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PREFACE

This course of analysis is intended for students who have a
working knowledge of the calculus and are ready for a more
systematic treatment. Only a quite exceptional mathematician
will then be mature enough for an axiomatic development of
analysis in metric spaces, and he can be left to teach himself.
The others normally follow a straightforward course based on
the idea of a limit, and this book is an attempt to provide such
acourse. I have stopped short of Cauchy sequences, upper and
lower limits, the Heine-Borel theorem and uniform convergence;
in my experience many men understand those topics more
readily if they are left to the next stage.

I am indebted to Professor G. II. H. Reuter and to Dr H.
Burkill for their careful scrutiny of the manuscript.

1..C. B
September 1961



1
NUMBERS

1.1. The branches of pure mathematics

This is a text-book of mathematical analysis. Tt is necessary
first to say what is included under this heading. To this end we
start with a short survey of the branches of pure mathematics.
We are not concerned with mechanics or any other application
of mathematics to natural science.

Mathematics as taught to the middle and upper forms of
schools includes arithmetic, algebra, geometry, trigonometry
and the calculus. No hard and fast boundaries are set up be-
tween these subjects and to solve a problem a student may
employ ideas and methods from any of them.

A distinguishing feature of the calculus is that it rests on
limiting processes. The gradient of a curve at a point P is the
limit of the slope of a chord PQ as O approaches P along the
curve. In symbols, if the equation of the curve is ¥ = f(x), then
the gradient is the derivative, dy/dx or Sf(x), defined by

@ = lim BRI

The integral calculus also rests on the notion of limit, A basic
problem of it is the calculation of an area bounded by a curved
line. The only way in which such an area can be evolved from
the areas defined in geometry is as the limit of the areas of
polygons which approach the curve.

The idea of a limit is also encountered in the chapter of
algebra on progressions, where it is seen that certain geometric
progressions can be summed to infinity. In a well-defined sense
which is easy to grasp, the unending series

+i+4+..,
whose nth term is 2", has sum 1. This means that we can make
the sum of » terms as near to 1 as we like by taking n to be a
sufficiently large number.
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The notion of a limit rests on that of a function. The curve of
which we were finding the gradient was specified by the function
J(x). The sum s,, of the first #» terms of the geometric progression
1is expressed as a function of n by

Sy =1=-2"

The idea of a function in its turn rests on that of number. The
equation y = f(x) of the curve expresses a connection between
the number x and the number y. The sum s, of the geometric
progression depends on the number # (which does not vary
continuously as the x can do but is restricted to be a positive
integer). ’

1.2. The scope of mathematical analysis

We can now describe mathematical analysis as including those
topics which depend on the notion of a limit. Thus it includes
the differential and integral calculus, and you may ask whether
a new title is necessary; does not the calculus adequately specify
the subject matter? In a sense it does, and it is mainly by usage
and tradition that analysis has come to denote a rather more
formal (or more ‘advanced’) presentation, with greater atten-
tion to the foundations and more insistence on logical de-
duction. The use of the word analysis has the advantage of
clearly including the summation of infinite series (which the
schoolboy would reasonably regard as algebra rather than
calculus). )

Operations which are complete in a finite number of steps,
such as the evaluation of a determinant, belong to algebra, not
to analysis. The binomial theorem is a theorem of algebra
if the index is a positive integer; otherwise it belongs to
analysis.

Geometry is a subject, separate from analysis, developed from
its own axioms. Its only impact on analysis is that we shall often
find it suggestive and helpful to use geometrical language and
illustrations.

In the light of what we have said the subject trigonometry is
seen to fall into two parts. The solution of triangles, ‘height and
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distance problems’ and the properties of trigonometric func-
tions needed for them form a kind of practical geometry.
Results like =
sSin x = x—§+§—-...,

which every one will recognise as being more exciting, belong
to analysis. After a first course in trigonometry, the viewpoint
must be changed. The sine and other trigonometric functions,
originally defined as ratios of lengths of lines, are seen to be
highly important functions of analysis, and the sin x should be
defined in terms of the variable x by the infinite series as it will
be in chapter 6 of this book.

Some knowledge of the trigonometric functions (and the ex-
ponential and logarithmic functions too) will be useful in earlier
chapters, but for the sole purpose of giving variety to the
examples. All references to the functions before chapter 6 could
be removed without affecting the sequence of theorems.

1.3. Numbers

We have seen that the logical order of development of mathe-

matical analysis is
Number

Function

Limit

Infinite series Differentiation Integration

where the blank spaces in the last line can be filled by limiting
processes other than those already mentioned.

The first topic for investigation is number. When treated
exhaustively this is a difficult subject, with problems which have
roots both in mathematics and in philosophy. As this is a first
course in analysis we shall keep the discussion of number as
simple as we can, so long as it gives a firm foundation for the
structure of later definitions and theorems that will be set upon
it. The reader who wishes to go more deeply into the idea of

I1-2
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number may consult H. A. Thurston, The Number-System
(Blackie, 1956); or E. Landau, Foundations of Analysis (Chelsea
Publishing Co., 1951).

Sets. Before embarking on a discussion of number, we must
say what is meant by a set. We often have to envisage all those
persons or things having some assigned characteristic in com-
mon. Illustrations are: (i) all males of British nationality who
are at a given time at least 18 years and less than 60 years old,
(i) all mountain-tops on the Earth over 10,000 feet high, (iii) all
positive integers, (iv) all equilateral triangles in a given plane.
Such collections determined by some defining property we shall
call sets. The words class and aggregate are also used with the
same meaning. We emphasise that a set is known without
ambiguity whenever the rules defining it enable us to say of any
proposed candidate whether it is or is not a member of the set.
For instance, some readers are included in the set (i) and others
are not, but the rules are clear and no one is left in doubt.

The examples (i)-(iv) illustrate the distinction between finite
and infinite sets. The sets (i) and (ii) are finite; with sufficient
knowledge and patience a complete list could be provided of
the members of each of them. The sets (iii) and (iv) on the other
hand are infinite; in (iii), however many positive integers we
write down, there are more to follow.

A defining property may be proposed which is not possessed
by anything. The corresponding set then has no members; it is
empty (or null). The sets of mountains on the Earth over
30,000 feet high or of real values of x satisfying x2+1 = 0 are
empty.

Integers. We take for granted the system of positive integers

1,285,

stressing only those facts which are the most important for
further extensions of the number-system.

Positive integers a, b can be added or multiplied and there
are positive integers ¢, d such that

a+b=c and ab =d.
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The integer 1 has the property that, for every positive integer a,
l.a=a.l =a.

The integers have an order expressed by < or >.
The letter n will always denote a positive integer.

The principle of induction. If a statement P(n) is

(i) true forn =1,

(ii) true for n+1 whenever it is true for n,
then it is true for every positive integer n.

The principle of induction is often useful as a method of
proof (see exercises 1(a)).

We have mentioned addition and multiplication of positive
integers; we turn to subtraction, and afterwards to division.

In the system of positive integers the equation

a+x =5

can be solved for x only if a < b. Ifitis to have a solution when
a =b or a > b we must introduce zero and the negative in-
tegers. We shall then have widened our number-system to con-
tain all integers, which can be arranged in order

iy, =2, —1, 0 1, 253 N0
Rational numbers. If a and b are integers, the equation
bx = a

is not in general satisfied by an integral value of x. If this
equation is always to have a solution (b not being 0) we must
widen the system to include rationals a/b. In the system of
rationals the operations of arithmetic are straightforward and
familiar to the reader.

A relation of order naturally suggests itself for the rationals.
Supposing that b and d are positive integers we define

d.C
b~ d
to mean ad > be.

Between any two rationals there is another (and, hence, in-
finitely many others).
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To prove this, we remark that, if b and d are positive integers,

the rational
a+me

b+md

lies between a/b and c/d for any positive integer m.
We may describe this property of the rationals by saying that
they are dense in any interval.

Exercises 1 (a)
Notes on these exercises are given on p. 170.
The method of induction may be used for 1-6.

1. E r’ in(n+1) (2n+1), where E r' means 12422+ ... +n?,

2. 1'+3345 4+ @2n—-12 = ?

3. 1.143.245.224 ...+ (2n+1)2" = A+ (B+Cn)2", where 4, B and C
are constants (not depending on n) to be found.

4. Z X ] 1
S 1P T =y =™

5. 2">niftn>9,
6. 5*"—6n+8 is divisible by 9.

7. If b, d, q are positive integers and

a2
575G >d’

prove that positive integers m, n can be found such that

p _ ma+tnc
q mb+nd’
Construct a numerical example and solve it.

8. The density property of the rationals amounts to saying that there is
no rational which is next to another. Observe the following plan of
arranging the positive rationals (not in order of magnitude) which does
assign a definite place to each

'}; %- i; ’}D %i i‘; %l %I 3‘; %; {': vees

Prove that p/g occupies the {}(p+g—1) (p+g—2)+4g}th place. (Each
rational occurs infinitely often; e.g. 1 appears as 1, %, 3, ....)
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1.4. Irrational numbers

It was realised by the Greeks more than 2000 years ago that
there is an incompleteness about the system of rational numbers.
The diagonal of a square with sides of unit length has alength
which is irrational. In algebraic language, the equation for x

x2=q

has a rational solution only for exceptional values of the rational
number a (for example, 4 or 4/9) and is not so soluble if, say,
ais 2 or 3 or 5/9.

The first theorem of the book will be a formal proof that the
square root of 2 is irrational. According to our criterion of
§1.2, it is really a theorem of algebra rather than of analysis.
But it earns its place, first, by its historic interest—it was proved
by Pythagoras or one of his school—and secondly, by the neat-
ness and economy of its argument.

Theorem 1.4. No rational number has square 2.

Proof. Suppose, on the contrary, that the rational a/b has
square 2, where a and b are integers having no common factor.
R @ = 2,

Since 2 divides a?, the integer @ must be even.

Write @ = 2¢, where ¢ is an integer. Then

e~ = bY,

Then 2 divides 5% and so b must be even.

Thus a and b both have the factor 2, which contradicts the
hypothesis. | (We use this thick vertical stroke sometimes to
denote that the proof of a theorem is complete.)

We have so far presented only the simplest specimens of
numbers which are not rational. We add others which are less
simple.

() x is the positive number which satisfies the equation

X¥e= el

(It is possible to prove that there is just one such x.) By
methods of the theory of equations, x can be expressed in terms
of cube roots of rational numbers.
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(ii) x is the positive number which satisfies the equation
x5 =x+7.
We might expect that x could be represented by some com-
bination of roots of rational numbers, perhaps fifth roots. But
this is not so. A difficult theorem of algebra shows that roots
of equations of degree higher than four cannot generally be
so expressed.

(iii) The number m, the ratio of the circumference of a circle
to its diameter.

A method of proving that = is irrational is outlined in
exercise 7(f), 7. It can be proved (by a more difficult argument)
that 7 does not satisfy any algebraic equation with integer
coefficients. So it is a number which is, in a sense, even less
easy to grasp than those in (i) and (ii).

Exercises 1 (5)
Notes on these exercises are given on p. 170

1. Adapt the argument of theorem 1.4 to show that no rational number
has its cube equal to 16.

2. Extend the result of 1 to show that a rational number p/g in its lowest
terms can be the cube of a rational number only if p and g are cubes of
integers. e

3. Prove the more general theorem (Gauss, 1777-1855) that, if py, ps, ..., Pn
are integers, the only possible rational roots of the equation
X"+ p X" 14 pe x4+ pa = 0
are integers which divide p,,.
4. Solve the equations:
x{—x?—16x*+4x+48 = 0,
4x*—8x*—3x+9 = 0.

1.5. Cuts of the rationals

In §1.4 we showed the need of completing the number-
system by ‘filling the gaps’ which occur among the rationals.
It is possible to give different constructions for filling the gaps;
we follow the procedure of Dedekind (1872).

Before stating it in general terms, we think it helpful to show
how a particular irrational number, say 4/2, is fitted in among
the rationals.
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In trying to isolate a number whose square is 2, we first
observe from theorem 1.4 that the positive rational numbers fall
into two classes, those whose squares are less than 2 and those
whose squares are greater than 2. Call these classes the left-
hand class L and the right-hand class R, corresponding to their
relative positions when represented graphically on a horizontal
line. Examples of numbers / in L are 7/5 and 1-4!, and of
numbers » in R are 17/12 and 1-42. The reader will convince
himself that any r is greater than any / and—with a little more
thought—that there is no member / of L which is greater than
all the other members and there is likewise no r which is the
least member of R.

The statements in the last paragraph become more concrete
if we use the arithmetical rule for square root to find, to as
many decimal places as we please, a set of numbers /

1, 1-4, 1-41, 1-414, 1-4142, ...,

each of which is greater than the preceding (or equal to it if the
last digit is 0) and each having its square less than 2. More-
over, the nuinbers got by adding 1 to the last digit of these
numbers / form a set of numbers r

2, 1-5, 1-42, 1-415, 1:4143, ...,

each having its square greater than 2 and each less than (or
equal to) the preceding.

If now we are given a particular rational number a whose
square is less than 2, we shall by going far enough along the
set of numbers 1, 14, 1-41, 1:414, ... come to one which is
greater than a. (Alternatively, this can be proved by the method
of exercise 1(c), 1.)

If, then, we are building up a number-system starting with
integers and then including the rational numbers, we see that
an irrational number (such as 4/2) corresponds to and can be
defined by a cutting of the rationals into two classes L, R of
which L has no greatest member and R no least member. This is
Dedekind’s definition of irrationals by the cut.
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Exercises 1 (c)
Notes on these exercises are given on p. 170.

1. Prove that, if m/n is an approximation to .2 from below, then
(m+ 2n)/(m+n) is a closer approximation from above. Hence write down
approximations to 4/2, obtaining two which differ by less than 1/10,000.

2. Find similarly approximations to /3.
3. Prove that, if @, b, ¢, d are rational and
a+4b = c+.4/d,

then either (i) @ = ¢, b = d, or (ii) b and d are both squares of ra_xtiona]
numbers.

4. Prove that, if a, b, ¢ are rational and
a+by2+ef3 =0,
then a=b=c=0,
5. If a, b, ¢ are rational and
a+by2+cy4 =0,
what conclusion can you draw?
6. If a, b, ¢, d are rational and x is irrational, in what circumstances is

ax+b
cx+d

rational?

1.6. The field of real numbers

In §§1.3-1.5, starting from integers, we have sketched the
building-up of the system of real numbers. To fill in all the
detail could be a term’s work. We should have to prove that
the numbers obey the familiar rules of algebra, of which

a(b+c) = ab+ac

is one instance. Any reader who would like to amplify this
cursory treatment of the subject should consult one of the books
mentioned in §1.3.

Our plan at this stage is to make a list of the basic properties
which the real numbers satisfy. As we offer no proof of these
properties, we treat them as axioms. They fall naturally into
three sets covering respectively algebraic manipulation, order
and completeness.
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The reader who is studying modern algebra at a similar level
to this course of analysis will find there that the first set of
axioms are those which define a field.

A system, in algebra, means a set of things or elements,
together with operations on them. A field, denoted by F, is
by definition a system whose elements a, b, ¢, ... are subject to
two operations -+ and x, satisfying the following algebraic
axioms Al-11:

Al. Every two elements g, b in F have a sum a+b in F.

A2. a+b =b+a.

A3. (a+b)+c = a+(b+o).

A4, There is an element O in F such that 0+a = a for
every a.

A5. Forevery ain F there is x in F such that a+x = 0. We
write —a for this (unique) x.

The axioms A6-10 which follow are the analogues for the
operation x of A1-5 for +.

A6. Every two elements a, b in F have a product ax b in F.
Following ordinary usage we can generally shorten a x b into ab.

AT7. ab = ba.

A8. (ab)c = a(bc).

A9. There is an element 1 in F such that la = a for every a.

A10. For every a in F except O there is y in F such that
ay = 1. We write 1/a for this (unique) y.

The final axiom A 11 links the two operations +, x.

All. (a+b)c = ac+be.

From the axioms A1-11 the familiar rules of manipulation of real
numbers can be deduced. As illustrations, we give proofs of three.

(i) For every a we have 0a = 0,

Proof. la+0a = (14+0)a (All)

= la (A2,4).
Again, from (A2, 4), Oa="0:
(i) The cancellation law. If ab = ac and a + 0, then b = ¢.

Proof, 5 (é a)b (A10) }r(ab) (A8)

1l

(éa)c (AB) =c

:; (ac) (given)
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(iii) *Two minuses make a plus’. (—a)(—b) = ab.

Proof, ab+a(—b) = a(b+(—b)) (All)
=gdi=0.

Similarly (—a)(—b)+a(—b) = (—a+a)(—b) =0.

From AS, ab = (—a) (—=b).

In a general field there is no relation of order by which we
can say that, of any two elements, one precedes the other.
Since the field of real numbers does possess an ordering relation
(that of >), we add now the relevant axioms O for an ordered
field:

O1. For every a, b in F one and only one of

a>b, a=b Db>a
is true.

02. Ifa>bandb > ¢, thena > c.

03. Ifa > b, thena+c > b+ec.

04. If a > b and ¢ > 0, then ac > be.

From our knowledge of the rational numbers we see that the
axioms A and O are appropriate to them and that they form an
ordered field. Observe that the integers do not form a field,
because they do not satisfy A 10.

To lay down a set of axioms for the real numbers, as distinct
from the rationals, we must add one expressing completeness,
in the sense that the gaps among the rationals are filled.

The axiom of completeness, which we shall state in the form
due to Dedekind, is necessarily more intangible and abstract
than the axioms A and O. You should read it now and turn
back to study it again when it is used in proofs of theorems

(e.g. 1.8).

Dedekind’s axiom. Suppose that the system of all real numbers
is divided into two classes L, R, every member I of L being less
than every member r of R (and neither class being empty). Then
there is a dividing number & with the properties that every number
less than & belongs to L and every number greater than & belongs
to R. The number & itself may belong either to L or to R. If it is
in L, it is the greatest member of L, if it is in R, it is the least
member of R.
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Such a division of the real numbers into two classes by
means of some rule is called a Dedekind cut.

1.7. Bounded sets of numbers

Consider the following sets of real numbers:

(1) All prime numbers.

(2) All positive integers less than 1000.

(3) All integers greater than 1000 which are perfect squares.

(4) All rational numbers x such that I € x < 3.

(5) All real numbers x such that 1 < x < 3.

(6) All real numbers x such that 1 < x < 3.

Observe that these sets are infinite with the exception of (2)
which has a finite number, 999, of members. Examples (1) and
(3) might give an impression that an infinite set has to contain
members which are large numbers; examples (4) to (6) would
correct this false impression.

The sets (5) and (6) are of an important and simple type, and
each is called an interval. The former, in which the end-points
1 and 3 are members of the set, is a closed interval; and the
latter, in which the end-points are excluded from the set, is an
open interval. An interval @ < x € b or a < x < b will often
be written (a, b).

Some writers use distinctive notations which show whether an interval
is open or closed, e.g. (@, b) for an open interval and [a, 6] for a closed

interval. We shall not adopt any such convention in this took, but the
reader may do so if he wishes.

An interval (a, b) will be called a finite interval. The set of x
for which x > a form an infinite interval.

The greatest and least numbers of a set. 1f S is a set consisting
of finitely many different real numbers, plainly there is one
member of the set which is greater than all the others and one
member which is less than all the others. Convenient abbre-
viations for these greatest and least numbers are max and min.

Illustration. If S consists of all three-figure even integers, max S is
998 and min S is 100.

If now S is a set with infinitely many members, there may or
may not be a member of S which is greater than all the others



14 NUMBERS [1.7

(or one which is less than all the others). We illustrate by
examples.

(1) If S is the closed interval (—1, 1), i.e. the set of x for
which —1 < x < 1, then the number 1 is greater than all the
other members of S.

(2) If Sis the open interval (—1, 1), i.e. the set of x for which
—1 < x < 1, there is no member of S which is the greatest.
If k& is any member of §, then £ < }(1+k) < 1 and §(1+k) is
a member of S greater than k.

(3) If S is the set of integers which are perfect squares, i.e.
1, 4,9, ... there is a least member but no greatest member.

Definitions. Let S be a set of real numbers. If there is a
number K such that, for every member x of S,

X< HK

we say that S is bounded above. K is called an upper bound of S.
Similarly, if there is a k such that x > k for every x in S, then
S is bounded below, and k is a lower bound of S.
If S is bounded both above and below we say simply that it is
bounded. A set which is not bounded is called unbounded.
Hllustrations. (1) Any finite set .S is bounded; and max .§, min .S can be
taken as upper and lower bounds.
(2) The set of numbers, j
123 88
243 4 S REdt o
where n takes all positive integral values, is bounded. The number 4 (or
any smaller number) serves as a lower bound, and 1 (or any greater number)
as an upper bound. Note carefully that the set has no greatest member.

(3) The set —1, —4/2, —4/3, ..., —4/n, ... is bounded above but is not
bounded below. ;

If K is an upper bound of a set S, then any number greater
than K is also an upper bound. If all that we desire to assert is
the boundedness of a set, one upper bound is as good as another.
If we want to make the sharpest possible statement, confining
the set as closely as we can, we shall aim at choosing the /east
upper bound, i.e. a number K which is an upper bound but such
that K—e (where ¢ is any positive number however small) is
exceeded by some member of the set S. Similarly we should
seek the greatest lower bound.
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We shall prove in §1.8 that, if a set S is bounded above, it is
always possible to make this most economical choice of an
upper bound. -

Hlustration. In (2) above, 1 is the least upper bound. Any number less
than 1 is exceeded by the member »n/(n+ 1) of the set if n is large enough
(e.g. the number 0:99, less than 1, is exceeded by n/(n+ 1) when n > 99).

1.8. The least upper bound (supremum)

The next theorem is one of the foundation-stones of analysis
and, in any orderly development of the subject, it must be
found near the beginning. The reader should master its meaning
and should test its truth by constructing for himself examples
(such as those at the end of this section). If he finds the proof,
based on Dedekind’s axiom, natural and comprehensible, so
much the better. If he finds it more difficult to follow than the
arguments that he has so far encountered in mathematics, he
need not be disheartened, but should read the succeeding
chapters and return later to a study of the foundations.

Theorem 1.8. If S is a (not-empty) set of numbers which is
bounded above, then of all the upper bounds there is a least one.

Proof. Divide the real numbers x into two classes L, R by
these rules.

Put x in L if there is a member s of § such that s > x.

Put x in R if, whatever member s of S is taken, s < x.

Then every x goes either into L or into R. Moreover, neither
L nor R is empty. For, if s is some member of S, then (say)
x =s—11isin L. And, since S is bounded above, any upper
bound K, for which s < K for all s, is in R.

Any [ of L is less than any r of R. For there is some s which
is greater than /, and this s is less than or equal to r.

By Dedekind’s axiom there is a dividing number £ such that,
for every positive ¢, E—eisin L and £+¢in R. In the Dedekind
axiom, £ itself may belong either to L or to R. We shall prove
that, in the present application, £ belongs to R.

Suppose, if possible, that & belongs to L. Then there is a
member s of § with s > &.

The number 4y = i(s+ &) satisfies s > 9 > £: » is in R since
it is greater than the dividing number £. So s < # by the rule
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for R. This contradicts our earlier inequality s > 1] So £
belongs to R.

We have proved that £ satisfies

(1) s < & for every sin S.

(2) £— e being any number less than £, there is an s for which
s> E—e.

The property (1) shows that £ is an upper bound of S, and
(2) that it is the least upper bound. The theorem is proved.

Hlustrations. (1) Let S be the rational numbers x for which 0 < x < 4.
Then % is the least upper bound. It is also the greatest member of §.

(2) Let S be the rational numbers x for which x? < 2, The number /2
is the least upper bound.

The least of the upper bounds of a set is so vitally related to
it as to merit a name of its own. Some writers call it the upper
bound (distinguished from the indefinite ‘an upper bound’);
others use the initials Lu.b. A term which is expressive and
concise is supremum, abbreviated sup. We can sum up as
follows.

Definition. If, given a set of numbers S, there is a number K
such that

(1) s < K for every sin S,

(2) for every positive €, there is an s in S for which

s> K—e,

then we write K = sup S.

Theorem 1.8 proved the existence of K when the set S is
bounded above.

By reversing inequality signs, we set up an analogous theory
of lower bounds and the greatest of the lower bounds (the
infimum, abbreviated inf).

Definition. If, given a set of numbers S, there is a number k
such that
(1) s = k for every s in S,
(2) for every positive ¢, there is an s in S for which
§ < k+e,
then we write k£ = inf S,

A set S which is bounded below can be proved to have an
infimum.
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Exercises 1 (d)
Notes on these exercises are given on pp. 170-1.

Note. The relations of inequality in exercises 5-8 are repeatedly useful in
analysis and it pays to be familiar with them. They may already be known
to the reader as results in algebra. Proofs are given on pp. 170-1.
1. If @ and b are numbers, and

a< b+-1'

n

for every positive integer n, prove that a < b.

The same is true if, in place of 1/n, we write €, where € can take every
value greater than 0.

2. Let 4 and B be two bounded sets of real numbers. Let 4 v B denote
the set of all numbers which are in 4 or in B (or in both). Prove that

sup (A v B) = max (sup 4, sup B).

Is there any corresponding result for 4 n B, the set of numbers which
are in both 4 and B?

3. Let A and B be bounded sets of real numbers. Let C be the set of all
numbers ¢, where ¢ = a+b and a is any member of 4 and b any member

fB P
> Eye e sup C = sup A+sup B.

Is there a corresponding result for the set D of numbers d where d = ab?

4. What are the sup and inf of the set of numbers 2-™+ 3-", where m and
n take all positive integral values?

5. (The inequality of the arithmetic and geometric means.) If ay, ay, ..., a,
are positive and
s ata+...+a,

G =Ndds s aL
then A= G,
with equality if and only if the a, are all equal.

6. (Cauchy’s inequality.) For any two sets of real numbers ay, ay, ..., a,
bay «oes by £

A O Byt (Sa,b) < (Zad) (T5Y)
with equality if and only if there are constants k, / such that ka, = Ib, for
all r (i.e. if the a, and b, are proportional).
7. If a > 1 and r, s are rationals with » > s > 0, then

a—1_ a'—1
> c

r s

8. Ifa<landr,sareasin7,

1—a 1—a*
—_—<
r K}
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1.9. Complex numbers

The system of real numbers is comprehensive enough to
carry very many theorems of mathematical analysis. It may be
asked what we should miss by not admitting at any stage
numbers other than real numbers. In answering this question
it is customary to point out that some quadratic equations, of

which the simplest is
x*+1 =0,

have no roots in the system of real numbers. This is a depri-
vation rather than a disaster. It is indeed satisfying that the
introduction of complex numbers enables us to prove the
theorem that every algebraic equation has a root. But an even
more cogent case for admitting complex numbers rests on their
bringing to light close connections between some of the most
common functions of analysis, the exponential function on the
one hand and the trigonometric—sine and cosine—on the other.
If the variables are real these functions are for ever unrelated.
The case for including complex numbers in ordinary analysis
is finally won by the beauty and generality of some of the later
theorems which are based on them (beyond the scope of this
course).

We now sketch a method of introducing complex numbers
into analysis. We can extend the field of real numbers by
adjoining one or more new elements which are combined with
the original members of the field by the operations + and x in
accordance with the axioms A. The new element which must
be adjoined to yield complex numbers is i/, where i by definition
satisfies i+ 1 = 0. The numbers a + bi, where a and b are real,
which are elements of the extended field are added and multi-
plied in accordance with the algebraic axioms A1-11. The
number a+0i behaves in every respect like the real
number a.

No axioms of the type O (order) hold in the extended field.
It is not possible to arrange complex numbers in an order of
magnitude in the way that real numbers can be so arranged.



1.9] NUMBERS 19

Exercises 1 (e)
Notes on these exercises are given on p. 171.
1. Prove from the axioms that, if @, b, ¢, darereal and a+ bi = ¢+ di, then
a=cand b =d.
2. The inverse (A10) of a+ bi is (a— bi)/(a®+ b provided that a and b
are not both 0.

3. Prove that, if the product of two complex numbers is zero, at least one
of them is zero.

4. From the addition formulae for the cosine and sine deduce that
(cos@+isinf) (cosg +ising) = cos(G+ @)+ i sin(f+ ¢).
5. By induction or otherwise prove de Moivre's theorem
(cosf+isin@)" = cos nf+ i sin nd.

6. Extend de Moivre's theorem taking the index to be (i) a negative
integer, (ii) a rational p/q.

1.10. Modulus and phase

The usual notation for a variable complex number is
z = x+yi, where x and y are real. We remarked in §1.2 that
geometrical illustrations often help in analysis. The geometrical
representation of complex numbers is particularly suggestive.
Taking a plane with a pair of rectangular axes Ox, Oy, we repre-
sent the complex number z = x+y/ by the point whose co-
ordinates are (x, y). The number x is called the real part and y
the imaginary part of z, written

x =718z y=imaz

The main advantage of this representation is that the sum of
two complex numbers z; and z, corresponds to the point P
where the vector OP is the sum of the vectors from O to the
points representing z; and z,.

If z = x+yi, the positive number r = ,/(x%+ »?) is called the
modulus of z, written |z|. The angle 0 such that cos 6 = x/r and
sin @ = y/r, where r # 0, is the phase of z, ph z; some writers
call it amplitude or argument. The angle 6 is indeterminate in
the sense that any multiple of 27 can be added to it. It is often
convenient to have a principal value of the phase, and this is
defined to be the value of @ such that —7 < & < 7. Thus

z = x+yi = r(cos 8+1isin 0).
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The numbers x+ yi and x— yi are called conjugates and de-
noted by z and z. Observe that the sum and the product of
two conjugate complex numbers are real, and also that

77 = 2|

Theorem 1.10. (Modulus of product and sum).
Ifz = x+yiand w = u+vi, then

M) |zw] = || v}
@) |z+w| < |z| +|w|,

and the sign = holds if and only if the phases of z and w are the
same (or differ by a multiple of 2m).

Observe that the geometrical counterpart of the sum-
theorem is that one side of a triangle is less than the sum of the
other two. We must of course give an analytical proof.

Proof. (1) To prove the statement about the product zw, we

have Lz = (zw) @) = (22) W) = |22l

and taking the square root gives the result since all the moduli
are positive.

@) |z4+w|? = (z+w) (Z+W)

= z."z+.(zW+wE)+va“

= |z]2+2 re (zW) + |w|2
Now —|zw| < re (zw) < |zw]

and re (zw) = |zw| if and only if zw is real and. positive, i.e.
if z and w have the same phase . So |[z+w| < |z|+|w|, and the
sign = holds if and only if z and w have the same phase. |
Further extensions of the number-system ? The reader may well
ask whether it will be profitable to extend the notion of number
beyond that of complex number.. As the space in which we
move has three dimensions it is tempting to suppose that the
mathematical description of natural phenomena could make
‘good use of numbers of the form x + yi + zj, where x, y, z are real
cartesian coordinates and j is some element which, like i, can
be adjoined to the field of real numbers. The answer turns out
to be that, extensions, though possible, are not useful. The price
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to be paid in extra complexity and loss of desirable properties
is too high. We already paid the price of sacrificing the order
relation in the step from real to complex numbers. A further
step would in fact lead us to the system of quaternions of the
form x + yi + zj + wk; these numbers have some interesting pro-
perties but they have the heavy disadvantage of not obeying
the commutative law of multiplication ab = ba.

Exercises 1 (f)
Notes on these exercises are given on p. 171.

1. Taking a simple value of z (such as 2+ i), mark in a diagram the points
representing z+ 1, 2z, iz, 1/z, z, z+z, zz.

. t loci
2. What are the loci o R A T

for the pairs of values (k, ) = (0, 2), (1, 0), (2,0), (1, 1), (1,3)? How is
each locus related to the points z = 1,z = —1?

3. Solve the equations: ) 2% = 28496/,

(i) z22—32+2=0,
(iii) 2z2°+2° = 3.

4. Prove that the roots of
28+ 3pz®+3gz4+r =0

form an equilateral triangle if and only if p? = q.

5. Prove that, if |a,| < 2 for 1 < r < n, then every root of
l+ayz+...+a,z" =0

has modulus greater than 1.

6. If a and c are real, what is the locus
azz+bz+bz+c = 07

7. On the sides of a triangle Z, Z, Z, are constructed isosceles triangles
Z, 2 W, 23 Z\ Wy, Z, Z, W,, lying outside the triangle Z, Z, Z,. The angles
at W,, W,, Wyare all 27/3. Prove that the triangle W, W, W, is equilateral.
8. Let a + 0 and aa # cc. Prove that a root of

az*+bz+c =0
has modulus 1 if and only if

|ab—be| = |aa—cel.
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9. If v is a complex root of x’—1 = 0, express the other six roots in
terms of v. Find a quadratic with real coefficients having a root v+ v®+v*,
Prove that e

CO! 11-—C:()>.". g'f+c08m = -1-
5T 7 T Tt

Pt o I S

—sin z+sin 5 +sin 5 = /7.

In exercises 10-13, P(z) denotes a polynomial in z
@z +ay 2" 4+ ay,

where the ccefficients a , ..., a, are complex (unless they are given to be
real).

10. Prove that P(z) = A+ Bi, where A and B are polynomials in x and y
with real coefficients.

11. Prove that a rational function R(z), defined as the quotient of two
polynomials, can be reduced to the form X+ Yi, where X and Y are
rational functions of x and y with real coefficients.

12. If the coefficients of powers of z in R(z) are real and
R(x+yi) = X+ Yi,
prove that R(x—yi) = X-Yi.

13. If the coefficients a , ..., a, in P(z) are real, prove that the roots of the
equation P(z) = 0 are real or consist of conjugate pairs.
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2
SEQUENCES

2.1. Sequences

In chapters 2-4 we shall operate with real numbers only.
Complex numbers will be needed in chapter 5. A sequence is a
set of numbers occurring in order, that is to say, there is a first
number, a second number and so on. If the sequence is un-
ending, or, in other words, if, whatever positive integer n be
assigned, there is a corresponding nth number, we have an
infinite sequence. In simple cases a sequence is defined by an
explicit formula giving the nth number in terms of n. The nth
number of a sequence is conveniently denoted by s, (or ¢, or
Uz ClC)s

Hlustrations.
(1) s, = 1/n. The sequence is 1, %, 4, ....
@) 55 = (=1)"/yfn. (3) s, =

Sequences provide the easiest introduction to the idea of
limit, which, as we said, is fundamental in mathematical
analysis. We discuss particular examples as a preparatmn for
the ensuing formal presentation.

2.2. Null sequences

In illustration (1), the nth member (or term) of the sequence,
namely 1/n, becomes smaller as n becomes larger, and, by taking
n large enough, we can make s, as close as we like to zero. To
take a numerical illustration, s, is less than 0-0001 for every
integer n greater than 10% Such a sequence is called a null
sequence. The illustration (2) gives another null sequence; the
numbers do not decrease with every step from n to n+1 as
those of (1) do, but the requirement of arbitrarily close
approach to zero is fulfilled. You are now ready for a precise
statement.
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Definition. s, is a null sequence if, to every positive number e,
there corresponds an integer N such that

|s.| < € for all values of n greater than N.

You should study this definition with care and frame ex-
amples by which to test it. Observe that the criterion for a
null sequence may be displayed by writing values of ¢ and N
in two columns. In the above illustrative example (2), entries
in the columns might be

€ N
0-001 108
0-00001 10w

and, in fact, we can make the rule that N can be chosen to be
any integer not less than 1/e%, It is not necessary to assign the
smallest possible value of N. The symbol ¢ (and sometime & or )
is an established notation for a small positive number. It is to
be assumed without explicit mention that ¢ > 0.

You should decide of each of the following sequences whether
or not it is a null sequence,

(4) sin nm, (6) n~! sin }nm,
(5) sin 4nm, (7) nf(n®+1).

The following points should be noted.

(a) The alteration of the values of s, for any finite number of
values of n will not affect the question whether it is a null
sequence. Suppose, for instance, that s, = 1/(n—10). Then s,
is not defined for » = 10, and the natural course would be to
start the sequence at n = 11. It is a null sequence.

Alteration of values for infinitely many n would, however,
make an essentially different sequence. For example, suppose
that s,, = 1/n for all values of n except powers of 2 and s, = 1
forn = 2, 4, 8, 16, ...; then s, is not a null sequence.

(&) A null sequence may or may not actually take the value
zero. The two possibilities are illustrated by two of the pre-
ceding examples.

(1) s, = 1/n. No number s, is equal to zero.

(6) s, = n~1sin inm. s, = 0 when » is a multiple of 4.
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2.3. Sequence tending to a limit

A null sequence is one whose terms approach zero. It is casy
to adapt the definition to a sequence whose terms approach any
number s.

Hiustration. The numbers of the sequence 3, %, 4, ..., n/(n+1), ... approach
the value 1.

Definition. A sequence s, is said to tend to the limit s if, given
any positive €, there is N (depending on €) such that

|sn—s| < € foralln > N.
We then write lims, = s.

Notes.

(1) Clearly, lim s, = s if and only if s, — s is a null sequence.
(2) The inequality |[s,—s| < € is equivalent to the two
inequalities o e
This expanded form is often clearer. Thus s, is bounded.
(3) There is a short and expressive notation, the arrow,

Sp~>8
meaning limis ="

(4) There is a further symbolism which saves much writing
and which you may adopt when (but not before) you have
mastered its meaning. The above definition may be written
Sp == 8 i €e>0; IN. |s,—s| <e foralln > N.

In this notation, whatever is given is written before the semi-
colon. Here ‘given € greater than 0°.

The symbol 3 (reversed E) taken together with the next
following stop means ‘there is (or there exists). . .such that’.
Here “there exists ¥ such that |s,—s| < eforalln > N.’

In this book symbolism of this kind will be used from time to
time, but not on every possible occasion. It is the experience
of many students of mathematics that arguments are easier to
follow if brevity is not made the prime consideration and if
symbolic statements are relieved by verbal sentences.



26 SEQUENCES . 223

(5) You may find that a graphical representation helps to
clarify the notion of limit. Referred to axes Ox, Oy, a sequence
can be represented by a set of isolated points whose x-co-
ordinates are 1, 2, ..., n, ..., the y-coordinate of the nth point
being s,. Draw the line y = s and the parallel lines y = s—e¢
and y = s+e¢; the part of the plane between these parallels
forms a band of width 2e.

Then the statement s, - s means that, however small ¢ is,
there is a vertical line x = N such that all representative points
of the sequence to the right of it lie inside the band between
y=s—cand y = s+e.

Exercises 2 (a)
Notes on these exercises are given on p. 172,

1. Define a sequence s, satisfying the following requirements:

(@) 0 < s, <1 forall n,

(b) there is no n for which s, = 4,

(¢) s, >%asn— oo,

For each of the sequences defined in 2-6, state whether or not it tends
to a limit. If a sequence has a limit, make an (¢, V) table as in §2.2, taking
¢ = 10~® and any other values that you like.

3n
2 §p = "_ﬁ.
3n \*
St (n+ 3) :
4. s, = 1/nif n is a prime number; s, = 0 if # is not prime.
5. s, = f(n+1)—a/n.
6. = 1/¢(n), where ¢(n) is the number of integers which are factors of n

(countmg 1 and # as factors).
7. Prove that, if s, - 0 and |¢,| <|s,| for all n, then ¢, - 0.

8. Prove that a sequence cannot tend to more than one limit (as has been
tacitly assumed in §2.3). i.e. prove that, if s, > s and s, - 5/, then s = s,

2.4. Sequences tending to infinity
We need a concise description of the behaviour of a sequence
L S

the members of which exceed any assigned number for all large
enough values of n.
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Definition. The sequence s,, is said to tend to infinity if, given A
(however large), there exists N such that

s = A gJoralln > N.
We use the arrow notation and write
8, —> 00,

We must emphasise the difference between s,—s and
s, —~o0. In the former, s is a number and we can if we wish
measure the closeness of s, to s by the smallness of s,—s.
Infinity (o0) is not a number and the word ‘infinity” has not yet
any meaning in this book except when it follows the words
‘tends to’. Any attempted manipulation of the symbol oo such
as 5, —o would be nonsense. The reader is reminded that the
adjective infinite was used in §2.1 meaning ‘unending’ and not
in any sense as measuring magnitude,

We have explained s, —oo. The phrase ‘n tends to infinity’
and the corresponding statement in symbols ‘n—co’ likewise
express the unending growth of » which is thought of in all the
definitions we have laid down, to cover in turn

Sn =7 OJ Sn = S! Sn =00,

After all this, you should not need to be warned again that
‘n = co’ is nonsense.

The more explicit notation _,
lims, =«

n—srom

is sometimes used instead of lim s, = s, For an illustration of its utility

see exercise 2 (d), 10 (p. 34) in which there are two variables » and x.

We go on to consider other possible modes of behaviour of
a sequence §, as n — .

Suppose that s, = 1000—2~,

Here s, is nezative as soon as # is greater than 9 and, if n is
large enough, , can be made numerically greater (algebraically
less!) than any assigned number. The following definition is
appropriate.

Definition. s,—~ —o0 as n—o0 if
Ay AN, s, <= forallim =N
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In situations in which it is necessary to stress the distinction
between s, -oo and s, >-—o00, the former may be written
5, = +00.

Sequences such as s, = (—=1)" or 5, = (—1)*n do not tend
to a limit or to +oc0 or to —co. It is convenient (but not vital)
to have a name for such sequences.

Definition. If s, does not tend to a limit or to +o0 or to —c0, we
say that s, oscillates (or is an oscillating sequence). If s,
oscillates and is bounded, it oscillates finitely. If s, oscillates
and is not bounded, it oscillates infinitely.

N.B. s, = (—1)%n is not an oscillating sequence.

Exercises 2 (b)
Notes on these exercises are given on p. 172,

For each sequence s, defined in 1-6, state whether it tends to a limit
(finite or infinite) or oscillates.

1. 100n'4+(—=D", 100+ (—=1)"n"1, 100+ (—1)"n.
a+b(—1)", where a and b are constants,

{1+ (=1)", i*+(—1)"n, an®+b6(—1)"n.

The remainder when # is divided by 3.
3+ DN

(I+243+...+n)/n%, {1=2+4+3—44...—(=D"n}/n.
Give a value of N such that, if n > N, n®—4n > 108,

Establish the truth or falsity of the statements in each of 8-10. This
means that if a statement is true you have to prove it; if it is false, construct
a counter-example, i.e. an example satisfying the hypothesis but not the
conclusion,

oo I AW e

8. If 5,,,—s, oscillates finitely, then s, oscillates.
9. If 5,,,—s, oscillates infinitely, then s, oscillates infinitely.

10. If, given K (however large), we can find N for which sy > K, then
Sp = 00,

2.5. Sum and product of sequences

The theorems of this section are of every-day use in questions
such as the following,.
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Example. How does niidn—13

2n*+3n+5
behave as n—+o0?

We think intuitively that the multiples of n» and the constant
terms will be negligible for large n in comparison with the terms
in n%, and so the sequence will have the same limit as n?/2n2,
that is to say 3. A less rough argument would be to start by

writing _ 1+ (4/n)—(3[n%

S0 = I @)+ (5nd)
If we then assume that the limit of the sum of two or more
sequences is the sum of the separate limits of the sequences we

can say
3

lim (1+‘—‘——2) = 1+lim2—fim 3 = 14040 = 1
n n n n
and similarly the limit of the denominator of s, is 2.

If we further assume that the limit of the quotient of two
sequences is the quotient of their limits we have

lims, = 1.
We shall now give formal statements and proofs of theorems
such as have been used in this example.

Theorem 2.51. If s, and t, are null sequences so is s, +1,.

The truth of this is patent. On analysing to ourselves why
this is so, we argue that by taking n large enough we can make
s, arbitrarily small and also 7, arbitrarily small, and this im-
plies the smallness of s, -+1,. We have to express this formally.

Proof. Given €, we can find N, such that

—-e<s,<e€ foralln> N,
We can find N, such that
—e <ty <6 fordlln > N,

If N is the greater of N, and N,, i.e. in the notation of §1.7,
N = max (N, N,), then, for n > N, both the above sets of
inequalities hold and we have, adding them,

—2e <5+t < Ze,



30 SEQUENCES [2.5

(Observe now that, when ¢ is allowed to take any positive
value, the 2¢ serves just as well as € for ‘any positive number, as
small as you like’.) Therefore s, +1¢, is a null sequence, and the
theorem is proved.

Theorem 2.52. If s, is a null sequence and t, is a bounded
sequence, then s,t, is a null sequence.

Freg). 3K |t < K foralln.
Also, €>0;, IN. |s;] <€ forallm > N.
Therefore |$pt.| < Ke foralln > N.

Therefore s,t, is a null sequence. (Note the remark in
brackets at the end of the last proof.)

Corollary. If s, is a null sequence and ¢ a constant, then cs,, is a
null sequence. :

We shall now step from null sequences to general sequences.

Theorem 2.53. If s, — s and t, — t, then
() s,+1,—>s+t,
(ii) s,2, — st.

Proof. (i) s,—s and ¢, — ¢ are null sequences; therefore so is
their sum s, + ¢, — (s +¢). This proves (i).

(ii) sptp—st = (5, —5) t,+s(t,—1).

In the first term on the right-hand side, s,, — s is a null sequence
and ¢, is bounded; therefore their product is a null sequence.
The second term, being the null sequence f, —¢ multiplied by
the constant s is a null sequence. So the right-hand side, being
the sum of two null sequences is a null sequence and therefore

Sply = SL.
Theorem 2.54. If s, — s and t, — t, where t + 0, then

i@._}f-
t

In
Proof. We shall prove that
Pl

—_— __‘> s
i
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and theorem 2.54 will then follow from theorem 2.53 applied
to the product of the two sequences s, and 1/,,.
We wish therefore to prove that
s t=ity

S e a'
Ty that is to say R

is a null sequence.
We can choose N such that, for all n > N,

|ta] > 31|
1 2
and so m = FP

Then r—t, is a null sequence and 1/z,,¢ is a bounded sequence
and theorem 2.52 shows that (r—1,)/t,¢ is a null sequence. |

Exercises 2 (¢)
Notes on these exercises are given on p. 172,
1. Discuss the behaviour as n - oo of the sequences whose nth terms are
(n—S)“ (3n+l)3 nin—1)
3n+1/’ \n=-3)" (mn-2)(n-3)(n—4)°

2. Discuss the behaviour as n —+ co of the general rational function of n

_ @+ apPl 4 +a,
RO = § Wit bt .. 45,

where p and g are positive integers.

2.6. Increasing sequences
Definition. If s,.; = s, for all values of n we call s, increasing.
It is useful to regard increase in the wide sense, allowing the
possibility of equality at any of the steps from n to n+1. If
Sp41 > S, for all n, we call s, strictly increasing.
If 5,4 < s, for all values of n, we call s, decreasing. A word
which usefully covers either increasing or decreasing is mono-
tonic.

Examples. Which of the following sequences are increasing or decreasing ?

W @5 @1, @ nr-nn © 2D
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We shall prove that a monotonic sequence has the very
important property that it must tend to a limit or to +co or
—oc0. In other words, a monotonic sequence cannot oscillate.

Theorem 2.6. An increasing sequence tends either to a limit or
fo +o0.

Proof. Let s, be the sequence. There are two possibilities.
Either '

(1) a number A4 can be found such that s, < 4 for all n; or

(2) whatever number A is taken, there is a value of N for
which sy > A4.

Let us deal first with the possibility (2). Since s, is increasing,
s, > A not merely for n = N but for n > N. Then, straight
from the definition, s, - co.

Take now the case (1). The number A is an upper bound of
the 5,. By theorem 1.8, there is a number s = sup s, with the
properties

s, <s foralln
and s, > s—e for some particular value of n.

Since s,, is increasing, the second inequality will hold also for all
values of »n beyond that particular value. The two inequalities
show that s, - s. The theorem is proved.

The most useful case of the theorem may be summed up in
the statement

A bounded increasing sequence tends to a limit.

The corresponding theorem that a decreasing sequence tends
to a limit or to —oo can be proved, either by an analogous
argument or by using the fact that if s, decreases then —sg,
increases.

2.7. An important sequence a”

Let s, = a®, where a is a constant. The behaviour of the
sequence as n — oo depends on the value of a.

(HIfa=1,s,=1 for all n and lims, =1. If a =0,
lim.s, = 0.

(2) Supposea > 1. Leta = 1+k, where &k > 0.
Then S, = (14+k)» > 1+nk

(by taking only the first two terms of the binomial expansion).
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As n o, 1 +nk - o0 and therefore s, - co.
(3) Suppose 0 < a < 1. Leta™® = 1+1, where / > 0.

"la 49 & 23
A+ = T+al’

As n—> oo, 1/(1+nl) > 0 and therefore s, - 0.

(4) Suppose a to be negative. If —1 <a <0O0anda = -5,
so that 0 < b < 1, it follows from (3) that 5™ - 0 and hence
S, = (=b)"—=>0.

If a =-—1, s, takes the values —1 and 1 alternately and
oscillates finitely.

If a<—1 and a=-b, b > 1, then from (2) we have
b* »>co0. So s, = (—b)* takes values, alternately negative and
positive, numerically greater than any assigned number. That
is to say, s,, oscillates infinitely. Summing up, we have

Then 0'< s, =

ar—>owo (a>1),

ar—=>1 (a=1),

a—->0 (-l1<ax<l,

a” oscillates finitely (@ = —1),

a® oscillates infinitely (a < —1).

Exercises 2 (d)
Notes on these exercises are given on p. 172,
1. If 5, > 0 and s,,; = Ks,, where K > 1, for all values of n, then
Sp > + 0.

2. If, for all values of n, |s,,1| < K|s,|, where 0 < K < 1, then s, = 0.
The conclusion remains true if the hypothesis is satisfied only for n > N.

3. If limEt = —1<l<1,

n

prove that s, - 0.

4. Discuss the behaviour, as n - co, of the sequence ¢"/n*, where k is
a positive integer.

5. Prove that, if @ > 0, then Ja > 1 as n — co.

6. Prove that {1+(1/n)}" increases as n increases and that it tends to a
limit. (This limit is the very important number e—see chapter 6.)
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7. Prove that 3n decreases as n increases, and deduce that it tends to the
limit 1.

8. Give examples of sequences s, for which

hms_"ﬂ'=1
Sn

and (@) s, = ©, (b) 5, > 3, (¢) 5, > 0.
9. If R(n) has the meaning assigned to it in exercise 2 (c), 2, prove that,
f-1l<x<l, ]
lim R(n)x" = 0.
Discuss the behaviour as n — oo of R(n)x" for other values of x.
10. Prove that, if x + —1, then
xn—1

(%) = 1

tends to a limit as n - co. Show in a diagram the graph of
y = lim u,(x).
n—+wo

11. Prove that, if —1 < x < 1,

o m(im—1)... (m-n+1)xn 3 (m) xn
nl n
tends to zero as n > co.

12. Investigate whether the following sequences have limits as n - c0 and,
if so, give the limits.

(i) %(3"+2m), and extend to numbers other than 3, 2;
... a"—b"
(ii) Py where a > 0 and b > 0;

il n n
(iii) n’+l+n’+2+"'+n’+n'

(iv) ¥(nh);
(v) n—y(n+a) (n+b);
(vi) 2"/n!.

2.8. Recurrence relations

Hitherto we have supposed s, to be given by an explicit
formula in terms of #. In practice a sequence is often deter-
mined by a relation connecting two or more successive members
of it, and it may or may not be possible to ‘solve’ this for s,.
We illustrate by examples of useful types.
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Example 1. The linear recurrence relation (or difference equation)
with constant coefficients. Suppose that we are given that
Sp = SpatSp_g (n= 2)9
e DR
(This is one of the cases in which #n = 0 is a more appropriate
starting value than #n = 1, because it is useful—as is shown in
books on algebra—to associate with the sequence a generating
Junction sy+s;x+ 8, x%+....)

The data enable us to write down as many terms of the
sequence as we please

1L P as il ST

We shall obtain an explicit formula for s,. To do so, sub-
stitute the trial solution
s, = Ao+ Bf?,

where 4, B, o, £ are constants. We see that s, = 5,,_;+5,,_, if
o and /4 are the roots of the equation

r2—t—1 = 0.

Knowing «, 8, we can then determine 4 and B from the given
values 5, = 1, 5; = 1. We find

e = 31 443), B =4(1-y5).
A+B =1, Aa+BB =1
and hence

- B (5]

Example 2. Investigate the sequence defined by

Sp41 = '\/(Sn'Jf"a): B = b’
where a and b are given positive numbers.
Remarks. (i) There is no way of obtaining a compact
formula for s, in terms of n.

(ii) If we provisionally assume that s, tends to a limit s, we
can say what the limit must be. For let 7 — oo and we have

s = J(s+a).
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Since every s, is positive, s is the positive root of the quadratic
5% = s+a.
(iii) Sequences obeying a simple recurrence relation are very
commonly monotonic. See whether s,,,; — 5, has a fixed sign.
Solution of example 2. Let o be the positive root of the
quadratic vl o
We have 3-8t =a+s,—sk.
If s, > «, the right-hand side is negative and so
S < Spe
Also sha—a? = (s,+a)—(z+a)
= §,—d.

This shows that, if 5, > «, then s,,;, > a.

Suppose that b = s; > a. Then, by induction, s, forms a
decreasing sequence with s, > « for all n.

By theorem 2.6, s,, tends to a limit s where s > «, and, by the
argument of remark (ii), s = c.

Similarly if 5; < a, then s, forms an increasing sequence with
limit'a, If .= ¢, every &, = &,

Graphical representation. For recurrence relations of the
special form s, ,; = f(s,) the movements of s, may be traced by
drawing the graphs of the curve C and the line L whose re-
spective equations are y = f(x) and y = x and making the
following construction. (See fig. 1.)

Let P; be the point on C whose x-coordinate is s,. Its y-
coordinate is therefore f(s;) = s,. Through P; draw a hori-
zontal line to meet L in Q,, then through Q, a vertical line to
meet C in P,. P, has coordinates (s;, 5;3). We continue from P,
as we did from P,.

Exercises 2 (e)
Notes on these exercises are given on p. 173.

Investigate the behaviour as n - o of s, if s, is given by the recurrence
relations stated in 1-6.

1. 35, = 2951+ 5pa (50=7,5 =3
2. Spp = 2/(L+s,) (5= 0)
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3. Spy = si+k, where 0 < k < } and s, lies between the roots of the
equation x*—-x+k = 0.

_22sp+1)

4 sy = b (s; = 3).
55,—3
5. Spp = ;’Tl (5, = 2).

Consider also other values of s; (e.g. s, = 1). What happens if 5, = 5?7
6. s, = (531—1+Sn—-2+2)”3 (5, =1,8 = %)-

y L
(&
Py
Py
(&}
Py
Q
(0} x
Fig. 1

i i
7. Prove that, if o= 3 cand' gy = G S,

then u, tends to a limit /, and give / to two decimal places.

Frays it 0L S 0 )

Note. In numerical applications of analysis, it is vital to know with what
rapidity we can rely on a sequence approaching its limit. This information
is given by the last inequality.

8. Discuss the possible limits of the sequence defined by

o o5 6s5+6
i T I
Prove that, if s, > 3, then
(i) 3 < Snp1 < 8y (1) Spy1—3 < 5 (5,—3).
9. Prove that, if
a > b1 >0 and Appy = ‘i(an‘}'bn)- bu+1 r= zanbn/(an“'"bn)s

then a, > @, > byyy > b,. Prove that, as n -+ o, g, and b, both tend
to the limit 4/(a; b,).
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2.9, Infinite series

It is likely that you have learned from books on algebra
that, if the common ratio of a geometric progression is numeri-
cally less than 1, the progression has a ‘sum to infinity’. The
simplest illustration of this is

F+i+E+5+...
Here the sum s,, of the first # terms is
S, =1-2""

As n—>o0, 5, - 1 and the sum to infinity is 1. So there is no
new idea in the summation of an infinite series; we have only to
examine the behaviour, as n - co, of the sequence of numbers
5., where s, is the sum of the first » terms. We shall state this
formally.

Let u,, be defined for all positive integral values of n. Define

Sp = u1+u2+ +un
n
or, more shortly, s, = ¥, u,.
r=1

If, as n — oo, s, tends to a finite limit s, we say that the infinite

series
u1+u2+ua+ LR

o0
or ¥, u, converges (or, is convergent) and that s is its sum.
n=1

The number w, is the nth term of the infinite series and s, is
the sum of the first n terms. (It may sometimes be more appro-
priate to start with a term with zero suffix u,, for example, in
the series @y+a;x+a,x*+...; s, will then denote the sum of
n+1 terms.)

You should note carefully that, when applied to infinite
series, the meaning of the word sum has been widened from its
use in algebra. Hitherto it has meant the number which is got
by adding the numbers contained in some given finite set. Now
it can be the limit of a sequence. The main reason for this
cautionary remark is to guard ourselves against tacitly assuming
that properties of a sum (in the restricted sense) carry over into
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properties of a sum (in the general sense). For instance, if
a+b+c = s, then by the associative law of algebra,

ka+kb+ke = ks.

The corresponding property is in fact true of the sum of an
infinite series, i.e. if u;+uy+uy +... converges to sum s, then
kuy + kuy + kuy + ... converges to sum ks. But it is a property of
limits and must be proved as such.

An infinite series which is not convergent is called divergent.
For example, each of the series

I14+141+...
and 1—1+1~—...

is divergent. From §2.4 we sce that for a divergent series there
are four different possible ways in which s, may behave; it
may tend to +o00 or to —co or may oscillate finitely or in-
finitely. If a series does not converge, it is generally enough
just to label it as divergent, but it is sometimes easy and con-
venient to incorporate further information. For instance, we
could say that the series Z(—1)” oscillates and the series
E{-1+(-1)"

diverges to —oo.

The words converge and diverge are commonly applied to
scquences as well as to series, e.g. if 5, = 2— (%), then s, con-
verges to the limit 2. If 5, does not tend to a finite limit we call
it divergent; a more specific statement may be made such as
that s, = —2" diverges to —oo.

Before we discuss general properties of infinite series it will
help the reader to be thoroughly familiar with some particular
series of simple types which will illustrate the later theorems.
We shall take two important series, the first being the geometric
series.

2.10. The geometric series Zx
Theorem 2.10. The infinite series
1+x+x24+...+x"+...

converges if and only if —1 < x < 1.
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Proof. Here u,, = x*! and

2 B 11:);? (e 4al),
n (x=1).
Ifx=1s,»>0asn—>o0., Ifx+ 1,
o L Hampt
*_ l=x l~x

From §2.7, x* >0 if —1 < x < 1 and the series converges if
—1 < x < 1, its sum being 1/(1—x).

If x > 1, x®» >0 and s,, > 0.

If x=-1,5,=1if nis odd and 0 if n is even and so
oscillates finitely.

If x < —1, s, oscillates infinitely.

Hence the series converges only if —1 < x < 1.

2.11. The series Zn*

Observe that the meaning of a power n* is determined by the
index laws of algebra only if k is rational. The extension to
irrational k is best deferred until chapter 6 (p. 108). Meanwhile
we shall assume that the indices of any powers with which we
deal are rational. The theorems concerned (such as theorem
2.11) remain true whether the indices are rational or irrational.

Theorem 2.11. The infinite series

| et | e 1
i—,;+‘27‘+§,;+ ...+?‘+...

(where k is a constant) converges if k > 1 and diverges if k < 1.

Remarks. If k = 1, the terms are in ‘harmonic progression’
and the series Z(1/n) is often called the harmonic series.

The geometric series of the theorem 2.10 was easy to deal with
for the reason that we could find a simple explicit formula for
s, in terms of n. This is not possible for the series Z(1/n*) even
for simple values of & like 1 or 2. In practice, given an infinite
series, it is most unlikely that a simple expression can be found
for the sum of »n terms. Some sort of approximation is nearly
always necessary. The reader will see in a moment the device
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by which it can be carried out for this particular series. More
general methods will be developed in chapter 5.

We shall prove theorem 2.11 first for the ‘border-line’ value
k = 1, which is the greatest value of k giving divergence. This,
being the case of the theorem in which the issue between con-
vergence and divergence is most finely balanced, might be
expected to be the most difficult. In fact, on account of the
simplicity of detail, it is as easy as the other cases.

Proof of theorem. We wish to prove that the series

1+4+4+3+3+34+4+4+...
diverges. This will be done if, by taking enough terms, we can

make their sum larger than any assigned number. The following
inequalities use the fact that the terms decrease
1+1> 2xi=14
$+i+3+2 > 4xi =14,
d+iot...tist+is > 8x75 =1
and so on, The sum of the terms in each of the successive blocks
of 2, 4, 8, 16, ... terms is greater than 4. Taking in now the first
and second terms 1 and 4, we have proved that the sum of the
first 2424448+ ... +2™1 (i.e. 2™) terms of the series is greater
than 1+ 4m. Therefore the series Z(1/n) diverges to +co.
Suppose now that £ < 1. Then 1/n* > 1/n, and so the sum
of any set of terms of Z(1/n*) is greater than the sum of the
corresponding terms of X(1/n). This latter series has just been
proved to diverge to 4co. Therefore so does Z(1/#¥) for k < 1.
Take now k > 1. We have to prove convergence. The same
device, of grouping terms in blocks of 2, 4, 8, ... succeeds, but
we must now find approximations which are greater than the
sums of the blocks. We have

1 2 1

T3 < 2% T 3T
| s o) [N 4
Fratet < 7= g
1[5 1 8 1

§k+9ﬁ,é+...+rsyc < g}; = “8*};‘;1.
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Now the series 1 1 1

I tsst gttt

is a convergent geometric series, with sum to infinity ¢ say. Then
sy, the sum of the first N terms of X(1/r*) increases with N and
is always less than 7. So, by theorem 2.6, sy tends to a finite
limit as N —co. That is to say, the series converges. |

Note on the case k < 1. Instead of deducing this from the
case k = 1, we could argue directly

1+2—1,‘+...+1%c > n(%)
and n'* - 0.

Numerical illustration. Find a value of n large enough to
make the sum of n terms of

greater than 20. 1+4+4+...

The reader should not disdain numerical work, which keeps
him in touch with reality. We will work this example for him.
The proof showed that the sum of the first 2™ terms is greater
than 1+4m. So 2% terms will certainly be enough. Now
2% > 10" and a twelve-figure number in this context is sur-
prisingly large. We naturally sacrificed accuracy in approxi-
mating to the sums of blocks of terms. But more refined
methods would show that the number of terms which must be
taken to give a sum greater than 20 exceeds 108, These calcu-
lations show, in homely language, that the divergence of this
series is slow.

Exercises 2 (f)
Notes on these exercises are given on p. 173.

1. For the series £1/n® estimate a value of N which will ensure that the sum
of all terms after the Nth is less than 104,

Make the same calculation for the geometric series Z(0-99)". What do
you conclude about the relative ‘slowness—or quickness—of convergence’
of the two series?

2. Find for what values of r the following series converge, and sum them
r r
A+t atryr o
rﬂ r! rB
T+t T @ty
1+2r43r24+4r°+ ...

r
T et

re
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3. Estimate the sum }:‘10(%)”'

4. Prove that, if @ > 0 and b > 0, the series whose nth term is 1/(a+ nb)
diverges.

5. Sum to m terms and to infinity the series whose nth term is

¥ om 2 e

nn+1) (n+2)°
Deduce the convergence of Zn—3, Extend this to a denominator which is
a product of k instead of three consecutive integers.

2.12. Properties of infinite series

The following properties of infinite series are, for the most
part, immediate adaptations of results about limits of sequences,
and proofs can be supplied by the reader.

(1) The convergence or divergence of a series is unaffected if a
finite number of terins are inserted, or suppressed, or altered.

o0 X )
Illustration. If Xu, converges to sum s, then 2 converges to sum
1 k1
§—uy—...—uy. If the former series diverges, so does the latter.

(2) If yy+uy+ ... converges to sum s and vy + vy + ... converges
to sum t, then the series

(i +v) + (g +vy) + ...
converges to sum s+1t.

Exercise. Prove, more generally, that the series whose nth term is
au, + bv,, where a and b are constants, converges to sum as+ bt.

(3) If yy+uy+ ... converges, then limu, = 0.

Proof. u, = s5,—5,,. Both s, and s, , tend to the same
limit s. Therefore, by theorem 2.53 (i), limu, exists and
Imu, = s—=s=0]

Note carefully that the converse of (3) is false. The example
u, = 1/n shows that it is possible to have lim », = 0 and Zu,
divergent. In other words (see exercise 2 (g), 1)

The condition lim u,, = 0 is necessary but not sufficient for the
convergence of Zu,,.

(4) If Zu, is convergent, then so is any series whose terms are
obtained by bracketing the terms of Zu,, in any manner, and the
two series have the same sum.
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It is thus legitimate to insert brackets in a convergent series,
but not to omit them. The series 1 —1+1—1+... oscillates, but
the series

b Ul G e
converges to sum 0.

(5) If u, > O for every n, then Zu, either converges or diverges
to +c0.

A necessary and sufficient condition for convergence is that

N @
there exists K such that Yu, < K for all N, and then Yu, < K.
1 1

This is a restatement of theorem 2.6.
(6) If, for every n,

@ u, > 0,0, >0,
(i) u, < Kv,, where K is constant,

(iii) Zv,, converges,

then Zu, converges. Also Zu, < KZuv,.

The reader should deduce this from (5) and should formulate
a corresponding result for divergence.

We shall take up in chapter 5 the more systematic investiga-
tion of infinite series.

Exercises 2 (g)
Notes on these exercises are given on pp. 173-4.

1. (N.B.) Explain necessary condition, sufficient condition. Which of the
following are (a) necessary, (b) sufficient, for the real numbers p, g to be
equal?
: iz 1 1
(i) p*+q* = 2pg, (i) p* = ¢*, (iii) SESSa e
2. Say of each of the following conditions whether it is (@) necessary,
(b) sufficient.
(i) A * condition that the year n is a leap year is that » is a multiple
of 4.
(ii) A * condition that pg = 0 is that p = 0 and ¢ = 0.
(iii) A * condition that the corresponding angles of two triangles
ABC, DEF are equal is that

BC_CA_AB
BRI FDAESDE:
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3. Say of each of the following series whether it converges or diverges

1 23 n
§+§+i+...+m+...,
y el | 1
\/—2+i+ﬂ—2+m+i"_"i+""
1-14+3-3+3—-3+3-3+...,
T I s |
1+-1—!+§—!+3—!'+....
4. Prove that, if 0 < a, < 1, then the series a +a,;x+ ...+ a,x"+...
converges for 0 < x < 1.
Extend the result, assuming that |a,| < k.
5. Sum the finite series
% 1 z ar+b
r= P(r+2) (r+4)" o1 r(r+1) (r+2)°

Deduce the sums to infinity.

O i

prove that s, is an increasing and 7, a decreasing sequence. Prove further
that, as n > o, t,—s5, = 0 and that s, and ¢, tend to the same limit.

7. If s, and ¢, oscillate finitely, in what ways is it possible for s,+ 1, to
behave (in regard to limits or oscillation)? Give an example of each.
Answer the same question for s5,1,.

8. Simplify the product
22—13-14~1 n-—1
2541 334+14%+1 """ m2+1°
and prove that it tends to a limit (to be found) as n - 0.

9. It is given that w,,, = ¥u,+ A*/u,), where n=1,2,3...,, and
0 < A < u;. Prove that
(i) Hpyy = A and Upyy < Uy
(i) dnyy = dy, where d, = (un— A)/(un+ A);
(iii) as n tends to infinity, u, tends to A.
Taking 4% = 99, u, = 10, calculate /11 correct to four places of
decimals.

10. Show that, if r, and A are positive numbers, and

1
Fnaat — = 24,
rﬂ

then the condition 4 = 1 is necessary for the convergence of the sequence
rn; show that it is also sufficient in the case of r, > 1, by verifying that
r, > 1 for every n, and, for a suitable ¢ > 1,

e |rp—c¢| < |rp—cl.
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11. Define (if possible) an oscillating sequence satisfying

Sat1 1
g4 ¥
Answer the same question with —% in place of 1.

12. Prove that, if _1.3.5.:@n=1)

LS B T
then nu2 is an increasing sequence and (n+4) 42 is a decreasing sequence.
Deduce that nu’ tends to a limit.

13. Establish the truth or falsity of each of the statements (i)-(iii).
(i) If the sequence s, increases, so does the sequence

(51534 ...+ 5,)/n.

(i) For all n, it is known that s, > 5,.4, t, < thy; and 5, > f,.
Then both sequences s, f, tend to limits, s, fand s > 1.
(iii) If 5,,,—s5, oscillates infinitely, then s, oscillates infinitely.

14. Prove that, if s, tends to the limit s, then

S+ 53t ... +5,

n
also tends to s.

15. Find the sum of the first n+ 1 terms of the series
14+ 2x4+3x*+ ...+ (n+Dx"+....
Prove that, if |x| < 1, the series converges to the sum 1/(1 —x)2.
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3
CONTINUOUS FUNCTIONS

3.1. Functions

You are familiar with the dependence of one real number y
on another real number x which is commonly determined by
formulae such as

y=1x+1) or y=J{2-x) (-1}

In the former y is defined for all values of x and in the latter
only for 1 < x < 2. In either case, if a value of x is assigned,
we can calculate the value of y which corresponds to it and there
is only one such value of y (if it is understood that the 4/ is
positive). Here x may be described as the independent variable
and y as the dependent variable.

These two examples are simple illustrations of functions. We
go on to express in general terms the meaning of function.

Let X be a set of numbers x and Y a set of numbers y. If
rules are given by which, to each x in X, a corresponding y
in Y is assigned, these rules determine a function defined for
2N X

Notes. (1) Observe that, to a given x, there is just one corresponding y.
The same y may correspond to more than one x. For instance, in the
example y = 1/(x*+1), y = % corresponds to both x = 1 and x = —1.
In other words, the correspondence between X and Y is in general many-
one and is only exceptionally one-one.

In the ordinary graphical representation, no line parallel to Oy cuts the
curve in more than one point.

(2) You may come across in mathematical literature other words and
phrases equivalent to those used here. A function defined in X with
values in Y is often called a transformation, or a mapping, of X into Y.
According to the definition, ¥ may include values which are not taken by
y for any value of x. If every value of y in Y is taken for some x in X,
we can say that the mapping of X is onto Y.

(3) The usual notation for a function is the letter £, If more letters are
needed, g, ¢, F are commonly used. The value y which a function f takes
for a particular x in X is written f(x), so that y = f{(x).
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(4) Strictly speaking, the function f is the set of all pairs of numbers
(x, ) which are related by the rules defining the correspondence. f(x) is
the ‘function-value’ for the number x. It is convenient, and does not lead
to error, to speak simply of the function f(x).

A few further illustrations will bring out the full meaning of the
definition of function. In each of these, satisfy yourself that the rules are
adequate to determine a unique value of y for each value of x concerned.

(1) y=1 for 0<x<x1,
y=0 for x<0 andfor x> L.

In physical applications the independent variable is commonly the time;
this function could represent, for example, a force of unit magnitude which
acts for unit time and then ceases.

(2) Suppose that y* = x. This equation assigns values to y for x = 0,
and, if x > 0, there are two values of y equal in magnitude and of opposite
signs. We said in the definition that a function is to be single-valued. So
y* = x does not define in our sense y as a function of x. We may, however,
dissect it into two functions y = +./x and y = —./x each defined for
x = 0.

x

@ Y= GDG-D

This function is defined for all values of x except x = 1 and x = 2,

(4) y = the largest prime factor of x.

This statement has meaning only when x is an integer.

(5) 5. = 1/n, where n is a positive integer. Sequences are functions of
a special type, in which the independent variable is restricted to be a
positive integer. The same defining formula with » replaced by x, namely,
y = 1/x, may define a function for values of x other than positive integers
(here, for all values of x except x = 0).

©) y = 0 when x is irrational,
y =1 when x is rational.

An ‘unnatural’ function like this may seem to have little interest. Such
functions are, in fact, of use in analysis in deciding for how wide a class
of functions some proposed theorem is true. We shall come across illus-
trations of this later in the book.

(7) y is the temperature in degrees at time x at a given place.

This type of function is very common in science and in every-day life.
It differs from the examples (1)-(6) in that there is no analytical formula by
which it can be represented. In practice the function-values may be given by
a graph (drawn, say, by a pen attached to a recording thermometer). These
values are then known within the limits of accuracy which can be attained
in observation.



32 CONTINUOUS FUNCTIONS 49

3.2. Behaviour of f(x) for large values of x

We described in chapter 2 the various ways in which a
sequence s, may behave as the variable # tends to infinity. The
same descriptions apply to a function f(x) as x—>oo. For
example,

Definition. f(x) >0 as x > if
A Ao X ) >0 A forcall x5 X,
You should also define, following §2.3, the meaning of
f(x)>1 as x-—>o0.

(We singled out null sequences as forming the simplest intro-
duction to limits of sequences. Now we need not move so
slowly, and can omit special mention of ‘null functions’ for
which [ = 0.)

The variable x may take arbitrarily large negative values, and
we have, for example,

Definition. f(x)—~ | as x - —oo if, given €, there is X such that
lf(x)=I| <e forallx < —X.

There is a further limit situation which does not occur for
sequences §,, but which presents itself for functions of x. To
exemplify it, consider 1

YT

As x approaches 2, taking values greater than 2, y - co. (Also,
as x approaches 2 through values less than 2, y - —o0.) We can
denote the approach of x to a number ¢ through values greater
than ¢ by writing x - ¢+ (and through values less than ¢ by
x—>c—).

Definition. f(x) + 0 as x - c+ if, given A, there is & such that

f(x) > A forallxin ¢ < x < c+4.

3.3. Sketching of curves

It is a good exercise in appreciation of functional dependence
to sketch some simple curves. The reader should aim at deter-
mining, with hardly any calculation, the general shape of the
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curve. By asking himself the right questions he can do this very
quickly. (If a more accurate graph is required, points can be
plotted later in the usual way.)

Information under the following headings gives a good start:

(1) the range of x for which y is defined, and any simplifying
features such as symmetry about an axis;

(2) values of y when x is large (horizontal asymptotes);

(3) any values of x for which y is large (vertical asymptotes);

(4) any particular points on the curve which can be seen at
a glance, e.g. points on the axes.

y i i
1 ]
] i
I ]
o
| i
L A S
e S
0 1 ) x
1 1
] ]
| |
| acpall .
Y Ak
i :
a b
Fig. 2
Example 1. Bt e

) Y

(1) y is defined for all x except 2 and 4. :

(2) As x> or x> — o, y—> 1. Draw the horizontal asymptote
y = 1. Also it is clear that, if x is large and positive, x—1 > x—2 and
x—3 > x—4, so the curve approaches the asymptote from above as
X - o0,

(3) x = 4 and x = 2 are vertical asymptotes. From the signs of the
factors in the numerator and denominator,

a8 x—>4+, y—>+o andas x—>4—, y-> —oo0;
as x—+2+4+, y—>+oo andas x->2—, y-> — o0,
4 =0 gives x=1 or 3
e 8_ ’} Mark these points.
x=0 gives y=4.

It is often worth while to find where the curve cuts its horizontal
asymptote. Here y = 1 gives x = 4 (and, what is more important, no
other point).

We have by now a good idea of the shape of the curve (fig. 2a).
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Example 2. e +_12-
X

(1) Since y is unchanged when —x is put in place of x, the curve is
symmetrical about Oy. y is defined and is positive for all x except 0.

(2) As x > 4+ @ or x - — oo, y => 00, Moreover, when x is large, y is
a little greater than x?, so we sketch the parabola y = x* as a guide for
large x.

(3) Asx—>0+ orx—>0—, y—>o0,

(4) The curve does not cut either axis. When x = +1, y = 2, (see
fig. 2b).

Exercises 3 (a)
Sketch the general shapes of the curves given by the following equations.

1. pe= 30, 2 =0 3. y=2x"1{x18
4"’:;51‘ 5'3’=;1;",%-
g e SPER

8. y’=x2L_:1. 9. v‘=x'f1.

3.4. Continuous functions

The reader will have acquired from examples the impression
that the common functions can reasonably be called continuous,
though some of them may present discontinuities for particular
values of x. For instance, he would regard the function whose
graph is sketched in example 1 of §3.3 as being continuous
except at x = 2 and x = 4. He would think of a function as
continuous so long as its graph can be drawn without taking
the pencil off the paper.

We must now refine these rough ideas into analytical con-
cepts. The reader, after reflection, will (we hope) agree that for
a function f to be continuous at a value x = ¢ he requires that
(1) f(c) is defined, (2) as x approaches ¢, the value of f(x)
approaches f(c). Thus the assertion of continuity is nothing
more or less than a statement about limits, namely that

lim f(x) = .lim_f(x) = fl(c).

o+
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We need not keep the ¢+ and c— separate and can now set up
two basic definitions, the former dealing with the limit of a
function and the latter with continuity.

Definition. f(x)—> | as x — c if, given ¢, there exists & such that
|fix)—1| <e forallxin 0 < |x—c| <é.

The & depends on the ¢, and, in general, the smaller the value
of ¢, the smaller must be the value of 8. The dependence may
be emphasised if we wish, by writing d(e).

Note that the value x = ¢ is excluded from the set of x for
which the e-inequality is required to hold in the above de-
finition. The statement concerns behaviour as x gets near to c,
not behaviour at e.

Definition. The function fis continuous at ¢ if f(x) > f(c) as x > c.
Combining the last two definitions we see that the following
is an equivalent definition of continuity.
f is continuous at ¢ if, given e, there is & such that

|f(x)=f(c)| <€ for |x—c| <.
The values of x such that |x—c| < 4, in other words, the
open interval (c—d, ¢+ ) may be aptly called a neighbourhood
of c. More generally we can apply this word to an open interval

¢—08 < x < ¢+38,, where d,, §, may be different. It is worth
while to state this as a definition.

Definition. An open interval is called a neighbourhood of any
one of its points.

The definition of continuity of f at ¢ then states that, given
any neighbourhood N, of f(c), there is a neighbourhood N, of ¢
such that, if x is in N,, then f(x) is in N,.

We have defined continuity of f at ¢, that is to say, con-
tinuity at a point. We go on to define continuity in an interval.
Suppose first that the interval is closed.

Definition. f is said to be continuous in the closed interval

(a, b) if

(1) for each cina < ¢ < b, f is continuous at c;

(2)=£T+f(x) = Jla) i i) = 50).
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The purpose of the special treatment of the end-points @ and
b is clear; we wish to avoid any mention of values of x outside
(a, b). If we are defining continuity in an open interval say
a < x < bor theinfinite interval x > a, there are no end-points
and no condition (2).

Definition. [ is said to be continuous in an open interval if it is
continuous at each point of the interval.

3.5. Examples of continuous and discontinuous functions

We shall amplify and make more precise the remark made at
the beginning of §3.4 that the common functions of x are
generally continuous.

Bounds of f. Suppose that x is allowed to take any value in a
set X. In practice X is usually an interval, which may be closed
or open. The values of f(x) for x in X form a set of numbers, ¥
(sometimes denoted by f(X)). If the set Y is bounded (§1.7) we
say that the function fis bounded in X. Also the sup and inf
of Y are called the sup and inf of the function f for x in X.

Continuous functions. In the following theorems, the con-
dition of continuity may refer to a point or to an interval (closed
or open) so long as it is given the same interpretation in the
hypothesis and the conclusion.

The sum of two continuous functions is continuous.

The product of two continuous functions is continuous.

The quotient of two continuous functions is continuous for any
value of x for which the denominator is not zero.

The reader should, satisfy himself that these constantly used
facts can be proved by arguments following those set out for
the fundamental theorems on sequences given in §2.5.

We have further

If n is a positive integer, the function x* is continuous for all
values of x; x™™ is continuous except for x = 0.

This can be proved directly (by proving that x»—¢® is small
if x—c is small) or alternatively by induction, applying the
theorem about the product of continuous functions to x*and x.

We can now build up sums of multiples of powers of x to give

Any polynomial is continuous for all values of x.
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A quotient of two polynomials is continuous for all values of x
for which the denominator is not zero.

A more general and much-used result is the following, which
asserts the continuity of the function obtained by compounding
two continuous functions.

Theorem 3.5. Suppose that
(1) g(x) is continuous for x = £, and g(£) = 7;
(2) f() is continuous for y = 1.

Then f{g(x)} is continuous for x = &.

Proof. Write g(E+h) = n+k.

Given ¢, we can find & such that
k| = |gE+m)—g@)| < & if |n| <.

Given ¢, we can find ¢ such that

lfn+k)—fn)| <e if k| <&
These statements combine to give

[fleE+m}—f{g®)}) <e if |h <o |

Some discontinuous functions. For continuity at c it is neces-
sary and sufficient that f(c+) = f(c) = f(c—), where f(c+) is
written for the limit of f(x) as x - ¢+. Examples may be con-
structed in which one or more of these necessary conditions
fail, giving a discontinuity at ¢. We give two illustrations.

(1) Let f(x) = [x] = the greatest integer less than or equal
to x.

This function is continuous if x is not an integer. If x is a
positive integer n, f(n+) = f(n) = n, f(n—) = n—1.

(2) f(x) = sin (1/x). This function is not defined for x = 0.
If the definition is completed by assigning a value to f(0), the
function would be discontinuous for x = 0, whatever the value
of f(0). For f(x) does not tend to a limit as x - 0, since it takes
all values between —1 and 1 (inclusive) for values of x as near
to 0 as we wish, e.g. if (1/x) = (2n+3) m, sin (1/x) = 1 and by
taking » large enough this value of x is arbitrarily close to 0.
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Exercises 3 (b)
Notes on these exercises are given on pp. 174-5,

1. State any values of x for which the following functions are discontinuous

Vix—a)/(b—x)}, 1/J(x*+1),

tanx, secx, 1/(1+tanx).
2. Sketch the graph of the ‘saw-tooth function’

x—[x]—%.
3. Sketch the graphs of the functions
¥, [Wxl, 4Ix,

pointing out for what values of x there are discontinuities.
4. Prove that the function defined by

Jix)= wsin(l/x)0 (x £.0),

=0
is continuous for all values of x. Sketch its graph.

5. Prove that, if b

S = G oxr18’
and k& = 1, there are two values of x for which f(x) = k. Illustrate by a
graph.

6. Prove that N

x4 2x+2
is bounded for all values of x, and find its supremum and infimum.
7. Answer the same question for
45043
x*+1°
8. Investigate the limit as x - 1 of
X3 kD

¥ =3x0+2°

9. Investigate the limits as x - 0 of

TR v e R L e R T
% 4 bo+byx+...+b,x"’

B X®+ayx? 4 L a xPT
box+ by x® 1+, +b,xt"

(iif) (ay * 0, by * 0).

10. Find numbers p, g, r such that
q
X

L
p o
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gives the closest possible approximation for large values of x to the given
functions

. X " X
D v @ Jery

3.6. The intermediate-value property

Theorem 3.6. Suppose that f is continuous in the closed interval
(a, b) and that f(a) = f(b). Then f takes every value which lies
between f(a) and f(b). :

Remarks. Suppose that f(a) < f(b) and that % is a number
such that f(a) < y < f(b). The theorem asserts that the curve
»y = f(x) cuts the line y = #, i.e. that there is a number £ be-
tween a and b for which f(£) = ». (There may be more than
one such £.) Taking the intuitive view that a continuous
function is one whose graph can be drawn without lifting the
pencil off the paper, we can have no doubt that the theorem is
true.

We must, however, provide an analytical proof, and a little
reflection shows a likely approach to one. Let x take values
increasing from a to b. While x is near enough to a, f(x) will
still be less than y. When x is near enough to b, f(x) is greater
than 9. If we take the supremum £ of the numbers x for which
Jf(x) < 7, we may hope to prove that f(£) = #.

Alternatively we could have expressed this groping for a
proof in the language of a Dedekind section. However, we have
at our disposal theorem 1.8, asserting the existence of the
supremum (which was proved by a Dedekind section), and it is
more economical to use it. The formal details of the proof now
follow.

Proof of theorem 3.6. Let S be the set of numbers x in
a < x < b for which f(x) < 5. Sis not empty, since g is in S.
By theorem 1.8, the set S has a supremum, £ say.

We prove first that @ < § < b. By continuity of f at a,
there is an interval a < x < ¢ throughout which f(x) < 7.
Therefore £ > ¢ > a. Similarly there is an interval d < x < b
throughout which f(x) > #; these points are not in S and so

s d =ib
We now prove (i) f(£) < 7 and (ii) f(€) = 7.
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By the definition of supremum, for every positive €, there is
a member x' of S with £—¢ < x" < £. For this x', f(x") < 7.
Since f'is continuous at £, f(£) < #, which is (i).

We now prove (ii). Any x greater than £ is not in § and so
f(x) = 9. By continuity, f(£) is the limit of f(x) as x tends to §
through values greater than £, and so f(£) > #. This is (ii).

3.7. Bounds of a continuous function

We go on to establish other general properties of continuous
functions.

Theorem 3.71. If f is continuous in the closed interval (a, b), it is
bounded in (a, b).

Remarks. 1t is essential to the truth of the theorem that the
interval should be closed. The function 1/x is continuous in the
interval 0 < x < 1, open at the left-hand end. By choosing x
near enough to 0, we can make 1/x arbitrarily large, so it is not
bounded above in 0 < x < 1.

We shall establish the existence of an upper bound for £ i.c.
a number K such that f(x) < K for a < x < b. A corre-
sponding argument shows the existence of a lower bound. The
proof has some likeness to the proof of the intermediate-value
theorem, in that it uses the supremum of a suitably defined
set of values x in (a, b).

Proof. Let S be the set of numbers x, ina < x; < bsuch that
the function-values f(x) are bounded above for a < x < x,.
Then S is not empty since a belongs to .S; and the members of
S are less than or equal to 4. Therefore the members of S have
a supremum £. There are three possibilities

(i)a<E&<b.lil) E=a (i) &£ =5

We shall prove that (i) and (ii) lead to contradictions. We shall
obtain the contradiction in (i) by producing a member of S
which is greater than £ Since fis continuous at &, there is an
interval (£ - &, £+ 9) inside (a, b) within which

Sx) < Jf(©O)+1.
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(Any positive number in place of 1 would serve just as well—
if we take the appropriate d.) Since £ is the supremum of
the numbers in S, we can find K and an x, of S for which

fx) < K for. a < x < x

and x, > £-6.
Therefore

J(x) < max {K, f(¢§)+1} for a < x < £+144.

So the number £+44 is in S, which contradicts the definition
of £ as the supremum of numbers in S.

We prove next that the assumption (ii) £ = a leads to a
contradiction.

Since f'is continuous (to the right) at @, we can find ¢ such that

J(x) < fl@+1
fora < x < a+3d.

So a+ 44 is in S which contradicts the assumption £ = a.

We are therefore left with (iii) £ = b, and we have to deduce
from this that f'is bounded above fora < x < b.

Since f is continuous at b, there is a ¢ such that

J(x) < f(B)+1 for b-d < x<b.

Since b is the supremum of numbers in S, there is K and an
x; of S for which

JOy<iK"for'va s XN s

where X, > b—4.
Therefore

JS(x) < max {K, f(b)+1} for a<x<b. |

Theorem 3.72. A function continuous in a closed interval attains
its bounds. In symbols, if f is continuous for a < x < b and
M = sup f(x), then there is a value x, in a < x, < b for which
S(x1) = M (with a similar statement for m = inf f(x)).
Remarks. Just as for the last theorem, it is essential that the
interval should be closed. For instance, the function x+2 is
continuous; its bounds in the open interval 0 < x < 1 are
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M = 3 and m = 2; there are no values of xin 0 < x < 1 for
which the function x+ 2 takes these values.

We give two proofs. The first is short, but rather tricky. The
second is an illustration of a very powerful general technique—
the method of bisection—which the student may well master
now.

First proof. Suppose that there is no x for which

a<x<b and f(x) =M.
Then M—f(x) >0 forallxin a < x <b.
From §3.5 the function

1
M—=f(x)

is continuous for a € x < b, since the denominator does not
vanish.
So by the last theorem it is bounded and there is k such that

M—;f(x)<k for -a < x < b,

This gives J(x)' = M—i for a<x<b
which contradicts sup f(x) = M. |
Second proof (by the bisection method). Bisect the interval
(a, b). The key to the proof is that there is at least one of the
two halves in which sup f(x) = M. Select this half (or, if
sup f(x) = M in both halves, select (say) the left-hand half).
We thus have an interval, which we letter (a,, b,), where either
a, = a or b; = b, such that

by—a, = 3(b—a).

Now bisect the interval (a,, ;) and repeat the argument. We
obtain an interval (a,, b,) in which sup f(x) = M, where

by—a, = 3(b—a).

Continue the process indefinitely. It gives an infinite sequence
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of intervals (a,, b,), in every one of which sup f(x) = M, such
that

b by By s
b,—a, = (b—a)/2".

The last three lines show that the increasing sequence a,, and
the decreasing sequence b, tend to the same limit, £ say. (Note
that £ may be a or b.)

It is easy to see that f(§) = M. A formal proof is:

Suppose, if possible, that f(§) = k < M. Choose k, such that
k < Iy < M. By continuity of f(x) at £, we can find an interval
(§—4, £+4) in which f(x) < k;. But, if n is large enough, the
interval (a,, b,) lies inside the interval (£—6, £+6). The in-
equality f(x) < k; contradicts the fact that, in (a,, b,),
sup f(x) = M. |

3.8. Uniform continuity
Suppose that, in an interval (a, b),

supf(x) = M and inff(x) = m.

The number M —m merits a descriptive word and we shall call
it the /eap of the function in the interval. (‘Oscillation’ is some-
times used but it has the drawback of suggesting a wave-like
function.)

In this book the theorems of this section will be needed only
in chapter 7. Theorem 3.82 will then be found to be vital in
setting up the integral of a continuous function.

Theorem 3.81. Suppose that f is continuous in the closed interval
(a, b). Then, given e, the interval can be divided into a finite
number of parts in each of which the leap of f is less than e.

Remark. Suppose that ¢ is the mid-point of (a, b). If both
of the intervals (a, ¢), (c, b) can be divided into a finite number
of parts in which the leap of fis less than e, these parts form a
subdivision of (a, b) with the same property. So the theorem
lends itself to proof by bisection.

Proof. Suppose the theorem false. Bisect the interval (a, b),
There is at least one half for which it is false. Choose this
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half (or the left-hand half, if it is false for both halves) and
denote it by (a;, b,). Repeat the bisection. We have an in-
creasing sequence a, and a decreasing sequence b, with a
common limit &,

Since f'is continuous at £, there is an interval (£—4, £+48) in
which the leap of f'is less than e. (If £ is a or b, the interval is
(a, a+9) or (b—34, b), respectively.)

But, if 7 is large enough, the interval (§—4, £+6) includes
(a,, b,). From the definition of (a,, b, it cannot be divided into
a finite number of parts in which the leap of f'is less than €. This
is a contradiction. |

Theorem 3.82. Let f be continuous in the closed interval (a, b).
Given e, there is 8 such that, if x, and x, are any two points of (a, b)
with |x,—x,| < 6, then
|/CGe) =S (xa)| < e

Proof. From the last theorem, we can divide (a, b) into a
finite number of subintervals in each of which the leap of f(x)
is less than 4e. Take d to be the length of the smallest of these
subintervals. If |x;—x,| < 4, then x; and x, lie in the same
subinterval or in adjacent ones. In the former case

[/ =f(xa)| < 3.

In the latter, if ¢ is the common end-point of the two sub-

intervals, Lf(x) —F(xa)|
< [ f(x) =f(0)] + | f0) —f(xd)|
< let+de = e |

This is called the theorem of uniform continuity. The reader
may treat this phrase merely as a label until (beyond the scope
of this book) he comes across the notion of uniformity in other
contexts in analysis.

The point of the theorem can be conveyed by the following
remarks. Continuity for a value x ensures that, given e, there is
d such that, if x, and x,are any points in theinterval (x — 8, x + ¢),
then |f(x;)—/f(xy)| < e. This & depends on € and also on the
particular value x. Theorem 3.82 states that it is possible to
choose a ¢ which will serve for every x in (a, b).
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3.9, Inverse functions

You will have met situations in which, uncritically, a function
has been constructed as the inverse of an already known
function. For example, the equation x = sin y is used to define
y as a function arc sin x of x. This illustration shows that the
procedure requires care, because, for a given x, there are in-
finitely many values of y, and if we are to keep to single-valued
functions we must impose some restriction on the permitted
values of y.

We shall now give an existence theorem which assures us that,
if certain simple conditions are fulfilled, we can obtain a new
function inverse to a known function.

Definition. f is increasing for a < x < b if f(x) < f(xy) for
all x,, x3 such that a < x; < x3 < b. If f(x,) < f(xp), we say
that f is strictly increasing.

Theorem 3.9. Let f be continuous and strictly increasing for
a £ x <b. Let f(a) = c, f(b) = d. Then there is a function g,
continuous and strictly increasing for ¢ < y < d, such that
S{g)} = y (so that g(y) is the function inverse to f(x)).

Remarks. The situation is easily appreciated graphically.
Moreover, we can see that the hypotheses are natural. If fwere
not strictly increasing (or strictly decreasing) there could be
values of y corresponding to more than one value of x, and then
there would not be a single-valued inverse. If f were discon-
tinuous, we might have, for some &, f(§+) =2 > A = f(E-)
and an interval (A, ) of y in which there is no inverse function.

Proof. Let k be any number such that ¢ < k < d.

By theorem 3.6, there is a value 4 such that

S = k,

and, since f strictly increases, there is only one such A corre-
sponding to a given k.

The inverse function g is then defined by # = g(k).

It is easy to see that g is strictly increasing. For a formal
proof of this, let y; < y, and y; = f(x,), y» = f(xz). From the
last paragraph, x; and x, are uniquely defined. If x, < x, then,
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since f is increasing, f(x,) < f(x,), i.e. ¥, < y;, which contra-
dicts the assumption y; < y,. So x; < x, and g is strictly in-
creasing.

It remains to prove that g is continuous.

With e > 0, let

flh—e) =k, and f(h+e) = k,.
Then, since f'is increasing,
ky<k<k
and h—e < g(y) < h+e if k; <y <k,

Since € is arbitrary, g is continuous at y = k.

Here k is any number in the open interval (¢, d). A similar
argument establishes one-sided continuity at the end-points ¢
and d.

Exercises 3 (¢)
Notes on these exercises are given on p. 175.

1. Discuss the continuity of the following functions:

(i) f(x) = 1/g when x is a rational number p/g in its lowest terms,
f(x) = 0 when x is irrational;

(i) f(x) = xlogsin’x (x + 0), f(0) = 0;

1
iii) f(x —— cosec ——
(i) f(9) = —— cosec —.
2. Construct a function which takes every value yin 0 < y < 1 once and
once only for values of x in 0 <x < 1 and which is discontinuous for some
valuesof xin0 < x < 1.

3. fis bounded for a < x < b, and M(x) is the supremum of the values
of fin the closed interval (a, x). Prove that, if fis continuous for a value
X, ina < x, < b, and if f(x,) < M(x,), then there is an interval containing
X, in which M(x) is constant.

4. Can a function be continuous for one value of x and discontinuous for
all other values?

5. In theorem 3.82, take f(x) = x*, a= —1,b=1,¢ = % and give a
value of &,

6. Which of the following sets of data (i)-(iii) are sufficient to determine
the value f(0)?

(i) fis continuous at x = 0 and in any neighbourhood of x = 0 it
takes both positive and negaiive values;
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(ii) given e, there is & such that |f(x)| < e for 0 < |x| < &;
(iii) as A - 0, f(h) > a and

IOHAR=AO ;.

7. fis bounded for @ < x < b and, for every pair of values x,, x with

ISHSRSh fnrx) < HA0 HG).
Prove that f is continuous fora < x < b.
8. fis defined for all x and

IfG)—f(x)] < a|x—x|

for all x and x’, where the constant  is less than 1. The sequence x;, X, ...
is defined by a given x, and

Yo = (xany) n = 1,200
Prove that x, -+ £ as n — oo, where
£ = f().
Prove also that, if /(0) = 0, then
JO g SO

T



65

.
THE DIFFERENTIAL CALCULUS

4.1. The derivative
If, for a given value of x,

Sx +hz-f (x)

tends to a finite limit as & tends to 0, this limit, denoted by
f'(x), is called the derivative or differential coefficient of f for the
value of x. The function f is said to be differentiable for that
value of x.

To state the geometrical counterpart of this definition, sup-
pose that P is a given point on the curve y = f(x) and Q is a
variable point on the curve. If, as Q approaches P along the
curve, the gradient of the line PQ tends to a limit, the curve has
a tangent at P whose gradient is f7(x).

The definition calls for a number of remarks.

(1) An expressive notation is to write %, the change in x,
as dx (dx is a single symbol; it is not ¢ multiplied by x). The
corresponding change in y, namely, f(x+ éx)—f(x) is called dy.
The derivative is then the limit, as dx tends to 0, of the ratio

sy

Ex-
The derivative may be written

dy

d_xl
where d/dx is, for the present, to be understood as a symbol
specifying an operation to be performed on whatever follows
the 4 in the upper line. (The dy and dx are not the numerator
and denominator of a fraction.)

(2) A function, defined for a set of values of x, may be

differentiable for all those values or for none or for some and
not others.
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Ilustrations. (i) f(x) = x%

f(x) = 2x for all values of x.

(ii) f(x) = x (x rational),

=0 (x irrational),
J(x) is not differentiable for any value of x.

(i) - S =[x
f(x)=1if x> 0and f'(x) = —1 if x < 0. fis not differentiable for
x=0

(3) A necessary (but not sufficient) condition for f to be
differentiable for a given value of x is that fis continuous for
that value.

For d8y[éx can tend to a finite limit as dx - 0 only if dy - 0,
i.e. if fis continuous.

The function |x| is continuous but not differentiable at x = 0.

(4) The following notes are, in part, suggested by the
examples in (2). ]

In the definition of the derivative we could, if we wished,
consider separately # > 0+ and 4+ 0—, defining what might
be called the right-hand and left-hand derivatives. If they are
equal there is a derivative in the ordinary sense f'(x). The
function |x| of (iii) above has at x = 0 right-hand derivative 1
and left-hand derivative —1.

Consider next another example of a power of x. If f(x) = x3,

then, for x = 0, ) ; 1(0) e

and this tends to +co as A—>0. Geometrically, the curve
»® = x has a vertical tangent at (0, 0). In defining the deriva-
tive we specified that the limit should be finite, and in accord-
ance with this definition we say that x? is not differentiable for
x = 0.

The decision whether to admit or exclude infinite derivatives
is based on convenience. The exceptional cases that have to
be stated in theorems if infinite derivatives are allowed sway
the balance in favour of exclusion. For instance, if, for a certain
value of x, f(x) were +co and g'(x) were —oo, it can be shown
by simple examples that f+ g might have a derivative with any
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value or need not be differentiable; so the rule to be given in
§4.2 (1) for differentiating the sum of two functions would lose
the simplicity that it has for finite derivatives.

Exercises 4 (a)
Notes on these exercises are given on p. 175.

1. Find the equation of the tangent to the curve y = x*—4 at each of its
points of intersection with (i) the x-axis, (ii) the y-axis.

2. Find the equation of the normal to the curve 2y = (x+2)? at each of
the points on it where y = 2.

3. Find the equation of the tangent at the origin to the curve
¥y = x¥x—1)*+3x.
Prove that the tangent touches the curve again at a second point.

4. Prove that the equation of the tangent to the parabola y® = 4ax at the

oint (ar®, 2ar) is
P a2 ty = x+ar

5. Give an example of a function which is continuous for all values of x
and is differentiable for all values of x except 1 and — 1.

6. State for what values of x the following functions fail to be (a) con-
tinuous, (b) differentiable.

(i) [x], (defined on p. 54).

i 5 x—1 (x<1),

) R = {x’—l (x> 1)

7. Find the angles of intersection of the pair of curves
() 2y = x*, y = x}(2—x).

Also of the pair (i) 2y = %2, 2x =yt

4.2. Differentiation of sum, product, etc.

We assume that the functions fand g have derivatives for the
values of x considered. The proof of (1) is left to the reader.

(1) If s(x) = f(x)+g(x), then 5'(x) = f'(x)+8'(x).

If 1(x) = kf(x), then t'(x) = kf(x).

(2) If p(x) = f(x) g(x), then ¢'(x) = f(x) g'(x)+["(x) g(x).

Proof of (2). We have

Plx+ j{z —¢(x) _ fx+h) glx +hh) —f(x) g(x)

= f(x+h)ggwfl)!_;“g(i)+g(x)f(x+h;—f(x)-

5-2
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Consider the first term in this last sum. Since f is differ-
entiable at x it is continuous at x and so f(x + k) - f(x) as h > 0.
The other factor {g(x+#4)—g(x)}/h has limit g’(x). Since the
limit of a product is equal to the product of the limits,

fx+h) 3“—*"?1;39‘—) 2 a8 B0,

Similarly
g0 EERZED L o7 as ho.

Finally, we appeal to the theorem that the limit of the sum of
these two functions of 4 is the sum of the limits. |

This formula for differentiating a product is typical of those
which are used over and over again in the differential calculus.
The proof has been set out fully to stress its dependence on the
repeated application of the theorems about limits.

(3) If $(x) = 1/g(x) and g(x) + O, then

g S gile)
_ ) =~ leep
This follows from
dx+h) - 4(x) _ gx)—g(x+h)
h hg(x) g(x+h)*

@ If ¢(x) = f(x)/g(x), then
ey = (%) 8(x) —f(x) g'(x)
_ Pl {g)p i
Combine (2) and (3).
(5) Function of a function.
Let u = g(x) and y = f(u), so that

y = flg(x)} = ¢(x), say.

Then #'(x) = f'{g(x)} g'(x),
or, in other notation, dy _dydu
dx dudx’

Proof. Let éx be a change in x, du the corresponding change
in u by the functional relation # = g(x). Let dy be the change
in y from y = f(u). Then

ou = {g’(.i) + €} bx,
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where the number e (which depends on x and dx) tends to 0 as
dx tends to 0. Similarly

3y = {f'()+e} du,
where €, > 0 as du - 0. Here we must observe that, if g'(x) + 0,
du is different from 0 if dx is small enough; but, if g'(x) = 0, du
may possibly take zero values for arbitrarily small éx; if du = 0,
¢, fails to be determined by the equation connecting dy and du,
and we then define ¢, = 0.
The expressions for éu and dy give

dy = {f'() +&} {g'(x) +€} dox.

Divide by dx and let éx - 0. |

(6) Inverse function.

Let y = f(x) be continuous and strictly increasing for
as<x<b If foragivenxina < x < b, f'(x) £ 0, then the
inverse function x = g(y) is diﬁ'erenn'able Jor the corresponding
value of y and

g = 7 ( it
Proof. The inverse function exists by theorem 3.9.
If & (not zero) is given, define k by
y+k = f(x+h).
Then k + 0 and, if k is given, A is determined uniquely from
g(y+k) = x+h.
So g+l —-g() _ h

k —k T [ —f(0)"

Let k— 0. Then, since g is continuous, A—0. |

4.3. Differentiation of elementary functions

If m is rational, x™ has derivative mx™-1, except for (i) x = 0
when m < 1 and (ii) x < 0 when m = plq (in its lowest terms)
with g an even integer.

Proof. Suppose first that the index is a positive integer n.
Then, if 2 + 0,

L
e xRN = 1) XA
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As h — 0, the limit of each of the n—1 terms on the right after
the first is zero.

If now the index is not a positive integer an argument on
these lines is less easy. A binomial expansion would be an
infinite series; and we have so far no theorems covering the
limit as & — 0 of the sum of infinitely many terms each of which
tends to 0 as 2 0. We adopt a different approach.

Suppose that the index is a negative integer —n. Then

(x+h)"—x" x*—(x+h)"
h T h(x+hrxne

If x4 0, the limit as h—0 of the right-hand side is
—nx"1[x® or (—n) x ™1, which is what we want.

Suppose finally that m is a rational number p/q, where p and g
are integers, ¢ > 0, and the cases (i), (ii) are excepted. The
easiest proof is by use of §4.2 (6), as follows.

Write y = uP, x = u?so that y = x?/%, Then

p—1
P~ Pp-a = 1, |

qui-t g

We are now able by §4.2, (1)-(4), to differentiate any poly-
nomial

p(x) = apx"+a x*1+...+a,

and any rational function of x, namely, a quotient p(x)/g(x) of
two polynomials, for any value of x for which g(x) is not zero.

To provide a greater variety of exercises it is convenient to
assume a knowledge of the following derivatives

d d 1
d—xe“”—e”, d—xlogx=} (x > 0),

dsinx—cosx dcosx— sin x.
dx * dx oA :

A more systematic investigation of the properties of exponen-
tial, logarithmic and trigonometric functions (and their de-
rivatives) is best postponed until chapter 6 after further dis-
cussion of infinite series.
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Exercises 4 (b)
Notes on these exercises are given on p. 176.

1. Differentiate . .
X X

G+a?’ Xragd’ (FP4at)ihc

2. Evaluate the following limits

. xXP—dx+3
® a3 8 x>l
L N |
(i) =0 as x-a,
o 2%+ 3) = (x+6)
(iii) .j(x+1)—2—— as x - 3.

3. Prove by induction that the derivative of x™ is nx"-1, n being a positive
integer.

4. If y,, v, ..., yn are functions of x, prove that, if y = y,y;...y,, then
1dy_ldn,  1dn
yide T widx " yydx ?
where x has a value for which y is not zero.
5. Prove that, if a polynomial p(x) is divisible by (x—a)?, then p'(x) is
divisible by x—a.
6. Prove that, if p’(x) is divisible by (x—a)"* and p(x) is divisible by
x —a, then p(x) is divisible by (x —a)™.

7. Show how 6 is of use in searching for multiple roots of equations.
Illustrate by solving the equation

x0—3x2+2 = 0.
8. Prove that the equation

W 5 e
x—a x—b x-—c
can have a pair of equal roots only if a = b = e,

9. Prove that, if p(x) is a polynomial, then between any two roots of
p(x) = 0 lies a root of p’(x) = 0.

(This is Rolle's theorem for polynomials. It will be proved for more
general functions in §4.5.)
x?sin(l/x) x =+ 0,

0 x =0,

prove that f(x) exists for all values of x and give the values of f’(x) for
x *+ 0 and of f//(0). Prove that f'(x) is discontinuous at x = 0.

10. If F09) = [
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11. The elements of a determinant of order » are functions of x. Prove
that its derivative is the sum of the n determinants formed by differentiating
the elements of one row only leaving the other rows unaltered.

12. Prove that, if p, g, r are polynomials in x of degree not greater than 3,

then
PGS

rqr
p' q’ r’
is a polynomial of degree not greater than 3.

4.4. Repeated differentiation

Let y = f(x) be differentiable. The derivative f'(x) may itself
be differentiable. Notations for this second derivative of f(x)
are d?y[/dx® or f"(x). Notice that the existence of the second
derivative implies the continuity of the first. The nth derivative
may be written f™(x). No new principles are involved.

There is a theorem of interest on the nth derivative of a
product.

Leibniz’s theorem. If f and g are functions of x having n-th
derivatives, then

)™ = S+ o Cof "8 + .y Cof OGO 4 . fg

The proof, by induction, is left to the reader. The algebraic

lemma
n-i-lcr = ﬂCl'+ ﬂCl'—l

is required.

Exercises 4 (c)
Notes on these exercises are given on p. 176.

In calculating an nth derivative it is necessary to adopt the method which
will give the result in the most compact form.

1. Find the nth derivatives of

x—1 x L
x2—4’ (x—2)*°

2, Show that the value of (d% )" -
xi—1

for x = 0is 0 if n is even and —n! if n is odd and greater than 1.

3. Prove that the nth derivative of sin x is sin (x+4#n7) and investigate
corresponding results for cos x, sin kx and e*®sin bx.
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4. Find the nth dérivative of sin 3x sin 5x. (Do not use Leibniz’s
theorem!)

5. Find the nth derivative of a/(a®— x*).
6. Find the nth derivative of a/(a®+ x®).

4.5. The sign of f'(x)
Definition. The function f is said to be strictly increasing at ¢ if
there is a neighbourhood of ¢ in which

Fy= ey Jor "x'=ie
and Jix) > flc) for x =

There is a corresponding definition of ‘strictly decreasing
atie’

Theorem 4.51. If f'(c) > O, then f is strictly increasing at c.
Proof. Since Fle+hy—1(0)
e

tends to a limit greater than 0, its value is greater than O for all
sufficiently small 4. That is to say, the numerator and de-
nominator have the same sign. |

Exercises. (1) Prove that, if fis strictly increasing at ¢ and f(c) exists,
then f'(¢) = 0.
(2) Give examples of functions satisfying the following conditions:
(i) f is neither strictly increasing nor strictly decreasing for any
value of x in (a, b).
(ii) fis strictly increasing at ¢, but it is not true that f'(c) > 0.

The following important result is known as Rolle’s theorem.
Rolle gave it for the particular case of a polynomial (see
exercise 7(b), 11).

Theorem 4.52. (Rolle). If
(1) fis continuous in the closed interval a < x < b,
(2) [’ exists in the open interval a < x < b,

(3) f(a@) = f(b),

then there is a value ¢, with a < ¢ < b, for which

f(©) = 0.
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Proof. Let M = sup f(x) and m = inf f(x) for a < x < b.
Let f(a) = k.

If M = m = k, then f(c) = O for every ¢ between a and b.

Suppose that either M > k or m < k, say the former. By
theorem 3.6, there is a value ¢, with a < ¢ < b, for which
Sfle) = M.

By (2) f'(c) exists. We shall prove that f'(c) = 0.

If f'(c) > 0, by theorem 4.51, f is strictly increasing at ¢ and
there are values of x to the right of ¢ for which f(x) > f(c). This
contradicts the fact that M = f(c) is the supremum of f.

Similarly, if f’(c) < 0, there would be a value of x to the left
of ¢ at which f(x) > M.

Therefore f(c) must be equal to 0. |

Geometrically, Rolle’s theorem states that there is for some
value of x between g and b a tangent to the curve y = f(x)
which is parallel to the chord joining the points where x = a
and x = b. In the theorem the chord is horizontal. The next
theorem is the extension wherein the chord may have any
gradient.

Exercises 4 (d)
Notes on these exercises are given on p. 176.

1. Find a value for ¢ in Rolle’s theorem when f(x) is
(i) (x—a)™ (x—>b)" (m and n positive integers);
(ii) sin (1/x) in (1/nm, 1/mmn).

2. If p(x) is a polynomial, prove that there is a root of
Px)+kp(x) =0
between any two real roots of p(x) = 0.
3. If a and b are successive roots of p(x) = 0. then the number of roots
between a and b of O k() = O
(each counted according to its multiplicity) is odd.
4. Prove that the equation

() ee-vr =

has n real roots, all different and lying between —1 and 1.

5. What information does a knowledge of the roots of p'(x) = 0 give
about the roots of p(x) = 0?7
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Prove that the equation

Xt

23

has one real root if n is odd and no real root if n is even.

1-x+ +...+(—1)n-’;—"=0

6. Prove that the equation
X"+ kx+4+1=10

has at most two real roots when 7 is even and at most three when » is odd.

4.6. The mean value theorem :

Theorem 4.61. (The mean value theorem). Let f satisfy the con-
ditions (1) and (2) of Rolle’s theorem. Then there is a value c,
witha < ¢ < b, for which

SB)-fla) = (b-a)f(c).

Proof. Write #(x) = f(x)—kx
and choose the constant k to make
$(b) = $(a).
This gives JS(B)—f(a) = k(b—a).

Rolle’s theorem gives ¢ such that ¢'(c) = 0, i.e. f(c) = k. |
It is often convenient to write the result, with b = a+h,

fla+h) = f(a)+hf'(a+0h),

where @ is some number such that 0 < 6 < 1.
The mean value theorem has important consequences under
further assumptions about f”(x).

Corollary 1. If f'(x) = 0 for all x in a < x < b, then S(x) is
constant for a < x < b.
Proof. If x, and x, are any two points with

8585 < X%

then S =S(x) = (x2—x1) f'(x9),

where X = X3 = Xa,
and this is 0. |

Corollary 2. If f'(x) > 0 for a < x < b, then S(x) is a strictly
increasing function in the interval a < x < b.
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Proof. We have to prove that, if x; and x, are any points with
a < x; < xp £ b, then f(x) < f(x,).

S(x) =f(x) = (6a—x) ['(x3) (1 < X3 < Xp)
>0. 1

It is often useful to be able to apply corollary 2 under slightly
more general hypotheses. We can allow one value ¢ at which
the only requirement is the continuity of f; even the existence
of f'(¢) is not assumed.

To prove that f(x) is still strictly increasing in (e, b), apply
corollary 2 to the two intervals (a, ¢) and (c, b). If x; is in (g, ¢)
and x, in (¢, b), then f(x;) < f(¢) < f(xy). |

The extended statement holds for any finite number of ex-
ceptional points c.

Corollary 2 should be compared carefully with theorem 4.51.
It assumes more and proves more. If, as in theorem 4.51, we
know only that f is increasing at a point, there need be no
interval throughout which f is an increasing function (see
exercise 4(f), 13).

The following extension of the mean value theorem to two
functions will be useful later.

Theorem 4.62. (Cauchy’s mean value theorem). Suppose that
both the functions f and g are continuous in the closed interval and
differentiable in the open interval (a, b). Suppose that g'(x) is
different from 0 for all x in a < x < b. Then, for some c with

b, :
i f®)-f@) _ £
gd)-gl@ g
Proof. (Observe first that it is not sufficient to apply the

mean value theorem to f and g separately, because we get two
different c’s.)

Define $(x) = f(x)=kg(x)
and choose the constant &k to make ¢(b) = ¢(a), i.e.
S)—f(a) = k{g(b)—g(a)}-

By Rolle’s theorem, there is ¢ such that
$'(c) =f(c)—kg'(c) = 0.
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Next, g(b)—g(a) + 0, for, if it were, Rolle's theorem would
give a number ¢; for which g'(¢;) = 0, which contradicts the
hypothesis.

Equate the two values found for k. |

Exercises 4 (&)
Notes on these exercises are given on pp. 176-7.

1. In each of (i)-(iii) find, if possible, a number ¢ satisfying the mean
value theorem. In any example in which no ¢ can be found, which of the
conditions of the theorem is not satisfied ?

D) f(x) = x(x-2)(x~4) (@=1,b=3);

D fa=1/x* (a= —1,b = 3);

(iii) f(x) = x12 (a= —1,b=1).
2. Taking f(x) to be (i) x?, (ii) x", prove that, as A - 0, the number & of
the mean value theorem tends to a limit.

3. If f'(x) > [ as x —+ o0, prove that f(x)/x - [.

Il

4. Discuss the following argument.
Let f'(x) exist fora < x < b. Leta< c < b. Then, ifa < c+h < b,
the mean value theorem gives

At B - it om.

Let & —+ 0. The left-hand side tends to f’(c). So the limit of f'(c+ 0h),
as h — 0, exists and is equal to f“(¢). That is to say, f'(x) is continuous
atx = c.
5. Take in theorem 4.62

=18, gt)=4r-3* (a<t<bh
and find whether a ¢ exists when (i) a = 0, b = 1; (i) a= —1, b = 2;

(iii) a= —1, b =4 Illustrate geometrically on the curve x = 72,
y = 48 —3,

4.7. Maxima and minima

Definition. f is said to have a maximum at c if there is a neigh-
bourhood of ¢ in which f(x) < f(c) except for x = c. :

We define a minimum by substituting > for <.

A phrase covering either a maximum or a minimum is a
turning value.

(The use of the words maximum and minimum applied to a
continuous function will not be confused with their use in §1.7
for a finite set of numbers.)
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Theorem 4.71. If f'(c) exists, a necessary condition that f has
a turning value at c is that f'(c) = 0.

Proof. From theorem 4.51, if f'(c) > 0, f1is strictly increasing
at ¢. If f'(c) < 0, f is strictly decreasing at c¢. Either of these
contradicts ¢ being a turning value. |

Notes. (1) A function may have a turning value for a value
of x at which there is no derivative, e.g. |x| has a minimum for
Xi=10;

(2) The condition of the theorem is not sufficient, e.g. if
f(x) = 23, f/(0) = 0 and f is strictly increasing at x = 0.

The following criterion serves to distinguish a maximum
from a minimum.

Theorem 4.72. If there is a neighbourhood of ¢ in whichf'(x) > 0
Jor x < ¢ and f'(x) < O for x > ¢, then [ has a maximum for
X = C.

Proof. Theorem 4.61, corollary 2, shows that /' decreases as x
increases from ¢ and also as x decreases from c. |

Alternatively the second derivative may be used to investigate
whether a value of ¢ for which f'(c) = 0 is a maximum or a
minimum of f or neither.

Theorem 4.73. Let f'(c) = 0. If f'(c) < 0, then x = c gives a
maximum of f(x). If f"(c) > 0, x = ¢ gives a minimum.

Proof. By theorem 4.51 f”is strictly decreasing at c. Therefore
there is a neighbourhood of ¢ in which f’(x) > 0 for x < ¢ and
f'(x) < 0for x > c. Apply theorem 4.72. |

Exercises. Investigate maxima and minima of the functions

G x|, (i) x/(1-+x?),
(iii) (ax+b)/(cx+d), (iv) (x+a) (x+b)/(x—a) (x—b),
(v) acos x+bsin x, (vi) asec x+ b cosec x.

4.8. Approximation by polynomials. Taylor’s theorem

The simplest class of functions with which a mathematician
has to operate is the class of polynomials, that is to say,

AQyt+ay x+...+a, x"”,

where ay, ..., a, are given numbers. The value of a polynomial
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is calculable exactly by additions and multiplications for any
assigned value of the variable x.

More general functions are commonly expressible as limits of
polynomials; in other words, the function can be expressed

approximately by means of a polynomial. This section deals with
the form that such an approximation normally takes.

Lemma. If f(x) is the polynomial

dg+a 1 x+ ... +a,x",
then a, = %f(’)(O) O =r=sn.

Proof. The value of a, is obtained by differentiating » times
the polynomial expression for f(x) and putting x = 0. |
Thus we have, if fis a polynomial of degree »,

6 = SO+ X O+ O+ ..+ fO(0).

More generally, if we write x = a+h, where a is fixed, we have
for the polynomial f

Sfla+h) = f(a)+hf’(a)+§f”(a) $aee +ﬁ—7;f<”)(a).

We may reasonably expect that, if we discard the hypothesis
that fis a polynomial but assume that it is a function possessing
derivatives of the relevant orders, then the right-hand side of
the last equation will be a good approximation to the value
f(a+ h). This result is contained in theorems 4.81 and 4.82. They
are seen to be forms of a mean value theorem of the nth order.
The general mean value theorem is usually called Taylor’s
theorem after Brook Taylor (1685-1731) who investigated the
expansion of a general function f(a+/%) in powers of A. The
case @ = 0 is commonly called Maclaurin’s theorem.

In theorem 4.81 the existence of the nth derivative is required
only for the single value a. The existence of f™(a) implies the
existence of /™Y (x) in a neighbourhood of a; and this implies
the continuity of f")(x) for r < n—2 in a neighbourhood of a.



80 THE DIFFERENTIAL CALCULUS 4.8
Theorem 4.81. (Young’s form of the general mean value theorem).
Suppose that f™(a) exists. Then

fa+1) = @+ @+ ot o fOa) 5 M@+

(n
where e >0 as h— 0.
Proof. Suppose first that & > 0. Define

$h) = fla+ 1) ~f@ ~f @ =
@ = @1,

where 7 is a positive constant.
Then ¢(0), ¢'(0), ..., $™2(0) are all zero, and

¢™(0) = 7.

By theorem 4.51, ¢™~1(h) is increasing at A = 0 and so is
positive in an interval to the right of 0.

By corollary 2 to theorem 4.61, applied to ¢™-(h), this
function is positive in an interval to the right of 0.

Repeat the argument. We find finally that, for sufficiently
small positive A, ¢(h) > 0, that is to say,

flat) > J@+H@ 4 s @)+ @) 1)

Similarly

fa+h) < f@)+hf'@+... +(7";%! S @)+ @)+,

A corresponding argument applies to negative values of A.
Collecting our results, we have proved the theorem.

Application to maxima and minima. To illustrate the use of
theorem 4.81 the reader should establish the following extension
of the conditions given in theorem 4.73.

Suppose that

@) =) = .. =f* ) =0,
f®() + 0.

Then (1) a necessary condition for ¢ to give a maximum or
minimum of f(x) is that n is even; (2) supposing that » is even,
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if f™(c) < 0, then ¢ gives a maximum of f(x), and if f™(c) > 0,
then ¢ gives a minimum.

The next theorem is the direct extension to general n of
theorem 4.61.

Theorem 4.82. (Taylor’s theorem.) Suppose that S and its deriv-
atives up to order n—1 are continuous Jor a < x < a+h, and
S™ exists fora < x < a+h. Then

hn—1

-0t/ D@ e+ O,

fla+h) = fla)+hf"@)+... +

where 0 < 8 < 1,
Proof. Define, for 0 < ¢ < A,

0] =f(a+t)~—f('ﬂ)"1'f"(“’)“"'bJﬂ—_il-)‘*!fm_n(a)-_’%ﬂE %

(n—

where we choose B to make ¢(h) = 0.
From the definition of ¢(f), we see that

$0), '), "), ..., g=1(0)

are all zero. Now use Rolle’s theorem (4.52) n times.
Since ¢(0) = ¢(h) = 0 we have ¢'(h,) = 0 © < Iy < h).
Since ¢'(0) = ¢'(h) = 0 we have $"(hy) =0 (0 < hy < By).
Finally,

since ¢#D(0) = ¢n-D(k, ;) = 0, we have g™ (h,) = 0,

where 0 < h, < h,_, ... < handsoh, =6h (0 <6 < 1)

Now ¢™(#) = f™(a+r)— B, and so B = f ™ (a+ 0h).

Put f = A, ¢(h) = 0, and this value of B in the first line of
the proof. |

A different proof of theorem 4.82 can be given, which has the
advantage of yielding alternative expressions for R,, the term
in A", The form p
R, = —5/™(a+0h)

is known as Lagrange’s form of remainder.
For brevity we shall give this second proof in the Maclaurin
form with @ = 0,
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Theorem 4.83. (Taylor’s theorem with Cauchy’s form of re-
mainder). With the hypotheses of theorem 4.82 (and a = 0),

fh) = fO)+hf'O) + ... + = —57 ( ) SOP0)+ Ry,

6)n-1 £ (Ok) hn

where R, = (= D!

Proof. Define
E(1) =f(h)—f(t)—(h“f)f’(t)—----
Then it is easily verified that

(?n-—t)l’;_!l o),

© <6< 1.

(h

f ek

F() =—

all other terms in the differentiation cancelling in pairs.

Write
o) - Fo - () FO),
where p can be any integer such that 1 < p < n. Then
(0) = P(h) =

By Rolle’s theorem (4.52), there is a value 0h with 0 < 0 < 1
for which ®'(6h) = 0. But

o'(0h) = F'(6h) +P(l;}f)":f FO).

This gives a value for R, which reduces to Lagrange’s form when
p =n and to Cauchy’s form stated in this theorem when
p=11

4.9, Indeterminate forms
We shall extend theorems 4.81 and 4.82 to two functions.
(Compare theorem 4.62, when n = 1.)

Theorem 4.91. Suppose that ™ (a), g(;" (a) exist and g™ (a) + 0.
Then, as h — 0,

fa+h)—fla)—hf'@—...— (A" (-1} f*D(a) [*™(a)
ga+h)—g@)—hg'@—...— " n—1)1} g*(a) ~ g™ (a)’

Proof. Apply theorem 4.81 to each of the functions f, g. |
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Theorem 4.92. Suppose that f and g and their derivatives up to
order n—1 are continuous fora < x < a+h. Fora < x < a+h,
suppose that f™(x) exists and that g™(x) exists and does not take
the value 0. Then

fla+h)—fla)-hf'(@)—...— (" (n— D} "V (a)
gla+h)—gla)-hg'(@)—...— k" (n— 1!} g"(a)
_ ™ (a+6h)
= g™(a+06h)’

where 0 < 6 < 1.
Proof. We use the method of theorem 4.62. Define

P(x) = f(x)—kg(x).
Choose k to make
n—1
Ha+H) =D~ @) = .~ sy 470

equal to 0.
By theorem 4.82 the last expression is equal to

fTT & (a-+Oh),

and therefore ™ (a+6H)— kg™ (a+6h) = 0.
Equate the two values found for &. |
Corollary. With the hypotheses of theorem 4.92, if

f@ =f@ = ... = @) = 0
and ga) = g'@ = ... = gta) = 0,
and ‘;:)((;)) 1! asx—>a (ora+ ora-),
then gg)—w’ asx—>a (ora+ ora-).

We now indicate a field of application of these theorems.

Suppose that f and g are continuous in the closed interval
(a, b) and that f(a) = g(a) = 0. The limit as x +a+ of the
quotient f(x)/g(x) cannot be ascertained directly by putting
x = a. Such an expression is traditionally called an indeterm-
inate form (0/0). On suitable assumptions about the deriva-
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tives of f and g, the limit of f(x)/g(x) can often be found by
theorems 4.91 and 4.92.

It is to be observed that the hypotheses of theorems 4.91 and
4.92 are different, and neither theorem includes the other.

Illustration. Investigate the limit as x - 0 of
tan kx—k tan x
k sin x—sin kx °
Solution. Writing the fraction as f(x)/g(x), we have
f(x) = ksec® kx—k sec? x,
£'(x) = kcos x—k cos kx.

If we use theorem 4.91 it is necessary to differentiate twice more, since
g" is the derivative of lowest order which does not vanish at x = 0.
Theorem 4.92 (corollary) is, however, applicable to give

f(x) _ cos x+cos kx

g'(x) ~ cos? kx cos® x (= 0,

and this tends to 2 as x to 0.

Exercises 4 (f)
Notes on these exercises are given on p. 177,
1. Find the limits, as x tends to %, of
o (l=2x)P—x"
O (e
where m and »n are positive integers;
(i) 1+cos 29.
(2x—1)*

2. Find the equations of the tangent and normal to the ellipse x = a cos 6,
y = bsin 0 at the point 0.

A tangent to an ellipse meets the axes at P and Q. Find the least value
of PQ.

3. By writing y = #x obtain parametric equations for the curve
x¥+y? = 3axy.

Obtain the equation of the tangent at’the point with parameter ¢, and
find the parameter of the point where this tangent cuts the curve again.
What happensas r - —17?

4. Sketch the locus (the cycloid) given by
x = a(t—sin?), y = a(l—cos)
for values of  between 0 and 27.
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Prove that the normals to the curve are tangents to the curve
x =a(t+sint), y= —a(l—cosi),
and sketch this second curve in your diagram.
5. Investigate maxima and minima of
R S F et
and sketch the corresponding graphs.
6. Prove that, if 95 > a > 0, the function

asin x+ b sin 3x

has a maximum for some value of x between 0 and 4n. Taking a = 6,
b = 1, find the greatest and least values of the function for 0 < x < 4w.

7. P is a point on the circle whose equation is

=0+ (=)t = a,
where h > a, and PM, PN are the perpendiculars on the coordinate axes.
Find the positions of P for which the area of the triangle PMN is a

maximum, and show that there are two maximum positions or one
according as £ is less or greater than a./2.

8. If y = ax*+bx*+cx+d,

what condition must be satisfied by the coefficients a, b, ¢, d, if, cor-
responding to any value of y, there is only one value of x?

9. If p(x) and g(x) are quadratic, and the roots of g(x) = 0 are complex,
prove that the maximum and minimum values of p(x)/q(x) are the values of
k for which p(x) — kq(x) is a perfect square.

10. An open bowl is in the form of a segment of a sphere of metal of
negligible thickness. Find the shape of the bowl if its volume is greatest
for a given area of metal.

11. The centres of two spheres of radii a and b are at a distance ¢ apart,
where ¢ > a+b. Where must a point source of light be placed on the line
of centres between the two spheres so as to illuminate the greatest total
surface?

12. A flat piece of cardboard has the form of an equilateral triangle ABC
of height 34. Points P, Q, R are marked on the medians AG, BG, CG on
opposite sides of G from A4, B, C, with GP = GQ = GR. The triangles
BCP, CAQ, ABR are then cut away, and the remaining piece of cardboard
is folded about the edges of the triangle POR so as to form the surface of
a tetrahedron. Prove that the volume of this tetrahedron cannot exceed
(3/8)ih,

13. Construct a function f for which f(0) > 0, but there is no interval
(—h, h) in which fis an increasing function. (Try x?sin (1/x)+ kx, where
k is a suitable constant.)
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14. Discuss Newton's method of approximation, that, if x; is near to a root
a of the equation f(x) = 0, then
Sxy)

Xy = Xp3— f’(x I.)
is likely to be a better approximation to a.

Show in particular that if, in (@—h, a+4), | f(x)| > &k > 0 and f"(x)
has constant sign, then x, lies between x, and a if f(x,) and f“(a) have the
same sign.

Approximate to the root near 7 of the equation sin x = 7x, where the
constant 7 is small.

15. The rule of proportional parts. If the values of a function f(x) are
tabulated at intervals 4, and a+k lies between two successive entries
a, a+ h, the rule is that, approximately,

fa+R~f@ = %fa+H—fian.

To obtain an upper bound for the error, suppose that f"(x) exists for
a < x < a+h. Write ’

é() = f(‘”—'i"f@ © < ¢ < h, a fixed).
Provethat ¢ = /") © <7< 1).

Deduce that
fa+W—f(a) flatk)—fla) _
h k

Hh—k)f"(x),

wherea < x < a+h.

Hence prove that the errer in the value found by the rule of proportional
parts is at most $M#h?, where M = sup | f"(x)|.
16. Prove that the nth derivative of tan x is a polynomial in tan x of
the (n+ 1)th degree.
17. Prove that " "
prs (e;') = (-1)"n! i1 Pr(=X),
where p,(x) is the polynomial formed by the first (n+1) terms of the
expansion of e* in powers of x.

18. Prove, by induction or otherwise, that, if m is a positive integer,
sin (2m+ 1) and cos(2m+ 1)8/cos 6 can be expressed as polynomials in
sin 6.
If y = sin(2m+1)# and x = sin 0, show that
1=x ) = @m+1)* (1 -5
and (1 =xN)y™D— 2n+ 1) xy"* 04 {2m+ 1)* —n% ™ = 0.

Prove that
y=(@2m+1) {x—(—z-m;!z)2’"x*+(2'"+4)(2'"5';'2}2”'(2”'_2)x‘—-,..} .
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19. A twice differentiable function is such that f{a) = f(b) = 0 and
f(c) > 0, where @ < ¢ < b. Prove that there is at least one value &
between a and b for which f”(§) < 0.

20. Prove that, as & -> 0,
fa+h) =2f(a)+fla—h)
ha

- f"(a)

if the right-hand side exists.

21. Investigate the limits as x - 0 of

1 arc sin x—sin x

el | v
(e o

X% sin®x’
22. Investigate the limit as x - 1 of

x—(n+ 1) x"" 14 pxnt?
(L==0c)
23. Find a pair of functions f(x), g(x) for which f(0) = g(0) = 0 and, as
x =0, f(x)/g(x) tends to a limit but f’(x)/g’(x) does not tend to a limit,
That is to say, prove that the converse of theorem 4.92, corollary (for

n = 1) would be false. Hinr—a discontinuous f’(x) is given in exercise
4 (b), 10.

24. (A theorem of Darboux.) If f(x) is differentiable for @ < x < b, then
[f'(x) takes every value between f“(2) and f'(b). (A derivative need not be
continuous, but it has the property established in theorem 3.6.)
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S
INFINITE SERIES

5.1. Series of positive terms

In chapter 2 we defined convergence of infinite series and gave
some properties which followed quickly from the definition.
Two particular series Zr™ and Xn—* were studied. We now need
a wider knowledge of infinite series.

We recall that a series of positive terms Zu,, either converges
or diverges to +oo. Throughout §5.1 we shall assume that
u, = 0. :

The reader is asked to refer to the closing result (6) of §2.12.
It enunciates a comparison principle by which it may be possible
to infer the convergence of a proposed series Zu, from that of
a series v, which is known to converge. We proceed to turn
this comparison principle into readily applicable forms.

Theorem 5.11. (Cauchy’s test for convergence.) Suppose that
ull™ tends to a limit | as n— 0. Then, if | < 1, Zu, converges;
if l > 1, Zu,, diverges.

Proof. Suppose that,] < 1. Choose r with [ < r < 1.

By the definition of limit, there exists N such that, for all
n >N, Wit < r, ie.u, <r.

But, since r < 1, the geometric series Zr* converges. There-
fore so does Zu,,.

If I > 1, then, for all n greater than some N,

ulin > 1, ieu, > 1
and so Zu, diverges. |
Note carefully that, if / = 1, no conclusion can be drawn.

A criterion which is often easier to apply than theorem 5.11
is the following.

Theorem 5.12. (d’Alembert’s test). Suppose that u, > 0 and
Up 1ty tends to I Then, if | < 1, Zu, converges; if | > 1, Zu,,
diverges.
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Proof. Suppose that I < 1. Choose r with/ < r < 1.

IN., Y b forallm > N.
n

Therefore
gyetin v o BN gy e,
Up un—z Uy

i.e. u, < Kr", where K is independent of n.

Since Zr™ converges, so does Zu,,.

If I > 1, the terms increase after a certain value N, and
divergence is plain. |

As in theorem 5.11, if I = 1, no conclusion can be drawn.

Exercises 5 (a)
Notes on these exercises are given on p. 177.
1. Investigate the convergence or divergence of the series whose nth
terms are gomtt
3oir g
@D 501230 S 1)
emt”* 1.4.7..6n-2"

2_‘/“1'“,

where x > 0.
2. Prove that the series whose nth term is
(a+1)(2a+1)...(na+1)

G+1) 2b+1)...(nb+1)
converges if 0 < a < b and diverges ifa = b > 0.

3. Prove that, if ¥}/» < r < 1 for all n > N, then Zu, converges.
Show that this statement provides a test which is more general than
theorem 5.11.
Discuss the series
a+b+a*+b*+a+ b5+
where0 <a< b < 1.

4. State a test for convergence which is more general than d’Alembert’s
test in the same way that exercise 3 is more general than Cauchy’s test.

5. Prove that d’Alembert’s test does not determine the convergence of the
series in exercise 3.

6. Discuss the following statement.

The tests of Cauchy and d’Alembert, being derived from comparison
with a geometric progression, cannot determine the convergence of the
series n~?%, which converges more slowly than any geometric progression
(§2.11, exercise).
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7. Prove that if, for all n, u,,s/u, is less than k, where k < 1, then Zu,
converges. Generalise,

8. Establish the truth or falsity of these statements:
(i) If (un/vs) =1 as n->oo, then Zu, and Zv», both converge or
both diverge.
(ii) If uy—v, = 0, then Zu, and Zv, both converge or both diverge.
(iii) If (4p41/ua) > k > 1 for infinitely many n, then Zu,, diverges.

5.2. Series of positive and negative terms

We turn to the problem of settling the convergence or diver-
gence of a series which has infinitely many positive and infinitely
many negative terms (for example, the series 1 -3 +4—%+...).
The criteria of theorems 5.11 and 5.12, applicable to series of
positive terms, depended on inequalities between the terms of
the series under investigation and those of a series whose
behaviour was known. A little thought shows that no such
‘comparison principle’ holds for series of terms of arbitrary
sign.

We ask, then, whether our knowledge of series of positive
terms can be turned to account. If we are given any series Zu,,,
there is one series of positive terms which suggests itself as
being closely related to jt, namely, the series of absolute values
of the terms, Z|u,|. This observation leads to a satisfying
theorem.

Theorem 5.21. If Z|u,| converges, then Zu,, converges.
Proof. Define i
{ ty Ty 0

0 ifu, <O
f 0 ifu,>0,

W, =
i 1——u,, ifu, <O0.

Then v, > 0, w, = 0 and the series Z'v,, contains those terms of
Zu, which are positive (or zero).
Also

v, =

Uy = Up—W,,
[unl = Up+ W

If now Z|u,| converges, then Zv, and Zw, both converge.
Therefore so does Z(v,—w,), i.e. Zu,. |
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Definition. If Z|u,| is convergent, the series Zu, is called
absolutely convergent.

Exercise. Give three examples of series which converge, but not abso-
lutely. (An exampleis 1—14+%—%+4—4+.... Theorem 5.22 will suggest
many others.)

If we have to determine whether a series Zu,, converges, the
first step is to look at |u,|. If Z|u,| converges, the matter is
settled. If X |u,| diverges we have to try other methods.

The most common distribution of signs in series is + and —
alternately. The following is a very useful theorem on such
‘alternating series’.

Theorem 5.22. If a, decreases and tends to zero as n - o, then

the series
dg—dytQe—ads ks,

converges. Also its sum lies between a, and a,— a,.

Hrarr Sp = Gy—ay+...+(—D"a,,

then San41—San-1 = Gap—dagnn 2 0,
Son— Sz = —Qyp1+ay, < 0.
The sums with even suffix
S5, 1Sas et
thus form a decreasing sequence. By theorem 2.6 this tends to

a limit or to —oo,
Similarly the sequence of sums with odd suffix

sl’ 53, SE’ “ee
increases and tends to a limit or to +c0. But
Son41—S2m = —dppyq = 0.

Therefore the odd and even sequences must have the same
finite limit, and so s, tends to this limit.

Finally, s, = @, and 5, = a,—a,. So the sum of the series lies
between these two numbers. |

Illustration. For what values of k is the series
R 0 (N
prptmEopte
convergent ?
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If k& > 1, the series is absolutely convergent (theorem 2.11).

If 0 < k < 1, it converges (theorem 5.22). Note that it is not absolutely
convergent.

If k < 0, the nth term does not tend to zero, and the series diverges.

Exercises 5 (b)
Notes on these exercises are given on pp. 177-8.
1. Za, is a convergent series of positive terms. Prove that
(i) if |b,| < a,, then b, is absolutely convergent;
(i) Za,x" is absolutely convergent for —1 < x < 1;
(iii) Za, cos nf and Za, sin nf are absolutely convergent.

2. For what values of k is Z(—1)*/(2n+ 1)* absolutely convergent? For
what values of £ is it convergent?

3. For what values of x (if any) are the following series convergent but
not absolutely convergent:
(i) Zxn, (i) Zx"/n?

4. Discuss the convergence of the series:

M) 1-#+5—A+d5..

i) A=A+ d—ddf—..;

(i) 1-3+3—-5+3%—...,
the respective denominators being of the form 8xn, 2” and n®
5. Discuss the convergence of the series

an'b g b a b
19 14 e o
where a and b are positive constants.

Fi

6. Find two numbers differing by not more than 1 between which the

sum of the series
) 1-3+3-3+3-32+...
must lie.

7. Establish the truth or falsity of the following statements:
(i) If a, > 0 and a, tends to 0 as n — oo, then the series

Qy—a,+as;—az+...
converges.
(ii) If Zv, is absolutely convergent, and there is a constant A such that

—Alvy| < u, < Alv,| for all n,
then Zu, is absolutely convergent.

5.3. Conditional convergence

Definition. If Zu, converges and Z|u,| diverges, then Zu, is
said to be conditionally convergent.
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Hllustration. The series
1—-3+4—-4+...
converges conditionally.

The meaning of the word conditional here is that the sum to
which the series converges is conditional on the order in which
the terms are taken. If the terms are rearranged the sum is in
general altered. As an illustration, rearrange the last series so
that two negative terms always follow one positive term

1-3—3+4-3-3%+....
Suppose that the sum of the original series is s (in fact, s = log,2
but we do not need to know this). We shall prove that the re-
arranged series converges to sum 4s. Let s, and 7, be the sums
of the first n terms of the two series. Then

| B | 1 1

tsn = l*i—&"l-...‘i‘

2n—1 4n-2 4n’

In each block of three terms (two negative and one positive)
subtract the first of the negative terms from the preceding
positive term, and we have

TR ] 1 1
Al T R e
=%Szn°

Therefore, as n —co, t3, - }5; f3,,, and 1,,,, tend to the same
limit. So the rearranged series converges to sum %s.

This change of sum by rearrangement is not paradoxical, as
s, and ¢, are different functions of »n. The more striking fact is
that, however we alter the order of the terms of an absolutely
convergent series, the sum is unchanged.

Theorem 5.3. If Zu, is absolutely convergent, every series con-
sisting of the same terms in any order has the same sum.

Proof. We prove the theorem first in the special case in which
all the terms are positive (1, = 0).

Let Zu, consist of the same terms as Zu, with the order
rearranged in any way.

et

r

m
Wiis = il
1

HMS

m
S = Dlpy 8 =
1
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Every term of Zu,, occurs somewhere in Zu,,. Therefore, given
m, we can find g such that s, contains every term of ¢, Since
the terms are positive, 7, < 5, < 5. Asm—>o, t,tendstoa
limit ¢ where ¢ < s. We can now argue the other way round
and prove s < t. This establishes the result for series of positive
terms. |

The theorem must now be proved when Zu,, is any absolutely
convergent series and Zu,, a rearrangement of it.

As in theorem 5.21 define v, and —w,, to be the positive and
negative terms of X, ; and v,, w, to have the same significance
for the series Zu,,.

Since Z |u,| converges, Zv, and Zw, both converge.

Then Zv, and Zw, are 'rearrangements respectively of the
convergent series of positive terms Zv, and Zw,,.

The result follows from the special case of the theorem. |

Exercise. If s, is the sum of the first n terms of the series

and ¢, is the sum of the first n terms of the series rearranged by taking two
positive terms followed by one negative term

Ten L iwlie s T 1
l+3§—ﬁ+ﬁ+ﬁ—ﬁ+...,
prove that lgn > s,.,+;7(—4,:'71)
and deduce that the second series diverges to +oo.
5.4. Series of complex terms

The notions of limit of a sequence and convergence of a
series can be extended from real to complex numbers.

Let n 3
S,+it, = Zl(u,+iv,).

P

Definition. We say that s, +it, > s+it and Z(u, +iv,) con-

verges to sum s+ it if
|(s+it)— (s, +it,)] >0 as n->o0.
This is equivalent to saying that

S,—~>s and t,—>1,
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because
ls—5,] < [(s—s)+i(t—1)| < |55, +|t—1,].

Definition. We say that the series Z(u, +iv,) is absolutely
convergent if T |u, +iv,| is convergent.

This is equivalent to saying that both Zu, and Zv, are
absolutely convergent for (as above),

ltn] < Jttn+10a] < ]+ [0a].

Many results for real sequences and series can be extended to
complex sequences and series, and the proofs offer no difficulty.
We need, for instance, the following analogue of §2.7.

The sequence z™ (for fixed z) tends to a limit as n — oo if and
onlyifz =1or|z| < 1.

Proof. Suppose that z* — /. Then z*** — L. But the limit of
z"+1 i.e. of (z) (z7) is the product of z and the limit of z#, i.e. zI.

So T

This is true if and only if either z = 1 or [ = 0.

But z* - 0 if and only if |z|*— 0, i.e. (from §2.6) if and only
ifslale=idont

This knowledge of the behaviour of z* enables us to discuss
the convergence of the geometric series

l+z4+...+2%+....

If z = 1, the series diverges.

Ifz %= 1,5, = (1-2z"/(1 —z) and we have seen that this tends
to a limit if and only if |z| < 1.

So the values of z for which the series converges are the
points inside a circle in the complex plane. We shall see in the
next section that this ‘circle of convergence’ exists for a wide
class of series.

Exercises 5 (c)
Notes on these exercises are given on p. 178.
1. Find the sum to n terms of the series
14+2z4 322+ ...+ (n+ Dz"+ ...
Prove that, if |z| < 1, the series converges and find its sum.
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2. Prove that the series

z 2 A z \*
1_1—z+(1—z) "(T-_z) e
converges if and only if re z < 1. What is its sum?

3. Decide the convergence or divergence of the series whose nth terms are
in i

o, @8 @i,

n

5.5. Power series

A series ¥ a,z" of multiples of powers of z is called a power

n=0
series. In practice the variable z and the coefficients a,, are often
real, but we can discuss the series with nearly as great ease if
they may have complex values.

Theorem 5.51. A power series may converge (1) for all values of z,
or (2) for z in some region in the complex plane, or (3) for
z = 0 only.

Proof. All we have to do is to produce examples of each
possibility.

(1) If u, = z*/n!, Zu, is absolutely convergent for all values
of z. For, whatever the value of z,

lttnsa| _ 2]
I
and d’Alembert’s test (theorem 5.12) gives the result.
(2) The geometric series Zz" was proved in §5.4 to converge
if and only if |z| < 1.
(3) If u, =n!z", and z %+ 0, |u,| >0 as n—>c0 and Zu,
cannot converge.

Theorem 5.52. If a power series converges for a particular value
of z, say z = z,, then it converges absolutely for all values of z
in the circle |z| < |z]|.

Proof. Since Za,zi converges, therefore the nth term a,, zf
tends to 0 (§2.12 (3)). So we can find K such that |a,z}| < K
for all n. Then "

la,z"| < K lfl
51
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and the convergence of X|a,z"| follows from that of the
geometric series X |z/z|™

Exercise. Show that the conclusion of theorem 5.52 is true under the
wider hypothesis that Za, z" oscillates finitely for z = z,.

5.6. The circle of convergence of a power series

Theorem 5.61. A power series either

(1) converges absolutely for all z, or

(2) converges absolutely for all z inside a circle |z| = R and
diverges for all z outside it, or

(3) converges for z = 0 only.

Proof. Let x be a positive real number (x > 0).

Let S be the set of x for which the power series Za, x™ con-
verges. x = 0 is certainly in S; from theorem 5.51, § may or
may not contain members other than 0. By theorem 5.52, if
any x, is in S, so is every x with 0 € x < x,.

If all positive real numbers are in S we have the case (1) of
the conclusion.

If S does not contain all the positive numbers it has a finite
supremum R (where R = 0).

If R > 0, we shall prove that Za,z}' converges absolutely if
|z;] < R. For choose R, with |z,| < Ry < R. Then R, is in S
and so the series converges for z = R,. By theorem 5.52,
Z|a, z}| converges.

Next we prove that, if |z,] > R = 0, the series cannot con-
verge for z = z,, For take now R, with R < R, < |z|. If
Ya, z} were to converge, then, by theorem 5.52, Za, R} would
converge, which contradicts R = sup S. |

Definitions. The circle |z| = R is called the circle of conver-
gence of the power series and its radius the radius of con-
vergence.

It is to be noted that nothing has been proved about con-
vergence or divergence of the series for values of z on the circle
of convergence. This is more delicate and requires special in-
vestigation for any particular series.

The following simple formula for R applies to many common
series.
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Theorem 5.62. If |a,,,/a,| tends to a limit 1 as n-> o, then the
radius of convergence of Za,z" is 1/I.
Proof. By d’Alembert’s test we have absolute convergence if

. o fagsy et
a,z" g
S 1
i.e. if lz] < 7
And, if |z| > 1/, o
if 2| > 1], an+1§n+1 —

so that the nth term a, z" does not tend to zero and convergence
is impossible. |

Note. We have supposed [ finite and not zero. The reader should consider
the excepted cases.
Illustrations. Each of the series

Zz",  Z(z"n), Z(z"/n*)
has radius of convergence 1. The first series converges at no point on the
circle |z| = 1; the third is absolutely convergent at all points of the circle.
The second diverges for z = 1, and it can be shown to converge at all other
points on the circle |z| = 1 by the device suggested in exercise 5 (d), 8.
The systematic treatment of the question of convergence of Za,z" on its
circle of convergence is outside the scope of this book.

Exercises 5 (d)
Notes on these exercises are given on p. 178.

1. Find the radii of convergence of the power series of which the general
terms are

@ nz", (i) nz%/n! @ (25)",
(V) nlz", ) ("('2);)2; -, v) zz,,j—:
(vii) n!z", (viii) 3+(—1)"}"z".

2. Prove that, if |a,|'™ - 1/r as n - oo, then the series £a,z" has radius
of convergence r.
Discuss the convergence of the series
):an'zn
where a is a constant.
3. If the series Za, z" has radius of convergence R, in what region of the

z-plane does the series Za,(z—z,)" converge? Answer the same question
for the series Za,z—".
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. Prove that the series
e l+z+22+...+2"+...

converges for all values of z for which the series
2+4+2(Q2z—-1)+22z—1)*+...+2Q2z—1)"+...
converges, and has the same sum.

5. If, for all n, |a,| < k, what can you say about the radius of convergence
of Za,z"? If, further, |a,| > I > 0, what then follows?

6. If, for all n, |a,| < 1, then the equation
1 =ayz+a,2%+...
cannot have a root with modulus less than 4. If it is satisfied by
z = ¥(cos @+isin 0),
then a, = cos nf—isin nf.

7. If the radius of convergence of Za,z" is r and of Zb,z" is s, what can
you say about the radius of convergence of

Z(an+b,)z"?
m
8. By considering (1 —z) I;Zl (z"/n) when |z| = 1 or otherwise, prove that
o0
2 (z"[n) converges at all points of the circle |z] = 1 except z = 1.
1

9. Discuss the convergence of the power series whose nth term is
13250 CGn=1)n

1470

5.7. Multiplication of series

We may wish to multiply two infinite series together and to
know whether it is legitimate to write, say, the product of two
power series

(@+ayz+ayz®+...) (bp+byz+byz2+...)
as the power series
aobo+(albu +a0b]) Z+(a3bo+a1b1+aoba) 22+ ceee

This is the extension to infinite series of the product of two
polynomials.

Since the process of multiplication involves freedom to
arrange the terms of the product in the required order, we may
conjecture that a sufficient condition for its validity will be the
absolute convergence of the two series. We shall prove the

7-2
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correctness of this conjecture. The theorem will be stated for
series which need not be power series.

Theorem 5.7. If Zu, and Zv, converge absolutely to sums s and t,
then the series Zu,v,, consisting of the products (in any order)
of every term of the first series by every term of the second,
converges absolutely to sum st.
Proof. The products of pairs of terms form a doubly infinite

array

UgUp Uply Uplp

Ul UylUy Uyl

Uglp Uy Uglp

ses

The sum of all these terms can be arranged (in infinitely many
ways) as a single series. For example, we may take the terms
uyv,4, Where p+¢g = n in the order of increasing n, namely

Uy U + (14 g + g 0y) + (U Vg + 1y Uy + U g) + ...

This may be called diagonal summation. Or we may ‘sum by
squares’, as in

Ug Vg + (U Vo + 1y Uy + 1o U) + (U Vg + U Uy + Uy Vg + 1 Vg + g 9) + ...,

taking u,v,, then terms with a suffix 1 and no greater, then those
with a suffix 2 and no greater, and so on.

Whatever the arrangement, the sum of the moduli of any
number of terms of the product does not exceed

(Ztal) ().

and so the series Zu,v, converges absolutely.

By theorem 5.3 (which remains true for complex terms), its
sum is the same whatever the order of the terms. But there is
one particular order, namely, summation by squares, in which
the sum is evident. For the sum of all terms with suffixes not
exceeding » is

o+ + ... +u,) (Vg+ v+ ... +0,)

and the limit of this is sz. |
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Corollary. If Za,z" and Zb,z" have radii of convergence R
and S, then their product is

E (anbﬂ"l‘ anﬁlbl‘]' ies +a0bn) zi
n=0

for |z] < min (R, S).

5.8. Taylor’s series

A theorem of fundamental importance states that, if f(x)
satisfies certain conditions, then it can be expanded in the
power series

A= O (O o, +z—7; FO0)+ ...

We proceed to prove this.

As the notation indicates, the variable is real. There is indeed
an analogous expansion of f(z), which is even more far-reaching
than the expansion of f(x), but it belongs to a later stage in your
mathematical education.

Where has anything like this expression for f(x) occurred in
this book so far? Theorem 4.82, a mean value theorem of the
nth order, expresses f(x) as a polynomial in x, of which the
coefficients up to that of x*~1 are those of the power series. The
passage from the polynomial to the infinite series is valid under
the hypotheses of the following theorem.

Suppose that f(x) has derivatives of every order for

a—k < x < a+k.
Then we know from theorem 4.82 that, if |h| < k,
fla+h) = S,+R,,

ni—1 hr

where Sp = X 5/7(a)
r=0F:

and R f:—T S (a+6h).

In the last line & is a number between 0 and 1 which depends
on a, h and n.

If, as n—> oo, R, — 0, then S, - f(a+h). So we have the
following result.
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Theorem 5.8. (Taylor's series). If, in theorem 4.82, R, (the term
in h™) tends to 0 as n tends to oo, then

f@th) = f@+ W@+ ...+ [+ ..

In accordance with the remark on p. 79, the expansion for
a = 0 could be called Maclaurin’s series.

The binomial series. As an example of the use of theorem 5.8,
we shall prove the binomial theorem for f(x) = (1 +x)™, where
m is a rational number, positive or negative.

J®(x) = m(m—1)...(m—-n+1) (1 +x)™n
and we shall prove that, if -1 < x < 1,

(+x)m = l+(T)x+ +('::) bl

If m is a positive integer, f™+(x) = 0 and we have a poly-
nomial of degree m. In the general case

x® m X
= — (n) = e PV
Ra n! SR (n) (1+Gx)r—m
where 0 depends on n.

Ifnow0 < x < 1,(1+6x)»™ > 1 for n > m, and, as stated

in exercise 2(d), 11,

m
n)x“—+0 as n->oo,

so that R, - 0.
If x is negative, this argument breaks down since 1+ 6x is not

greater than 1. We have recourse to Cauchy’s form of remainder
(theorem 4.83) which applies for the full range —1 < x < 1.

ThiSBNVeS _ mm—1) ... (n=n+1) (1 =6)1x»
.o 1.2...(n—1) (1+6x)y»m"
Now (1 —8)/(1 + 6x) is less than 1 and so

(n21)
n—1
where K, depends on m (and x) but not on n. Again from
exercise 2(d), 11, R, >0 as n >co. |

Other well-known Taylor’s series will be found in the next
chapter.

|R.| < K,

|x[",
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Exercises 5 (e)
Notes on these exercises are given on p. 178,

1. Discuss the convergence of the series whose nth terms are (with a, b, ¢
positive)

(i) 1—cos (7/n), (i) a™/(b"+c™),

1 ; (=1

@) Gt bt o W) Gt s bt o’

W (=D @>0), ) (~Dr o+ 1)—nh

2. Prove that, if @ > 1, the series

1 2 4 8
ot - + +

riche S T ol 8 R L ST R
converges to the sum 1/(@—1).

3. If up = u,yy and Zu, converges, prove that lim nu, = 0,

4. From the series Z(1/n), every term which contains a specified digit
(say 7) is removed. Prove that the series formed by the remaining terms
converges,

5. The series Za,z® converges to sum f(z) if |z] < 1. Prove that, if
Sp = @y +a,+...+a, and |z| < 1, the series Is,z" converges to sum
. f@1~2).

Hence give a proof of the binomial theorem when the exponent is a
negative integer.
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6

THE SPECIAL FUNCTIONS
OF ANALYSIS

6.1. The special functions of analysis

One of the ultimate applications of mathematical analysis is
to solve in a form adapted to numerical calculation the pro-
blems which present themselves in natural science, engineering,
economics and other branches of knowledge. Commonly the
step from the experimental data or the hypotheses to the .
conclusions that they can be made to yield lies in solving
differential equations. Relations are given connecting an un-
known function with its first or second (or higher) derivatives,
and the function has to be found. The analyst is led to keep a
stock of such functions as occur repeatedly. He will investigate
their properties, tabulate their numerical values, and have them
ready for use. Such functions may be called the special functions
of analysis. The list of special functions is not fixed, once and
for ever. One mathematician might suppose some particular
function to be of so little interest that he would not accord it
a place in a list or think that the labour of tabulating its values
would be justified. Another might encounter problems in
which just that function played a leading part. There are, how-
ever, certain functions which are of vital importance to every
one. Among them are the exponential, logarithmic and trigono-
metric functions; we shall develop their principal properties.

The functions which arise first from the foundations of
analysis are those which are generated by a finite number of
operations on the variable x, Such operations yield successively
the function x™, polynomials in x, and then rational functions
of x. To obtain functions other than rational functions, we must
remove the restriction to a finite number of operations, or, in
other words, we must admit limiting processes. We can then
expect to define interesting functions as the sums of infinite
series.
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6.2. The exponential function

Define 2 xn
expx = 1+x+§~!+...+ﬁ+....

From theorem 5.51, the series converges for all values of x, real
or complex. We shall suppose, until further notice, that x is
real. The function exp x will be proved to have properties of

striking simplicity.

Theorem 6.2. exp x xexp y = exp (x+y).
Proof. If we use theorem 5.7 (corollary) to multiply the two
series for exp x and exp y, the terms of degree  in x and y are

xn x? yn—f
n1+ ;T(———n_r)!'f‘...‘i"? = )

=

The following facts are immediate.

EXpig=N1

exp (—x) = l/exp x. (Put y = —x in theorem 6.2.)

exp x never vanishes. (For then, from the last line, exp (- x)
would be undefined.)

We shall next prove that

d
= (exp x) = exp x.

We see that if we write down the derivatives of the successive
terms of the series for exp x, they are indeed the terms of exp x.
So the result looks right, but it is important that the reader shall
understand why care is necessary here in constructing a proof,
The next section on repeated limits is inserted to explain the
issue.

6.3. Repeated limits

We know from §4.2 that the derivative of the sum of a finite
number of functions is the sum of the derivatives of the separate
functions. But we have proved no such theorem about the
derivative of the sum of an infinite series; and this is the result
we should need in order to deduce that the derivative of exp x
is exp x.
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To see what is involved, write s5,(x) for the sum of the first n
terms of a convergent infinite series, whose terms are functions
of x, and s(x) for its sum. Then s(x) = hm s,,(x) We wish to
assert that

s'(x) = 11m aelx);

s(x+h) ) =50 _ i [ i S+ h)—s,.(x)],

h—v-o n~+o | h~>0 h
sn(x+h)—sn(x) s,.(x+k)—sn(x)}
i gk

ie.

ie. lim {lim

h—>0 \n—>c0

= lim {lim
n—>x \h—>0

So we have got down to the root of the matter. The truth of the
theorem depends on interchanging the order of the two limiting

operations lim and lim

h—>0 n—+o
applied to the particular function of » and A (and also of x,
which remains fixed while » and 4 vary).

All we can say is that the interchange of order of two limiting
operations in general gives different results. It is only when the
function to which they are applied satisfies restrictive conditions
that the interchange is valid. A simple illustration in which the
order of the two limits affects the result is the following:

lim{lim 1_‘—"-"] T

h—0 \n—> 1+n}1 h—»0
1—nh .
e {l'_‘:% m] B e

General theorems on interchange of limits are beyond the
scope of this book. From time to time we shall have to deal
with repeated limits of simple functions, and we shall give the
most straightforward argument available in each particular case.

6.4. Rate of increase of exp x
We prove the theorem which led us to discuss repeated
limits.
Theorem 6.41. d(exp x)/dx = exp x.
Proof. Using theorem 6.2, we have
exp (x+l}:)—expx pxexp::—l
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Now exp A—1 e

s— = 1ttt

= 1+¢(h), say.
We wish to prove that ¢(h) - 0 as & — 0. We have
2
poo| < AL, AL
ot l hl :
=T (if |A] < 2)

-0 as hA—-0. ]

Corollary. exp x is a continuous function.
This follows from §4.1 (3). Alternatively it could be proved
directly by an argument similar to that used in the theorem.

Theorem 6.42. exp x is a strictly increasing function and, if
y = exp x, y takes every value greater than 0 for one value of x.
Proof. If x = 0, then, at once from the series, expx > 1.

Ifx <0, expx = l/exp(—x) > 0.

Since expx has a derivative which is positive for all values
of x, it increases strictly.

As x — o0, plainly exp x — 0.

As x > —o0, expx = l/exp(—x)=>0+. |
Theorem 6.43. (The order of magnitude of expx.)

For any fixed k (however large)

expx
P

=00 Aas X-—>a0,

Proof. Let n be the integer next greater than k.

If x > 0, expx > x"/n!, since this is just one term of the
series defining expx. |

You should acquire a vivid appreciation of this important
fact. For large x, the function exp x is larger than any power of x
(see fig. 3a, p. 110).

6.5. exp x as a power

Scrutiny of the series does not reveal that expx is the xth
power of a constant. This fact will be shown to follow from
theorem 6.2,
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Definition. ¢ = expl.
The number e, namely

Ll 1
1+“ﬁ+§1+ +I?'+
is one of the fundamental constants of mathematics. Tts value
to ten places of decimals is 2-7182818285. It is easy to prove
that e is irrational—the proof is sketched in exercise 6(a), 1. A
more difficult argument (outside our range) is required to prove
that e is not an algebraic number, that is to say, it is not the
root of any algebraic equation with integral coefficients.

Theorem 6.5. If r is rational, expr = e", where the right-hand
side is the positive rth power of the number e.

Note. To understand why the meaning of e’ is specified,
observe that e? (say) has two values (+1-6487...), whereas
exp+ is uniquely defined (by the series).

Proof. If r is a positive integer n, theorem 6.2 gives

expn = (expl)* = e™.

If r is a negative integer —n, then

If r is a rational p/gq, where p and g are integers, then

{exp (p/q)}¢ = expp (by theorem 6.2)
= e (just proved).
Therefore exp (plq) = e?@ |.

Irrational powers. What do we mean by (say) 3v2? It is
likely that the reader, if he looks back over the work on indices
which has so far been put before him, will find that no meaning
has yet been given to it. Numbers like 3"® were defined in such
a way as to obey the index laws such as a™a® = a™t*, These
laws do not provide a definition for 3v2,

It is natural to suggest that, as /2 can be approached as
closely as we wish by rational numbers (see §1.5), we could
define 3v2 as the limit of 3" as r runs through a sequence of
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rationals with 4/2 as limit. This course, though possible, makes
heavier going than one might expect. We should need to prove
that the numbers 3” hagve a limit; and, further, that the limit is
the same for two different sequences both of which approach
2.

We have then to think how best to elucidate the general
power a*. There is one particular value of a for which the pre-
ceding work indicates what to do, namely @ = e.

Definition. If x is irrational, e® is defined to mean exp x.

We have already proved that, if x is rational, ¢* = expx. So
this equality holds for all values of x.

We postpone until §6.6 the further discussion of a® when a
has a value other than e.

Exercises 6 (a)
Notes on these exercises are given on p. 179.
P e e
m+1n!l  m(m!)’
Deduce that e is irrational.
2. Prove that, as n — oo,
1 n
( s —) > 2,
n

3. Investigate the limit, as #n - o0, of

x n
(1+3)",
where x is any real number.

4. Let k be a constant such that 0 < & < 1. Sketch the graph of the
function

1. Prove that

x%
21
Prove that there is just one positive root x, of the equation

e"(l+x+ +...+’i,)—k.
n.

5 : -
1+.7c+Ji +...+x— = ke=.
21 n!

Show also that (k remaining fixed) x, increases as n increases.

5. Find approximately the large root of the equation
e = x1000,
6. Arrange the functions
x'exp(yx), xexp{(logx)?, x*exp{(logx)}}
in order of magnitude for large values of x.

7. Is it possible to find a function which, as x - o, tends to infinity more
slowly than e°* for every é > 0 and more rapidly than x" for every n?
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6.6. The logarithmic function

Theorems 3.9 and 6.42 enable us to define a function of a
real variable which is the inverse of the exponential function.

Definition. If x > 0, write y = log x if x = ev.

The following properties follow from the corresponding pro-
perties of the exponential function, and the reader should go
through the steps of the deduction. We always suppose that
the number following the symbol log is positive.

. y
(9] 1 x
—-——‘/l
(0] x
y=expx y=logx
a b
Fig. 3

log x is continuous and differentiable and
d 1
= (log x) = ot

log (ab) = loga+logb,
logx—>w as x->oo,

logx—> —c0 as x—->0+.

Ifk >0, 1°ka_>0 as x— o,

This last property (correlative to that at the end of §6.4) is
important. In words, log x tends to infinity as x tends to in-
finity, but more slowly than x raised to any positive power
(however small). The general shape of the graph of y = log x is
shown in fig. 35.

There is a simple representation of log (1+x) as a power
series.
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Theorem 6.6, If -1 < x < 1

xz 3 xn
4+3C——...+(—I)“-1~n—+....

log (1+%) = x—5+7%

The proof is left to the reader. Starting from Maclaurin’s
theorem it follows very closely the proof of the binomial
theorem given on p. 102. Lagrange’s form of remainder will
serve for positive x, but Cauchy’s form is to be used for nega-
tive x.

Note. The result of theorem 6.6 is also true for x = 1. This is most easily
proved using integration and following the method of theorem 7.9 (see
p. 136).

The general power . At the end of §6.5 we had defined a®
when x is rational and also for irrational x in the special case
a = e. We have still to attach a meaning to ¢® when x is
irrational and a + e. We adopt the following definition.

Definition. If a > 0 and x is irrational, a® means

ev log a

This is consistent with the definition of e* given in §6.5, and
the relation a® = e*!°8¢ holds when x is rational. The reader
can verify that the index laws

a®xal = a*t, (a®)V = g™

hold for @ > 0 whatever the values of x and y.

Exercises 6 (b)
Notes on these exercises are given on p. 179,

1. Prove that, as n - oo,
n(xt/"—1) - log x.
2. Prove that, if x > 0,

x—1x* < log(14+x) < x—4x®+§x3,
Give an extension of these inequalities.

3. A differentiable function f (not identically 0) satisfies the functional

s Fx9) = S +10).
Prove that f'(x) = A/x.
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4. Prove that, if y > 0,

_zilzrltv}
103)’—2{y+1+3 +1)+5 +l)+""

Use this series to calculate log 2 to three places of decimals.

5. Find the limits, as x - 0 and as x - oo, of

M S

where a, b, ¢, d are positive and ¢ ¥ d,

6.7. Trigonometric functions
As predicted in §1.2 we base our account of the trigonometric
functions on the definitions
X

cosx = l—i+a—...,
SNy = x—;—j+§—....

These series are absolutely convergent for all values of x (real or
complex). Among the properties that we should expect to
establish at an early stage are

sin (x+y) = sinx cosy+cosx siny,
v
—- sinx = cosx.
dx

The first of these, involving multiplication of series, could be
proved by the same principles (though with detail which is a
little more troublesome) as theorem 6.2. The proof that the
derivative of sinx is cosx would follow closely that of theorem
6.41.

Instead of writing out afresh proofs of trigonometric formulae,
modelled on those of exponential formulae, it is more satis-
fying to observe that, in the setting of complex variables, the
trigonometric and exponential functions are very closely re-
lated.

Writing

-1

z z
expz = l+z+5+.+—+..4

2! n
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we see that theorem 6.2 is true for complex variables, and, if we
define the derivative of f(z) as

lim f(z +h) —f(Z)
h—0 h

noting that 4 can now assume complex values, then theorem 6.41
is also true. The discussion of the exponential function from
theorem 6.42 onwards supposed the variable to be real,

6.8. Exponential and trigonometric functions
From the series concerned we see that

exp(iz) = cosz+isinz,
exp(—iz) = cosz—isinz,
or expressing cosz and sinz in terms of the exponential function,
cosz = +{exp(iz) +exp(—iz)},

sinz = % {exp(iz) —exp(—iz)}.

These formulae, combined with the properties of the ex-
ponential function, enable us to develop the results of analytical
trigonometry, in so far as they do not involve periodicity or the
number 7, We append a short list, which will illustrate the
Procedur cos(—z) = cosz, cos0 =1,
sin(—z) = —sinz, sin0 = 0.

The addition formulae (x and y may be complex)
sin(x+y) = sinx cosy+cosx sin y,
cos(x+y) = cosx cosy—sinx siny.

To prove, say, the former, we have

exp {i(x +)} —exp{—i(x+»)}

exp (ix) exp (iy) — exp(—ix) exp(—iy)

(from theorem 6.2)

= Hexp(ix) — exp(—ix)} {exp(iy) + exp(—iy)}
+3{exp (ix) + exp (- ix)} {exp (iy) —exp(—iy)},

2i sin(x+y)
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giving sin(x+y) = sinx cosy+cosxsin y. |
cos®x+sin’x = 1.
From the last result, if now x is real,
-1 <cosx<1, -1<sinx<l.

Periodicity of the trigonometric functions. This is a surprising
property. No one could divine from inspection or simple mani-
pulation of the series for sinx and cosx that they repeat their
values at regular intervals of x. We prove a theorem from which
periodicity will follow very easily.

Theorem 6.81. There is a smallest positive constant 3w (where
J2 < 3w < \J3) such that cos}w = 0.
Proof. If 0 < x < 2,

; Xx* X T
sinx = (x-ﬁ)+(-5--!—?—!)+...

>0,

since the positive term in each bracket is greater than the
negative term.

So, for 0 < x < 2, cosx, having the negative derivative
—sinx, is a decreasing function.

The theorem will be proved when we have shown that
cosy/2 > 0 and cosy3 < 0. If we bracket the terms of the
series for cosx in pairs, as we did those of sinx, the first bracket
is 0 for x = 4/2 and all the others are positive.

i B o
COosXx = —E'!+4—!— 6—!—"8—!)— »
the succeeding terms being bracketed in pairs.
When X ok
x=.J3, 1—§T+a'i=l—"§+‘3<0

and, as before, the first term in each bracket exceeds the
second. |

Corollary. sintw = 1.

For sin’3w+cos?}w = 1 and sin}w is positive.
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Theorem 6.82. If @ is the number defined in the preceding
theorem, then, for all values of x,

(1) sin(x+4w) = cosx, cos(x+3iw) = —sinx;
(2) sin(x+w) = —sinx, cos(x+w) = —cosx;
(3) sin(x+2w) = sinx, cos(x+2w) = cosx.

The proof is immediate from the addition theorems. We have
thus shown that the functions sinx and cosx have period 2w,
and it is easy to see that no smaller number is a period.

In these two theorems we have adopted the notation @ (an
alternative way of writing the Greek letter pi). The number @
will (in §7.9) be identified with the ratio of the circumference
of a circle to its diameter. Anticipating this identification, we
shall henceforward write 7 instead of .

The remaining trigonometric (or circular) functions are
defined in terms of the sine and cosine in the usual way

sinz il 1 1
tanz = ——, cotz = ——, secz = ——, COSECz = ——,
cosz tanz COSz sinz

From the periodicity of the sine and cosine, the relation
exp (iz) = cosz+isinz
shows at once that expz has the (imaginary) period 27i.

Exercises 6 (c)
Notes on these exercises are given on pp. 179-80.

1. Refine the argument of theorem 6.81 to give closer bounds for 47, for
example, 1-5 < 4m < 1:6. (The series for cos x and sin x do not provide
a practical way of obtaining accurate approximations to 7. For better
methods see §7.9.)

2. Prove the statement following theorem 6.82 that 27 is the smallest
period of cos x and sin x.

3. If a and b are positive constants and x is real, prove that
S(x) = acot x+b cosec x

takes all real values if @ > b, and all real values except for a certain range
ifa<b.
Sketch graphs of y = f(x) fora > b, a = b, a < b.
4, Prove that, as n - o, 5
am .
(c05 ;;) - e,
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6.9. The inverse trigonometric functions

Theorem 6.91. The equation x = siny defines an inverse Junction
written Y= A

such that y increases from — 3w to 4w as x increases Jfrom —11to1.
Also dy 1

dx = JI-x%"
Proof.  dx|dy = cosy > O for —47 < y < im.

Therefore siny strictly increases from —1 to 1 as y increases
from —4n to 47. By theorem 3.9, there is an inverse function
with the range of values stated. Also, by §4.2 (6),

d¥ & 2 1 30 Deylln » 1

dx dx|dy  cosy ~ J(1-x%)’
where the positive square root is to be taken since cosy is
positive for y between —4n and 7. |

Notes on theorem 6.91. (1) The equation x = sin y defines infinitely
many values of y for each x such that —1 < x < 1. For, by the periodicity
of sin y, any integral multiple of 27 can be added to the value of » which lies
between —47 and 47. In the theorem we have singled out the principal
‘value of arc sin x.

(2) Similarly the equation x = cos y defines y = arc cos x, where y
decreases from 7 to 0 as x increases from —1 to 1. Here

LA
ax = TJi-x"

Theorem 6.92. The equation x = tany defines an inverse Junction
Y = arctanx defined for all x. y is an increasing function and

im y = —47, limy = in,

T—F—wm
d 1
Also d—x - 1—+x-§.
Proof. dx[dy = sec?y = 1+x2,

tany is a continuous increasing function for i <y<in
and, as y > +4m, x> +co, respectively. The existence of the
inverse function and the value of its derivative follow from
theorem 3.9 and §4.2 (6). |
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Note. As in theorem 6.91, we are defining a principal value. If, for a
given value x, of x, the value y = y, satisfies x = tan y, so does y, +nmw,
where n is any positive or negative integer.

6.10. The hyperbolic functions and their inverses
Define the hyperbolic cosine and sine by the formulae

coshz = {e*+e79),
sinhz = 4(e*—e™).
Thus coshz = cosiz and isinhz = siniz.

In nearly all applications z is real. The functions get their
names from the fact that the point x = cosht, y = sinht traces
out a branch of the hyperbola x2—y* = 1 (whereas x = cost,
y = sint traces out the circle x2+y? = 1).

The hyperbolic functions have properties analogous to those
of the circular functions cosine and sine. The following are
among the most useful.

icoshx = sinhx, ) sinhx = coshx,
dx dx

cosh®x —sinh2x = 1,
cosh?x+sinh*x = cosh2x,
2 coshx sinhx = sinh2x.

The reader can supply proofs and can construct other formulae.
He should also sketch graphs of the functions.

The inverse functions will be useful in integration. If
x = coshy, then from the definition

e —-2xe?+1 =0,
giving eV = x+./(x2-1)
and so y = log {x+(x*-1)},
which is the same as

y = tlog{x+.(x2—1)}.

If we take the + sign, y is defined for all x = 1 and is denoted
by y = arg coshx.
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Then o 1 gy il we a1l
dx dx/dy sinhy J(x*-1)
For sinhx the discussion is simpler. If x = sinhy, then x
increases from —co to 0o as y increases from —oco to co and there
is a unique inverse function

y = arg sinhx.

or,asal ithm,
BRI, 5 — log x4+ y(r2+ 1))

Exercises 6 (d)
Notes on these exercises are given on p. 180.

1. Find the sum ﬁ cosh(x+2r8).
r=0

2 i
Prove that the equation b ion

has two positive roots, say a and b,
The sequence x, is defined by

Xppa = 2+logx, (n=1,2,3,..),
where a < x; < b. Prove that x, - b,
3. Prove that, if -1 <r <1,

1—rcos@
O+...4r" O+... = —5—
14+rcos@+...4+r" cos nf+ 1= 2rcos 0+m"
: wEs 2 rsin @
rsin 0+ ...4r" sin nf+... G ey e

4. Investigate results like those of 3 for hyperbolic functions.
5. Prove that, if y = e-#*, then

YOI xym D (n 4 1) = 0.
The functions f, are defined by

£ = (= e L (i,
Prove that
() foy1 = (n+Df,
(i) fosr = xfn _fn;;
(i) fapa—Xfont@+1)f, =0,
(iv) fa is a polynomial of degree n.
6. Obtain expansions in power-series of the following functions. Find the
general term if you can, otherwise the first three non-vanishing terms.
(i) cos®x, (ii) tan x,
(iii) (arc sin x)*, (iv) sin (m arc sin x),
(v) e®cos 2x, (vi) cos log (1+ x).
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7
THE INTEGRAL CALCULUS

7.1. Area and the integral

Historically the concept of a definite integral was developed
to represent an area bounded by curved lines. This geometrical
equivalence helps one to visualise the meaning of the analytical
expressions which occur in the definition and manipulation of
integrals.

Let f be a function defined in (a, b). The area which we pro-
ceed to measure is that bounded by the curve y = f(x), the
ordinates x = @ and x = b, and the x-axis. (There may be a
gain in clarity if you think of f as taking only positive values in
(a, b), but the following analysis holds if f can take values of
either sign.) All that we assume for the present about fis that it
is bounded. In practice f is usually continuous, and that
assumption will be made at the stage at which it simplifies the
discussion.

Our method will be to obtain approximations from above
and from below to the curved area which we wish to measure,
We must start with a number of definitions.

Definitions. Given an interval (a, b), then a finite set of
numbers a, X, X, ...y Xn_1, 8, such that

< Xie ey <y S b

is called a dissection of (a, b). Each x, is a point of division.

To complete the scheme of suffixes we can write @ = x, and
b= x.

Each of the intervals (x,_,, x,) for r = 1, 2, ..., nis a sub-
interval of the dissection. Let &, be the length of the rth sub-
interval, Fol s

The length of the greatest subinterval

0% = max d,
is called the norm of the dissection.
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We next define upper and lower approximative sums.
Suppose that M, and m, are respectively the supremum and
infimum of f(x) for x in the rth subinterval taken closed, i.e. for

Xr1 € X € X0

Write S =73 M0,
r=1
and 3= % m,8,.

r=1

Then the upper sum S is the sum of the areas of » rectangles,
of which the rth has base (x,_;, x,) and height M,. The sum of
these areas is greater than or equal to the area R contained be-
tween the curve y = f(x) and the lines x =a, x =5, y = 0.
Similarly the lower sum s is less than or equal to the area R.

If now £, is any value of x in the rth subinterval,

Xy < gr < X (i' 75 1’ 2’ '“,n)

and if we form the sum

o = 3 f&) 3,

then (e ey

Our ultimate aim is to prove that, if fis a function of one of
the commonly occurring types (including continuous functions
and monotonic functions), the sum o tends to a limit as 6*
tends to 0. We shall define this limit to be the integral of the
function f over (a, b).

You will observe that this limiting process is of a less simple
kind than those which we have so far encountered. If the
function f'is given, the number o depends on the x, and the £,;
in fact, o is a function whose domain is a set of dissections. In
the passage to the limit, we suppose é* to take a sequence of
values tending to O, and the permitted dissections are pro-
gressively restricted by the requirement that their norms are to
be less than &%,

On account of the complexity of the limit-operation, we first
take an easier approach to the integral through the bounds of
the sums S, s for all dissections.
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7.2. The upper and lower integrals
If M, m are the supremum and infimum of f(x)ina € x < b,
and if, given any dissection 2, we construct the sums S, s as
above, calling them S(2) and s(2), it follows from the in-
liti
et M.<M and m.2m (r=12,...,n
that mb—a) < s(2) < S(2) < M(b—a).

So the set of numbers S(2) corresponding to all dissections
2 of (a, b), being bounded below by m(b — a), has an infimum, J
say. Similarly the set of numbers 5(2) has a supremum J.

Our aim, achieved by theorem 7.22, is to prove that J > j.

Theorem 7.21. The introduction of a new point of division de-
creases the upper sum S.

Proof. Suppose that S(2,) is the upper sum for the dissection
2,. Let the dissection 2, be formed from 2, by the intro-
duction of a new point of division x, into the interval (x,_;, x,).
Let M/, M; be the suprema of f(x) in the closed intervals
(x,-1, x7), (%7, x,), respectively. Then M, < M, and M; < M,.

The contribution of the interval (x,;, x,) to S(2) is
M, (x,—x,_;). Its contribution to S(Z,) is

M (X = Xpa) + M (%, ~ X7)
< M(%,—x,_y).

Since the contribution to S(2,;) and S(2,) of each subinterval
except (x,_;, X,) is the same, we have

S(@y) < S(@,).

Corollary. If 2,, 2, are dissections of (a, b) for which every
point of £, is a point of Z,, then

S(2;) < S(2,)
and similarly 8(2,) = 5(2,).

Definition. If 2, and 2, are related as in the corollary, we
may call &, a refinement of 2,.
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Theorem 7.22. J > j.

Proof. Let 2, and 2, be any two dissections of (a, b).

Let 92, be the dissection whose points of division are all the
points of division of either 2, or 2,. So 2, is a refinement both
of 2, and of 2,. The corollary to the last theorem gives

S(@y) < S@,) and s(2,) > (D).
But S(@y) > s(Dy),

being upper and lower sums for the same dissection. Combining
all these inequalities we have

S(@) > 5(2,).
Since this is true for all dissections Z,,
J = inf S(2) > 5(2,).
Since the last line is true for all dissections Z,,
J = sups(D,) =j. |

If we assume about f only what we have assumed already,
that it is a bounded function, then it is possible for J to be
greater than j or equal to j.

Iilustration. An example in which J > j. Define
f(x) =1 if x is rational,
f(x) =0 if xisirrational,

and take the interval (a, b) to be (0, 1).

Then, whatever dissection 2 is taken, every M, = 1 and S(2) = 1.
Every m, = 0and 5(2) = 0. SoJ=1andj=0.

Here y = f(x), far from representing a curve in a straightforward sense
capable of bounding an area, is discontinuous for every value of x.

Exercise. Give the simplest example you can think of in which J = J.

The numbers J, j, being approximations from above and from
below to our intuitive notion of an integral, are often called
upper and lower integrals. They can be represented by the usual
integral sign with a bar above or below. We shall not go into
further detail about upper and lower integrals, but shall confine
ourselves to the most useful case in which J = j and there is an
integral in the ordinary sense.
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7.3. The integral as a limit
Definition. If, with the notation of §7.1,

o = $fE),

tends to a limit as §* — 0, then fis said to be integrable in (a, b)
and the limit is written

f:f(x)dx o fbf

The latter, shorter form is usually appropriate in the dis-
cussion of general properties (e.g. those of §7.5). If a particular
function is being integrated, the specification of it must take the

form 7 )
f f(x) dx, e.g. J' ; (x2+3) dx.

Theorem 7.31. If S—s—0 as 6* -0, then f is integrable in
(a, b).
Proof. Given e, there is é such that

S—-s<e
for any dissection such that é* < &,
ks S—s = (S=N+UT-)+(~9),

and each term on the right-hand side is greater than or equal
to 0.
Then J—j< S—-s5s<e

if the norm of the dissection is less than d.
But J and j do not depend on ¢, and therefore

J—j=0.

Thus both S and s tend to J as §* — 0, and so does o, which
lies between S and s. |
The converse of the theorem also holds.

Theoremn 7.32. If f is integrable in (a, b), then
S—s5>0 as & ->0.
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Proof. If I is the value of the integral, then, given e, there is
d such that, if 2 is any dissection of norm less than 8,

Ll B AIEDD. o Tt
r=1

where £, is an arbitrary point of 4,.
If M, is the supremum of f'in 4,, we can choose £, such that

fE) > M2,
Therefore % -
Eerd‘r < Zlf(Er) o, +e
< I+42e.
Similarly f} m,.8, > I—2e,
r=1

Hence S—s < 4¢,and so S—s5s—>0as 8* >0, |

7.4. Continuous or monotonic functions are integrable

The condition of theorem 7.31 is easy to establish for con-
tinuous functions and for monotonic functions.

Theorem 7.41. A function f continuous in the closed interval
(a, b) is integrable.
Proof. By theorem 3.82, given e, there is & such that

e
Myom< g
for every subinterval of any dissection 2 with norm less than §.

Then S(2)-5(2) = =(M,—m,) 8,
€

<B—__—&23,=€. l

Theorem 7.42. A function f monotonic in the closed interval
(a, b) is integrable.

Proof. We may suppose f increasing.

Then, in x. KX '€ X,

M, = f(x,) and m, = f(x,y).
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So S—s = Z(M,—m,) 6,
< O*Z(M,—m,)
= a*{f(B)—-f(@}. |

Exercises 7 (a)
Notes on these exercises are given on p, 180,

Calculation of simple integrals from the definition.

1
1. Calculate [ xdx by dissecting (0, 1) into n equal parts.
0

b
2 Calculatef x*kdx, where k > 0, by dividing (a, b) into n parts in geo-

a
metric progression at the points ag, aq?, ..., ag"~?, where ag" = b.

3. Calculate f $ sin xdx by dissecting (0, «) into equal parts.
0

4. By the method of 2, prove that
2 dx 1

1 o2
Deduce that
AR I G SRR N B
now W(R+1)? (r+2)2 7 (2n)? Pl
A theorem of Darboux.

5. With the notation of §7.1, S = J as * - 0.

This is an important theorem, showing that the number J which was
defined as a bound is in fact a limit. As the proof is a little more difficult
than those of any results in the text, we have developed properties of the
integral independently of it.

7.5. Properties of the integral
In defining the integral we supposed that a < 4. If a > b,

we define b 5
L e f 1) d.

The following properties are constantly used.

(1) Ifa < c <d<bandfis integrable in (a, b), then f is
integrable in (c, d).

Proof. Given e, there is from theorem 7.32 ¢ such that, if @
is any dissection of (a, b) with norm less than &, then

S(D)—s5(2) < e.
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Let 2’ be any dissection of (¢, d) with norm less than 8. By
adding appropriate points of division in (a, ¢) and (d, b), we
obtain a dissection 2 of (a, b), of which 2’ is a “part’.

S(2)-5(2') = =(M,—m,) 8,

summed over the subintervals of 2’.
All the terms on the right-hand side are contained in

S(2) —s(2) and so
S(2')-s(2') < S(2)-5(2) < ¢

provided only that the norm of 2’ is less than J. Therefore, by
d

theorem 7.31,f f exists.
c

(2) If a < ¢ < b, and f is integrable in (a, b), then

[r- [

Proof. Let 2 be a dissection of (a, b) having ¢ as one of its
points of division.
Then, in a notation which explains itself,

X fE) 6 = X f&) 6.+ X fE) 9,
(a,b) (a,¢) (c,b)

Take the limit as the norm of £ tends to 0. |
(3) If k is a constant,

b b
foreif s
a a
The proof is easy.
(4) If f and g are integrable in (a, b), so is their sum

s =f+g,

b b b
and f s=f f+f g

Proof. For any dissection 2 and any choice of £, in &,
n n n
B 5(E) 8, = 31E) 4+ 8E) 0.

Each of the two sums on the right-hand side tends to the
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b
corresponding integral as 6* = 0. Therefore | s exists and is

a
equal to the sum of the integrals of fand g. |
In inequalities such as (5) and in other contexts in which the
sense requires it, we suppose a < b. In a statement such as (5)
it is plain that fis understood to be integrable and we need not
say so explicitly.
() If m < f < M, then

b
m(b—a) sf f< M®-a).

Proof. For every dissection
m(b—a) < Zf(§,) 6, < M(b—a). |
Corollary 1. If f = 0, then

b
ffaa

Corollary 2. If fis continuous, then, for some £ in (a, b),

[r=r®¢-a.

(6) If f and g are integrable in (a, b), so is the product fg.
Proof. 1If we prove that the square of an integrable function
is integrable, the result will follow from (3), (4) and the identity

arg = (leba (=)t
We will prove, then, that f? is integrable in (a, b).
Let M,, m, be the sup and inf of fand M, m, those of /2 in §,.
Given e, there is 6* such that

Z(M,-m,) 8, < e if maxé, < §*,
If K = sup |f] in (a, b), we have (for any signs of M,, m,)
M,—m, < 2K(M,—m,).
Hence Z(M;—m,) 0, < 2Ke if maxd, < 8%,

and this implies the integrability of f2. |
(7) (Extension of (5)). If, further, g = 0, then

b b b
mfgéffgsMJ‘g.
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Proof. Apply corollary 1 of (5) to (f—m) g.
(8) If f is integrable in (a, b) so is | f| and

[ <[

Proof. Note that, in any interval,
sup | f|—inf | f| < sup f—inff.
(9) Schwarz’s inequality

() < (L) ([2):

Proof. This may be deduced from Cauchy’s inequality
(exercise 1(d), 6) or from the fact that

f: Af+pg) =22 _[ :f’+2r\n :fg +n2f: g

is greater than or equal to O for all values of the constants
A, p.

7.6. Integration as the inverse of differentiation
Suppose that f'is integrable in (a, b) and write

) = L fWdt @<x<b).

Theorem 7.61. F is a continuous function.
Proof. Lk
Pl )= B f 1) dt.

With the notation of §7.5 (5), the absolute value of the right-
hand side does not exceed max (|mh|, |MA|). So
F(x+h)—F(x)>0ash->0. |

If we make the additional assumption of continuity of f, we
can prove a sharper result.

Theorem 7.62. If f is integrable in (a, b), then, for any value of x
Jor which f is continuous,

F'(x) = f(x).
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Proof. Suppose that 4 > 0. Let now
M = sup f(¢), m = inf f(¥)
for x <t < x+h. M and m then depend on x and h. By
§7.5(5), z+h
mh sL SO dt < Mh.

Therefore

n < PR

Let #—0+. Since f'is continuous at x, both m and M tend
to f(x). A similar argument holds when 4 —0—. |

Theorem 7.63. Let f be continuous in (a, b). Suppose that ¢ is a
Sfunction having the property

¢'(x) =f(x) for a<x<b
Then [ fydt = 4)-9@ for a<x<b.

Proof. From theorem 7.62, the function F— ¢ has derivative
Ofora < x <b.

By theorem 4.61 (corollary 1), F—¢ is a constant and, since
F(a) = 0, we have Foohr 260 il

The existence of a function ¢ having a given continuous
derivative f is established by theorem 7.62. Such a function
which, by theorem 7.63. is determined except for an additive
constant is called an indefinite integral of f, written

[ /(%) dx.

An indefinite integral may or may not be readily expressible in
terms of known functions; if it is, theorem 7.63 provides the
normal method of calculating the definite integral

b
j f(x) dx.
A number of illustrative examples follow in §§7.7, 7.8.

7.7. Integration by parts and by substitution

The systematic search for a function if we are given its de-
rivative employs methods which you are likely to know from
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your earlier work in the calculus. The emphasis is on technique
and not on foundations of analysis, and we shall treat it rather
summarily. In this section we shall state two general methods
of which repeated use will be made. They both arise from the
‘inversion’ of a formula in differentiation to yield a formula in
integration.

Integration by parts. This is the inverse operation of differ-
entiating a product.

If u, v are functions of x, then

duw) dv,  du
dx " Y"dx T Uaxe
By integrating, we have
If du|dx, dv|dx are continuous, then

dv du
fuadx = uu—fua—x dx.
Integration by substitution. This comes from the result of

differentiating a function of a function
dy dydx

& " A&
Writing dy/dx = f(x) and x = g(), we have
If f(x) and g'(¢) are continuous then
[fx) dx = [fig®)} g't) dt.

Taylor’s theorem with remainder an integral. By integrating
an appropriate integral by parts we can establish another form
of the nth order mean value theorem (§4.8) which is sometimes
useful. For brevity we replace the a of theorems 4.81 and 4.82
by 0.

Theorem 7.7. Let f™ be continuous for 0 < x < h. Then

hn-—l
f(h) =f(0;+...+(n_])!
whete R, = ot J' (L= in=1 e
Proof. By substituting th = u,

e 1 hh n—1 £(n) d
Ry = e | (= 00 .

S™90)+R,,
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Integrate by parts and we have

n—1 i
Rn o (nh_ 1) !f(n_!.) (0) Sh (?_1557 fo (h — u)'n—zf(n_n (u) i

The last integral is R, _; in our notation. If we integrate n— 1
times by parts we arrive at

e _(nhj—ll)! ¥ i1 [) P hf’(0)+f: f'(u) du.

Write f(h) —£(0) for the last integral and rearrange the terms. |
Applying §7.5(5) corollary 2 in two different ways to
theorem 7.7, we first reconstruct the term in 4™ given in theorem
4.82 (assuming however the continuity and not merely the
existence of /™). The second corollary gives the remainder term
of theorem 4.83.
Corollary 1.

hn 1 hn
— (n) — f)n-1 = — fin)
R, (n_l)lf (ah)fo(l 0-tdt = — f™(0h).
Corollary 2. n
R, = —— (1 =01 f™(0h).

(n—=1)!

7.8. The technique of integration

We recapitulate the methods in most common use, illustrated
by examples.

Rational functions. To integrate a rational function, put it
into partial fractions. A real root a of the denominator gives
constant multiples of (x—a)~", where n > 1.

dx . (x=ag)"
Ineee G ey
dx log (x—a) (x > a),
Ifn=1, Sl {
xX—a log(@a—x) (x < a),
or, conveniently, in one formula,
dx
S o8 |x—al.

A fraction whose denominator is a quadratic with complex
roots is integrated as follows.

9-2
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Example. e

Ix2—4x+5

The derivative of the denominator is 6x—4. Write the numerator 4x—1
as #(6x—4) + . The first term gives

2 6x—4 _ vl
j3x i dx = % log (3x*—4x+35).

The second gives

3

§f F=fx+i 9 f e §)=+z§x
S arc tan 25 = e i
T /11~ 3411

9 411
To integrate a partial fraction of the form

px+q
Gisaiechs (92 1

write the numerator as p(x+a)+(g—ap) and the problem is
reduced to integrating 1/(x*+2ax+b)*. This is achieved by
successive ‘reduction’ of the index n; see the paragraph below
on reduction formulae.

Trigonometric functions. (a) To integrate a product of cosines
and sines, turn the products into sums and differences by using
formulae like

2cosa cosb = cos(a+b)+cos(a—Db).

Examples. (i) [cos®xcos 4x dx.
(i) [ sin? x cos® x dx.
In (i), cos? x cos 4x = % (1 +cos 2x) cos 4x
= }cos 4x+3 cos 6x+ 2% cos 2x.

4 . .
shoe the OERHEL B oy aih i b i it

In (ii), the odd power of cos x suggests the substitution ¥ = sin X, giving
Ju*(1—u*) du and so % sin® x—1 sin® x

(b) The integral of any rational function of cosx and sinx
can be transformed into the integral of a rational algebraic
function by the substitution tan{x = ¢ for which

1—-22 ey 2t dx 2

COSX = —— TR .
1+ 1+ dt 1422
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Example. 2d

f 5_;?0?5—} — 9-—-;1‘—2 = g‘ arc tan (‘i‘ tan i'x)°

Reduction formulae. Suppose that we require
[ sin® xdx.

This comes under (a) above, but it is more easily found by step-
by-step reduction of the index n. A reduction formula is nearly
always derived by the appropriate integration by parts. Here

[sin"xdx = [(sin"~'x) sinxdx
= —sin®*1xcosx+ f (n—1) sin®2x cosx cosxdx

= —sin"1x cosx+(n—1) [sin"-2x(1 —sin®x) dx,
and so
nfsin“xdx = '—Siﬂ”“xcosx+(n_l)fSin“‘”xdx

and we have connected the integral of sin®x with that of
sin"~2x, This integral is particularly simple if the range of
integration is (0, 4), for then

in in
nJ‘ sin"xdx = (n— l)f sin®~%xdx.
0 0

By repeated application of this reduction formula we find that
in

f sin®xdx is
(1}

(n-1)... a=1)..3.1n
n... 5.3 S T sl 1 11

according as » is odd or even.
Irrational functions. We take only the simplest cases.

Example. iy

(x+a) Jx+b)"
The function under the 4/ sign is linear, and the substitution x+b = u*
gives the integral of a rational function of u.

Next consider the square root of a quadratic px?+2gx+r.
The change of variable u = px+g¢ reduces the irrationality to
one of the forms

J@-x3), J(x*-a?), J(x*+a?).
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The trigonometric or hyperbolic substitution which will get rid
of the 4/ is respectively

x = gsinu, x = acoshu, x = asinhu.

Example. IJ(Sx* + 1) dx.
The substitution x = (sinh u)/2./2 gives

1 i oL e Lo P
5 [cosh?udu = Wy J (1 +cosh2u) du = W) (u+ sinh u cosh u),
and so, on reverting to x,
%4,2 arg sinh 2x4/2 +3x,/(8x2+ 1).
Thus an integral like
f Jaxt+ 2%+ &)

can be expressed in terms of (inverse) trigonometric or hyper-
bolic functions. If we replace the quadratic under the 4/ sign
by a polynomial of higher degree, then we should have to
add to our stock of standard functions if we are to express the
integral explicitly. (The functions known as elliptic functions
would enable us to deal with a cubic or quartic.)

The fact that only the simplest functions are amenable to
explicit integration underlines the importance of §§7.12and 7.13
on approximate methods.

Exercises 7 (b)
Notes on these exercises are given on p. 181.
1. Integrate

xt 1
x—=22(x+1)° (x*+a) (x*+5%)° x*+a'x*+a*’
gl 2 2b.
X+17 x*+1°
X
2. Integrate m,

(i) by substituting # = x*+ a?, (ii) by substituting x = a tan 6. Verify that
the two results agree.

3. Wallis’s product for m.
n

t
Writing I, = f ; sin” x dx, prove that Iy,/Iyn., lies between 1 and
1+(1/2m).
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Deduce that

T _ lim 224466 @ 2m  2m
2 mow 133557 7 2m—12m+1°

Establish the alternative formula

s o (A e
A L

4. Integrate cos® 3x sin® 2x, tan x sec x, cosec?® x.
m m
5. Evaluate f > sin 7x sin nx dx, j » sin 7x sin® nx dx.

6. Show how to integrate

a+bcos x+e¢sin x 1
p+gcosx+rsinx’ acos? x+2bcos x sin x+¢csin*x”

7. Obtain reduction formulae for the integrals of
1/634+-1)*, x™logx)*, x"J(@®*—xY),
tan" x, sec"x, 1/(a+bcosx)".
8. Find a reduction formula for the integral
x"dx

J(axt+2bx+c)
and use it to evaluate

[ x3dx
JEE+2x+2)°
9. Prove that, according as n is an even or odd positive integer,

gl
f s‘.“"gd@= 0 or m.
o sinéd

If n is a positive integer, evaluate
7 sin® nf
3
f o sind i
10. If the polynomial P,(x) is defined by

P = 5im ()" -1,

prove that
(i) if Q(x) is a polynomial of degree less than n,

[ P o dx =,
(ii) {11 Po(x) Po(x)dxis 0if m £ nandis 2/2n+1) if m = n.

11. Prove that
ik ax®+2bx+c

(Axt+2Bx + O

is a rational function of x if and only if AC— B? or aC+cA—2bB is zero.

dx
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7.9. The constant =

We found in §6.8 that cosx and sinx, defined by their series,
are periodic, having a period which we denoted by 2w. We still
have to show that w is the same number as the 7 which presents
itself in the geometry of the circle.

Take a circle with centre O and radius a. We recall the argu-
ment proving its area to be ma?: inscribe a regular polygon in the
circle; its area is 4/p, where / is the perimeter and p is the per-
pendicular from O to a side. Similarly a circumscribed regular
polygon has area }/,a, where /, is its perimeter.

So, if A is the area of the circle,

3p < A < ¥ a.

As the number of sides of the polygon tends to infinity, p
tends to a, while /; and / both tend to the length of the circum-

ference, namely 27a. So o et

We now collate this with the area found by integration, using
the trigonometric functions (defined by series) to evaluate the
integral

4A = area of the semi-circle for which y > 0

1 —1
- f Sk ) = f e~ .
-1 1
Put x = acosd. This gives
ol f ® asin?0d0 = 3a2| (1—cos20)df = ywa?,
0 0

We have thus shown that @ and 7 are the same number.

We may conveniently insert here a note on the numerical
calculation of #. The easiest way is to use the power series for
the inverse tangent.

Theorem 7.9. If —11< x < 1,
arctanx = x—4$3+3x5—....
Proof. By theorems 6.92 and 7.63,

waar

arctanx = e
o l+122
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m $2m
S —1— = 1-~t2+r4~—...+(—l)m-ltzm-2+( o

17 S
Hence
2m
arctanx = x—§+ A (=™ 12): +( )
T tzm
where R, = N
o< x =<'l
x2m+1 1

x2m
OsRM‘*L’ U = S

and so R,,~0 as m->oco, Similarly, if —1 < x < 0, again
R, —0. |
Putting x = 1 in the result of theorem 7.9, we have

dr=1-4+3-..

This gives a means of calculating 7, but the series converges too
slowly to be useful for numerical work. The following simple
relations, which the reader can verify from the addition formulae
for the tangent, lead to series which converge more rapidly

im = arctan}+arctani,

ar

4arctan 4 —arctan 31z,

7.10. Infinite integrals

Integrals over an infinite interval.
We have, taking a simple example,

fxé-F_l_l
1x2_ A1

As X — oo, the right-hand side tends to the limit 1. A suitable
notation to express this fact is
“dr_
1 X
Geometrically, the area between the curve y = 1/x?, its asymp-
tote the x-axis and the line x = 1 is finite.
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Definition. If, as X — oo,
"X
f JS(x)dx—~1,
a
we say thatJ‘m S(x) dx exists, or converges, and that its value is /.
a
X
If f JS(x) dx exists for all values of X greater than g, but does

not tend to a finite limit as X —» oo, we say thatfm J(x) dx

diverges. (It is possible to be more precise—as indicated in
§2.9—and separate out divergence to +co or to —oo and finite
or infinite oscillation.)

A similar definition applies to

f " feya.
If f “fdx =1 and [ fo)dx =1l
VS f oy <L

It is easy to see that the value of the last integral is independent
of the particular value of a.

Theorem 7.10. fw de converges if and only if k > 1.
1
.PrOOf: If & = 1, X dx X1-k_1
=

The limit of the right-hand side is finite if and only if £ > 1.
Ifk =1, X
f Lo log X,
7 T

which tends to infinity as X — co. |

Note. Any number greater than 0 would serve instead of 1 as the lower
limit of integration.

Integrals of unbounded functions. If é > 0, the function
1/{/x is continuous in (&, 1) and

dx
—-— = 2-2./6.
o 2-24
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Since 1/4/x is unbounded in the interval (0, 1), the construction
of approximative sums cannot be applied directly to define its
integral over (0, 1). We use instead the result of making é - 0
in the above equation and define

tdx

0 4/X

1

to be lim dx

: §>0J8 Jx :
that is to say, 2.

Such an integral is called an infinite integral of the second
kind.

The reader will be able to frame a definition for a general
function, following the discussion of 1/,/x.

Exercises 7 (¢)
Notes on these exercises are given on p, 181.
1. Evaluate the integrals
f L xdx f o dx
0 X*+x*+x+1° ve (=1 Jx2+1)°
2. Prove that, if 0 < @ < 7,

f”_ng_ SRy
0 x*+2xcosa+1 ~ sina’

3. Prove that f : xXPe%dx =
4. Evaluate f : e %% cos bxdx (a > 0),
f by sech ax dx.
b dx
5. Prove that f G 0-D b>a

exists. Calculate its value by two different substitutions,
(i) x = acos®f+bsin? 0, (ii) (b—x)/(x—a) = .
6. Evaluate

o £ 1—rcos@
L= [_3 1—2rcos 6+t Eaeted
when (0 <r<1,()r>1.
Prove that, & being fixed, 7 tends to one limit as » - 1 through values
less than 1, and to a different limit as r — 1 through values greater than 1.
Show, also, that neither limit is equal to the value of I when r = 1,
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7.11. Series and integrals

There are close analogues between the convergence properties
of infinite series and those of infinite integrals. In §2.12 some
elementary theorems about convergence of series were proved.
The reader should decide what are the corresponding statements
about integrals. As an illustration we state the analogue of (6),
leaving the proof to the reader.

If, for every x = a,

(1) f(x) 2 0, g(x) = 0;
(2) f(x) < Kg(x), where K is a constant;

3) fm g(x)dx converges;

then fm Sf(x)dx converges. Also fw f(x)dx < K'[mg(x) dx.

Some care is necessary in framing the analogues. We know
from (3) of §2.12 that, if Zu,, converges, then u, - 0. From this

we might expect that, if fw J(x)dx converges, then
a

f(x)=0 as x—>on0.

But the following illustration shows that this is not the correct
conclusion.

Define a function f whose graph consists of the segments of
straight lines shown in figure 4.

The height of the peak at each value x = n is 1. The breadth
of the triangular base with centre n is 2/(n+1)%. fis zero at
points not on the sides of one of the triangles. The area of
the triangle above x = n is 1/(n+1)? and so

X ® 1
fﬂ S(x)dx < ? CFeL (all X),

showing thatfm f(x)dx converges. But f(x) does not tend to 0
0

n+1
as x— o0, The conclusion that we can draw is thatj Sf(x)dx
n

tends to 0 as n — o0,
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An infinite integral, though it is analogous to an infinite
series, is nevertheless a less simple concept. The sum of an
infinite series is the result of a single limiting operation (lim s,

as n — o0). An integral over a finite range, JX J(x)dx is already
a limit (the limit of sums Zf(£,)4,). An integ:al over an infinite
range fmf(x)dx is thus a limit of a limit, that is to say, a
repealedolimit.

¥

Fig. 4

The following simple and important theorem gives a close
connection between the sum of a series of positive decreasing
terms and an associated integral.

Theorem 7.11. (The Maclaurin—Cauchy integral theorem.) Let
S(x) be, for x = 1, a positive decreasing function of x. Then

(1) the integral JT f(x)dx and the series §, f(n) both converge
1

or both diverge;
(2) as n > oo,

100~ [ reax

tends to a limit | such that 0 < I < f(1).

Proof. Since f(x) is decreasing, its integrability in any finite
interval (1, X) follows from theorem 7.42.

If n—1 < x < n, we have

Jm—=1) = f(x) = f().
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Integration from n—1 to n then gives

fa-0 =" fdx > 1. )

Add these inequalities for the intervals (1, 2), (2, 3), ... (n—1,n)
and we have b &

210) > [ s > 3.50) ®)

If now the series converges, the left-hand inequality shows that
X

the increasing function of X,'f S(x)dx, tends to a finite limit
1l

as X - oo, If the series diverges, the right-hand inequality of
(B) shows that the integral diverges.

We have proved (1). To prove (2), we refine the above
argument, If

$(n) = if(r)—f“f(x) dx,
1 1

then $0)-pn-1) = f- [ fixya
< 0 (from A).
Also, from (B), 0 < ¢(n) < f(QD.

Therefore the decreasing function ¢(n) tends to a limit / which
satisfies 0<1<Al). I

For many functions f it is possible to calculate the integral
f Jf(x)dx but impossible to obtain an explicit sum for the series
2f(n). The Maclaurin—Cauchy theorem is useful for such series.
Putting f(x) = 1/x in theorem 7.11 (2), we have the important
corollary.

Corollary (Euler’s constant). As n— oo,

| g
1+§+§+ ...-}-H——Iogn
tends to a finite limit -y, where 0 < y < 1.
Euler’s constant, v, is of frequent occurrence in analysis. Its
value is 0-577....
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Exercises 7 (d)
Notes on these exercises are given on p. 181.

1. Prove that
lo i—!—f—f—-df (=23, 53
e i e o(n—10n TR
Denoting either of these expressions by u,, prove that
e
2(m—1n’

and that the series Zzu,. converges to a sum U satisfying 0 < U < 1.
n=

D<u,

Deduce that + < y < 1.
(The corollary showed only that 0 < y < 1.)

2. Obtain the limits as n —+ o of

1 1 1
Atl nkd . e
1 1 (= 1)t
n+1 n+2+ e 2hR
3. Prove that g _1
1 nt+1 = gt
4. Prove that, if 0 = k£ > —1,
k+1
k k e
14284 +n 5
tends to a finite limit as n - co,
Deduce that 164254 . 4 pt 1
B =t
5. Prove that, as k - 0+, ® 1
k ¢ e g B
6. Prove that © 1
2 n(log n)*

converges if £ > 1 and diverges if k < 1.
7. Prove that
n n n
1 log xdx < Ezlog r< L log x dx+log n.
=

Investigate the limit, as n — oo, of (n!)!'"/n.

8. Verify the statement in the numerical illustration at the end of theorem
2.11 that the sum of 10° terms of Z(1/n) is less than 20.

9. Discuss the convergence of

@ = 1 .. i

awogny’ W F iiog log
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7.12. Approximations to definite integrals

At the end of §7.8 we remarked that we are not able to
evaluate exactly an integral such as

J‘ h s

0 (x*+1)’

because the integrand containing the square root of a cubic
polynomial is not the derivative of any finite combination of
our standard functions. You will have to take on trust the
fact that we cannot find an indefinite integral explicitly; proofs
of impossibility are difficult and far outside the scope of this
book. The failure of the usual devices like substitution or in-
tegration by parts will incline you to believe that there is no
indefinite integral that a search will bring to light. The problem
therefore presents itself of obtaining an approximate numerical
value of the definite integral.

Another class of integrand for which approximation is forced
on us is one which is not specified by an analytical formula at
all but, say, by a recording pen attached to an instrument
measuring some physical quantity.

bSuppose then that we seek an approximation to an integral

f(x)dx, which we cannot evaluate exactly. If we take
functions g, A, such that

gx) > f(x) > h(x) (@a<x<b
then the integrals over (a, b) of g and h give approximations
from above and from below to the integral of f. Applications
of this method are given in the following examples.
Example 1. Consider the integral mentioned at the beginning of this
section 1% hdx
L= f NOE+D”
The 4 shows that Schwarz's inequality of §7.5 (9) will provide an
approximation from above
dx
ox*+1
2x—17t
= [& log (x+1)—2 log (x*— x+1)~|—~,3 arc tan —— B

B <

= élog2+m < 0.836,

the indefinite integral being obtained by the method of §7.8.
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This gives I < 0.915.
To find an approximation from below, observe that x* > x* for
0<x<1,andso

1
5 foJ(x’+1) [108{x+\/(x"+1)}l Tog (1 +4/2)

> 0-896.

Methods of obtaining closer approximations will be given in §7.13.
Example 2. Approximate to

i .
I= f ! J(sin x) dx.

(The indefinite integral is not expressible by the special functions
included in chapter 6.)
(i) +/(sin x) > sin x gives I > 1.
(i) We have 2x/7m < sin x < x (0 < x < }m). Integrating the square

Kols, yenne 1047 < I < 131,
(iii) Schwarz's inequality (as in example 1) yields
I < J3n) < 1-254.

7.13. Approximations by subdivision. Simpson’s rule

From the definition of the integral, it is natural to carry out
approximations by subdividing the range of integration and, if
possible, keeping control over the errors that may be incurred
in the separate parts. We give some simple and useful methods.

The trapezium method. A first approximation to

I= r S(x)dx
is T = }(d-o) {f(0)+/(d)}-

If we make the assumption that f has a bounded second
derivative, we can obtain an upper bound for the error in this
estimate, as follows.

Theorem 7.131. If | f"(x)| € M, then
I-T| < sM(d—c).

Proof. For convenience, we can take ¢ =0, d = h. The
argument is like that of theorem 7.7. Write

h
o) = [ 1th-0./ ).
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Integrate by parts twice and we have successively
#h = [ @1-n s
= W) +1O) -2 sty
and so j : f@)dx = {F0)+f(B)}+R,
whiers IR| < Wﬂ‘ 1(h—1)dt = J5MIS. |

To approximate to the integral of f(x) over (a, b), we may
divide the interval into n equal parts, where b—a = nh, and
apply the trapezium rule to each part. The approximate value
S hen  pes ((0)+f(at B) +7@+28) + ...+ 3f(a+nh)},
the first and last terms having the coefficient 4. If, moreover,
[ (x)| < M, then the error is at most
(b—a)®
o

TsMnh® or M

Simpson’s rule. This method, based on the idea of approxi-
mating to the curve y = f(x) by a parabola drawn through three
of its points (instead of by a straight line through two points)
is likely to give a much closer estimate of the integral.

The Simpson approximation to

= J.d f(x)dx
is S = Hd-) {flo)+4f [¥c+d]+f(d)}.

To obtain an upper bound for the error we shall assume that
f(x) has a bounded fourth derivative.

Lemma. If y = p(x) = Ix*+mx+n,is the parabola (with axis
parallel to Oy) drawn through the points of y = f(x) for which
x =—h,0, h, then

f : p(x)dx = 3h{f(—h)+4f(0)+1(h)}.

The proof of the lemma is left to the reader.
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Define now, as a measure of the ‘error’,
B = [ f00dx=3h( (= 1)+ 4O+,
Theorem 7.132. If |f®(x)| < M, then |E(h)| < ssMHK°.
Proof. Let0 < x < h. Then
E'(x) = f(x) +f(—x) = 3{/(—x) +4/(0) +/(x)}
—3x{f'(x)—f'(—-x)}
= 3f(x) - $/(0) +3/(— %) —3x{f' () - f' (- x)}.
E'(x) = 3f'(x) =3[ (= %) —3x{f"(x) +/"(— %)},
E"(x) = —3x{f"(x)—f"(—x)}
= —£x2fW(), where —-x<§ <x,
by the mean value theorem. So
—&Mx® < E"(x) < $Mx%
Integrating from O to x, and noting that E"(0) = 0, we have
—3Mx® < E"(x) < 3MX3.
Integrating twice more, and using E'(0) = E(0) = 0, we have
—gMxt < E'(x) < fsMxt O <x < h)
and finally —goMh® < E(h) < s%5MHS. |

b
In practice, to approximate to f f(x)dx, divide the interval
a

(a, b) into 2n equal parts, where b—a = 2nh. Let the values of
f(x) at the 2n+ 1 end-points of the subintervals be
Yor Y15 <05 Vone

Applying the method of the lemma to the » sets of two adjacent
subintervals, we have the approximate value

Yh{(yo+yen) 400+ ¥+ oo+ Van-1) + 2002+ Yot .. + Yan-o)}-

If, further, | f®(x)| < M, theorem 7.132 shows that the error
is at most

AT
alrsMﬂ(—z;a-) = zg50M

102
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Exercises 7 (e) (Approximations)
Notes on these exercises are given on p. 181.
1. Prove that, if f(x) = (1+4x—y%x¥/y/(1+x), then 1 < f(x) < 1-0008
in the interval 0 < x < }. Hence evaluate the integral

f ltdx—dpxt )

0o J(I-x")
correct to three places of decimals (/2 = 1:4142...).

2. Prove that [1 wi—wt . _ 22_q
o 1+ £ '

1
Evaluate f ’ u*(1 — u)* du and deduce that

Py > 7 > =g
3. If ¢(x) is polynomial of the fifth degree, prove that

[: BOdx = P5{5h(@) + 843+ 56(A),

where a and £ are the roots of the equation x*—x+; = 0.

4. The function f(x) has a continuous nth derivative for x > 0, and f(x)
and its first n— 1 derivatives vanish for x=0. Show that

2= pwigan = [ ooy,
Deduce that, if | f“"(x)l < Min0 <€ x < a, then

a an'H. M
[ reoax| < 5 Jont D"
5. Discuss the common assumption that the Simpson approximatioﬁ toan
integral, obtained by dividing the range (a, b) into 2n equal parts, is liable
to an error varying as n~*,

If I, and I, are the approximations found by Simpson’s rule when the
range is divided into 2n and 4n parts, respectively, show that, on the
above assumption, (161,—1,)/15 is a better approximation.

8
Apply this to f g d;xwith n = 1, and compare your result with the true
value 0-693147....

6. (Stirling’s formula for n!.) This formula gives a good approximation
to n! when n is large (J. Stirling, 1692—1770).
Prove that, as # — o0,

) = — - J(2m).

The proof is in two parts: (@) prove that ¢(n) - some constant A,
(b) prove that A = ./(2m).
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(@) If r is an integer = 2,

r+i r
(6] j ! log xdx < logr, i{log(r—1)+logr} < f
r— T

(ii) [: log xdx < log(n!)—3logn < jr log xdx.
(iii) If u, = log(n!)—(n+%) log n+n, then

Up > Uy, and 3(1—logd) < u, < 1.
(iv) ¢(n) > A, where 243 < A < e.

g log xdx.

(b) Apply Wallis's formula (exercise 7 (), 3) to ¢(2n)/{P(n)}e.

Exercises 7 (f) (Miscellaneous)

Notes on these exercises are given on pp. 181-2.
1. Find the limits, as x tends to 0 through positive values, of

o) % f : JOrEDdr, (i) ;15 f : 11] .
2. 1If x(E—1) when x <
E(x~1) when § < x,

X <

and if f(x) is a continuous function of x in 0 <
1
e0) = [ /6 60x, 6 &,
0

show that g"(x) = f(x)
and find g(0) and g(1).
1

o fp,a) = [ w11 -2y,
where p 2 1, ¢ = 1, show that

Se+1,9+f(p,q+1) = f(p, q)
and qf(p+1,q9) = pf(p, g +1).

Evaluate f(p, n), where n is a positive integer.

4, Let

Gex, &) = {

where r is not necessarily an integer. Prove that
@ P=Py (r=1), (ii) Py = 1m,
(iii) P,/r decreases as r increases (r = 1).

Deduce from (i), (ii), (iii) that

. i A
(IV) m 5 < Pp\ <

and from (i), (iv) that
) P. = 3imforallr > 1.

Y
k2

&
S f [ Si0ds (20, P=1SS., (>0,

(1 <k<r<k+1;kan integer);

149
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5. From approximative sums to appropriate integrals, find the limits as

n —co of i 1

@) n X

m=0 nt+m*’

(i) Mn+1) (n :- 2)...(2n)} )

6. From the identity
n—1 rm
1—ag* = (1—a" II (1‘—2acos—+a‘) 5
r=1 n

(where IT denotes the products of the factors given by r = 1, 2, ..., n—1),
prove that (a being real)

j: log (1 —2a cos x+a*)dx

is 0 if |a] < 1 and is 27 log |a] if |a| > 1.
7. (Proof that m is irrational.) If

I.() =f1_1 (1—x%" cos ax dx,
prove that, if n = 2,
o], = 2n2n—1) I, —4n(n—1) I, _,.
Deduce that, for all positive integral values of n,
a1 [ (o) = n! (P sina+ Q cos o),

where P and Q are polynomials of degree less than 2n+1 in a with
integral coefficients.

Prove that, if 4w were equal to b/a, where b and a are integers, then
b [ (3m)/n!

would be an integer. By considering large values of n, prove that « is
irrational. ¢
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8
FUNCTIONS OF SEVERAL VARIABLES

8.1. Functions of x and y

We have applied limiting processes to a function f(x) of a
single variable x. This analysis will now be extended to functions
which depend on more than one independent real variable.
Geometrical language will help towards clearness and brevity.
Referred to a pair of rectangular axes, two real numbers
correspond to a point in a plane. We now define a function of
x and y.

Let E be a set of points P in the (x, y) plane, or, what is
equivalent, a set of values of the pair of real numbers (x, y). If
rules are given which determine a unique real number :z
corresponding to each pair (x, y), then z is called a function of
x and y. The set E is called the domain of the function.

We write z = f(x, )
2(x, )

using, as we can without ambiguity, z to denote both the
functional symbol and its numerical value.

or, commonly z

Notes. (1) Hitherto the letter z has conveniently denoted a complex
number x+ yi. In this chapter the usage is different and corresponds with
that of three-dimensional analytical geometry referred to coordinate axes
Ox, Oy, Oz.

(2) The notes (1)-(4) of §3.1 are applicable here with the appropriate
modifications. The function f is a transformation or mapping of a two-
dimensional domain E of points (x, y) into a linear set of values z under
the restriction that with a given pair of values (x, y) is associated one and
only one value of z.

Hlustrations. z = (1 —x*—y®)* defines a function of (x, y)

() if k = 2, for all (x, ¥),

(ii) if k = —1, for all (x, y) with the exception of points on the circle
x4yt = 1,

(iii) if £ = 3, for points inside or on the circle x2+y* = 1.

The equation z = f(x, y) represents a surface referred to a
set of axes Ox, Oy, Oz. There is no graphical representation of
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the values of a function f(x, y) so simple as the curve y = f(x)
which illustrates a function of one variable. A possible repre-
sentation on a sheet of paper is obtained by drawing the curves

f(xsy) =k

for suitable values of k. These are the contour lines of the
surface z = f(x, y).

Hlustration. The contour-lines of
z = x*+4y?
are a set of similar ellipses with centre at the origin,

If there are more than two independent variables we can no
longer visualize a functional relation graphically. The analytical
methods of this chapter apply to a function of any number of
variables; we shall usually suppose for simplicity that the num-
ber of variables is two or three.

8.2. Limits and continuity

We first clarify the notion of the limit of a function of more
than one variable.

Definition. f(x, y) tends to the limit | as (x, y) tends to (a, b) if,
given e, there is 0 such that
!f(xs y)_ll =t
Jor all x, y such that
0 < Y{(x—a)+ (b < 8.

The definition expresses the requirement that f(x, y) can be
made as near to / as may be demanded by taking (x, y) to be any
point inside a sufficiently small circle with centre (@, 5). A
square with centre (a, b) and side 24, or a region of any other
shape surrounding (@, b) would serve just as well as the circle
in the definition. We shall call a region such as the circle or the
square a neighbourhood of (a, b).

Definition. f(x, y) is continuous at (a, b) if f(x, y) tends to
fa, b) as (x, y) tends to (a, b).

It is natural to go on to define continuity of f throughout a
domain E of the (x, y) plane to mean continuity at each point
of E. The reader should refer to the definitions of continuity of
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a function of x in a closed interval and in an open interval stated
at the end of §3.4. The following definition is sufficient for our
needs in this chapter.

Definition. f(x, y) is continuous in an open rectangular domain
Xo < X < Xy, Yo < ¥ < yy if it is continuous at each point of the
domain.

If, however, points of the ‘boundary’ are included in the set,
the formal definition would need more care because in more
than one dimension the boundary of a domain is more com-
plicated than the boundary of a linear interval which consists
just of its two end-points. The general idea (following that of
§3.4) is to exclude from consideration values taken by f at any
points not in the set E.

It is to be observed that continuity of f(x, y) as a function of
the pair of variables (x, y) asserts more than continuity of
f(x, y) as a function of either variable singly (keeping the other
fixed).

Hlustration. Define

XY
SO, y) = gy if % are not both 0,

f0,0) = 0.

Then f(x, ¥) is 0 at all points of Ox and Oy. So f(x, 0) is a continuous
function of x for x = 0 and f(0, y) is a continuous function of y for y = 0.
We shall prove that f(x, ¥) is not a continuous function of (x, y) at (0, 0).
This is easily seen by using polar coordinates x = rcos 8, y = rsin 6.
Then f(x, ) = sin 26 for all values of » except r = 0. So, in any circle
however small with centre (0, 0), the function assumes all values between
—1 and 1 and does not tend to a limit as (x, y) tends to (0, 0).

8.3. Partial differentiation

We may, keeping y constant, differentiate f(x, y) as a function
of x, that is to say, we take the limit
tim £+ A ) =1(x, )
h—0 h :

This is called the partial derivative of f(x, ») with regard to x
and can be written

2 OF fdxp) or £
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Any of these notations applied to a function of two or more
variables indicates that every variable, except the variable of
differentiation, is to be kept constant.

The first-order derivatives df/ox and &f]dy are functions of
(x, y) and may be differentiated again. We have then

o g
% or f.. and 5;2 O

and the mixed second-order partial derivatives

a (of 3 (of
wlox) ™ 2 ()
In the suffix notation, the former of these is (f;), or, by sup-
pressing the brackets, f,,.
It will be found that in all straightforward examples the order

in which partial differentiations are carried out does not matter.
We shall usually have, in fact,

948N 9 {8
oy \ox) — ax \ay
and then we can write each of them as

' a2f‘
5;52 (Ol' fW)'
Our first theorem gives conditions for this interchangeability
of the order of partial differentiations.

Theorem 8.3. If f,, and f,, are continuous functions of (x, y) at
a point (a, b), they are equal there.

Proof. Since f,, and f,, are continuous at (g, b), there is a
square N, centre (a, b), in which they exist. The functions f,
and f,, from which they are derived must exist in N, as must f.
For the rest of the proof, # and K are assumed to be small
enough for (a+h, b+k) to be in N.

The proof depends on taking increments in the function f
corresponding to increments in the variables x and y in turn,

s $(x, ¥) = f(x, y+K)=f(x, y)
and D = ¢(x-+h, )~ (%, ),
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then D = f(x+h, y+k)—f(x+h, y)—flx, y+k)+f(x, y).

Now D can be built up by taking increments in x and y in
the reverse order, for if

Y(x,y) = fx+h y)—f(x, y),
then D = Y(x, y+ k)= ¥(x, ).
By the mean value theorem (4.61)
¢la+h, b)—¢(a, b) = hp (a+06,h, b),

where 6, and all other #’s in the sequel lie between 0 and 1. By
the definition of ¢,

¢(a+0.h, b) = f(a+6,h, b+k)—f(a+6,h, b).
Apply the mean value theorem to the right-hand side and we
have, with (x, y) = (a, b) in D,
D = hkf, (a+6,h, b+06,k).
The alternative form of D as the increment of ¥(a, y) over
e i LR B A
So,if h + 0and k + 0,
Sofa+0,h, b+ 0,k) = f,.(a+05h, b+6,k).

Now let (A, k) - (0, 0). The continuity of £,, and f,, at (a, b)

i (@ B) = fyula, ). 1

Exercises 8 (a)
Notes on these exercises are given on p. 182.

1. Which of the following functions (with the definition suitably com-
pleted for x = 0, y = 0) are continuous at (0, 0)?

(e x34)8

O S @) 5, Gy S
2. If x = rcos 8, y = rsin 6, give the values of the partial derivatives of
r and & with respect to x and y.

Is it true that
() @) =17

lllustrate by a diagram.
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8.4. Differentiability

Let us consider what is the most natural extension of the
idea of differentiability when the number of independent
variables exceeds one. If we have a function f of one variable,
differentiability at a point means the existence of a tangent
line—a linear approximation to the curve y = f(x). On a
surface z = f(x, y) an approximation linear in the variables
suggests a tangent plane. This leads us to the following de-
finition.
Definition. The function f(x, y) is differentiable at (a, b) if; for
(a+h, b+k) in a neighbourhood of (a, b),

Sla+h, b+k)—f(a, b) = Ah+ Bk +€(|h| + |k|),
where A and B do not depend on h or k, and € tends to 0 as
(A, k) > (0, 0).
This means that the plane
z—f(a, b) = A(x—a)+ B(y—Db)

is at a distance from the surface z = f{(x, y) which is small com-
pared with the displacement of the point (a+ A, b+ k) from (a, b)
and is the tangent plane to the surface.

The ‘error-term’ in the definition of differentiability which we
have written as (] + [k])

can be put in several different forms, which are easily seen to
be equivalent. We could, for instance, say instead

e,(h®+k2).
Again, we could rewrite the condition as
Sfla+h, b+k)—f(a, b) = alh, k)h+p(h, k)k,

where a(h, k) > A and B(h, k) — B as (h, k) - (0, 0).
If (in the original definition) we keep k = 0 and let 4 tend

to 0, we have A AW,
and similarly B = f(a, b).

It can be seen that differentiability, in the sense of this de-
finition, asserts more than the existence of partial derivatives
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with respect to x and y. Geometrically, the existence of the
partial derivative f,(a, b) implies that there is a tangent line to
the curve which is the section of the surface z = f(x, y) by the
plane y = b. The existence of a tangent plane to a surface
requires more than the existence of tangent lines to two curves
which are sections by perpendicular planes. The next theorem
shows that if we assume the continuity, and not merely the
existence, of f, and f,, then the differentiability of fis a con-
sequence.

Theorem 8.4. If f, and f, are continuous at a point (x, y) then f
is differentiable at that point.

Proof. Let h and k be small enough for (x+h, y+k) to lie
within a circular neighbourhood of (x, ) in which £, and £,
exist. Then we have

S(x+h, y+k)—f(x, y)
= {{(x+h, y+k)—flx, y+ )} + {f(x, y+ k) —f(x, »)}.

In the first bracket, only x is changed; in the second, only y.
Apply the mean value theorem to each and we obtain

hf(x+0,h, y+ k) + kf (%, y+ 6,k).
By continuity of f, and £, this is equal to

hf(x, »)+e}+ k{f(x, y) + €},

where the €’s tend to 0 as (h, k) - (0, 0), and the definition of
differentiability is satisfied.

Exercises 8 (b)
Notes on these exercises are given on p. 182.
1. Investigate whether the following functions are differentiable at (0, 0):

@) [x*=»?, (i) |xp|*

xp[J(x*+y%) when (x,) * (0,0),
S(x, y) = {

0 when (x, ) = (0, 0),

investigate for (0, 0), (i) continuity of f; (ii) existence of /3, f, : (iii) differenti-
ability of f.

3. Give an example of f(x, y) which is differentiable at (0, 0) and dis-
continuous at all other points.

2, If
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8.5. Composite functions
We now extend to functions of two variables the formula

dy _ dydu

dx  dudx
proved in §4.2 (5).
Theorem 8.5. If x = x(f) and y = y(1) are differentiable functions
of t for a given t, and z = z(x, y) is a differentiable function of
(x, y) for the corresponding (x, y), then

z = z{x(1), y(1)}

is a differentiable function of t and
dz 9zdx ozdy

d “oxdi oyar
Proof. Let t be changed to 7+ 4¢; let éx and dy be the corre-
sponding changes in x and y.
Then de
0x = (

@t +€1) ét,
dy
6‘y = (3;+€2) 3t,
where ¢; and €, tend to 0 as 6t - 0. Writing
0z = z(x+6x, y+68y)—z(x, y),

we have, since z is differentiable,
0z oz
oz = = 6x+5-)—’ 3y +e(|8x] + | dy|),

where € - 0 as (éx, dy) - (0, 0).

If éx and Jy are both 0 (which may happen for arbitrarily
small &t if dx/dt = dy/dt = 0), e fails to be determined by the
last equation and we define € to be 0.

Substituting for éx and dy in terms of d¢, we obtain

9z dx 0z dy
0z = (é} EI_+5;' E) ot +1746t,

where it is easily seen that 7 -0 as §t - 0. |



8.5] FUNCTIONS OF SEVERAL VARIABLES 159

Corollary 1. 1If, in the theorem, x and y are functions of
more than one variable, say

x = x(t, u,v), ¥y = Wt,uv),
which possess partial derivatives, then, for each of the variables,
we obtain, by keeping the others constant,
0z 0z dx 0z dy
ot ox ot dpor
and similar equations with 7 replaced in turn by u and v.
This much-used rule for differentiating through the inter-
mediate variables is commonly called the chain rule.
Corollary 2. If, in corollary 1, x(z, u,v) and y(¢, u, v) are
differentiable in the sense of §8.4, then a straightforward
adaptation of the proof of theorem 8.5 shows that

z{x(t, u, v), ¥(t, u, v)}
is a differentiable function of ¢, u, v.

8.6. Changes of variable. Homogeneous functions
This section contains applications of theorem 8.5.
Example. Express in polar coordinates
2 2
assuming that these second-order derivatives are continuous.
Solution. Corollary 1 of the last theorem gives

o _aex Voy _oF . V.
ar " oxor ayor  ox S0 Ty Y

o _oVex iy i
90 ~ ax 0 3y 30~ ox

At this stage we have on the right-hand sides terms containing
both (x, y) and (r, 6). To keep the cartesian and polar variables
separate, it is advisable to solve for 9V/éx and éV/éy. We find

—rsinf) + ?Ercosﬁ.
oy

@(if r + 0) Q’_COSGBV s_m() oV
G ar r @9’
av . 0V cos@éeV

}33;_ = sinf 8r+ r 86’
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These equations enable us to convert the operators d/2x and
2/ay acting on a function into operators involving 2/or and
d/e@. Thus

Y _ (conp 520 2) (cup 8000
ax: or r @0 2

= cosf {cosd &y _sing &V  sin6 oV
- ot r o0 r* 0

Loinble g BV g pBY, MO ET, oot 1)
o S Tr 2 r 90)°
There is a similar expression for 2*F/dy?, which the reader
should write down. Adding, he will find that

av ey _&V 19V 1 &V

it mTratpm !

We now turn to homogeneous functions as a further illus-
tration of theorem 8.5. The elementary notion of a homo-
geneous function is a polynomial in the variables, all the terms
being of the same degree. For instance, 2x% — x%y +4y* is homo-
geneous of degree 3. The more general definition which follows

allows, say, (S+29)%
x+3y

to be homogeneous of degree .
Definition. f(x,y) is homogeneous of degree h if, for every
positive ¢ and all x, y for which fis defined,

fltx, ty) = £f(x, ).

Theorem 8.6. A necessary and sufficient condition that the
differentiable function f(x, y) should be homogeneous of degree h

is tha
oo ot yfy = hf
for all x, y.

Proof. We prove the necessity, which dates from Euler.
Putting £ = tx, 7 = ty, we have

f(gr 1) = thf(x: y)-
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Keeping x, y constant, differentiate with regard to ¢. Theorem

8.5 gives
ofde of dn _ s
'gga?""%a‘[‘ = ht*=1f(x, y).
Put 4 = 1 and we have the required condition
Jex+fy = H.

To prove the sufficiency of this condition, take, as before,
£ = tx, 7 = ty. Keeping x, y constant, we have

%f(ﬁ, 7) = x%ﬂ/af = 1(15 éf’”f 6f),

o t\"a&" "oy
and, by hypothesis, the last expression is Af(§, 7)/t. So, if
U=f(g,77), 1@_{'
vdt  t°

Therefore v = A", where A is independent of 7. So

Sftx, ty) = A" = 0'f(x, y),
by putting £ = 1. |

Exercises 8 (c)
Notes on these exercises are given on p. 182.

1. (The Jacobian.) Let u,v be differentiable functions of x, y. The

determinant
Uy Uy

Uz Uy
o(u, v)
ax, y)
is called the Jacobian of the transformation from (x, y) to («, v). Its role
corresponds to that of the derivative du/dx for a function u(x) of a single
variable. Prove the following properties which illustrate this role.
() If a relation ¢(u, v) = C holds for all (x, y) in a domain D, then
au, v) _
ey
in D. (The converse is true but more difficult to prove.)
(ii) If x, y are differentiable functions of s, ¢, then

ou,v) _ &u,v) 8(x,y)
s, 1)~ Ax,p) s, )"

All this may be extended to n functions of n variables,

written shortly as
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2. A function f(x) is defined by the properties f'(x) = 1/(1+x% and
f0) = 0. Use 1) (the converse) to show that there is a functional
equation

x+y
FO+10) = f(722).

3. Thearea A ofa triangle is found from measurements of a, B, C. Prove
that the error in the calculated value of A due to small errors da, 0B, 6C is
given approximately by

36__2&: ¢ 6B b éC

K=t asnB asinc
4. The sides a, b, ¢ of a triangle are measured with a possible percentage
error € and the area is calculated. Prove that the possible percentage error
in the area is approximately 2¢ or 2¢ cot B cot C according as the triangle
is acute-angled or obtuse-angled at A.

5. (The wave-equation.) Prove that, by the transformations u = x—ct,
v = x+ct, the partial differential equation

oty . chiphy
Frolalar >
&%y
reduces to Balp = 0,

and hence solve the equation.
6. If f(x, y) is transformed into g(x, v) by the transformation
x=uw—vt, y= 2,

2 2o alniPe
oxt " 9 T 4+ 1Y) (Bu'+av’ 4

Find the most general function S(x, ¥) which satisfies

prove that

E,+w=‘-0

and is a function of x+./(x2+3?) only.
7. Prove that, if r and 6 are polar coordinates and A = log r, the equation

ﬂ’+ﬂ_ 0

ox? " 9yt T

ey oty
becomes E)IT-I-@_H; = 0.

8. For all positive values of A, the function & satisfies the condition that
&"x, A%y) = Ang(x, y),
where r, 5, n-are positive integers. Prove that

% o _
rx ax+sy 5} = ng.
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9. The function F(u, v) becomes f(x, y) when the substitution
u = x*=3x)",

v = 3x%y—)*
is made. Prove that
Rt i {?Z iy, E, F
9(x*+y%)? lox? 3y2} T oant et

8.7. Taylor’s theorem

We extend to a function of two variables the nth order mean
value theorem proved on page 81.
Theorem 8.7. Suppose that the partial derivatives of order n of
f(x, y) are continuous in a neighbourhood of (a, b) which contains
the line joining (a, b) to (a+h, b+ k). Then

Flart bk = o, b)+(h +kab)f(a, B+ ...
+( ]),( +kab) f(a, b)

(h £a ) T POTEE O Wildre 0

The meaning of the operator
d o™
(hg5+k 55) 1)

is % (’:) il ___3L__r S(x, ).

r=0
In the expansion of f(a+#h, b+k), the values (a, b) are inserted
for (x, y) after performing the differentiations of orders up to
n—1 and (a+6h, b+ 0k) in the nth order terms. The hypothesis
of continuity of the partial derivatives ensures that the order of
differentiation in any

o
Xy S(x,y) (m<n)
is indifferent.
Proof of theorem 8.7. We reduce the number of variables to

one () Dy Wallag Cron o Srra ke ke
By theorem 4.82,

F(1) = FO)+F/(0)+...+

where 0 < 0 < 1.

1 i s
o R e

I1-2
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The successive derivatives F'(f), F'(¢), ... are calculated by
means of theorem 8.5. With the prescribed notation,

F(O) = (hg+k 73) i@ b

o) = (2L o 2 kz"’—z)f b
()"( ot 2k gz K ) /(@ 0,

and so on. Finally, F*(6) has the value stated in the theorem. |

The possible extension of this result, on the lines of theorem
5.8, to provide an expansion of f(x, y) in an infinite series of
powers of x and y is less important than the expansion of f(x)
as Zag, x™.

8.8. Maxima and minima

We extend to a function f of two independent variables the
discussion of §7 of chapter 4.

Definition. f has a maximum at (a, b) if there is a neighbour-
hood of (a, b) in which f(x, y) < f(a, b) except for (x, y) = (a, b).

We define a minimum by substituting > for <.

The following analogue of theorem 4.71 is immediate.

If f, exists at (a, b), a necessary condition that f has a maximum
or minimum at (a, b) is that f,(a, b) = 0.

This follows by applying theorem 4.71 to f(x, b).

A similar statement holds for f,(a, b).

The investigation of sufficient conditions for a maximum or
minimum has a feature which was not present with only one
independent variable. This is embodied in an algebraic lemma.

Lemma. If $(x, y) = ax*+2hxy +by?, where all the numbers are
real, and D = ab—h?, we have
(@) if D > Oand a > 0, then ¢(x, y) > 0 for all (x, y) except
©, 0);
if D> 0anda < 0, then ¢(x, y) < 0 for all (x, y) except
0, 0);
(ii) if D < O, there are values (x, 1), (X3, ¥2) arbitrarily near
to (0, 0) for which

Pxn ) = 0, S, p) < 0.
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Proof. (i) Note that D > 0 implies that @ # 0. Then
ap = (ax+hy)*+(ab—h?) y*
>0 unless x=y=0.
So, if a > 03, then ™ g0,
and if a<0, then ¢ <0.

(ii) Suppose that a + 0, say a > 0. Then, if y, = 0 and x;
has any value (except 0), the expression for a¢ in (i) gives

@(x1, y1) > 0.
If (x, ¥5), not being (0, 0), satisfy ax,+ iy, = 0, then

P(xz, y) < 0.
Ifa = 0 and b + 0, a similar argument holds.

Ifa=5b =0, then A + 0 and ¢(x, y) = 2hxy, which takes
opposite signs when x = yand x = —y.

Theorem 8.8. Suppose that f has derivatives of the first and
second orders [, fys fezs foys fyy» Which are continuous at (a, b),
and write p, q, r, s, t for their values at (a, b).

Then f has a maximum or minimum at (a, b) if

(1) p =m0,
(ii) rt—s® > 0.
Ifr <0, (a, b) is a maximum, if r > 0 a minimum. (From (ii)
r+0)
If rt—s? < 0, (a, b) is neither a maximum nor a minimum of f.
If rt—s* = 0, we prove nothing.
Proof. By theorem 8.7, if A, k are small enough,
Sla+h, b+ k) = f(a, b)+ph+qgk + 3(r, i* + 25, hk + 1, k?),

1, 5, 1, being the values of £, fzy, fy, for x = a+6h, y = b+ 6k,
where 6, depending on a, b, h, k, satisfies 0 < 6 < 1.
If condition (i) is satisfied,

fla+h, b+k)—f(a, b) = 3(rih®+2s hk + 1, k?).

1t is now clear what we have to do to complete the proof.
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The coefficients ry, sy, #; of the quadratic form in A, k tend to
r, s, t as (h, k) - (0, 0), and we need to show that, for all suffi-
ciently small (A, k), the two forms
r1h2+ 251hk+ tlk',
rh®+ 2shk + tk?,

both have a fixed sign or are both capable of taking either sign.

b D=rt—s% D,=rt—s;

(so that D, depends on 4, k).

Suppose that D > 0. Then r & 0. Suppose thatr > 0. Since
|r=ri, |s—s1], |t — ;] are arbitrarily small if (h, k) is near enough
to (0, 0), we can choose & such that, for all &, k in A2+ k% < 6%,

D,>0, r;>0.
By the lemma, for all 4, kin 0 < A2+ k2 < &%,
rih®+2s,hk+ k% > 0,
and so (a, b) is a minimum of f,

Similarly, if D > 0 and r < 0, then (g, b) is a maximum.

Take now the case D < 0.

By the lemma, there is (/,, k,) for which

rh®+ 2shk + tk?

is less than O and (h,, k,) for which it is greater than 0.

Vet F(f) = f(a+ht, b+ki)—f(a, b).
Then F(@©) = F'(0) = 0,

F"(0) = rh®+ 2shk + tk2.

For h = hy, k = k,, the function F(f) has a maximum at
t = 0 (by theorem 4.72). Hence, in every neighbourhood of
(a, b), there is a point (x, y) for which f(x, y) < f(a, b).

Similarly, from & = hy, k = k,, we arrive at a point for which

J(x,y) > fa, b). |

8.9. Implicit functions

The problem can be introduced by a particular example.

Suppose that Bh =1,
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In what sense (if any) does this equation define y as a function
of x? If a value of x is assigned in —1 < x < 1, there are two
values of y which satisfy the equation. We stipulated on p. 47
that our functions should be single-valued. Suppose that we
start from a point, say (0, +1) and let x take values varying
continuously. Then plainly we can find corresponding values of
vy such that (x, y) satisfies the equation and y varies con-
tinuously. In graphical language we must keep the point (x, )
on the upper part of the circle and not allow it to jump to the
lower part.
Moreover, with the understanding that

o= o '\/(1 S xz):
y has a derivative given by
2 e
Yoo i

It is often inconvenient or impossible to solve an equation
F(x, y) = 0 explicitly for y. The following theorem gives con-
ditions under which we can nevertheless assert that the equation
defines a function y = f(x) and, further, that the function can be
differentiated.

Theorem 8.9. Suppose that, for (x, y) in a square with centre
(a, b), F(x, y) satisfies the conditions
(1) F(x, y) is differentiable,

(i) Fa, b) = 0,

(iii) F(x,y) > 0.

Then there is a function y = f(x) defined in an interval with
cenire a such that

(iv) v = f(x) satisfies F(x,y) = 0 identically,

(v) dyldx exists and is given by

dy
Fa+ Fy T 0.

Proof. In fig. 5, P, is the point (a, b) and conditions (i)-(iii)
hold in the square shown. From condition (iii), F(x, y) > 0 at
O and F(x, y) < 0 at R,.

From (i), F is continuous, and so we can find vertical lines
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O:R, and Q,R, such that F > 0 for all points on Q; 0, and
F < 0 for all points on R, R,.

Let now QR be any vertical line between Q;R; and O;R,.
By (iii), F increases (strictly) from a negative value at R to a
positive value at Q. Since F is continuous, there is a unique
point P at which F = 0. The ordinate of P defines y = f(x), and
(iv) is established.

Q ? Q R,

R, R, R R,

Fig. §

We now prove (v). If (x, y) and (x+h, y+k), where h + 0,
are two points at which F' = 0, we have, F being differentiable,

0 = F(x+h, y+k)—F(x, y)
= hF,(x, y)+kF,(x, y) +e(|h] +|k]),
where € can be made arbitrarily small by taking (h, k) near
enough to (0, 0).
Divide through by % and (as we may by (iii) of the hypothesis)

by F,(x, ). Then let k- 0. It follows that lim (k/A) exists, and
we have &

E+ﬁ=0' |
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Exercises 8 (d)
Notes on these exercises are given on p. 183.
1. Prove that, if 4, B, C are the angles of a triangle
cos A+ 2¥(cos B+cos C) < 2,

2. Investigate maxima and minima of

(D —yidat =xt="),

(i) (x—»*) (x—2)7).
3. If flx, ») = x*+2x*y—xy*—8)°, show that there is only one point
(x9, ¥o) where necessary conditions for a maximum or minimum are

satisfied. By considering the values of f on the line y = y,, prove that it
has no maximum or minimum.

4. If u=x'+y%, ov=x4)3
prove that, if x is considered as a function of u, v,

L AL X, S N
2u = 2x(x—y)’ o  3x(x—yp)°
x, ) _ 1

Prove that o )"

5. If f(x, y,z) = 0, where [ is a differentiable function of x, y, z, prove

h
©).2,@),= -
oyle\oz/y\ox/, — 7
where (2z/2y), denotes the derivative of z with respect to y when x is
constant.

6. The equations f(x, y,z, w) = 0,
&x, y,z,w) = 0,

where fand g are differentiable, can be solved to give z and w as functions
of x, y. Prove that

oz _ _fig) [Ufg) @8z _ _afg) [Af,g)

ax — dx,w) Az w)’ By Ay, w oz, w)"
Calculate dz/dx, dz/dy as functions of x, y, z, w if
xy+zw = 0,

XEpi—t—pti= |,
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NOTES ON THE EXERCISES

Answers or hints for solution are given to those exercises in which they
appear to be most useful. If an exercise embodies an important result or
an instructive method, the solution is set out in more detail.

1(a)
1. Write I(n), r(n) for the expressions on left and right sides. Assume, for
some n, I(n) = r(n). Then

In+1) = I+ @+1) = r)+(n+ 1)
=i@m+1) (n+2) 2n+3) = r(n+1).
But /(1) = 1 = r(1). Hence l(n) = r(n) for all n.
2. Right-hand side can be found from 1, since

2n n
left-hand side = % r—4 ? r.
3. Putn= 1,2, 3 tofind 4, B, C.
5. [(n+1) > r(n+1) follows from I(n) > r(n) if 2 > {(n+1)/n}?, ie. if
n> 3. I(n) > r(n) is false if n = 9, true if n = 10.
7. m = pd—gqgc, n = ga—pb will do.

1(b)
3. Suppose that a/b is a root, where a and b are integers without a common
factor, and b > 0. Write a/b for x and multiply by 5”1, This gives b = 1.

4. £2,-3,4; -1,%,%.
1()
1. 99/70, 239/169.
3. (a—c+4/b)* = d gives a = c or /b rational.

6. ad = be.

1@)
3. If A and B are sets of positive numbers, then sup D = sup A4 sup B
and inf D = inf A inf B. If 4 or B may contain negative numbers, there
is no such simple result.

5. If the a’s are not all equal, there are two a,, a, for which a, < 4 < a,.
Replace a,, a, by b,, b, where b, = A, b, = a,+a,— A. Then

b.b,—a.a, = (A—a,) (a,— A) > 0.
So the replacement haskept the A.m. the same and increased the c.m. After
at most n—1 repetitions of the argument all the numbers are replaced

by A. The c.M., now equal to 4, having been increased by replacements,
was at first less than A4.
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6. Use the identity
(Za,b)* = Za;Th;—Z(a,b,—a,b,)?,
where r, s take the values, 1, 2, ..., n.
7. Prove that, for the positive integer »,
ati—1 a"—1
n+1 = n

Dividing by the positive factor a—1 and then multiplying up, we have
proved this inequality if
na"™ > a"'+a"*+ ... +1,

which is true.

It follows that, if m > n,
am—1 i ar—1

m n

To extend to rational indices, let r = mfp and s = n/p (with m, n, p
positive integers). Put @'/? = b,

8. Similar to 7.

1(e)
1. a—c = i(d—b) gives (a—c)* = —(d—b)®. From the order properties
of real numbers, left-hand side > 0 and right-hand side < 0.

3. (a+bi)(c+di) = 0 gives ac—bd = ad+bc = 0. Hence
(@*+bY (e +d?) = (ac—bd)*+ (ad+ be)* = 0.
Therefore a+b=0 or A+d?=0.

1()
2. Circle, line, circle, hyperbola foci + 1, contradicts theorem 1.10 2).

3. (iii) Combining the conjugate 2z°+ z® = 3 with the original equation
we have z* = z° and then z® = 1.

4. Put z+p = Z.
5. If |z] < 4, then |az+...4+a"z,| < 2(+...4+()") < 1.
6. Circle.

8. If there is a root with |z] = 1, then Z = 1/z, and so ¢z*+ bz +a = 0.
Conjugate gives cz*+bz+a = 0. Combine with original equation to give

z(ab—bt)+aa—cc = 0.

For converse, write w = (bc—ab)/(aa—cc), so that |w| = 1. aw+b
reduces to —ew. But w = 1/w.

9. Roots of quadratic are v+ v?+v* and its conjugate v®+v5+1%. Form
sum and product.

12. Prove first for a P(z).
13. Use12,
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2(a)
L -4+ (=A%
5. s, = 1/{{/(n+1)+4/n} > 0.
8. If s + &, take € = 4|s—s'|. AN. |s,—s| < €and |s,—5'| < € for all
n > N. Contradiction.
20
8-10. All false. Counterexample for 9, s, = n*+(—1)"n.

2 (o)
2. Limit 0, ay/b,, +0, —co according as p < g, p = q, p > q and a,/b,
positive, p > g and a,/b, negative.

2(d)
6. By the binomial theorem

e n(n—1) 1 L
‘(l+n) '1+"n+ W e

We shall prove s, increasing and bounded. The (r+ 1)th term of the
binomial expansion, namely

1.21...r (' ‘;;) (' _r—;_l)

increases as n increases. Moreover, the number of terms increases with n.
Therefore s, increases.
From the above expansion

e = 1+1+2],+3I,+ +1
< 1+1+5 +1+ e Y
2 2"

By theorem 2.6, s, tends to a limit e, where 2 < e < 3.

7. "n+1) < Y if (n+1)" < nm*, ie. if (1+#)" < n which is true
if n = 3 (proved in last exercise).
Write 9 = 1+x. Thenan = (14+x)" > 1+3n(n—1)x2 and so x? < 2/n.
Hence x - 0 as n —» oo.
11. u, = 0if x = 0 or m a positive integer. Otherwise |t,,,/u,| = |x]|.

12, (i) 3. (i) 1,0, —1 according as a >, =, < b.

() 7o s S L
n*+1 r+n
(iv) n! > a" for n > N; ¥(n!) - co.
(v) Method of 2 (@), 5. Limit is —4(a+b).
(vi) Use2(d), 1
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2(e)
By methods of §8, limits are
4. 200, 3. The smaller root.
2 5. 3, but 5, is undefined if 5, = 3.

2

BB

I= i(l +‘V{21)9 1”:+1_Iz = Up—1,

Upiz—1 = (WUpa=D/(tps, +1) < (=021, 41* > 30.
8 123

9 a, > Qny1 > bn+1 > bn and an+1_bn+1 < '}(an_bu)-
Also Ani1Bnsy = Gy,
200)
1. 1/n* < 1/(n—1)n gives 3
i |
N+1nt ~ N°

Hence N = 10
For Z (0-99)", we have from (0-99)¥ < 10-%(1—-0-99), N > 1376.
The second series converges more rapidly than the first,

2. First is G.p. convergent for » > 0 to sum 1 +#; also for r = 0 to sum 0.

For third, if =

S, = 2 mr™-l,
m=0

so(l—=r) = {(1=r)/(1=r)}—=nr".
3. Less than 3 by about 5-4 x 1011,

PS5 St ¥y o i
"nn+1)(n+2) ~ 2 lan+1) (n+1)(n+2)) °

2(g)
1. General. If A, B are statements, the notation 4 = B means ‘If A,
then B’. We say also that (i) 4 implies B, or (ii) 4 is a sufficient condition
for B, or (iii) B is a necessary condition for A4.

The double-headed arrow A <= B means that 4 and B are logically
equivalent to each other, in other words: (i) If and only if A4, then B;
(ii) 4 is a necessary and sufficient condition for B.

In the text we shall nearly always write words instead of the symbols
=, <,

In the particular examples in 1, the conditions are (i) N and S, (i) N
not S, (iii) N only if p % 0, not S.

2. (i) N, not S, (ii) S, not N, (iii) N and S.
3. () up —~%; (ii) c.p.; (iii) s, (n odd, n even); (iv) 1/n! < 1/2"1,
8. (Cf. 20D, 5
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6. For s, < Sp41, See 2 (d), 6. To prove

(-3 < (-)"

takea; = a3 = ... = g, = 1—(1/n), any; = 1 and use
G.M. of (ay, ..., Gny1) < AM,
ta—sp = {1=(1—n)"/(1—n"")"
To prove numerator — 0, use (1—-k)" > 1—nk.
7. sp= (=11, = (—1)" or (— 1)+,
8. 6(n*—1)/9(n—1)n (n+1).

10. If r, - I, I satisfies I+ (1/I) = 2A4. If roots of this are real, A = 1. If
c is the larger root, r,—c¢ = (rn,_; —c)/ra—1¢, and induction.

11. A sequence oscillating more slowly as n gets larger, like
Sp = 2+ sin (7y/n).

If $p41/80 > — 3, then s, - 0.
12. Last part, nul < (n+3 2 < (1+3) .
13. (i) True. (ii) False; we can say only s = t. Illustration of s = ¢
given by —1, = s, = 1/n. (iii) Falsity shown by s, = n* (n even),
Sy = (n—1)% (n odd); then s, — o0,
14. Write ty = (5;+ 53+ ... +5,)/n.
Given €, s—e< s, <s+e for n>m.

Sum from m+1 to n

(n—m) (s—¢€) < nty—mt,, < (n—m) (s+e¢).

Divide by n and rearrange

(l—-mﬁ) (s—€)+%1 fa Sila~= (1—%) (s+e)-t~i%I 1

Keeping m fixed, we can choose #n, such that the first expression is greater
than s—2¢ and the last less than s+ 2e.
So s—2e<t,<s+2 for n> n,
15. Sum of n terms is
1—x" nxt
(1-x)2 1-x"

&X()}
4. It is assumed (anticipating chapter 6) that the sine is continuous. If
x % 0, sin (1/x) is continuous by theorem 3.5, and f(x) is the product of
two continuous functions. Continuity at x = 0 follows from the definition;
If(x)] < €eif |x] <e.
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5. If k = 1, there is only one value of x.
If £ £ 1, f(x) = k gives
(1-k)x*—(6—9k)x+5—18k = 0.
This gives real x if (6—9k)* = 4(1 —k) (5—18k), i.e. if 9k2—16k+16 = 0
which is true for all %.
8. (i) x—1is a common factor.

9. (i) Multiply numerator and denominator by /(1 + x)+4/(1 = x).

(iii) Case p < g. If g—p is even, limit 4+ o or — o according as
ay/by > or < 0. If g—p is odd, consider x - 0+ and x - 0— separately.
10. (i) We want . et

(p+i+z) (1+3+3)
to be as close as possible to 1/x for large x. Equate coefficients of 1/x*
fork=0,1,2, p=0,9g=1,r = —1.
(ii) As in (i), squaring to get rid of 4/. Or, anticipating §5-8, expand
{1+ @/x¥}t,
3()
1. (i) Continuous if x is irrational.
(ii) Discontinuous for x = nm (n % 0).
(iii) Discontinuous for 1/(x—a) = nm.

2. f(x) =1=xfor0 < x < 1,f(0) = 0,f(1) = 1 org(x) = x(xrational),
g(x) = 1—x (x irrational).

4. g(x) of 2 is continuous for x = % only.
5. .10:2 6. () f(0) = 0, (iii) /(0) = a.
7. fx+8)—f(x) < HAx+28)—f(x)}...

< 5 UG +28) =00,

wherea < x < b,a < x+2"8 < b. Let 8+ 0and n—+ oo,

8. |xg =203 € a3 x;— x|,

o0
%(x,. — Xq—1) is (absolutely) convergent, i.e. x, - £.

[E=/(0)] = |f(E)-f(0)] < «|é]
gives —af < E—f(0) < af, etc.

4 (a)
) y=4x—-2),y = —4(x+2). (i)y = —4.
y=2= —ix,y-2 = Hx+4).
y = 3x 5. y= |x=1|+|x+1]|.
(i) (a) and (b) x = integer. (ii) (b)) x = 1.

(i) Touch at (0, 0), arc tan 18 at (3, 2).
(ii) 47 at both points.

R L
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4(b)
9. Write p(x) = (x—a)™ (x— b)" g(x), where a and b are consecutive roots
of p(x) = 0. Prove that, if p’(x) = (x—a)™ ! (x—b)"! r(x), then r(a) and
r(b) have opposite signs.
10. If x + 0, f’(x) = 2x sin (1/x)—cos (1/x), by the rules of §2.

If x = 0, {f("W)—f(0)}/h = hsin (1/h) - 0, giving f'(0) = 0.

Examples like this are repeatedly used to settle some of the less easy
questions which occur in differentiation. This one gives the answer Yes to
the question (in geometrical language)—can a curve have a tangent at
every point and yet the direction of the tangent not vary continuously ?

12. Differentiate four times, using 11 and rejecting vanishing determinants.

4(c)
1, 2, 5. Put into partial fractions,

4. sin 3x sin 5x = }(cos 2x—cos 8x), and use 3.

6. The only way of doing this systematically is to use complex partial
fractions

O L ( it )

a*+x*  2i\x—ia x+ial’
The nth derivative is

(=1D"n! { 1 4 1 }
2i (x—ia)"" (x+ig)"H)"*
If r=4(x*+a* and cos@ = x/r, sin@ = afr, then de Moivre’s
theorem (1 (e), 5) gives
(x+ia)"™ = r** {cos(n-+1) 6+i sin (n+1)6},

etc. The result finally takes the real form

(—=1)* n! -t sin (n+1)6,
where r, @ have the assigned values.

4 (@)
2. Method of 4 (b), 9.
5. At most one real root of p(x) = 0 lies between two consecutive roots of
p'x) =0.

In the example, if n is odd, p'(x) = —(1+x")/(1+x) < 0 for all x.
p(x) decreases as x increases from large — to large 4 values. p(x) =0
for one x.

If niseven, p'(x) < 0if x < 1, p'(x) > 0if x > 1 and p(1) > 0.

6. Use first part of 5.
4(e)
2. Limit 4.
3. We may take / = 0 (and apply the special case to f(x)—Ix).
Given ¢, choose X to make |f'(x)| < e for x > X.

S —=f(X) = (x=X) f(0).
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Divide by x. Choose X; to make |f(X)| < €X;. Then
—-2e< fx))x <2 if x> X,.

4. The discontinuous f’(x) in 4 (b), 10 shows that there is a false step in
the argument.

4(f)
1. Put x = 3+ 4, or use §4.9. (i) (m/n) (3)™"; (ii) 472
2. a+b. I 2 4
ar Wit at
3. Y 1Ep =~ 137 (x_1+t")‘

If this meets the curve in point with parameter «, the product of the roots
of the cubic in #is —1, and so u =1, or —1/t% As t—> —1, tangent
approaches the asymptote x+ y+a = 0.

5. (i) Maxima where x*—2x—1 = 0, minimum at x = 1. (ii) None.
6. Greatest 3./3 for x = 4m; least 0.
8. dy/dx must not change sign, 6* < 3ac.
9. y = k touches the curve y = p(x)/q(x).
10. Hemisphere.
11. Divide line of centres in the ratio a*? to %2,
12. Volume is greatest when P, @, R are mid-points of BC, CA, AB.
130<k<1.
16, 17. Induction. 18. n = 0 and Leibniz,
19, dx;. a<x < ¢, f(x) > 0.
20-22. Use §4.9. 21. (i) —1%; G 3. 22. in(n+1).
24, Let f'(a) = «, f'(b) = S and suppose & < y < B, Write
g0 = f(x)—y(x—a).

£ has a minimum for some ¢ between a and b, and g'(c) = 0.

5(@
C,CCforx<s1,Cforx <4, Cforx < 3.
b*fa® - oo, a""1jbn - 0,
If u, = n7%, then Ju, - 1 and wp 1 /u, — 1.
(i) T; (ii) F; (iii) F (see 3).

90 O Lh e

5()

P

k>1,k>0.
3. (i) None; (i) —1.
4. (i) |un| — 4, therefore D; (ii) abs. C; (iii) C by theorem 5.22.
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5. a=5,C. a+ b, D.
6. Sums of 5 and 6 terms are 3} and £%.

7. (i) The hypothesis in theorem 5.22 that a,, decreases is omitted. To prove
the statement false, consider

= 1/nb+(=1)"/n.

(ii) |ua| < A |v,|. Hence Z |u,| converges.

5(@)
1. See 2(f), 2.

2, |z] < |[1—z|.

3. (i) Theorem 5.22 to re and im parts. (i) |u,| = 24" n~2 - o0, (iii) u, is
1/n or i/n according as n is even or odd.

5(@)
() 1, (i) all z, (iii) 1, (iv) 0, (v) 2, (vi) 1, (vii) 1, (viii) 4.
a<l,Callz
R 1L R=1
Use theorem 1.10 (sum).

EN oo 0N =

. If r > s, radius of convergence is 5. If r = s, any number > r (give
lustrauons)

m=1 gnt1  omt1
1 D) m
For |z| = 1, this tends to a finite limit.

9. R = 3. If |z| = %, modulus of nth term > 1, and so series diverges on
the circle.

z" = Fe=
8. (l—z){.‘a;‘- =z

S5(e)
1. () C; (i) Cif a < max (b, ¢); (iii) Cif k > %; (iv) Cif k > 0; (v) D;
(vi) C.
1 2

2. z-—l'm s

3. n—-mu, < $ U < E u,—+0as m-> oo, Put m = 4n (if n even) or
m+1 m+1
4(n+1) (if n odd).

4. Of terms with m-digit denominators, the number remaining is 8 x 9™-1,
Sum is less than : (1 9 o gm-1

ittt tigate )‘80'

5. Theorem 5.7.
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6 (a)
1. If e = I/m, then
m
m!(—[uE-In') m! 3 i‘<~1,
m g n! m+1n!  m
and so an integer is less than 1/m. Contradiction.

2. Included in 3.
3. The argument of 2 (g), 6, shows that, if n > x > 0,

x n X —-n
(1+r_1) <expx < (1—;1) .
(The inequalities for x < 0 will then follow by putting x = —y.)
Now we prove that - .
(1= 43 o

.= (143" (-2 -1

e o oxtexpx
< expx{(l-—;) —I} i

(by use of easy inequality
{1-@G/n}"<(A-b" when 0<b<1).
4. fi(x) < 0for x > 0, and so f,, decreases from 1 —k to —k.

fﬂ-{-l(x) fn(x)+ (n + l) | gives fﬂ+1(xﬂ) > O'

5. 9120. 6. Descending order as given.
7. exp (yx).
6(b)
L =1 _ exp (hlog x)—1
= i = log x.

2, The derivatives satisfy -

l-x < (I4+x)1 < 1—x+x2
3.y (xy) = f(x) and xf'(xy) = f(»).
4. If x = (y=1)/(y+1), LHS. = log (1 +x)—log (1 —x),
5. () a,0; (ii) log (a/b)/log (c/d). For x -, several cases, eg. if
max (a, b, ¢, d) is a, limit is oo,

6 (c)

1. Take four terms of series for cos x when x = % and three terms when
x =4
2. From theorem 6.81, sinx > 0 for 0 < x < 47 and from 6.82 (1),

12-2
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sinx > 0 for 4m < x < 7. From 6.82(2), sinx <0 for 7 < x < 2m.
So sin (x+¢) = sin x cannot be true for all x if ¢ < 2m.

4. (log cos ay)/y* - —3a® (e.g. by §4.9). Puty = 1/n.

6 (d)
cosh (& + nf) sinh (n+ 1) £ cosech f.
Method of §2.8.
Real and imaginary parts of geometric series Zr* exp (inf).
Analogous formulae valid for |r| < e?if § > 0.
Induction.
(i) Use cos 3x. (ii) x+ $x®+ %5,
(iii) (1—x®y"—xy" = 2. Leibniz gives
(1 —x2)y™ta— (2n+ 1) xymH D — p2y™ = 0,

Putting x = 0, we obtain Maclaurin coefficients.
(iv) Method of (iii). General term is

(— D" m(m?—12) (m®—3%) ... {m*—(2n—1)% x***1/2n+1)!

(v) exp (1+2)x = Z(1+2i)" x*/n!
Define & by cos @ = 1/,/5, sin 8 = 2/,/5.
Real part is Z 58" cos nf(x”/n!).

(vi) 1—3x2+43x3,

Sy v St R

7 (@)
2. Take £, to be left-hand end-point of &,.

. h n

2 f(£)8, = X (ag"")* (ag"—aq™")

r=1 r=1

= a**}(g—1) zq(r—xmrhl
a**(g—1) {g"**P—1}/(g*** - 1)
= (B -a") (- D/~ ).

Asn->o,g-1and (" —-1/(g—1) = k+1.
5. Given ¢, there is, by definition of J, a dissection 2, for which

J < S(2) < J+e.

Let @, have p points of division inside (g, b). Let 2 be any dissection,
with norm &*, and 2, the dissection formed by all points of division of
2, and 2.

Then (theorem 7.21) $(2,) < S(2,). Also, since 2, is formed from 2
by p extra points of division,

S(2)— S(2,) < p(M—m)8*,
Hence S(2) < J+e+p(M—m)d*.
If 0* < ¢/(M—m)p, then J < S(2) < J+2e.
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7
Most of the exercises in this and the next set depend directly on the
methods of §§7.7 and 7.8.

3. In (0, 4m), sin®™-1 x > sin®™ x > sin?™*1 x,
giving By & L & Luty (infact >),
Divide by Iy, and use 2m+1) Iymyq = 2m Iy,

7(c)
6. 2arctan {(l +r)tan $8/(1 —r)}+38 (r<l),
—2arctan {(r+1) tan 8/(r—1)}+6 (r > 1).
Limits 7+d(r < 1), —a+8(r>1). I = §whenr = 1.

7(d)
2. First sum lies between

2n dx 2n Ay
f — and f —
n X n+1 X

and so - log 2. Second sum — 0 by theorem 5.22.
3-6 and 8 follow from theorem 7.11.
7. The idea of theorem 7.11 used and applied to an increasing f.
9. (i) By §6.6,if 8 > 0, (log n)?¢/n® - 0. If p < 1, choose é = 4(1 —p), say.
2 (1/n**?) diverges. Therefore so does
n
- n?*e (log )"

Similarly, convergence if p > 1. If p = 1, we have 6.
(ii) (loglogn)? < logn if n > n,. Divergent for all g.

8

7@
6. (a) Since y” < 0, the curve y = log x is concave to Ox.
(i) First inequality expresses that the area under the curve y = log x
between x = r—4, x = r+1% is less than area of trapezium formed by
y=0,x=r—% x=r+%and tangentat x = r.

7()
1. (i) 4/2, from theorem 7.62. (ii) 1.
2. g = (x—1) f “ErO e+ x [ ’ E~1) f(6) .

Using theorem 7.62 J
T
¢ = [ eroder [ 6110 .
£0) = g(1) = 0.
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S LS dy
5. () fo FEt
g 1 1 n 1
(ii) log f(n) = . {log (1+;) +...+log (l+r_z)} —rfo log (1 + x)dx.

6. Method of 5.
7. Integrate by parts. Induction. For last part,

LGm) < ]1_1 (1-x)"dx <2 and b6""inl >0

as n - oo, giving an integer equal to a fraction.

8@
1. No, no, yes.

8()
1. (@) Yes. (i) Ifk > 4.

2. Yes, yes, no.
3. (Cf. 3(c),4.) If f(x) =0 for x irrational and x* for x rational,
f’(x) = 0 at x = 0 and fis discontinuous for all other x. To construct an

analogous function g(x,y) of two variables, define g(x,y) = f(r) if
x*+ y* = r® (‘surface of revolution’).

8(c)
1. () Pullat Doty = 0,
Putty+Pyvy, = 0

have solutions other than (0, 0) for ¢,, ¢..
(ii) Multiplication of determinants.

2. u=fR)+f0) v=(x+»)/1-xy)

3, A = Za%sin Bsin Clsin 4
JKA o Zﬁ—a+cotBa‘B+cotC¢?C—cotA6A

and 0A+38B+6C = 0.
4. Method of 3. JA is greatest when
da > 0,0b>0,dc >0 (acute-angled),
or da < 0,8b>0,dc>0 (obtuseat A).
5. y = f(u)+g(v), where f, g are arbitrary (differentiable) functions.
6 (also 7, 9). Transformation as in §8.6.

W= x+4J(x*+)»"), g = Au+B.
8. Asin §8.6.
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8 (d)
1. Put —cos (B+ C) for cos A. Necessary condition for turning value is
B = C. Maximum of —cos 2B+ 2%2cos B given by B = im.
2. (i) Maxima at (* ia, F3a).
(i) f- =/, =0 at (0,0). This is not a maximum or minimum
because, near (0, 0), f < 0 between the parabolas »* = x, 2y® = x and
> 0 elsewhere.

3. 1O00),
5. Method of 6.
6. Ox, dy, dz, dw satisfy (approximately)
Lo Ox+f, Oyt fidz+f, 6w =0

and similarly for g.
Put dy = 0, solve for §z/8x and let dx — 0.

xz+yw xw+yz
Z2— i ? P
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INDEX
absolute convergence, 91, 95 field, 10
aggregate, 4 finite, 4
d’Alembert’s test, 88 function, 2, 47
algebra, 2
alternating series, 91 Gauss, 8
analysis, 2 geometric series, 39
approximation: by polynomials, 78; geometry, 2

to integrals, 145

approximative sums, upper and lower,
120

area, 119

axiom, 11, 18

binomial series, 102
bisection method, 59
bound, bounded, 13, 53, 57

Cauchy: inequality, 17; mean value
theorem, 76; remainder in Taylor's
theorem, 82; test for convergence,
88

circle of convergence, 97

class, 4

closed, 13

comparison principle, 88

complete, 12

complex, 18

conditional convergence, 92

conjugate, 20

continuous, 51, 153

convergent, 38

correspondence, 48

cut, 8

Darboux, 87, 125
Dedekind, 8

dense, 6

derivative, 65
discontinuous, 53
divergent, 39
differentiable, 65, 156
dissection, 119; norm, 119
domain, 151

e, 33, 108

empty set, 4

Euler: Euler’s constant, 142; theorem
on homogeneous functions, 160

exponential function, 105

graph, 26, 36, 50

homogeneous function, 160
hyperbolic function, 117

implicit functions, 166

increasing, 31, 73

indeterminate forms, 82

induction, 5

inequality, 17

infimum, 16

infinite, 4; series, 38

infinity, 27

integer, 4

integral: 119; infinite, 138

integration: by parts, 130; by substi-
tution, 130; by reduction formulae,
133

interval, 13

inverse function, 62, 69

irrational, 7; indices, 108

Jacobian, 161

Lagrange’s remainder
theorem, 81

Landau, 4

leap, 60

Leibniz’s theorem, 73

limit, 1, 25, 49

logarithmic: function, 110; series, 111

in Taylor's

Maclaurin: Maclaurin’s theorem, 79
—Cauchy integral theorem, 141

magnitude, order of, 107

mapping, 47

maximum, 77, 80, 164

mean value theorem, 75

minimum, 77, 80, 164

modulus, 19

de Moivre, 19

monotonic, 31
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necessary condition, 44 %6

neighbourhood, 52 Schwarz’s inequality, 128
Newton’s method of approximation, 86  sequence, 23

number, 2 set, 4

open, 13
order, 5
oscillate, 28

m, 114, 136: irrationality of, 150
partial differentiation, 153
phase, 19

power series, 96

principal value, 19
proportional parts, 86
Pythagoras, 7

quaternion, 21

radius of convergence, 97
rational, 5

real number, 10
rearrangement of series, 93
recurrence relation, 34
repeated limits, 105
Rolle’s theorem, 73

Simpson’s rule, 146
Stirling’s formula, 148
sufficient condition, 44
supremum, 15

Taylor’s series, 101

Taylor’s theorem, 79: with integral
remainder, 130; for two variables,
163

Thurston, 4

transformation, 47

trigonometric functions, 112: inverse,
116

trigonometry, 3

turning value, 77

uniform continuity, 60
Wallis’s product for 7, 134

Young’s mean value theorem, 80
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