inverse) trigonometric or hyper-
bolic functions. If we replace the quadratic under the ./ sign
by a polynornial of higher degree, then we should have to
add to our stock of standard functions if we are to express the
integral explicitly. (The fuuctions known as elliptic functions
would enable us to deal rrith a cubic or quartic.)

The fact that only the simplest functions are amenable to
explicit integration underlines the importance of $$7.12 and 7.13
on approximate methods.

Exercls€s 7 (r)
Notes on these exercises are giuea in p. 181.

1. Integrate
I

(, - 2F-(r' + r)' (;r;TtIFTFi' F +aqtai'
1 1

F+ 1,  ) ,0+ 1_.

2. Intecrate - J: .(xr + cr)r '

(i) by substituting lr = xr+cr, (ii) by substituting.r = a ta! A. Verify that
ihe two results agree.

3. Wallls's product for r.
tl'l

Writing /" = I sin" x &, prove that IrJIi.+t lies between I and
t o

r+Ql2n).
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Deducc that r .. 224466 2m 2m
t=;*I l rssl  ' . .6=n; i '

Establish thc altemativ€ formula

"t"=#.wffi
4, Integratc co$.3r sin 2r, tanrsecr, cosect x,

f* ttr
5. Evsluatc I sinT*sinz.rdx, I sin 7x sinrrxdx.

J O  J O

6. Show how to integrato

a+D cos x+c sin.x I
,+qcosl+rsil ' ;cofiTZ'cd.rsil+ciilF;'

7. Obtain reduction formulae for thc integlals of
l(f * 1)', {log.t)i .r"r/(d-xrL

tan;.r, secn.r, l/(a+t cos t)'.
8. Find a reduction formula for tbe integral

[ ,"d"
J ̂ l@x'+2.hx+ c)

and use it to evaluatc
t f d x
I l6TE+4'

9, Prove that, according as n is an cven or odd p$itive integer,

["'ii4 a = o or '.
Jo srn a

If a is a positive int€ger, cvaluate

[" sin" no ''
I o 

"i*d 
N'

10. If the polynomial P"(x) is defned by
1  / , t \ nP"(,> = ;a (;J (-d-rr,

Prove that
(i) if O(x) is a polynomial of degree less than n,

IL

I P"(x) Q@) dx = 0,
J  - l

(ii) 
J _r P-(.x) P"(r) y': is0if z + z and is 2/(2n+ l) if m = n.

11. Prove that
I axa+2bx+c
JaE +r4x+ q^ax

is a rational fuoction of x if and only if AC - B or oC+ cA-2bB is zf,'o.
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7.9. The constant n
We found in $6,8 that cosr and sinx, defined by their series,

are periodic, having a period which we denoted by 2o. We still
have to show that o is the same number as the z which presents
itself in tle geometry of the circle.

Take a circle with centre O and radius a, We recall the argu-
ment proving its area to be za! : insoribe a regular polygon in the
circle; its arca- is tlp, where I is the perimeter and / is the per-
pendicular from O to a side, Similarly a circumscribed regular
polygon has aru, |lra, where /, is its perimeter.

Sq if 'l{ is the area of the circle,

l l p cA< t l r a .
As the number of sides of the polygon tends to infinity, p

tends to a, while /, and / both tend to the length of the circum-
ference, namely 2tra. 59 A = taz.

We now collate this with the area found by integration, using
the trigonometric functions (defined by series) to evaluate the
integral

,A : arca of the semi-circle for which y > 0
fr f-r

- I rl(a8-xg)dx: -l .t@g-x\ dx.
J - T  J  I

Put .x : acosd. This gives
l d  f u

lA-l azsin29d? : lazl (1-cos20) d0 = \oaa.Jo  -  Jo
We have thus shown that d andr arc the same number.
We may conveniently insert here a note on the numerical

calculation of z. The easiest way is to use the power series for
the inverse tangent.

Theorcm 79. If -l\< x < l,

arc tan x : x-*rn+llr-....
Proof. By theorems 6.92 and 7.63,

arc l.an x f" dt=J.1;7 '

17.9
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N o w  - l  -  : 1 - t z + t 1 -  + (  -  r \ m - r  f i m - z  + ( - l ) ^  t ' :
l ' t l  l + t z

Hence
X? yzm-l

arc tan.r : x -i +... + (- r)^-1 hj+ ( - l)^ R^,

lr ,znwhere  R^ :  
Jo l+ t rd t .

I fO<x<1 ,
ft rzm+l I

s < R,"  <Jo r ,^dt  = 
h ' .  2___- l

and so R,n -+ 0 as ,n -> co. Similarly, if - I < x < 0, again
R-+0 .  I

Putting x : 1 in the result of theorem 7.9, we have

tu :  t - l+[- . . . .
This gives a means of calculating r, but the series converges too
slorvly to be useful for numerical work. The following simple
relations, which the reader can verify from the addition formulae
for the tangent, lead to series which converge more rapidly

lzr : arctanl + arctanl,

+77 : 4arctan I - arctan .lr.

7.10, Infinite integrals
Integrals ouer an infnite interual.
We have, taking a simple example,

f"* : r-!
J t  x '  

-  
X '

As X+ co, the right-hand side tends to the limit l. A suitable
nolation to express this fact is

+: r.
r x '

Geometrically, the area between the curve y : l/x2, its asymp-
tote the r-axis and the line.r = I is finite.
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Defnition. If, as X+ co,

!" .f{i a* * r,
t 6

we say that I f(x) dx exists, or contserges,and that its value is t
. , 4

fx
If | /(x) dx exists for all values of X geater than d, but does

J a  
P @

not tend to a finite limit as X+ co, we say that | .f@) a,
J A

diverges, (It is possible to be more preoise-as indicsted in
$2,9-and separate out divergence to +oo or to -co and fnite
or infi nite oscillation.)

A similar definition applies to
fa

| 'f(x) dx'
. ' - o

f.o la
If I f(x) dx : /r and I f(x) dx = h,

J a  J  - a

we write 
l' -f4l* 

: ,,*,".

It is easy to see that the value of the last integral is independent
of the particular value of a.

f@ )-

Theorcm 7.10. 
Lfi 

conuerges if and only ifk > l.

Proof. lf k + l, F dx Xa_k _l
J,l  

= -1:E-'

The limit of the right-hand side is finite if and only if & > 1.
nk:r ,

li!:rc'*'
which tends to infrnity as X+co. I

Nole, Any Dumber greater than 0 would serve instead of 1 as the low€r
limit of integration.

Integrals of unbounded functions. If I > q the function
l/y'x is continuous in (0, l) and

f '1-z-z,to.J r { x
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Since 1/./x is unbounded in the interval (0, l), the construction
of approximative sums cannot be applied directly to define its
integral over (0, 1). We use instead the result of making d + 0
in the above equation and define

fl dxt -t o nlx
rr dx

to  be  l im l -
i_o J a ̂ lx'

that is to say, 2.
Such an integral is called an infinite integral of the second

kind.
The reader will be able to frame a definition for a general

function, following the discussion of I /"/:r.

Exerclses 7 (c)

Notes on these exercises are giuen on p. l8l.
1. Evaluate the integrals

xtb dx
. l o  F+x t+x+  I '  J  &@' )1G '+ r ) '

2. Prove that, if O < d, < i,

d x e
J o  x 2 + 2 x c o s d + l  

-  
s i n  d '

l@
3. P(ove that 

lo 
x" e-a dx = nt

f@
4. Evaluate 

J o 
e-d" cos bxdx (a > O),

[' sr,,n ax ax.
J  - 6

tb )-
5. Prove that I -,,.- "1,,--* b > a\

J a lt\x- a) \o - x)t

exists. Calculate its value by two different substitutions,
(i) x = acosrd+Dsin,d, (i i) (b-x)lG-a) = u'.

6, Evaluate
l - r c o s d

t =  l
)  -E  r -z rcos0+f '

w h e n ( i ) 0  < r <  l , ( i i ) r >  l .
Prove that, d being fixed, f tends lo one limit as r + I through values

less than l, and to a difTerent limit as r + I through values greater than l.
Show, also, that neither liBit is equal to th€ value of l when / = l
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7.11. Series and integrals
There are close analogues between the convergence properties

of infinite series and those of infinite integrals. In $2.12 some
elementary theorems about convergence of series were proved,
The reader should decide what are the corresponding statements
about integrals. As an illustration we state the analogue of (6),
Ieaving the proof to the reader.

If, for eoery x >- a,
(t) f(x) > 0, g(:r) > 0;
(2) .f(x) < Kg(x), where K is a constant;

(3) 
I 

" 
g(x)dx conl)erges ;

f6 f6 f@
then I f(x)dx conuerges. Also I f(x)dx < Kl g(x) dx.

J a  J a  J a

Some care is necessary in framing the analogues. We know
from (3) of $ 2. I 2 that, if Xl, converges, then ,r, + 0. From this

1.6

we might expect that, if I f(x)dx converges, then
" 4

f(x) -'> 0 as .x -> co.

But the following illustration shows that this is rot the conect
conclusion.

Define a function / whose graph consists of the segrnents of
straight lines shown in figure 4.

The height of the peak at each value x : zis l. The breadth
of the triangular base with centre z is 2l(n+l)2. /is zero at
points not on the sides of one of the triangles. The area of
the triangle above r = n is 1/(z+ 1)s, and so

f x 6 l

I IG)dx < X ;:;,* (attX),
Jo -  i  (n  + r r '

to
showing that I f(x)dx converges. But/(x) does not tend to 0

J o 
h.+l

as.x->co. The conclusion that we can draw is that I f(x)dx
tends to 0 as n -+ co.
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An infinite integral, though it is analogous to an infinite
series, is nevertheless a less simple concept. The sum of an
infinite series is the result of a single limiting operation (lim s,.

r-(
as n -+ oo). An integral over a finite rarye, I f(x)dx is already

J O

a limit (the limit of sums X/({,) d,). An integral over an infinite

range I f(x)dx is thus a limit of a limit, that is to say, a

repeated limit.

Fig. 4

The following simple and important theorem gives a close
connection between the sum of a series of positive decreasing
terms and an associated integral,

Theorcm 7.11. (The Maclaurin-Cauchy integral theorem,) Let
f(x) be, for x > l, a positiue decreasing function of x, Then

f@

(l) the integral I f(x)dx and the series Zf(n) both conuerge
J t  I

or both diuerge;
(2) as n -+ a,

tends to a limit I such that O < I < f(l).
Proof. Since f(x) is decreasing, its integrability in any finite

interval (1, X) follows from theorem 7,42.
I f  n -1 ( .x < n.  we have

rt,ro>!,naa"

I@-r)>f (x)>f (n) .
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(A)

Inte$ation from n* I to z then gves

1n-9>f_,1x1dx>f(n).

Add these inequalities for the intervals (1, 2), (2,3), ...(n-l,n)
and we have n-l rtr

| f ( r )> l  f (x)dx>Zff ) .  ( r )
r  J r  2

If now the series converges, the left-hand inequality shows that
.  ^ - -  i x

the increasing function of X, I f(x)dx, tends to a finite limit

as X-+ co. If the series aiu.rilr, the rigbt-hand inequality of
(B) shows that the integral diverges.

We have proved (1). To prove (2), we refine the above
argument. If n fr

6(n):2f@-l f(x)dx,
I  J l

then i@)-$(n-I) = f(n)-l f(x)dx

< 0 (from A).

Also, from (B), 0 < /(z) </(1).
Therefore the decreasirE function /(n) tends to a limit , which
satisfies o < /</(l). t

For many functions / it is possible to calculate the integral

If@)a*a"t impossible to obtain an explicit sum for the series
X/(n). The Maclaurin-Cauchy theorem is useful for such series.
Putting /(x) = l/:r in theorem 7.11 (2), we have the important
corollary.

Corolhry (Euler's constant). As n -+ a,

r  * . ! .1*  ,  l '  ' - -  - -, t 2 - r  3 ' r . . . + - - r cgn

tends to a fnite limit y, where O < y < l.
Euler's constant, 7, is of frequent o@uffence in analysis. Its

value is 0'577....



t
I
I
I

I
t
I

t
I
i

i

7,ttl

3. Prove rhlr

rH8 INTEORAL CALCUt.Ug 143

Exercls€3 7 (O
Notes on these exercttes are gloen on p. lgl.

l. Prove that
. r r l o ttoEi-- l- ;= 

Jo6-,ne 
(n = 2'3'  " ' l

D€ooting either of thesc cxprecsions by r., prove that

o < ,t' < --l- -2(n-l)n'
an<t tbat thc seriesjrrrn convorg€s to a sum U satisfying 0 < U < ,.

D e d u c e t h a t + < 7 < l
(fhe corollary showed only that O < y < I.)

2. Obtain the limits as z + co of
I  *  1 -  . l

n+ l  t r+2 '  " '  '  2n '
I  t  . ( - t1"- '

n+l ,t+2 "" ' 2tr
! q l

| ;11 < l+*".

4. Prorc thag ifo > & > -1,

Ir+2r+...+r*_#
tcnds to a 6rite limit ag n + @.

Deducc that l r+2r+. . .+n* I-F- ''IT-i'

5. ProYe that, as &-)0+, -c It x ; ; ; .+1 .
L N

6. Pro\e that
s r r

i' ;oottr
corvcrges if,c > I and diverges if& q l.
7. Prow that

l ' ' L l ' |

J rW 
re < I togr < 

I rlogx.k+logn
Invcstigrte tho limit as z -+ o, of (al)r,"/r.

t, Verify the stat€ment in tho numerical illustrstion at the cnd of thcorcrtr
Zll thst the sum of 10 r€rrns of lo/n) is l€ss than 20,
9. Discuss the conlcrgence of

l l(i) r n;1o;o;r ' ci) t nliog 
troe 

n)"'
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7.12. Approximatlons to definite integrals
At the end of $7.8 we remarked that we are not able to

evaluate exactly an integral such as

lr dx
JoiG5tn'

because the integrand containing the square root of a cubic
polynomial is not the derivative of any finite combination of
our standard functions, You will have to take on trust the
fact that we cannot find an indefinite integral explicitly; proofs
of impossibility are difficult and far outside the scope of this
book. The failure of the usual devices like substitution or in-
tegation by parts will incline you to believe that there is no
indefinite integral that a search will bring to light. The problem
therefore presents itself of obtaining an approximate numerical
value of the definite integral,

Another class of integrand for which approximation is forced
on us is one which is not specified by an analytical formula at
all but, say, by a recording pen attached to an instrument
measuring some physical quantity.

Suppose then that we seek an approximation to an integral
tb
I f(x)dx, which wp cannot evaluate exactly. If we take

functions g, ft, such that

dx )> f ( x )>h (x )  ( a  < : c<b )
then the integals over (a, b) of g and & give approximations
from above and from below to the integral ofl Applications
of this method are given in the following examples.

Exanple l. @nsider the integxal mentioned at the beginning of tbis
s€ction . | .tx'=  JoO*O'

The .,/ shows that Schwarz's inequality of $7.5 (9) will provid€ an
approximation from above

- -Faxr '<JoF+1
r  t  ) t - l 1 r

= | ! loc (r+ 1)-* los (f -x+ l)+t5 arc tan:fujtr

= +toqz+4 < o.tre.
J 4 t

the indcfinite integral being obtained by the method of $7.8.
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T h i s g i v e s l < 0 . 9 1 5 .
To 6nd an approximation from below, observe that x'> :l for

0 < . x < l , a l r d s o
tr ,1r T -11

l' /" 71"trr 
= 

llog{x+./(x'+ l)}tr = log(l +J2)

> 0.896.

Methods of obtaining closer approximations will be Sivcn in $7.13.
Example 2. Approximate to

f tn
t= 

)o 
^lbin x) dx.

(The indefinite integral is not cxpressible by the spe€ial functions
included in chapt€r 6.)

(i) J(sin x) > sio x gives 1> l.
(ii) We have 2.r/r < sinx < x(0 < x < t7). Integratiog the square

roo ts '  we 6nd 
r '047< 1< l3 r .

(iii) Schwarz's inequality (as in exanrpl€ l) yields

I < , J ( + n l < 1 . 2 5 4 .

7.13. Approximations by subdivision. Simpson's rule
From the definition of the integral, it is natural to carry out

approximations by subdividing the range of integration and, if
possible, keeping control over the errors that may be incurred
in the separate parts. We give some simple and useful methods.

The trapezium method. A first approximation to
td

r :  J" f@ax
is I: L@-c){f(c)+f(d)}.

If we make the assumption that / has a bounded second
derivative, we can obtain an upper bound for the error in this
estimate, as follows.

Theorem 7.131. If lf'(x)l 4 M, then

11-rl < iM(d-c)3.

Proof. For convenience, we can take c - O, d = lr, The
argument is like that of theorem 7,7, Write

fh

0(h) : I t(h-t)f'(t)dt.
J O
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Integrate by parts twice and we have successively

6@1 : fiet-n1le)at
: htf@)+f(o)\-zfrc>*

l!<"t * : rh{f(o) +f(h)} + R,and so

fT
where lRl < lMl t(h-t)ilt = lrMhg. I

J O

To approximate to the integral of/(x) over (4 b), we may
divide the interval into z equal parts, where 6-o : rt, and
apply the trapezium rule to each part. The approximate value
it'h"o n{tI@) * ̂ o + h) + f(a + 2h) + ... + tf (a + nt )J,
the first and last terms having the coefrcient |. If, moreover,
l"f'(x)l < ,ll4, then the enor is at most

lvMnhs or fzMA#.

Simpson's rule. TIis method, based on the idea of approxi-
mating to the curve y - /(r) by a parabola drawn ttrrough three
of its points (instead of by a straigbt line through two points)
is likely to give a much closer estimate of the integral.

The Simpson approximation to
ftt

r : I "f(x)dxis ,s : s@-c){J@)+qf$G+d)l+f(o}.
To obtain an upper bound for the error we shall assume that

/(x) has a bounded fourth derivative.

Lewru. lf y = p(x) : Ixz + mx+n,is the parabola (with axis
parallel to Oy) dtawn through the points ofy : /(x) for which
x = -h,O, h, then

trh

| . p(x)dx = +hue h) +4Ie) +^h)\.
.t -i

The proof of the lemma is left to the reader.
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Define now, as a measure of the 'error',

f h
E(h) = | f(x) dx - !hlf(- h) + 4f(0) +f(h)}.

J - h

Theorem 7,132. rf far(x)l 4 M, then lE(h)l < etaMhs.
P roo f . Le t0<x< i .Then

E' (x) : f(x) + J ( x) - *{f(- x) + 4f(0) +/(;r)}
-!x{f'(x) -f'(- x)l

: 4 fG) - i f Q) + 4 fG x) - *xU' G) -.f ' (- x)\.
z' (x) : tf ' @) - *f' (- x) - lx{f ' (x) + f ' (- x)},
E' (x) : - Ix{f' (x) -f' (- x)J

: _ txrft4) (€), where _x < 5 < x,

by the mean value theorem. So

- \Mxz4E" ( x )<1Mx2 .

Integrating from 0 to x, and noting that E"(0) : 0, we have
-?M l3<E ' ( x )< iM f .

Integrating twice more, and using E'(0) = t(0) : 0, we have

-r\Mxa < E'(x) < l6Mxa (O <x<ft)

and finally -a\Mhu < E(r) < s'xMhu. I

In practice, to approximate rc f'761ar,divide the interval

(a, b) into 2n equal parts, where b-a = 2nh. Let the values of
/(x) at the 2'!+ I end-points of the subintervals be

lo' !t, .. ,r lzn

Applying the method of the lemma to the r? sets of two adjacent
subintervals, we have the approximate value

+h{(y o + y r") + 4(y 1 + h + ... + y 2t -1) + 2(y z + y I + ... + y2")}.

If, further, 11'(x)l < M, theorem7.l32 shows that the error
is at most

, , ,  t b  -  a \ "  ,  ^ " ( b - a \ ua \ M n \ n ) : z e \ a M - - i .
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Ex€rcises 7 (") (Approximatiorrs)

Noles on these exercises ere gioen on p. l8l.
l. Prove that, if /(x) = O + +x-r+ x\ll(l + x\, then I < /(x) < l'0008
in the interval0 < r < +. Hence evaluate the integal

f tt-}.::-+l d,,
J o J(l -1'; --

correct to three places of decimals (./2 = l.4lQ...),

2. Prove that 
F y'|l_u\r
I  _  d u =  t _ i .J  o  L + u '

t1
Evaluate I /(l - lJ)r dr, and deduce that

J O
2 i - r 1 6 6 > n > X - r t t .

3. If C(.r) is polynomial of the fifth degre€, prove that
n
I Qk)dx = *ts0@)+86B)+50(h\,l o

where d and p are the roots ofthe equatioo.rf -r++ = 0.

4. The function /(x) has a continuous rth derivative for r > 0, ar|d /(x)
and its 6rst z- I derivatives vanish for r=O. Show that

[" (a-x) ^^).-, 14

lo-- i i  t ' -rxt* = 
I  offu)dx.

Deduce that ,  i f  l ld( . r ) l  <Min0<x<c, then
l lq I  sn+r M

lJ of@dl" 
_;r 

76*7r.
5. Discuss the common assumption that thc Simpson approximation to an
integral, obtained by dividing the range (a, ,) into 2z equal parts, is liabl€
to an error varyiDg as r-'.

If fr and I, are the approximations found by Simpsoq's rule when th€
nnge is divided into 2t and 4n parts, respectively, show that, on the
above assumptioo, (164-rJl5 is a better approximatioq.

tE ,t-
Apply this toJn:with n = l, &nd compare your result with the true

value 0.693147....

6. (Sri Ws fomulo /or z!.) This forrnula gives a good approximation
to r! when z is large (J. Stirling, 1692-1770).

Prove that, as r -+ co, -l
6@) = 

*lV;'^!(ztt).
The proof is in two parts: (a) provs tbat /(n) -+some constant /4,

(b) vove that A = ,l(znr.
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(a) If r is an integd > 2,
I '  t l  t r

( i )  
J  ,_r losxdx 

< logr ,  ! [ tog(r -  l )+ logr ]  < 
J ,_r losxdx.

ln ln
( i i )  

J ,  
loe xdx < log(n! ) - , logrr  < 

l r loe,xdx.
(ii i) If z" = Iog(n!)- (n+') log a+n, then

ua) !n-r and *(l-log*) { u. < l.

(iv) Q(r\ -+ A, where 2 43 < A < e.
(r) Apply Wallis's formula (exercise 7 (6),3) to OQn)ll6Qt)lr.

Exercises 7 (/) (Miscellaneow)

Nole6 on these exercirct are giuen on pp, l8l-2.
l. Find the limits, as r tends to 0 through positive values, of

l l ,  I  f ,
(i): | ,l?r2+z)d,, (ii) '; 

I l\dt.'  x J o -  x ' l - t
2'  l f  ( r (6- l )  when x < E,u \x ,g  =  1 - .  ,

t 5(-r- l) when 6 < x,

and if/(x) is a continuous function ofr in 0 < x < I and if
f1

ck) = 
I oIG) c(x, €) dE,

show that g'(x) = f(x)
and frnd g(0) and s(l).
a r f r r

I(p, q\ = 
lox?-t(l-x\e-tdx,

where p > l, q > l, show that

f@+r,q)+f(p,q+r) = f@, c)
and cf@+ 1, d = pf(p,q+r).

Evaluate /(p, n), rvhere ,t is a positive integer.
4' l-et 5, = [t" sin,0 d0 (r > o), p, = rs.s,-r (r > l),'  l o
where r is not necessarily an integer. Prove that

(l P, = e,*, 1, , 11, (ii) \ = tr,
(iii) P,y' decreases as r increases (r > l).

Deduce from (i), (iD, (iii) that
f  n  _  r t  , -( i v l  

k + l r  t  P ' u  E i  
( l  < k < r < k + l i h  a n  i n t e g e r ) ;

and from (i), (iv) that
(y) P, = +7lforaUr > l.
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5. From approximative sums to appropriato integxals, ffnd the limits as
n -+coo f  n_ r

(i) n X -=:,-, -. 
m=o n +my

.,,, 4((n+ r) (,t+2)...(2n),
rry z_I

6. From tho identity

I -ae = 0 -d)"I]' (t-ll *"4+a\,
t - l  \

(where II denotes the products of the factors given by r = 1,2" ..., n-1),
prove that (a beiug real)

l n

I log (l - 2a cos x + ar)dx
J O

is 0 if lal < I and tu 2tt log lal if lal > l.

7. (Prcof that n is itatioral) lf
tl

I"(a) = I (l -.d)" cos ax dr,
t - l

provc that, if ,, > 2,

e' I" = z.n1va- 11 1"-t- 4nh- 1, I"a.

Deduce that, for all positive integral values of t,
q.t"+r I^(d) = zl (P sin a+ O cos a),

wherc P and Q are polynomials of deSree less rhrn 2n*l in a with
irtegral co€fEci€nts.

Prove that, if tt were equql to t/4, whcre 6 and a are integers, then

F"+t LQyt)lnl

would be an integer, By coDsidering large valu€s of n, provo that t is
iratioml,
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8

FUNCTIONS OF SEVERAL YARIABLES

8.1. Functions of r and y
We have applied limiting processes to a function f(x) of a

single variable x. This analysis will now be extended to functions
rvhich depend on more than one independent real variable.
Geometrical language will help towards clearness and brevity.
Referred to a pair of rectangular axes, two real numbers
correspond to a point in a plane. We now define a function of
x and y.

Ler E be a set of points P in the (;, y) plane, or, what is
equivalent, a set of values of the pair of real numbers (x, y). If
rules are given which determine a unique real number z
corresponding to each pair (x, y), then z is called a function of
x and y. The set -E is called the domain of the function.

We write - _ ";.(*, y)

or, commonly z = z(x, y),

using, as we can without ambiguity, z to denote both the
functional symbol and its nurnerical value.

,Motes. (l) Hitherto the letter z has conveniently denoted a complex
number x+/i. In this chapter the usage is different and coresponds with
that of three.dimensional analytical geometry referred to coordinate axes
Ox, Oy, Oz.

(2) Ttre notes (l)-(4) of $3.1 are applicable here with the appropriate
modifications. The function / is a transformation or mapping of a lwo-
dimensional domain E of points (r, y) into a linear set of values z under
the restriction that with a given pair of values (-r, /) is associated one anc
only one value of z,

Illustrations. z = (l- a2- yg)x defines a function of (x, y)
(i) if & = 2, for all (r, l),
( i i) i f & = -l,forall (x,y)with the exception of points or the circle

(iii) ifk = ], for points inside or on the circle r'+',r = l.

The equation z = f(x, y) represents a surface referred to a
set of axes Ox, Oy, Oz. There is no graphical representation of
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the values of a function /(x, y) so simple as the curve / : /(t)
which illustrates a function of one variable. A possible repre-
sentation on a sheet of paper is obtained by drawing the curves

f (x ,v) :  k
for suitable values of ft. These are the contour lines of the
surface z : f(x, y).

Illustrstion. TI]f- contourlin€s of

z = f + 4l;r
ara a s€t of similar ellipses with centr€ at the origin.

If there are more than two independent variabtes we can no
longer visualize a functional relation graphically. The analytical
methods of this chapter apply to a function of any number of
variables; we shall usually suppose for simplicity that the num-
ber of variables is two or three.

8.2. Umtts and continuity
We first clarify the notion of the limit of a function of more

than one variable.

Definition. f(x, y) tends to the limit I as (x, y) tends ta (a, b\ if,
giuen e, there is I such that

l f(x,v)-t l  < e
for all x, y such that

0 < 
"((x-a)1+(r-r)c) 

< 8.
The definition expresses the requirement that f(x, y) can be

made as near to I as may be demanded by taking (x, y) to be any
point inside a sufficiently small circle with centre (a, b). A
square with centre (a, D) and side 2d, or a region of any other
sbape surrounding (a, D) would serve just as well as the circle
in the definition. We shall call a region such as the circle or the
sqnare a neighbottrhood of (a, b).

Definition. f(x, y) is continuous at (a, b) if f(x, y) tends to
f(a, b\ as (x, y) tends to (a, b).

It is natural to go on to define sontinuity of/ throughout a
domain E of the (x, y) plane to mean continuity at each point
ofE The reader should refer to the definitions of contiauitv of
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a function of .x in a closed interval and in an open interval stated
at the end of $3.4. The following definition is sufficient fo: our
needs in this chapter.

Defnition. f(x, y) is continuous in an open rectangular domain
Jo ( x ( xtlo < ! < hif it is conlinuous at euch point of lhe
donrain.

If, however, points ofthe'boundary'are included in the set,
the formal definition would need more care because in more
than one dimension the boundary of a domain is more com-
plicated than the boundary of a linear interval which consists
just of its two end-points. The general idea (following that of
$3.4) is to exclude from consideration values taken by f at an''
points not in the set.E.

It is to be observed that continuity of f(x, y) as a function of
the pair of variables (x, y) asserts more than continuity of
f(x, y) as a function of either variable singly (keeping the other
fixed).

Illusrration. Defrne
2xv

I(x, i = 
U; 

if x, / are not both 0,

,f(0, 0) = 0.

Then f(x, y) is 0 at al[ points of Ox and O/. So /(r, 0) is a continuous
function ofx for x = 0 and/(0, y) is a continuous functio[ oft for y = 0.
Wc shall prove that /(x, t) is not a continuous function of (x, /) at (0, 0).
This is easily seen by using polar coordinates x = rcos0, y = rsh6.
Then /(x, r) = sin 2d for all values of r except r = 0. So, in any circle
however small with c€ntre (0,0), the function assumes all values b€tweeo
- I and I and does not tend to a limit as (x, r,) tends to (0, 0).

8.3, Partial differentiation
We may, keeping y constant, ditrerentiate /(.r, y) as a function

of r, that is to say, we take the limit

,. _ f(x + h, y) -f(x, y)
l lm- - - - .
a+o h

This is called the partial derivative of .f(x, y) with regard to x
and can be written

af
Ax or f"(x, y) or f".
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Any of these notations applied to a function of two or more
variables indicates that every variable, except the variabie of
differentiation, is to be kept constanl

The fust-order derivatives ?fl?x ard 7flAy arc functions of
(x, y) and may be differentiated again. We have then

ef
af ot .f,"

and the mixed second-order oartial derivatives

and ffi or fou

&ffi) ""^ *.(fr)
In the suffix notation, the former of these is (i)y or, by sup-
pressing the brackets, fi.

It will be found that in all straightforward examples the order
in which partial differentiations are carried out does not matter.
We shall usually have, in fact

and then we can write each of them as

(ot f-).

Our first theorem gives conditions for this interchangeability
of the order of partial differentiations.

Theotem 8.3 . If f"v and fu. are continuous functions of (x, y) at
a point (a, b), they are equal there.

Proof, Since f,, and fr" are continuous at (a, b), there is a
square N, centre (d, b), in which they exist. The functions f
andf, from which they are derived must exist in.lV, as mustl,
For tlre rest of the proof, h and k are assumed to be small
enough for (a + h, b + k) to be in ,lV.

The proof depends on taking increments in the function /
corresponding to increments in the variables x and y in turn,

If̂ 
i@,y) : f(x,y+k)-f(x,y)

and 2t : Q@+h,y)-Q@,y),

&(v): *ffi
,  Azf

6ia
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t6.tr 2 - /(x+ h, y + k) -f(x + h, y) -flx, y + k) + f(x, y).

Now D can be built up by taking increments in x and y in
the reverse order, for if

ttt(x, y) : f(x + h, y) -f(x, y),

then 2t = {r(x,y+k)-t/r(x,y).

By the mean value theorem (4.61)

4@ + h, b) - C@, b) : h6Ja + 0J, b),

where d, and all other d's in the sequel lie between 0 and l. By
the definition of c,

Q,@ + 0,h, b) = f,(a + 0,h, b + k) - f,(a + 9rh, b).

Apply the mean value theorem to the righGhand side and we
have, with (x, y) : (a, b) in D,

D :  hkf" !@+4h,b+ozk).

The alternative form of D as the increment of t/r(a, y) over
(b'b+k)gives 

D = hkrp@+osh,b+o&).

So, ifft * 0 and ft + 0,

f ,u@+0,h, b+qrk) = fu,@+qh, b+04k).

Now let (ft, &) + (0, 0). The continuity of f,, and fw at (a, b)
gives

f*(a, b) : fu,@, b). I

Exercises 8 (a)

Notes on these exercises are gi\en on p, 182,
l. Which of the following functions (with th€ definition suitably com.
pleted for t = 0,,y = 0) are continuous at (0,0)?

.., (x+y)'1 ..-, xy2 ,,,,, r '+y'\t) -x4i, (r) x+-r, (iiD =;.r.

2. \f x = r cos 0, y = r sin d, give the values of the partial derivatives of
r and d with lespect to r and /.

Is it true that 
nr\ ni
\u,) \ ; )  = t?

l l lustrate by a diagram.
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8.4. Differentiability
Let us consider what is the most natural extension of the

idea of diferentiability when the number of independent
variables exceeds one. If we have a function;f of one variable,
differentiability at a point means the existence of a tangent
fine-a linear approximation to the curve y - f(x). On a
surface z : .f(x, y) an approximation linear in the variables
suggests a tangent plane. This leads us to the following de-
finition.

Defaition. The function f(x, y) ir differentiable at (a, b) if, for
(o + h, b + k) in a neighbourhootl of (a, b),

f(a+h, b+k)-f(a, b) : Ah+ Bk+e(lil+ l&l),
where A and B do tmt depend on h or k, and e ten& to O as
(lt, /c) + (0, 0).

This means that the plane

z -f(a, b) : A(x - a) + B(y - b)
is at a distance from the surface z : /(x, y) which is small com-
pared with the displacement of the p oint (a+ h, b + k) from (4 D)
and is the tangent plane to the surface.

The 'error-term' in the definition of differentiability which we
have written as 6(rrl + Iel)
can be put in several different forms, which are easily seen to
be equivalent. We could, for instance, say instead

e,,l(h2+k\,

Again, we could rewrite the condition as

f(a + h, b + k) -f(a, b) : d4h, k)h + p(h, k) k,
where a(i, k) -> A and p(h, k) -+ A as (i, &) + (0, 0).

If (in the original definition) we keep /< - O and let l tend
to 0. we have A = fJa, b,),
and similarlv n = f"(a, b).

It can be seen that differentiability, in the sense of this de-
finition, asserts more than the existence of partial derivatives

18.4



8.41  FUNcr roNs oF sEVERAL vARraBLEs 151

with respect to .r and y. Geometrically, the existence of the
partial derivativef(a, D) implies that there is a tangent line to
the curve which is the section of the surface z = f(x, y) by the
plane )., : 6. The existence of a tangent plane to a surface
requires more than the existence of tangent lines to two curves
which are sections by perpendicular planes. The next theorem
shows that if we assume the continuity, and not merely the
existence, of f" and fu, then the differentiability of/ is a con-
sequence.

Theorcm 8.4. If f,andfrare continuous at a point (x, y) thenf
is dffirentiable at that poinr.

Proof. Let h and k be small enough for (x+i,y+/c) to lie
within a circular neighbourhood of (.r, y) in which l, and l,
exist. Then we have

f(x + h, y + k) -f(x, y)
: {f(x + h, y + k) - f(x, y + k)l + {1f(x, y + k) - f(x, y)\.

In the first bracket, only x is changed; in the second, only y.
Apply the rnean value theorem to each and we obtain

hfi(x + 0 rh, y + k) + kfu@, y + ?rk).

By continr.rity of f" ^nd It this is equal to

h{f"(x, y) + e,} + kffi(x, y) + en},

where the e's tend to 0 as (1, ft) + (0, 0), and the definition of
differentiability is satisfied.

Exerclses 8 (6)

Notes on these exerciset are gioen on p. 182,
l. Investigate whether the following functions are diFereotiable at (0, O):

, t. 
( i) lrr-2t1, (i i .1 lxyl*.

1 xyl ,,/Q2 4- yr) when (x, /) + (0, 0),
't(x' /) = 

io when (x, /) = (0, o),
jnvestigate for (0, 0), (i) continuity ofli (ii) exisrence of/,,i1(iii) differenti-
ability ofl

3, Gjve alr exatnple of f(x,y) which is differentiable at (0,0) and dis-
continuous at all other points,
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8.5. Composite functions
We now extend to functions of two variables the formula

dy dy du
dx du dx

proved in $4.2 (0.

Theorem 85. If x - x(t) and y : y(t) are diferentiable fimctions
of t for a giuen t, ond z : z(x, y) is a diferentiable function of
(x, y) f* the corresponding (x, y), then

z = z{x(t), y(t)}

is a diferentiable function of t and

dz 0z dx 0z dv
a: ua+Tyi i '

Proof. Let t be changed to t + 6t; let 8.r and 0y be the corre-
sponding changes in x and y.

Then ^ ldx \^dx = 
\A+et)  

dt ,

liv \
6y:  l \+e2 l t t ,' 

\dt '1

where e, and €2 tend to 0 as d, + 0. Writing

8z : z(x+ 8x, y * 8y) - z(x, y),

we have, since z is differentiable,

"  0z^ .02 ,8z : --1*8x+ 
fi6t +e(l lxl +layl),

where e -+ 0 as (dx, dy) * (0, 0).
If dx and dy are both 0 (which may happen for arbitrarily

small 6t if dxldt : dyldt - 0), e fails to be determined by the
last equation and we define e to be 0.

Substituting for dx and dy in terms of 81, we obtain

a :  (%*+a34\ u+rt t .
\ox at oy dt I

where it is easily seen that ? + 0 as 8, + 0, I
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Corollary l. If, in the theorem, x and y are functions of
more than one variable, say

x :  x \ t ,  u ,  a ) ,  y :  y \ t , u ,D ) ,

which possess partial derivatives, then, for each of the variables,
we obtain, by keeping the others constant,

0z Az Ax Az 0v
oI ox at ay ot

and similar equations with r replaced in turn by a and u.
This much-used rule for differentiating through the inter-

mediate variables is commonly called the chain rule.
Corollary 2. lf, in corollary l, x(t,u,u) and y(t,u,u) are

differentiable in the sense of $8.4, then a straightforward
adaptation of the proof of theorem 8,5 shows that

zlx(t, u, u), y(t, u, o)j
is a differentiable function of /, u, u.

8,6. Changes of variable. Homogeneous functions
This section contains applications of theorem 8.5.

Example. Express in polar coordinates
azy a2y
ox" o!" '

assuming that these second-order derivatives are continuous.

Solution, Corollary I of the last theorem gives
AY ?VA. r  AV  0v  AV ^  AV  ^
F : " - ^  * ^  * :  ^ - c o s y + ^  s l n d .ar ox or oy or ox oy

A V  A V 1 x  A V  0 v  A f .  ^ ,  A V' i :  : ; a - ; ; * ; -  - :  ^  ( - / S l n Y ) +  ^ -  / C O S Y .
oa ox ou oy aa 0x 0y

At this stage we have on the right-hand sides terms containing
both (-t, y) and (r, 0). To keep the cartesian and polar variables
separate, it is advisable to solve for ?Vlax and ?VlAy, We find
( i f r +0 )

by  ^0V  s in0  0V
-  :  C O S 'ox 0r r  A0'
AV ^0V cos9 0V- - :  s r n t t  + -  - -
o v o r r a u
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These equations enable us to convert the operators AlAl a'nd.

atii *tiie- o" a function into operators involving 0l0r atrd

a/Ad. Thus

*# : (*u *,-Y k) (*"'#'Y'#)
^ I ^ trV sir'? frV , sin9 AVI

: cosd lcosd ap- r AlaO. 
-F 

aA I

-Y l*" u # - sin o a{ -s'\ 9 # -+ T;
There is a similar expression for trVl|yz, which the reader

should write down' Adding, he will find that

AZV  t rV  t rV . IAV , lFV  ,
ap+g -  aF+ t  u |+ l z i@ ' I

We now turn to homogeneous functions as a further illus'

tratior of theorem 8.5. The elementary notion o-f a bomo'

e;.o"t fun"tion is a polynomial in the variables' all the terms

i"-lng of tn.,orn" degree. For instance,2rf -x'!y+4lislromo

e;;;ot of a"gt"e 3'-The more general defrnition which follows

to be homogeneous of degree I
Definition. /(x, y) is homogeneous ol degree ft if' for every

oositive t and all x, y for which/is defined'

f(tx' tY) = thf(x,Y)'

Theorem E.6. A necessary and ruficimt condition -that 
the

diferentiable function f(x, y) shouW be homogeneous oJ degree n

allows, saY,

is th^t

lor all x,Y.
Proof We Prove

Pu t t i ngE= tx ,1 l :

xf,+Yfu - hf

the necessity, which dates from Euler'

t/, we have

.fG,"D - tof(x,y).



Put A = I and we have the required condition

f,x+fry: hf.

To prove the sufficiency of this condition, take, as before,
E : tx, 1 : //. Keeping t, / constant, we have

firc,o:
and, by hypothesis,
u : f(E,D,
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Keeping x, l, constant, differentiate with regard to ,. Theorem
8.5 gives

9{r#.'t4; : hth-a.r(x, v).

.u{*r'{ =i(t '{r.r 't),
the last expression is hf(€, ri)/t. So, if

l '  " l
l o a  4 l

a@, r)

l do  h
D A I  T

Therefore u = Att', where I is independent of t. So

f(tx, ty) : Ath : thf(x, y),

by putting t : 1. I

Exercises 8 (c)
Noles on these exercises are giuen on p. 182.

l, (The lacobian.) Lei ll,I, be differentiable functions of r, /. The
deteminant

writterl shortly as

is called the Jacobian of the transformation from (x, /) to (a, ,). Its role
corresponds to that of the derivative dultlx for a function a(x) of a single
variable. Prove the following properties which illustrate this role.

(i) If a relation C(a, u) = 3 1to16r 1or all (x, y) in a domain D, then

in D. (The converse is true but more difncult to prove.)
(ii) If x, y are differentiable functions of r, t, then

afu, u) _ a@, o) a@, y)
aG, t) 

- 
aQ, i a$, t)'

All this may be extended to r functions of a variables.

: 0

aG, y)
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2. A function /(r) is defined by the
./(0) = 0. Use I (i) (the conversc) to
€quation

properties ,f'(r) = I(l +rl anA
show that tbere is a functional

f(x)+!(y) = r({:#,)
3,_The arEa A.ofa triangle is found from measurem€nts ofa,4 C. provc
mar rne error io the calcu.lated value of A due to rmall errors da, dB, dC isgiven approximately by

3 !  =26a*9  lB  . !  dc
A  a  a s i n r . 4 s i n C .

4. The sides a, 6, c of a triangle are measure.d with a possible peroentage
error e and the ar€a is calculated. prove that the possiUf" poant"g" 

"_3,11 
th: area 

ls leprolimately k or 2f, cot.A 
"ot 

C o"corJin'g as ,h";;;;ls acute-angled or obtuse-angled at .ir.
3- (The waoe-equatron.) prove that, by the transformatioDs u = x_cttt = x+ct, the partial diferential cquation

,W, = o#

ffi=o,reduces to

and hence solvc the equation.
6. lf/(x, t) is transformed into f,(2, u) by thc transformatioD

x =  ur_ t f ,  y=2uo,

prove that #.#,=d$ffi.^H.
Find the most general function/(x, y) which satisfie€

a_?f
a : , ' a t t = o

and is a function of r+,r,(x!+/) only,
7. Prove that, if r and d are polar coordinates and l = log /, the cquation

a.v arv
a f+aY '=o

b€comes t! -,!v
6F+8F = o.

8. For all positive vatues of \ the function g satisfies the condition that
s'(,\'x, ,\?) = i?(x,,),

whcre ,,, J, |' are positive intcgers, prove that

^ff+vf;r=,g.
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9, The function F(4 r) becomes /(x, /) when the substitution
u = x3-3xy2,
u = 3x.y_ y.

is made. Prove that
I la,f atf\ a2F a2F

g!r+rrj" \bx,+ ay,l 
= 

ar,* u".

8.7. Taylor's theorem
We extend to a function of two variables the nth order mean

value theorem proved on page 81,

Theorem 8,7. Suppose that the paftial deriuatioes of order n of
f(x, y) are continuous in a neighbourhood of (a, b) rehich contains
the line joining (a, b) to (a + h, b + k). Then

/  2  2 \
f(a + h, b + k) : f(a, b) + lh ;+ k ;l f(a, b) + ...

\ uu eul
1  /  2  , \ ' r - r

+ r- :  * lh -+k nl  . f (a,  b)
\ n -  t ) t \  d a  d b l
1  /  2  ' \ n

+- - f  i . -+ f t  n l  f@+9h ,b+9k ) ,  where0<  d  <  L
n t \  o 4  o D l  - '

The meaning of the operator
/  A  ' \ ' n
lh i+k *.1 f(*, y)
\  o x  0 y /  - ' " .

' , , t^( i)n^-w ar^_.qL.r$,y).
In the expansion of f(a + h, b + k), tbe values (a, 6) are inserted
for (x, y) after performing the differentiations of orders up to
n- I and (a+0h, b+0k) in the nth order terms. The hypothesis
of continuity of the partial derivatives ensures that the order of
differentiation in any

A^

6;:,*u,rf(x, !) (m < n)

is indifferent.
Proof of theorem 8,7. We reduce the number of variables to

one (l) bv writins'" ' - "  -  F(t)  :  f (a+ht,  b+kt) .
By theorem 4.82, 

r ,
F( l )  = p16.1*p' ,0)+.. .+;  i ; ;  F^-r)(0)++ F( ' ) (d).

\ n -  ) ) t  "  n l
where 0 < d < 1.
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The successive derivatives F (t), F'(t),... are celculated by
means of theorem 8.5. With the prescribed notation,

/ 22 A2 A2\
F"Q\ = l hz -+zhk =, + kz --l fb, b't,

\ oa" oaoD oo'l -

and so on. Finally, F"(d) has the value stated in the theorem. I
The possible extension of this result, on the lines of theorem

5.8, to provide an expansion of f(x, y) in an infinite series of
powers of x and y is less important than the expansion of/(x)
ts Zanx^,

8.8. Maxima anil minima
We extend to a function / of two independent variables the

discussion of $7 of chapter 4.

Defirttion. f has a maximum at (a, b) if there is a neighbour-
hood of (a, b) in which f(x, y) < f(a, b) except for (x, y) = (a, b).

We define a minimum by substituting > for < .
The following analogue of theorem 4.71 is immediate.
Iff"exists at (a, b), a necessary condilion that f has a maximurn

or minimum at (a, b) is tha, f"(a, b) : O.
This follows by applying theorem 4.71 to f(x, b).
A similar statement holds for fu@, b).
The investigation of sfficient conditions for a maximum or

minimum has a feature which was not present with only one
independent variable, This is embodied in an algebraic lemma.

Lemma, If Q@,y) : axz +2hry +by2, where all the mtmbers are
real, and D : ab-hz,we haoe

(i) f D > O and a > O, then 6G,, > Ofor all (x,y) except
(0,0);
if D > O anJ a < 0, then {(x, y) < Ofor all (x, y) except
(0,0);

(ii) if D < O, there are oalues (xyy), (xo, y) arbitrurily near
to (O, O) for which

rot = (nft+r{)n"o,

QQ', y) > o, /(x,, Y) < o.
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Proof. (i) Note that D > 0 implies that a + 0. Then

aQ :  (ax+hy)z*(ab-h2) y2

>0  un l css  x=y :O ,

So ,  i f  4>0 ,  t hen  d>0 ,

and i f  a<0 ,  t hen  C<0 .

(ii) Suppose that d + 0, say a > 0. Then, if /r = g sn6 t'
has any value (except 0), the expression for a/ in (i) gives

d@t' vr) , 0.

lf (x2, y), not being (0, 0), satisfy axr+ lry2 : 0, then

dG",Yr) < 0.

If a : 0 and D + 0, a similar argument holds.
I f  a:b = 0,  then l ,  + 0 and d@,y):2f tny,  which takes

opposite signs when x : y and x = -y,

Theorcm 8.8, Suppose that f hos deriuatiues of the frst and
second orders f", fr, .f"- .f,r, fir, which are continuous at (a, b),
and write p, q, r, s, t for their ualues at (a, b).

I"hen f has a maximum or minimum at (a, b) if

( i )  p : q :0 ,

(ii) rl -s'! > 0.

If r < O,(a,b)is a maxhnum, if r > O a minimum. (From (ii)
r * 0 , )

If rt-s2 < O,(a, b) is neither a maximum nor a minimum off.
If rt - s2 : 0, we prooe nolhing.
Proof. By theorem 8.7, if h, k are small enough,

f(a+h, b+k) : f(a, b) + ph +qk + l(r,hz +2s,hk + t,kz),

rr, sr, l, being the values of f,", fru,.fuu for x : a + 0 h, y : b + 0k,
where d, depending on a, b, h, k, satisfies 0 < d < l.

If condition (i) is satisfied,

f(a+h, b+k)-f(a, b) : l(rrhz +2slhk + tLkz).

It is now clear what we have 1o do to complete the proof.
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The coefficients rb s!, t1 of the quadratic form in i, k tend to
r, s, t as (i, /r) + (Q 0), and we need to show that, for all suffi-
ciently small (h, k'1, the two forms

rrh2+?srhk+trkr,

rhz +2shk + tkz,

both have a fixed sign or are both capable of taking either sigr.
Write D :  r l - s ' ,  D t -  r r \ - s l

(so that Dr depends on ft, &).
Suppose that D > 0. Then r * 0. Suppose that r > 0. Since

lr-r.1, ls-s11, lt - lrl are arbitrarily small if (lr, k) is near enough
to (0, 0), we can choose d such that, for all &, k ra hz+kz < 62,

D1  >Q 11  >0 .

By the lernma, for all ft, /r in 0 < h2+k2 < &,

rrhz +2-s.hk + trkz > O,

and so (a, D) is a minimum ofl
Similarly, if D > 0 and r < Q then (a, D) is a maximurr.
Take now ttre case D < 0.
By the lemma, there is (ir, k) for which

rh2+?.shk+tkz

is less than O and (14, kr) for which it is greater than 0.
write FQ) = f(a+ht, b+kt)-f(a,b).

Then r(0): r(0) = 0,

Fr(o) : thz+%hk+tks.

Fot h : hL, k = kr, the function F(t) has a maximum at
t:0 (by theorem 4.72). Hence, in every neighbourhood of
(a, D), there is a point (x, y) for which /(x, y) <.f(a,b).

Similarly, from } : Ih, k : &, we arrive at a point for which
f(x,y) > f(a,b). 1

8,9. Implicit functions
The problem can be introduced by a particular example.

SuDDose that xz +Y2 = l'
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In what sense (if any) does this equation define y as a function
of  - t?  I f  avalueof  x isass ignedin - l  <  n < l ,  there are two
values of y which satisfy the equation. We stipulated on p. 47
that our functions should be single-valued. Suppose that we
start from a poinl, say (0, + l) and let x take values varying
continuously. Then plainly we can find corresponding values of
y such that (x, ;) satisfies the equation and y varies con-
titiuously. In graphical language we must keep the point (n, y)
on the upper part of the circle and not allow it to jump to the
lower part.

Moreover, with the understanding that

v  :  + . lQ-xz) ,

y has a derivative given by
' , , _ _  . Y
' '  - 

J(t -;r ') '

It is often inconvenient or impossible to solve an equation
F(x,l) : 0 explicitly for y. The iollorving theorem gives con-
ditions under which we can nevertheless assert that the equation
defines a functiony : /(x) and, further, that the function can be
differentiated.

Theorem 8,9. Suppose that, for (x, y) in a square with centre
(a, b), F(x, y) satisfies the conditions

(i) F(x, y) is diflerentiable,
(ii) F(a, b) : o,
(ii i) d(x, 7) > 0.

Then there is a fwtction y :.f(x) defned in an inten;al with
cenlre a suclt tlnt

(iv) y : /(,r) sotisfes F(x, )') : O identicallt,,
\v) dyldx exist,r and is giuen by

Proo/. ln fig. 5, Po is the point (a, b) and conditions (i)-(iii)
hold in the square shown. From condition (ii i), I(x, y) > 0 at
Qn and -F(x, 1) < 0 at -Ru.

From (i), l' is continuous, and so we can find vertical lines

F-+ F..4! : o.'  - d x



16E FUNcrroNs or SBVERAL VARIABLES t8.9

0t& and QrRn such that F > 0 for all points on QrQ2 and
F < 0 for all points on RrRr.

l.et now pR be any vertical line between QtRt and QsR2,
By (iii), F increases (strictly) from a negative value at R to a
positive value at p. Since F is continuous, there is a unique
point P at which .F : 0. The ordinate of P defines y : /(x), and
(iv) is established.

Fis. 5

We now prove (v). If(x,2) and (x+h,y+k), where l + 0,
are two points at which F : 0, we have, .F being diflerentiable,

0 = F(x+h,y+k)-F(x,y)

- hF"(x, y) + k Fu(x, y) + e(lhl + lkl),
where e can be made arbitrarily small by taking (li, /c) near
enough to (Q 0).

Divide through by lr and (as we may by (iii) of the hypothesis)
by Fk, D. Then let ft -+ 0. It follows that hn (klh) exists, and
we have

*+?:o. tFr '&
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Exercises 8 (d)

Notes on these exercises are giDen on p. 783.
l. Prove that, if A, B, C arc the angles of a triangle

cos I +21(cos ,+cos C) < 2.

2. Investigate maxima and minina of

(i) (x- y)t (a2-xr-yr),

(ii) (x - ),) (x -2y,).

1. It f(x, y') = x3+2x,y-xy2-8y?, show that there is only one point
(xs, y.) where necessary conditions for a maximum or minimum arc
satisfi€d. By considering the values oflon the line y = 1, prove that it
has no maximum or minimum.

4. If u = xt+yt, o = xs+y',
prove that, if x is considered as a function of a, u,

A x v A x l
at) = - 

2xG:i' at = 
iG-r'

, / -  i , \  IProve that ":;:2 = -
a@. u) 6xy(x - y)'

5. lf f(x, y, z) = 0, where / is a differentiable function of x, /, z, prove
that

laz\ lAx\ /Ay\
\ai l" \a'1"\axl '= -t '

where (0zl0y)" denotes the derivative of z with respect to / when r is
constant.

6. The equations f(x, y, z, w) = Q,

g(x' Y' 2' w) = O'

where/and g are differentiable, can be solved to give z and w as functions
of x, /. ProYc that

a3 =_{r,s> 1a1tr9 az __a(f.s) l4!.s,
ax a@,v)l 0(2, w)' at aU), w)l a\2, t!) '

Calq'rlate azlax, Az/a/ as furctions ot x, y, z, w if

xY+zte = O,

x2+y2-22-v2  =  l .
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NOTES ON THE EXERCISES

Ansryers or hints for solution are given to those exercis€s in which they
appear to be most useful. If an exercise embodi€s an important result or
an instructive method, the solution is set out in more detail.

1 (o)

1. Write I(a), r(n) for the expresions on left and right sides. Assume, for
some z, I(z) = r(n). Then

,(z+ 1) = (r)+(r+ 1)r = r(n)+(n+ 1)l
= +(n+1) (n+2) (bt+ 3) = r(r+ 1).

But r(l) = I = r(l). Hence (z) = r(r) for all n.

2. Right-hand side can be found from 1, since

left-hand side =V, r,-+3, r,.
l l

3. Put r, = l,2, 3 to fiod, A, B, C.

5. (r+1) > r(r*1) follows from (n) > r(r) if 2 > (n + l)lt}, i.e. if
n > 3. l(n) > r(r) is false if r = 9, true if z = 10,

7. m = pd-qc,4 = qa^pb will do.

1 (r)
3. Suppose that a/, is a root, where a and 6 arre integers without a @mmon
factor, and 6 > 0. Write a/D for x and multiply by 6'-1. This givcs i = 1.

4. 12, -3,4i -r, t, z.
1 (c)

r. 99170,2391169.
3. (a- c+^lb)' = dgives a = c or Jt rational.
6. ad = bc.

r(a
3. If /4 and B are sets of positive lumb€rs, then sup D = sup,{ sup I
and inf D = inf A inf B. If I or B may contain nogative numbers, there
is no such simple result.

5. If the a's are not all equal, there are two a,, a. for which a, < A < a,.
Replace a,, a. by 6,,4 where ,, = A, b, = qr+ q.- A. T\eo.

b,b,- +a, = (A-a) (a,- A) > O.

So the replacement has kept the A.M. the same and increas€d the c.M. After
at most n - I repetitions of the argument all the numbers are replaced
by ,4, The c,M., now equal to ,4, having been increased by replacements,
was at first less thao l.
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6. Use the identity
(',q,b,), = zolzbl-2(a,b,- a,b,),,

where r, J take the values, 1,2, ..., r,.

7. Prove that, for the positive integer r,

a " + \ _ l  a " _ l- i TT  >  n '
Dividing by the positive factor a- I and then multiplying up, we have
proved this inequality if

na"  >  a" - r  +  a" -2+ . . .+  l ,
which is true.

It follows that. if z > n.'  a ^ - l  a " - l
m n

To extend to rational indices, let r = mlp and s = nlp (with m,n,p
positive integers), Pat art' = b.

8. Similar to 7.
| (e,

l. a-c = i(d-D) gives (a- c'12 = -(d-[)2. From the order properties
of real numbers, left-hand side > O and right-hand side < 0.
3. (d+ bi) (c+ di, = O gives ac - bd = ad+ bc = O- Hence

(a' + bl) (c2 + d,) = (ac- bd)r 4 (ad + be), = O.
Therefor€ a'+b2 = O or cr+d2 = O.

r (n
2, Circle,line, circle, hyperbola foci 1 l, conkadicts theor€m l.lo (2).
3. (iii) Combining the conjugate 2rr+zt = 3 with the original equation
wehaye z, = Z3 and then zs = l.

4. Put z+p = Z.

5. If lzl < ], then l4rz+,...+a.z"l < 2{J+...+(})"} < l.
6. Circle.

8. If there is a root with lzl = l, then 2 = llz, and so crz+bt+a = O.
Conjugate gives Zz, +62 + a = O. Combine with original equation to give

z(ab-bi)+aa-cZ = O.
For converse, write w: (6c-Ab\l@n-ca), so that lwl = t. aw+b
reduces to -cw. B\t w = |lw.
9. Roots of quadralic are t)+ 1)2 + t)a and its conjugate u.+ l' + r!. Form
sum and product.

12. Proye first for z P(z).

13. Use 12.
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2 (a)
r. t+ (- +)..
5. s" = 17111o* 11*Ur, * O,
8. If r +.r', 1uLe6= ]ls-s'1. lN. ls"-sl < e and l,ro-.r'l < efor all
,r > lV. Contr&diction.

2 (b)

&10. All false. Counterexample for 9, .r, = 2141- 1;'n.

2 (c)

2. Limit 0, aolbo, *a, -co according as p <q,p=q,p> qanda6lbg
positive, p > q and aolbo r',egfa,tiye.

2 (d)
6. By the binomial theorem

/  t \ "  . .  l . a ( z - l )  I  Ir "  =  t t+ ; ,  =  r+n :+ i i  
;+ . . .+ ; ; .

We shall prove s, increasing and bounded. The (/+ lxh term of the
bioomial expansioo, namely

|  |  l \  /  f - l \

r r . . ,  ( t - ; ) " ' ( ' - - , ' )

increases as n increases. Moreover. the number of terms increases with r.
Therefore,s. increases,

From the above expansion

s"  <  r+r+r1+{+ . . .+1

<  r+ t+ l r+  j+ . . .+ )  <  t .

By theorem 2.6, r" tends to a limit e, where 2 < e < 3.

t. a+r"(z+ 1) <fnif (n+1) <2"+', i.€. if ( l+7-9" < z which is true
ifz > 3 (proved in last exercise).

Write {h = I+r.Thenz = (l+x)" > 1++z(n- 1)xr, andso xt <2ln.
,  H e n c e  x + 0 a s n + o .
.. lt, u, = 0if x = 0 orm a positive integer. Otherwise lu.*rlu^l -+ lxl.

12. (i) 3. (ii) 1,0, -1 according as a >, -, < b.

n n(Iu, ,t d+-i > 
"" 

> , 
n, + n.

(iv) tt! > an for rr > /V; d(a!) -+ co.
(v) Method of 2 (a), 5. Limit is - t(q+ br.
(vi) Use 2 (4, r,
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2 (.,
By methods of $8, limits are

l, 4. 2. l. 3, The smaller root.
4, 2. 5. 3, but s. is undefrned if,r. = f.
6 . 2 .

7. I = r(l + l2l), if,*,-l '= u"-1,

u"*,-l = (u"-l)l@"t+ l) < (u"-l)121, 412 > 30.
a ,  t , 2 , 3 .
9. a" ) an+t ) bn+r > 6n and an+r- bn+t < ,@"- b").

Also analbor, = snb..

2U l
l .  l /zt < l/(z- l)a givcs

H l  I
' 1 '7  t  N '

Hcnce N = 10',
For t (0.99)", we have from (0 99)x < l0-.(l -0.99), N > 1376.
The serond series converges more rapidly than the first.

2. First is c.p. convergent for r > 0 to sum l*r;alsoforr = 0 to sum 0.
For thir4 if ,,

so =) zr.r,

s"(l -r) = l(l-tn)l<l-r)l-nrr.
3. Less than 3 by about 5.4x 10-11.

,  1  r l  l  r  I> '  n@+ l)  ( , t+2) = 
1\ t t (n+D- 6+Doi+rJ 

'

2 (s)
l. General. lf A, B are statements, the notation A + B me ns'lf A,
thcn B'. We say also that (i),4 implies 4 or (ii) I is a sufficient condition
for 4 or (iii) I is a necessary condition for,l.

The double-headed anow Ao B means that ,4 and , are logically
equivalent to each other, in other words: (i) lf and only if ,4, then 8;
(ii) ,4 is a necessary and sufficient condition for 8.

In the text we shall nearly always write words instead of thc symbols

In the particular examples in l, the conditions are (i) N and S, (ii) N
not S, (iii) N only ifp + 0, not ,t
2. (i) iV, not.9, (i i) E, not ,(i i i)NandS.
3. (i) a.-+i; (ii) c.r.; (iii),r, (, odd, n even); (iv) llnl < U2-r.
s. cf.2(f),s.

t73
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6. For r" < Jn+r, s€e 2 (d),6. To provc

/  l \n , /  |  \ t r+r(r-;) . (r-fr)
take  a1= 4r= . . .=  4e  =  l -0 / r ) ,4n+r  =  I  anduse

c.M. of (ar, .,., a,+J < l.v.

,n-rn = {l -(l -z-")"}/(1-tt")".

To prove numerator -+ 0, use (l - rr)n > 1-nli.

7. .r" = (- l)",. r" = (- l)" or (- l)"+1.

E. 6(rr- l)/9(n- 1)r (z+ l).

10. If r" -+ l, , satisnes ,+(l/r) = 2,4. If roots of this are real, A > l. lf
c is the larger root, r"-c : (r"a-c)!r"-rc, and induction.

11. A sequenc€ os€illating more slowly as n gets larger, like

s" = 2+sir- (, n.

If rn*t/s" -+ -|, then .r" + 0.

12, Last part, u7 < @+t u7 < (l +Dai.

13. (i) True. (ii) False; we can say only r > t. Illustration of r = t
given by -rn = s"=lln. (i i i) Falsity shown by r"=nr (r evcn),
s" = (r- l)r (z odd); then s" '+ co.

14. Write r" = (rr+s!+..,+d/2.

Given e, s-€ < sn < J+€ for r > m,

Sum from m+l to n

(z-ra) (.r-e) < ,ran-mt^ < (r-m) (r+er.

Divide by n and rearrange

I . m \ . , m I . m \ . . m
\ r - ; / ( r -€ r+ ;  

rd  <  r '  <  
\ t  

- - ,  ($+er+ ;  r i .

Kceping n fixed, we can choose ao such that the first expression is greater
than J-2€ and the last l€ss than J+2€.

so s-;l' < t. < J+2€ for r > ,ro,

15. Sum of, terms is
I -x" nxn

1 t - x y - 1 - " '

3 (r)
4. It is assumed (aDticipating chapter O that the sine is continuous. lf
x + 0, sin (l/x) is continuous by theorem 3.5, and /(.r) is the product of
two continuous fuDctions. Continuity at x = 0 follows from the definition ;
l/(x)l < e if lxl <e.
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5, If ,t - l, there is only one value of r.
lf k + I, f(x) = k eives

(l - k)x'9- (6-9k)x + 5 - l8k = 0.

This gives real r if (6-9k)r > 4(l-&) (5-18&), i.e. if 9k -t6k+16 > 0
which is true for all &.
8. (i) x- I is a common factor.
9. (i) Multiply numerator and deDominaror by J(l +r)+y'(l -.r).

(iii) Case p < c. lf q-p is even, limit + co or - co according as
aolbo > or < 0. If 4-? is odd, consider x + 0+ and r + 0- separately,
1 0 .  ( i )  W e w a n t  t  o  r \ t  1 t \

\P+" r+V) (1+:  +F,

to be as close as possible to llx for large r. Equate coemcients of l/xr
f o r &  =  0 ,  1 , 2 .  p  =  9 , q  =  I , r  - _  _ 1 .

(ii) As in (i), squaring to get rid of J. Or, anticipatilg 95.8, expand
{l + (4/x)F}.

3 (c)
1. (i) Continuous ifx is irrational.

(ii) Discontinuous for x = nn (n 4 O).
(iii) Discontinuous for ll@- a) = ntr.

2, f(x) = I -tfor0 < x < l,/(0) = 0,/(l) = I org(x) = .r(rrational),
c(r) = 1-x (x irrational).
4. g(r) of 2 is continuous for .r = 1 only,
5. l0-r. 6. (r),r(0) = 0, (iii) /(0) = c.
7. I6+d)-/(r) < tr{/(.r + 2d) -/(x)}...

I
< 2 {.^x + 2 6) -f(x)}.

w h e r e 4 <  x  c b , a <  x + 2 8  <  b .  L , e t  d  +  0  a n d  z  - +  c o .

8, Iro-xr-rl { a"-11x.- xnl.

i(*"-",-J is (absolutely) oonvergent, i.e. x" -+g.
1

16-,r(o)l = l"/(0 -.r(0)l < al(l
gives -eE < 6-l(0) < dE, etc.

4 (a)
r .  ( i )  y :4(x-2) ,y  = -4(x+2) .  ( i i ) r  =  -+.
2.  y-2= - Ix ,y-2 = ' (x+4) .
3.  y  = 3x.  s .  y  = l r -  l l+  lx+ 11.
6. (i) (a) and (6) x = integer, (ii) (6) r = l.
7. (i) Touch at (0,0), arc tan l8 at (t,3).

(ii) li at both points.
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4 (b,

9. Writep(r) = (x - a)i (x - b\t' q(r), where a and 6 are cons€cutive roots
of p(.r) = 0. Prove that, if p'(.r) = (x - d^a G - b)n-r r(x), then r(a) and
r(6) have opposite signs.
10. If r+ o,f'(x\ = 2x sin (Ux)-cos (l/x), by the rules of$2.

Ifr = 0, !r(r) -/(0))/ h = hsin(llh) -+O, siving/'(0) = 0.
Examples like this arc repestedly us€d to settle some of the I€ss €asy

questions which occur in differentiation. This one gives the answer yer to
the questioq (in geometrical language!-can a curve have a taogent at
every point and yet the direction of the tangent not vary continuously?
12. DiFcrentiate four times, using 1l and rejecting vanishing determinants.

4 (c)
1, 2,5. Put into partial fractions,

4. sin 3x sin 5.r = Xcos 2r-cos 8x), and use 3,

6. The only way of doing this systematically is to use complex partial
fractions

a  r l  I  I  \
oz a *t 

= 
li \j=-;a- lllal 

.

The zth derivative is
( - l ) ' a !  I  I  I  I--Zt 

k;=Fri-G-+ia)+i'
If r = ,v/(t'+ ar) and cos A = xh, sin 0 = 4//, the! de Moivro's

theorem (l (e), 5) giYes

(x+ ia)'*' = /"+r {cos(n + 1) d+i sin (a+ l)d},

etc. The result finally takes the real form
(- 1)' n ! /{"+D sin (a+ l)d,

whero r, A have the assigned valu€s.

4 (d)
2. Method of 4 (r), 9.

5. At most one real root ofp(r) = 0 lies betwe€n two consecutive roots of
P'(x) = o.

ln the example, if z is odd, p(x) = -(l +xi)/(l +r) < 0 for all .r.
p(x) decreases as x increases from large - to large + values. p(x) = 0
for one x.

If z is even, p'(r) < 0 if * < I, p'(x) > 0 if x > I andll) > 0.

6. Us€ first part ofs.
4 (c)

2. Limit *.
3. We may take / = 0 (and apply the special cas€ to /(r)-rr).

Given e, choose X to make lf'(x'11 < e for x > X.

f(x)-f(x) = (x - x) !'(c).
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Divide by x. Choose xr to make l/(x)l < e&. Thcn
-2e<f (x ) lx<2e i I  x>  Xr ,

4- The discontinuous /'(x) in 4 (r), 10 shows that ther€ is a fals€ step in
the argument.

4 (ft

1. Put x = tr+1,, or uso 04.9. (i) (nln) (t)^-"; (ii) *tr',

2. a+ b.
^ 3at| t(2- l3l t 3at \5 .  y - | + t " =  

i = t l  t " - I + r . , .

If this meets the curve in point with parameter r, the product ofthe roots
o f  thecub ic inz is  -1 ,  and so  a  =  r , t  o r  - l l t z .  As  t -> -1 ,  tangent
approaches the asymptote x+y+q = O.

5. (i) Maxima wherc x2-2x-l = 0, minimum at x = l. (ii) None.

6. Greatest 313 for x = +r; least 0

8. /y/dx must not change sigq, rr < 34c.

9, .y = & touches the cwe y = p(x)lq@).

10. Hemisphere.

11. Diyide lioe of ceatres in the ratio 43/! to rsir.

12. Volume is geatest when P, C, R are mid-points of BC, CA, AB.

1 3 . 0 < & < L

16, 17. Induction. 18. n = 0 and Leibniz.

19. 1 xy-a < x1 < c, f'(xr) > O.

20-22. Use $4.9. 21. (i) -1;(i i)tr. 22. ,n(n+ l).

U. I*t f'(a) = a,f'(b) = /and supposec <l < P.Wlite

s(x) = f(x)_t(x_a).
g has a minimum fol some c between a and ,, and g'(c) = 0,

5 (4)
l .  C , C , C f o r x  <  l ,  C f o r x  < 4 , C f o r x < 2 ,

5. b"lan -> @, a"+1|b" -+O,

6. lf u" = ,r-h, then 4u^ -+ I and u^nlun -+ 1,

8, (i) Z; (ii) F; (iii) F Ge€ 3).

5 (r)
2 .  k > 1 , k > o .
3. (i) None; (ii) -1.

a, O fu"| + +, therefore D; (ii) abs. C; (iii) C by rheorem 5.22.
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5 .  a = b , C .  a + b , D .
6, Sums of 5 and 6 terms are f$ and f$,
7, (i) The hypothesis in theorem 5,22 that 4o d€creas€s is omitted. To prov€
the statemeDt false, coDsider

q. = llttt+(-1)ln'

(ii) llr"l < ,{ le"l. Hencc t lr,"l conv€rg€s.

3 (c)
r. tu2uDz.
2. lzl < l l - zl.

3. (i) Theorem 5.22 to re and im parts. (ii) lr"l = 21. r-'-+ co. (iii) |l" is
lln or iln accordiag as z is even or odd.

5(A
r. (i) 1, (iD all z, (iii) 1, (iv) Q (v) 2, (vi) 1, (vii) 1, (viii) *.
2 .  a < l , C a l l z .
5 .  X >  1 , R = 1 .
6, Uso theoreor l.l0 (sum).

7. lf r> 4 radius of convergenco is r. Ur=r, any trumber > r Givc
illustrations).

E. (r-dLt = 
"-^2' ,,":.".,-z^*',- 

I ,t 1 (n+l) r|t

For lzl = I, this tends to a finitc limit,
9. X = *, If lzl = j!, modulus of nth term > 1, and so series divergss on
thc circle.

5 (c)
l. (i) C; Qi) C if c < max (r, c)i (iii) C if & > *; (ivJ C ll k > 0; (v) D;
(vi) C.

^ l l 2'' a-l- o*l 
= 

ar=i'

3 .  (n-m)u,  < i  * .3  u. .+Oasm-+@. Pot  m= *n( i f  r reven)  or
,n+l  ' '+ l

t(r + l) (if ,t odd).

4. Of tarms v,/ith m-digit d€nominators, the number remaining is 8 x 9.-1.
Sum is lese than A g 9t {F_r \8 (i+m+ lo,+...+fu:i+..., = 80.
5. Thcorem 5.7.
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6 (a)
l. II e = |fu, 111s11

^(t  - i . ! \  =,"r  i  1. l .\m o  n l l  m i t  n l  m '
and so an integer is less than 1/m. Contradiction.

2. Included in 3.
3. The argument of 2(9),6, shows that, if r > x > e

( r*1".""n"<(r- : ) -" .
(The inequalities for x < 0 will then follow by putting r = -/.)

Now we Drovc that
I r - 1 1  - "  " '
\'I 

-;/ - 
\'I 

+-/ '+ u.

|  ^ n  l t  v h - n

L.H,s. = (r +1J t(t-;) 
- rj

/ / ,rr\-r . l . 'r cxD x< exrx{(r_1J _l  =f f i
(by use of easy inequality

l l - (b/,|) l-" < (l-61-t when 0<6< l).
4, fi6) < 0 for x > 0, and so /n decreases from l- k to - k.

- r+ l - - r

h+,G) = I"U)+ttrfr. gives /"*(x") > 0.
5. 9120. 6, Descending order as given.
7. exp (r/x).

6 (D)
t '  As i ' - r  o '  

i - t  exD(r losx)- l
n=: - -__ i - * toe , .

2. The derivatives satisfy '

1 - x < ( l + x ) - r < 1 - x + x 2 .

3. yf'(xy) = /'(.r) and xf'(xy) = /'(y).
t. tt x = (y-DlQ+ l), L.H.s. = los (t +x)-loc (l -x).

5. (i) a,0; (ii) log, (alb)llog (cld). For x.> co, several cases, e.g. if
max (a, b, c, d) is a,limit is co.

6 (c)
l. Take four terms of series for cos .r when x = * and three terms when
x= t .
2. From theorem 6.81, sin.n > 0 for 0 < r < 1z and from 6.82(l),

t 2 - ?

t79
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s in r  >  O fo r  tn  <x< z .  F rom 6 .82  (2 ) ,  s inx  <  0  fo r  r  <x<2n.
So sin (x+c) = sin .r cannot be true for all .r if c < 2z'

4. (logcosay)/l-+ -rd" (e.C. by $4.9). Puty= r/a

6 (d)

1. cosh (a + r/) sinh (r + 1) P cosech /.

2. Method of $2.8.

3, Real and imaginary pa(s of geometric series lr" exp (rnd).

4. Analogous formulae valid for lrl < e-0 if 0 > O.

5. Induction.

6. (i) Use cos 3r. (ii) r+*ri+*rl.
(iii) (l-x')y'-xy' = 2. Leibniz gives

(l - xt) r{n+tt - (2n + l) xln+r't - n2lnt = O.

Putting r = 0, we obtain Maclaurin coefficients,
(iv) Method of (iii). General term is

(-l)" m(m'-12) (m'-3', .., ln'-(2t-l)1x!i+r/(22+ 1) !

(v) exp (l +2,)x - >(l +2i) x"lnl
Def inedbycosd =  l l " l5 ,  s ina=2115.
R€al part is ,5li cos n?(x"ln!).
(vi) 1-lx'+}.ll.

7 (s)

2. Take E to be left-hand end-point of 6,,

2{rrr, =,t @q*,1* 1*. - *-,,
= 4.+r(4- 1) tq{'-Dt&+l)

= ar+\q - l) (qntt+rt - lj l(fr - 1)

= (b.+r - 4!+1) (4 - l)l(f, - lr.

{s a + oo, 4 -+ I and (qr+r- 1)/(4-1) + &+1.

5. Civen €, tbere is, by definition of .I, a dissection 90 for which

J < . t ( 9 0 ) < J + e .

I-et 9o li^ave p points of division inside (a, ,). tJt I & a\y diss€ction,
with norm 6*, and 4r the diss€ction formed by all points of division of
9o arld 9.

Then (theorem '1.21) S(9) <,s(gJ. Also, since 91 is formed from 9
by, extra points of division,

s(e)-S(eJ < p(M-m)8'.

Hence S(9) < J+e+p(M-m)8'.

$3. < el(M-m)p, then J < S(9) < J+ 26.
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7 (b)

Most of the exercises in this and the next set depcnd directly on the
mcthods of $S7,7 aod 7,6.

3, In (0, +lr), sio2a-r x > sinr' r > sintd+r r,

giving I,^-t ) Ir^ > -L.+r (in fact, >).

Divide by I1.*1 and us€ (2rr+ l) ,rnrr = 2m lz^-r.

7 (c)

6. 2^rc tan {(l +r) tan lrl( l -r)}+, (r<l),

-2arc tan {(r+ l) tan lt l(r - l)} +t (r> l).

L i m i t s  r + r ( r  <  l ) ,  - z * d ( r >  l ) .  1 =  S w h e n r =  l ,

7 (d)
2, First sum lies between

[2n dx r2n )e
I --:: and | :
J n  x  t t u + r  x

sqd se + log 2. Second sum -+ 0 by theorem 5.22.

H and E follow from theorem 7.11.

7, The idea of theorem 7.ll used aod applied to an increa$ng f.

9. (i) By $6.6, ifd > 0, (log z)a/r/ + 0. Ift < l, choose d = tr(l -?), say.
E(l/n,+,) diverges. Therefore so docs

t 4 o_ 
np+, (logn)q.

Similarly, convergence ifp > 1. Ifp = l, we have 6.
(ii) (log log z)t < log n if z > no. Divergent fot aU ?.

7 <e,
6. (a) Since y' < 0, tbe curve / = log t is concrve to O-r.

(i) First inequality €xpresses that the area uDder the curve / = log r
between x = r-*, x = r+l is less than area of trapezium formed by
y - O, x = r-1, x = r*l and tangent at x = t

7U')
1. (i) d2, from theorem 7.62. (ii) l.

lu  I l
2. sU\ = (x-l) I U(A dE+ x I G-Dl@dE.

l o  I t

Using theorem 7.62
f, -  ̂ .^ tr

e'Q) = 
I u €f@ de+ J,G-rt I@ d€,.

8 ( 0 ) = 8 ( l ) = 0 .

181
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s. tDf;s;
(ii) rogl(a) = I {t* (t-)....+r"e (r*)} - 

ltorcu{t+x)dx.
6. Mcthod of 5.
7. Integrate by parts. lnduction, For last part,

I.(rtt, < I (J-x), dx < 2 aDd 6'"+rlnl ->O
l - l

qs '| .+ co, giving an integgr €qual to I fraction,

E (o)
1. No, !o, y€s,

8 (r)
1. (i) Y€s. (D lfe > l.
2. Yes, yes, no.

3. (Cf. 3 (c), 4.) If /(-r) = A for .r irrational and xi for .r rational,
f'(x) = O at x = o and /is discontinuous for all other x. To construct an
analogous function g(r, /) of two variables, de6ne g(.r,f) =/(r) if
*r+yt = 4 1'.ur1u* of rwolution),

t (c)
1. (i) 4"u"+0.a. = o,

6"u'+i.tt' = O
have solutioB othcr rhan (O 0) for Cr, C.

(ii) Multiplication of determiosnts.
2. u = f(x)+fbt), o = (x+y)l(r-xy).

3. A = |ar sin8sin C/sin,4.
,tA ,r^a

; = :=+cot 
"' 

+@t C 6c-ctr,t A tA
I t a

and tA+EB+tC = O.
4. Method of 3, AA is gr€atrst whcn

8e> Q,8b > g Ec > 0 (acute-angled),

or 8a < O,8b > Q dc > 0 (obtuse at ,{).
5. / = /(.r)+j'(u), wher€, g ar€ arbitary (difr€r€ntiablc) functions.
6 (also 7, 9). TransfomEtion as in S8.6.

rl = x+^l(f+tD, s = Au+8.
E. As in $E.6.
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8 (d)

l Put -cos (8+C) for cos l. Necesary condition for turning value is
.8= C. Maximum of -cos 2r+ 23lt cos I given by I = +2.
2. (i) Maxima at (t '4, + +ll).

(ii) f" = f" = 0 at (0, 0) This is not a maximum or minimum
because, near (O, O), f < 0 between the parabolas y2 = x, 2f = x ard,
> 0 elsewhere.

3. (0,0).

5. Mcthod of 6.

6. dx, 8y, dz, 6l? satisfy (approximaiely)

f" 6x +f' 3r + f,6z + f" 3w = O
and similarly for g.

Puf 6/ = 0, solve for dz/r.r and let 0r + 0.

183
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aggtegate, 4
d'Alembert's test, 88
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altemating series, 9l
analysis, 2
approxihatioo: by pobnomials, ?8;

to integrals, 145
approximative gunrs, upper and lower,

120
area, l19
axiom, l l ,  18

binomial series, 102
bisection method, 59
bound, bounded, 13, 53, 57

Cauchy: inequality, 17; mean value
theorem, 76; remainder in Taylor's
theorem, 82; test fot coovergence,
88

circle of convergence, 97
class, 4
closed, 13
comparison priociple, 88
complete, 12
complex, 18
conditional convergencc, 92
conjugate, 20
continuous,5l,  lJj
convergent, 38
codespoodence, 4E
cut, 8

Darboux, 87, 125
Dedekind,8
dense, 6
derivativo, 65
discontinuous, 53
diverg€nt, 39
differentiable, 65, t56
dissection, 119; norm, I  19
domaiD, 151

e, 33, 108
empty set, 4
Eule!: Euler's constant, 142; theorem

on homogeneous functions, 160
exponential function, 105

6eld, l0
6oite, 4
fuDction, 2, 47

Causs, 8
geomet o series, 39
geometry, 2
gFph, 26, 36, 50

homogeneous function, 160
hyperbolic function, I 17

implicit functions, 166
Increasrng, Jl ,  /J
indeterminate forms, 82
induction, 5
inequality, 17
infimum, 16
infinite, 4; series, 38
infinity, 27
integer, 4
integal: 119; inf ini te, l . l8
integration: by parts, 130; by substi-

tution, 130; by reduction formulae,
1 3 3

interval, 13
invelse function, 62, 69
irrational, 7; indices, 108

Jacobian, 16l

Lagraoge's remainder io Taylor's
theorem, Sl

Landau,4
leap, 60
Leibniz's theorem, 73
l imit,  t ,25, 49
logarithmic: function, ll0; series, tll

Maclaurin: Maclaurin's tbeorem, 79
-Cauchy jnte$al theorem, l4l

magnitude, orde. of, 107
mapping, 47
maximum, 77, 80, 164
meaD value theorem, 75
minimum, 7?, 80, 164
modulus, l9
de Moivre, l9
monotonic, 3l



Newton's method ofapproximrtion, 86 sequenc!, 23

186

rccessary condition, il4
neighbourhood, 52

numbgr, 2

open, 13
order, 5
oscillat , 28

phas€, 19
po$€r s€rie€, 96
principal value, 19

INDBX

46
Schwarz's inequality, 128

8€t, 4
. Simpsoo's rule, 146

StirliDg's formula, 148
sufrcient cotrditior, /|4
rupremum, 15

r, ll4, 136: irratiomlity of, 150 Taylor's serios, 101
partial differedtiation, 153 Taylor's theorenl 79: with intcgral

proportional p4rt3, 86
PythagoBr, 7

quateraion, 2l

radius of convcrgcnoc, 97
ratiolal, 5
real number, 10
rgarrangement of seri€s, 93 Wallis's product for z, 134
recurr€nce rclation, 34
repeated limit!, 105 Youog's oean value theorem, 80
Rolle's theorgE, 73

remaioder, 130; for two variables,
163

TbuNton, 4
tarsformatio!, 47
trigolomctric functions, 112: itrverse,

116
trigonometry, 3
turoirg valuc, 77

uniform contitruity, 60
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