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intlon: Starting with the 12th printing, this book has been set

X s0 that the book will be more readable. In particular, there
fas material on each page, so there are more pages. However,
b0 are the only changes from previous printings except that I've
ted the bibliography.

e to the First Edition

Wldy of this book, and especially the exercises, should give the
i1 & thorough understanding of a few basic concepts in analysis
s continuity, convergence of sequences and series of numbers,
ponvergence of sequences and series of functions. An ability
and write proofs will be stressed. A precise knowledge of
lons is essential. The beginner should memorize them; such
zation will help lead to understanding.
pter | sets the scene and, except for the completeness axiom,
I be more or less familiar. Accordingly, readers and instructors
8l to move quickly through this chapter and refer back to it
Necessary. The most critical sections in the book are Sections 7
gl IlinChlpmri If these sections are thoroughly digested
inderstood, the remainder of the book should be smooth sailing,

v



vi Preface

The first four chapters form a unit for a short course on analysis.

I cover these four chapters (except for the optional sections and
Section 20) in about 38 class periods; this includes time for quizzes
and examinations. For such a short course, my philosophy is that the
students are relatively comfortable with derivatives and integrals but
do not really understand sequences and series, much less sequences
and series of functions, so Chapters 1-4 focus on these topics. On two
or three occasions | draw on the Fundamental Theorem of Calculus
or the Mean Value Theorem, which appear later in the book, but of
course these important theorems are at least discussed in a standard
calculus class.

In the early sections, especially in Chapter 2, the proofs are very
detailed with careful references for even the most elementary facts.
Most sophisticated readers find excessive details and references a
hindrance (they break the flow of the proof and tend to obscure the
main ideas) and would prefer to check the items mentally as they
proceed. Accordingly, in later chapters the proofs will be somewhat
less detailed, and references for the simplest facts will often be omit-
ted. This should help prepare the reader for more advanced books
which frequently give very brief arguments.

Mastery of the basic concepts in this book should make the
analysis in such areas as complex variables, differential equations,
numerical analysis, and statistics more meaningful. The book can
also serve as a foundation for an in-depth study of real analysis
given in books such as [2], [25], [26], [33], [36], and [38] listed in the
bibliography.

Readers planning to teach calculus will also benefit from a careful
study of analysis. Even after studying this book (or writing it) it will
not be easy to handle questions such as *What is a number?”, but at
least this book should help give a clearer picture of the subtleties to
which such questions lead.

The optional sections contain discussions of some topics that 1
think are important or interesting. Sometimes the topic is dealt with
lightly, and suggestions for further reading are given. Though these
sections are not particularly designed for classroom use, | hope that
some readers will use them to broaden their horizons and see how
this material fits in the general scheme of things.




Preface to the Pirst Edition v

| have benefitted from numerous helpful suggestions from my
#gues Robert Freeman, William Kantor, Richard Koch, and John
Yy, and from Timothy Hall, Gimli Khazad, and Jorge Lépez. I
#lso had helpful conversations with my wife Lynn concerning
mar and taste. Of course, remaining errors in grammar and
hematics are the responsibility of the author.

Soveral users have supplied me with corrections and suggestions
#l I've incorporated in subsequent printings. I thank them all, in-

ing Robert Messer of Albion College who caught a subtle error
the proof of Theorem 12,1,

Kenneth A. Ross
Eugene, Oregon
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Introduction

CHAPTER

The underlying space for all the analysis in this book is the set of
real numbers. In this chapter we set down some basic properties of
this set. These properties will serve as our axioms in the sense that
it is possible to derive all the properties of the real numbers using
only these axioms. However, we will avoid getting bogged down in
this endeavor. Some readers may wish to refer to the appendix on
set notation.

§1 The Set N of Natural Numbers

We denote the set (1, 2, 3, ...} of all natural numbers by N. Elements
of N will also be called positive integers. Each natural number n has
a successor, namely n+ 1, Thus the successor of 2 is 3, and 37 is the
successor of 36. You will probably agree that the following properties
of N are obvious: at least the first four are.

N1. 1 belongs to M.
N2. If n belongs to N, then its successor n + 1 belongs to N.
N3. 1 is not the successor of any element in N,
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N4. If n and m in N have the same successor, then n = m.
N5. A subset of N which contains 1, and which contains n + 1
whenever it contains n, must equal N.

Properties N1 through N5 are known as the Peano Axioms or
Peano Postulates. It turns out that most familiar properties of N can
be proved based on these five axioms; see [3] or [28].

Let's focus our attention on axiom N3, the one axiom that may
not be obvious. Here is what the axiom is saying. Consider a subset
§ of N as described in N5. Then 1 belongs to S. Since § contains n + 1
whenever it contains n, it follows that § must contain 2 = 1 + 1.
Again, since S contains n+ 1 whenever it contains n, it follows that §
must contain 3 = 2+1. Once again, since S contains n+1 whenever it
contains n, it follows that § must contain 4 = 3+1. We could continue
this monotonous line of reasoning to conclude that § contains any
number in N. Thus it seems reasonable to conclude that § = N. It is
this reasonable conclusion that is asserted by axiom N5,

Here is another way to view axiom N5. Assume axiom N5 is false.
Then N contains a set § such that

@) 1 €35,
(ii) ifne S, thenn+1€ 8§,

and yet § # N. Consider the smallest member of the set [n e N :
n ¢ 8}, call it ny. Since (i) holds, it is clear that ny, # 1. So ny, must
be a successor to some number in N, namely ny — 1. We must have
ng — 1 € § since ng is the smallest member of {(n € N : n ¢ §). By
(ii), the successor of ng — 1, namely np, must also be in §, which isa
contradiction. This discussion may be plausible, but we emphasize
that we have not proved axiom N5 using the successor notion and
axioms N1 through N4, because we implicitly used two unproven
facts. We assumed that every nonempty subset of N contains a least
element and we assumed that if ny # 1 then ng is the successor to
some number in N.

Axiom N5 is the basis of mathematical induction. Let Py, Py, Ps, . ..
be a list of statements or propositions that may or may not be
true. The principle of mathematical induction asserts that all the
statements Py, P;, P;, ... are true provided

(L) P, is true,
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" (1) Pusy is true whenever P, is true.

We will refer to (1,), i.e, the fact that P, is true, as the basis for
iduction and we will refer to (1;) as the induction step. For a sound
prroot based on mathematical induction, properties (1; ) and (1;) must
buth be verified. In practice, (I,) will be easy to check.

Example 1
Prove 1 +2 4 --- 4+ n = in(n+ 1) for natural numbers n.

Solution
Dur nth proposition is

Pi*l42+ - +n=inn+1)"

Thus P, assertsthat 1 = }-I[l +1), P;asserts that 142 = %-2{2+1],
Iy asserts that 14-2+4- - -+437 = 1.37(37+1) = 703, etc. In particular,
is a true assertion which serves as our basis for induction.

For the induction step, suppose that P, is true. That is, we
ppose

1424 -4n=1nn+1)

true. Since we wish to prove P, from this, we add n + 1 to both

+24--4n+m+)=inn+1)+(n+1)
=imn+ 1)+ 2n+1)=Ln+1)n+2)
=in+1)n+1)+1)

us Pusy holds if P, holds. By the principle of mathematical
uction, we conclude that P, is true for all n, O

We emphasize that prior to the last sentence of our solution we

not prove Py, is true,” We merely proved an implication: “if P,
true, then Py, is true.” In a sense we proved an infinite number
assertions, namely: Py is true; if P, is true then P, is true; if P, is
e then Py is true; if Py is true then Py is true; etc. Then we applied
_ matical induction to conclude Py is true, P, is true, P, is true,
s I8 true, etc, We also confess that formulas like the one just proved
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such a result. Sometimes results such as this are discovered by trial
and error.

Example 2
All numbers of the form 7" — 2" are divisible by 5.

Solution
More precisely, we show that 7" — 2" is divisible by 5 for each n € N.
Our nth proposition is

Py:*7" —2" isdivisibleby 5.

The basis for induction P, is clearly true, since 7' — 2' = 5. For the
induction step, suppose that P, is true. To verify P, ,, we write

T M = 7. 7. 2. " = 7" - 2" 452",

Since 7" — 2" is a multiple of 5 by the induction hypothesis, it follows
that 7"*! — 2"*! g also a multiple of 5. In fact, if 7" — 2" = 5m, then
7" — 2" = 5.[7m + 2"). We have shown that P, implies P, ,, so
the induction step holds. An application of mathematical induction
completes the proof. O

Example 3
Show that | sin nx| < n|sinx| for all natural numbers n and all real
numbers x,

Solution
Our nth proposition is

Py:*|sinnx| < n|sinx| for all real numbers x.*

The basis for induction is again clear. Suppose P, is true. We apply
the addition formula for sine to obtain

| sin(n + 1)x| = | sin(nx + x)| = | sin nxcosx + COs nx sin x|.

Now we apply the Triangle Inequality and properties of the absolute
value [see 3.7 and 3.5] to obtain

| sin(n + 1)x| < |sinnx|- | cosx| + | cos nx| - | sin x).
Since | cosy| < 1 for all y we see that
|sin(n + 1)x| < |sin nx| + | sin x].




Now we apply the induction hypothesis P, to obtain
| sin(n + 1)x| < n|sinx| + |sinx| = (n + 1)|sina|.

Thus P,4; holds. Finally, the result holds for all n by mathematical
induction. O

Exercises
1.1. Prove 1’4+2%+...+n’ = {n(n+1)(2n+1) for all natural numbers n.
*1.2. Prove 3+ 11 4 -+- 4 (Bn — 5) = 4n” — n for all natural numbers n.

1.3, Prove 1° + 28 4 ... 4 n* = (1 + 24 .. 4+ n)? for all natural numbers
n.

1.4, (a) Guess a formula for 1 + 3+ --- + (2n = 1) by evaluating the
sum forn =1, 2, 3, and 4. [For n = 1, the sum is simply 1.

(b) Prove your formula using mathematical induction.
1.5. Prove 1 + 1 +1 4 ... 4 & =2~ L for all natural numbers n.
*1.6. Prove that (11)" — 4" is divisible by 7 when n is a natural number.
*1.7. Prove that 7" — 6n — | is divisible by 36 for all positive integers n.

1.8. The principle of mathematical induction can be extended as fol-
lows. A list Py, Py, . . . of propositions is true provided (i) Py is
true, (ii) Pas, is true whenever Py is trueand n > m.

(a) Prove that n’ > n + 1 for all integers n > 2.

(b) Prove that n! > n® for all integers n > 4. [Recall that n! =
n(n—1)---2-1; for example, 5! =5-4-3-2-1 =120}

«1.9. (a) Decide for which integers the inequality 2" > n’ is true.
(b) Prove your claim in (a) by mathematical induction.

1.10. Prove (2n+ 1)+ (2n +3) + (2n+5) +--- + (4n = 1) = 3n? for all
positive integers n.

1.11. For each n € N, let P, denote the assertion *n? + 5n + 1 is an even

integer.”

(a) Prove that P, is true whenever P, is true.
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(b) For which n is P, actually true? What is the moral of this
exercise?

1.12. For n € N, let n! [read “n factorial”] denote the product 1-2-3---n
Also let 0! = 1 and define

n n!
(.i,‘) = m for k=ﬂ.l,...,ﬂ

The binomial theorem asserts that

b= (e (s (Yot
HaloJar+ ()

=a"+na""'b+in(n—-1)a" P +--- + nab"' + 5"

(a) Verify the binomial theorem forn = 1, 2, and 3.
(b) Show that () + (,",) = ("}") fork=1,2,...,n.

(c) Prove the binomial theorem using mathematical induction
and part (b).

§2 The Set () of Rational Numbers

Small children first learn to add and to multiply natural numbers.
After subtraction is introduced, the need to expand the number sys-
tem to include 0 and negative numbers becomes apparent. At this
point the world of numbers is enlarged to include the set Z of all
integers. Thus we have Z = {0,1,-1,2,-2,.. ).

Soon the space Z also becomes inadequau when division is in-
troduced. The solution is to enlarge the world of numbers to include
all fractions. Accordingly, we study the space Q of all rational num-
bers, i.e., numbers of the = where m,n € Z and n # 0. Note
that Q contains all terminating decimals such as 1.492 = 182, The
connection between decimals and real numbers is discussed in 10.3
and §16. The space Q is a highly satisfactory algebraic system in
which the basic operations addition, multiplication, subtraction and
division can be fully studied. No system is perfect, however, and @
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FIGURE 2.1

is inadequate in some ways. In this section we will consider the de-
fects of Q. In the next section we will stress the good features of Q
and then move on to the system of real numbers.

The set Q of rational numbers is a very nice algebraic system
until one tries to solve equations like x* = 2. It turns out that no
rational number satisfies this equation, and yet there are good rea-
sons to believe that some kind of number satisfies this equation.
Consider, for example, a square with sides having length one; see
Figure 2.1. If d represents the length of the diagonal, then from ge-
ometry we know that 17 + 17 = d’, ie, d® = 2. Apparently there
Is a positive length whose square is 2, which we write as +/2. But
V2 cannot be a rational number, as we will show in Example 2.
Of course, +/2 can be approximated by rational numbers. There
are rational numbers whose squares are close to 2; for example,
(1.4142) = 1.99996164 and (1.4143)* = 2.00024449,

It is evident that there are lots of rational numbers and yet there
are “gaps” in (. Here is another way to view this situation. Consider
the graph of the polynomial #* — 2 in Figure 2.2. Does the graph of
a' — 2 cross the x-axis? We are inclined to say it does, because when
we draw the x-axis we include "all* the points. We allow no “gaps.”
But notice that the graph of x* — 2 slips by all the rational numbers
on the x-axis. The x-axis is our picture of the number line, and the
set of rational numbers again appears to have significant “gaps.”

There are even more exotic numbers such as x and e that are not
rational numbers, but which come up naturally in mathematics. The
number m is basic to the study of circles and spheres, and e arises in
problems of exponential growth.

We return to +/2. This is an example of what is called an algebraic
number because it satisfies the equation x* — 2 = 0.




FIGURE 2.2

2.1 Definition.
A number is called an algebraic number if it satisfies a polynomial
equation

AnX" + ny X 4@kt ag =0
where the coefficients ag, a, . .., @, are integers, a, # 0and n > 1.

Rational numbers are always algebraic numbers. In fact, ifr = 7
is a rational number [m,n € Z and n # 0], then it satisfies the

cquaﬂﬂnnx-m=ﬂ.Numhendeﬁnedintemsnff,r,m[nr

fractional exponents, if you prefer] and ordinary algebraic operations
on the rational numbers are invariably algebraic numbers.

Example 1

%I 3].!"1' (]nh’!i (2+ 5[!’3}!.’2 and ((4 N 3]!1}'3?}!!] all represent
algebraic numbers. In fact, 3 is a solution of 17x — 4 = 0,:3'3
represents a solution of > — 3 = 0, and (17)""? represents a so-
lution of #* — 17 = 0. The expression a = (2 + 5'%)'"? means
a* = 2 4 5 or a? — 2 = 53 so that (a* — 2)’ = 5. Therefore
we have a® — 6a* + 12a® — 13 = 0 which shows thata = (2+5'%)'?
satisfies the polynomial equation x® — ix* 4 12+’ — 13 = 0. Similarly,
the expression b = ((4—2:3')/7)"? leads to 7b* = 4-2.3"% hence

TSR L IR
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2-3Y% = 4— 7b, hence 12 = (4 — 7b*)?, hence 49b* — 56b% +4 = 0,
Thus b satisfies the polynomial equation 49x* — 56x" + 4 = 0.

The next theorem may be familiar from elementary algebra. Itis
the theorem that justifies the following remarks: the only possible ra-
tional solutions of X — 74 +2x— 12 = Oare £1, £2, £3, +4, 16, £12,
so the only possible (rational) monomial factors of x* — 7x* + 2x - 12
arex—1,x+1, x-2,x+2,x—3,x+3, x—4,x+4,x—6,x+6,
x—12, x4 12. We won't pursue these algebraic problems; we merely
made these observations in the hope that they would be familiar.

The next theorem also allows one to prove that algebraic numbers
that do not look like rational numbers are not rational numbers. Thus
/4 is obviously a rational number, while +/2, /3, /5, etc. turn out
to be nonrational. See the examples following the theorem. Recall
that an integer k is a factor of an integer m or divides m if T is also
an integer. An integer p > 2 is a prime provided the only positive
factors of p are 1 and p. It can be shown that every positive integer
can be written as a product of primes and that this can be done in
only one way, except for the order of the factors.

1.1 Rational Zeros Theorem.,
Suppose that ag, ay, . . ., a, are integers and that r is a rational number

satisfying the polynomial equation
A" + 8+ +as =0 )

wheren > 1, a, # 0 and ag # 0. Wﬁur-_—-;mhmp,thum
having no common factors and q # 0. Then q divides a,, and p divides ag.

In other words, the only rational candidates for solutions of (1)
hlvuﬁuﬁ:nnswhurepdividuau and g divides a,,.

Proof
‘We are given

) ) 0n ()
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We multiply through by ¢" and obtain

anp" +an1p" '+ anap" g+ +ap’q"  +apg" " +aog" = 0.
(2)
If we solve for a,p”, we obtain

anp" = —qlan-1p""" +an-2p" g+ -+ a0’ +aipq" " +aog" ),

It follows that g divides a,p". But p and g have no common factors,
so q must divide a,. [Here are more details: p can be written as
a product of primes p,p; - - - pr where the p;'s need not be distinct.
Likewise g can be written as a product of primes g4 - - - q;. Since g
divides a,p", the quantity 5'-'1"- M{t must be an integer. Since
no p; can equal any gj, the un:que factorization of a, as a product of
primes must include the product 4,4; - - - g;. Thus g divides a,.)
Now we solve (2) for agq” and obtain

aoq" = —planp" ™" +an 10" g+ an 20" 0" +- - -+ axpg" g™,

Thus p divides apq”. Since p and g have no common factors, p must
divide ag. |

Example 2
+/2 cannot represent a rational number.

Proof

By Theorem 2.2 the only rational numbers that could possibly be
solutions of x> — 2 = O are £1,4+2. [Heren = 2, a; = 1, a; = 0,
ap = —2. So rational solutions must have the form E where p divides
ag = —2 and g divides a; = 1.) One can substitute each of the four
numbers +1, 42 into the equation x* — 2 = 0 to quickly eliminate
them as possible solutions of the equation. Since +/2 represents a
solution of ¥ — 2 = 0, it cannot represent a rational number, n

Example 3
+/17 cannot represent a rational number.

Proof
The only possible rational solutions of ¥* — 17 = 0 are +1, +17 and
none of these numbers are solutions. -
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Example 4

6''? cannot represent a rational number.

Proof

The only possible rational solutions of ¥* —6 = 0 are +1, 42, 43, +6.

It is easy to verify that none of these eight numbers satisfies the
equation x* — 6 = 0. L]

Example 5
a = (24 5'%)"? does not represent a rational number.

Proof

In Example 1 we showed that a represents a solution of ¥* — 6x* +
12¢¥* — 13 = 0. By Theorem 2.2, the only possible rational solutions
are £1,+13. When x = 1 or —1, the left hand side of the equation
is —6 and when x = 13 or —13, the left hand side of the equation
turns out to equal 4,657,458. This last computation could be avoided
by using a little common sense. Either observe that a is "obviously”
bigger than 1 and less than 13, or observe that

13° - 6-13*+12.137 - 13=13(13°-6-13" +12- 13- 1) # 0

since the term in parentheses cannot be zero: it is one less than
some multiple of 13, [ ]

Example 6
b = ((4 — 24/3)/7)"/? does not represent a rational number.

Proof
In Example 1 we showed that b is a solution of 49x* — 56x" + 4 = 0.
The only possible rational solutions are

+1,£1/7, £1/49, £2, £2/7, £2/49, +4, £4/7, £4/49.

‘Ib complete our proof, all we need to do is substitute these eighteen
vandidates into the equation 49x' — 56x° + 4 = 0. This prospect
s0 discouraging, however, that we choose to find a more clever
In Example 1, we also showed that 12 = (4 — 7b%)’. Now
were rational, then 4 — 7b” would also be rational [Exercise 2.6},
the equation 12 = »* would have a rational solution. But the only
rational solutions to x* —12 = Oare £1, +2, +3, +4, 46, £12,
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and these all can be eliminated by mentally substituting them into
the equation. We conclude that 4—7b” cannot be rational, so b cannot
be rational. n

As a practical matter, many or all of the rational candidates given
by the Rational Zeros Theorem can be eliminated by approximating
the quantity in question [perhaps with the aid of a calculator]. It
is nearly obvious that the values in Examples 2 through 5 are not
integers, while all the rational candidates are. My calculator says that
bin Example 6 is approximately .2767; the nearest rational candidate
is +2/7 which is approximately .2857.

Exercises
2.1. Show that /3, /5, /7, ¥/24, and /31 are not rational numbers.
2.2. Show that 2'%, 57 and (13)"* do not represent rational numbers.
» 2.3. Show that (2 + +/Z)"? does not represent a rational number.
2.4. Show that (5 — +/3)'"® does not represent a rational number.
+2.5. Show that [3 + +/2]""* does not represent a rational number.

2.6. In connection with Example 6, discuss why 4 — 7b" must be rational
if b is rational.
. 7f c€Q.r20, ond x s wratimal, provl that r+x

and rx arc irratpral. HeL® preve by cont radittion.

§3 The Set R of Real Numbers

The set {Q is probably the largest system of numbers with which
you really feel comfortable. There are some subtleties but you have
learned to cope with them. For example, Q is not simply the ser
(2 :m,n € Z, n # 0], since we regard some pairs of different look-
ing fractions as equal. For example,  and ; are regarded as the
same element of Q. A rigorous development of § based on Z, which
in turn is based on N, would require us to introduce the notion of
equivalence class; see [38]. In this book we assume a familiarity with
and understanding of Q as an algebraic system. However, in order
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to clarify exactly what we need to know about (, we set down some
of its basic axioms and properties.

The basic algebraic operations in Q are addition and multiplica-
tlon. Given a pair a, b of rational numbers, the sum a + b and the
product ab also represent rational numbers. Moreover, the following
properties hold.

Al.a+(b+c)=(a+b)+cforalla,b,c.

A2. a+b=Db+aforalla,b.

A3d. a4+ 0 =a forall a.

A4, For each a, there is an element —a such that a + (—a) = 0.
M1. a(bec) = (ab)c forall a, b, c.

M2, ﬂbnhﬁ]fﬂuﬂ,h

M3. a-1 =a for all a.

M4. For each a # 0, there is an element a~! such thataa™! = 1.
DL a(b+c)=ab+acforalla,b,c.

Properties Al and M1 are called the associative laws, and prop-
erties A2 and M2 are the commutative laws. Property DL is the
gliatributive law; this is the least obvious law and is the one that jus-
Wfies “factorization” and “multiplying out® in algebra. A system that
has more than one element and satisfies these nine properties is

lled a field. The basic algebraic properties of @ can proved solely
the basis of these field properties. We do not want to pursue
i# topic in any depth, but we illustrate our claim by proving some
iliar properties in Theorem 3.1 below.
The set Q also has an order structure < satisfying

1. Givena and b, eithera <bor b < a.
Ifa<bandb <a, thena=b.
Ifa<bandb <c thena <c.
fa<b thena+c<b+ec.

. fa<band 0 <c, thenac < be.

Property O3 is called the transitive law. This is the characteristic
rty of an ordering. A field with an ordering satisfying properties
through O5 is called an ordered field. Most of the algebraic and
properties of Q can be established for any ordered field. We
prove a few of them in Theorem 3.2 below.
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The mathematical system on which we will do our analysis will
be the set R of all real numbers. The set R will include all rational
numbers, all algebraic numbers, &, €, and more. It will be a set that
can be drawn as the real number line; see Figure 3.1. That is, every
real number will correspond to a point on the number line, and
every point on the number line will correspond to a real number.
In particular, unlike Q, R will not have any “gaps.” We will also see
that real numbers have decimal expansions; see 10.3 and §16. These
remarks help describe R, but we certainly have not defined R as
a concise mathematical object. It turns out that R can be defined
entirely in terms of the set @ of rational numbers; we indicate in the
optional §6 one way that this can be done. But then it is a long and
tedious task to show how to add and multiply the objects defined in
this way and to show that the set R, with these operations, satisfies
all the familiar algebraic and order properties that we expect to hold
for R. To develop R properly from Q in this way and to develop Q
properly from N would take us several chapters. This would defeat
the purpose of this book, which is to accept R as a mathematical
system and to study some important properties of R and functions
on R. Nevertheless, it is desirable to specify exactly what properties
of R we are assuming.

Real numbers, ie, elements of R, can be added together and
multiplied together. That is, given real numbers a and b, the sum
a+b and the product ab also represent real numbers. Moreover, these
operations satisfy the field properties Al through A4, M1 through
M4, and DL. The set R also has an order structure < that satisfies
properties O1 through O5. Thus, like @, R is an ordered field.

In the remainder of this section, we will obtain some results
for R that are valid in any ordered field. In particular, these results
would be equally valid if we restricted our attention to Q. These
remarks emphasize the similarities between R and Q. We have not
yet indicated how R can be distinguished from Q as a mathematical
object, although we have asserted that R has no *gaps.” We will make
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this observation much more precise in the next section, and then we
will give a “gap filling" axiom that finally will distinguish R from Q.

4.1 Theorem.

The following are consequences of the field properties:
(i) a+ ¢ =b+cimpliesa = b,
(ii)a-0=0foralla:

(iil) (~a)b = —ab for all a, b;

(iv) (—a)(—b) = ab for all a, b;

(v) ac=bcandc # 0 implya = b;

(vi) ab = 0 implies eithera=0o0r b = 0;
fora,bce R

Proof
(i) a+c = b+ cimplies (a+c)+(—¢) = (b+¢)+(—c), soby Al,

we have a + [¢ + (—¢)] = b+ [c + (—¢)). By A4, this reduces to
a+0=b+0,s0a=>bbyA3.

(ii) We use A3and DLtoobtaina-0=a-(0+0)=a-0+a-0,
so0+a-0=a-0+a-0. By (i) we conclude that 0 =a - 0.

(lii) Since a + (—a) = 0, we have ab + (—a)b = [a + (—a)]-b =
0-b = 0= ab + (—(ab)). From (i) we obtain (—a)b = —(ab).

(iv) and (v) are left to Exercise 3.3,

(v) fab=0andb#0,then0=b"-0=0:b" = (ab) - b ' =
abbY=a-1=a. &

Theorem.

Jollowing are consequences of the properties of an ordered field:
(i) ifa < b, then —b < —a;

(ii) ifa < band c < 0, then be < ac;

Hii) fo<aand0 <b, then 0 < ab;

(iv) 0 < a’ forall a;

(v)0 <1,

) if0 < a, then0 < a™';
JfOD<a<hthend<h'<al;

fora, b,ce R

Note thata < bmeansa < band a # b.



Proof

(i) Suppose that @ < b. By 04 applied to ¢ = (—a) + (—b), we
have a + [(—a) + (=b)] < b + [(—a) + (=b)]. It follows that
—-b < —a.

(ii) Ifa < band ¢ < 0, then 0 < —c by (i). Now by O5 we have
a(—c) < b(—c), i.e,, —ac < —bec. From (i) again, we see that
be < ac.

(iii) If we put a = 0 in property O5, we obtain: 0 < band 0 < ¢
imply 0 < bc. Except for notation, this is exactly assertion
(iif).

(iv) For any a, eithera > 0ora <0by Ol. Ifa = 0, then a* > 0
by (iii). If @ < 0, then we have —a > 0 by (i), s0 (—a)’ > 0,
ie,a®>0.

(v) is left to Exercise 3.4, w3 (v

(vi) Suppose that0 < abutthat0 < a~' fails. Then we must have
@' <0and0 < —a~'. Now by (iii) 0 < a(-a™') = -1, so
that 1 < 0, contrary to (v).

(vii) is left to Exercise 3.4. -]
Another important notion that should be familiar is that of

absolute value.

3.3 Definition.

We define

lal=a if a=0 and |a|=-a if a=<0.
la| is called the absolute value of a.

Intuitively, the absolute value of a represents the distance be-
tween 0 and a, but in fact we will define the idea of “distance® in
terms of the *absolute value,” which in turn was defined in terms of
the ordering.

3.4 Definition.
For numbers a and b we define dist(a,b) = |a — b|; dist(a, b)
represents the distance between a and b.

The basic properties of the absolute value are given in the next
theorem,



§3. The Set R of Real Numbers 7

1.5 Theorem.

(i) la| >0 foralla e R

(ii) |ab| = |a|- |b| foralla,b e R
(iii) |la + b| < |a| + |b| foralla,b e R.

Proof

(1) is obvious from the definition. [The word "obvious” as used here
signifies that the reader should be able to quickly see why the result
Is true, Certainly if @ > 0, then |a| = a > 0, while a < 0 implies
la| = —a > 0. We will use expressions like "obviously” and “clearly”
in place of very simple arguments, but we will not use these terms
o obscure subtle points.|

(ii) There are four easy cases here, If a > 0 and b > 0, then
ab > 0,80 |a| - |b| = ab = |abl. Ifa < 0and b < 0, then —a > 0,
~b > 0 and (—a)(=b) > 0 so that |a| - |b| = (~a)(—b) = ab = |ab|. If
@t > 0Dandb < 0, then —b > 0anda(—b) = Osothat |a|-|b| = a(—b) =
~(ab) = |ab|. Ifa = 0 and b = 0, then —a = O and (—a)b > 0 so that
| - |b| = (—a)b = —ab = |ab|.

(iii) The inequalities —|a| < a < |a| are obvious, since eithera =
la| or else a = —|a|. Similarly —|b| < b < |b|. Now four applications
of 04 yield

~lal + (=b]) < —la| +|bl <a+b < |al + b < |a| + |b]|
#0 that
—(lal + |bl) <a+ b < |a| + |b].

tells us that a + b < |a| + |b| and also that —(a + b) < |a] + |b|.
la + b| is equal to either a + b or —(a + b), we conclude that
+ b| < |al| + |b]. ]

6 Corollary.
(@, ¢) < dist(a, b) + dist(b,¢) forall a, b,c € R.

f
s can apply inequality (iii) of Theorem 3.5t0oa — band b — ¢ to
btain |(a — b) + (b~ ¢)| < |a— b| + |b - c| or dist(a,c) = |a —¢| =
= bl + |b - ¢| < dist(a, b) + dist(b, ). L
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FIGURE 3.2

The inequality in Corollary 3.6 is very closely related to an
inequality concerning points a, b, ¢ in the plane, and the latter in-
equality can be interpreted as a statement about triangles: the length
of a side of a triangle is less than or equal to the sum of the lengths
of the other two sides. See Figure 3.2. For this reason, the inequality
in Corollary 3.6 and its close relative (iii) in 3.5 are often called the

Triangle Inequality.

3.7 Triangle Inequality.
la+b| < la| + |b| foralla, b.

A useful variant of the triangle inequality is given in Exer-
cise 3.5(b).

Exercises
3.1. (a) Which of the properties Al-A4, M1-M4, DL, 01-05 fail for N?
(b) Which of these properties fail for Z?

3.2. (a) The commutative law A2 was used in the proof of (ii) in
Theorem 3.1, Where?

(b) The commutative law A2 was also used in the proof of (iii) in
Theorem 3.1. Where?

=3.3. Prove (iv) and (v) of Theorem 3.1.
+3.4. Prove (v) and (vif) of Theorem 3.2
3.5. (a) Show that bl <aifandonlyif—-a<b <a.
(b) Prove that |la] — |b]| < |a — b| forall a,b € R.
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*3.6. (a) Prove that |a+b+c| < lal+Ibl+|c| forall a, b, c € R. Hint: Apply
the triangle inequality twice. Do not consider eight cases.

(b) Use induction to prove
lay +az+---+an| < lail + laal + -+ + |aal
for n numbers a;, a;, . .., a,.
*3.7. (a) Show that |b| < aifandonly if —a < b < a.
(b) Show that |a —b| < cifandonly ifb—¢c < a < b+c.
(c) Show that |a —b| <cifandonlyifb—-c<a<b+c.
*0.B. Leta, b e R Show that ifa < b, for every by > b, thena < b.

§4 The Completeness Axiom

In this section we give the completeness axiom for R. This is the
axiom that will assure us that R has no *gaps.” It has far-reaching
consequences and almost every significant result in this book relies
on it. Most theorems in this book would be false if we restricted our
world of numbers to the set (§ of rational numbers.

(a) If § contains a largest element s, [that is, 5o belongs to § and
8 < & for all s € §), then we call s, the maximum of § and write
S = max S.

) If § contains a smallest element, then we call the smallest

element the minimwm of S and write it as min §.

) Every finite nonempty subset of R has a maximum and a
minimum. Thus
max{1,2,3,4,5}=5 and min{l1,2,3,4,5}=1,
max{0,m, ~7,63,4/3} =x and min{0,x, -7, 3,4/3) = -7,
max{n € Z: -4 < n < 100} = 100 and
minjne Z: -4 < n < 100} = -3,
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(b) Consider real numbers a and b where a < b. The following
notation will be used throughout the book:

[a,h]={x e R:a <x < b}, (a,h)={xeR:a < x < b},
[a,b)={xeR:a<x < b}, (a,b)={xe€R:a < x <h}.

[a, b] is called a closed interval, (a, b) is called an open interval,
while [a, b) and (a, b] are called half-open or semi-open intervals.
Observe that max[a, b} = b and min{a, b] = a. The set (a, b) has
no maximum and no minimum, since the endpoints a and b
do not belong to the set. The set [4, b) has no maximum, but a
is its minimum.

(c) The sets Z and Q have no maximum or minimum. The set N
has no maximum, but minN = 1.

(d) Theset{r e Q:0<r < v/2} has a minimum, namely 0, but
no maximum. This is because +/2 does not belong to the set,
but there are rationals in the set arbitrarily close to +/2.

(e) Consider the set {nC"1" : n € N}. This is shorthand for the set

{174,2,34,4,5,677" ..1=1{1,2

The set has no maximum and no minimum.

4.2 Definition.
Let S be a nonempty subset of R.
(a) Ifareal number M satisfies s < M forall s € S, then M is called
an upper bound of S and the set S is said to be bounded above.
(b) If a real number m satisfies m < s forall s € §, then m is called
a lower bound of S and the set S is said to be bounded below.
(c) The set S is said to be bounded if it is bounded above and
bounded below. Thus S is bounded if there exist real numbers
m and M such that S C [m, M].

Example 2
(a) The maximum of a set is always an upper bound for the set.
Likewise, the minimum of a set is always a lower bound for
the set.
(b) Considera,bin R, a < b. The number b is an upper bound for
cach of the sets |a, by, (a, b), |a, b), (¢, b]. Every number larger
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than b is also an upper bound for each of these sets, but b is
the smallest or least upper bound.

(c) None of the sets Z, Q and N is bounded above. The set N is
bounded below; 1 is a lower bound for N and so is any number
less than 1. In fact, 1 is the largest or greatest lower bound.

(d) Any nonpositive real number is a lower bound for {r € Q :
0 < r < +/2} and 0 is the set’s greatest lower bound. The least
upper bound is +/2.

(e) The set {n"1" : n € N} is not bounded above. Among its many
lower bounds, 0 is the greatest lower bound.

We now formalize two notions that have already appeared in
Example 2.

4.3 Definition.
Let S be a nonempty subset of R.
(a) If S is bounded above and § has a least upper bound, then we
will call it the supremum of S and denote it by sup S.
(b) If S is bounded below and S has a greatest lower bound, then
we will call it the infimum of S and denote it by inf S.

Note that, unlike max$§ and min§, sup$§ and inf S need not
belong to S. Note also that a set can have at most one maximum, min-
imum, supremum and infimum. Sometimes the expressions “least
upper bound” and “greatest lower bound” are used instead of the
Latin “supremum” and “infimum” and sometimes sup § is written
lub S and inf § is written glb S. We have chosen the Latin terminol-
ogy for a good reason: We will be studying the notions “lim sup” and
“lim inf” and this notation is completely standard; no one writes “lim
lub” for instance.

Observe that if S is bounded above, then M = sup § if and only if
(i) s <M forall s € §, and (ii) whenever M; < M, there exists s; € S
such that s; > M;.

Example 3
(a) IfasetShasamaximum,then max§ = sup§. A similar remark
applies to sets that have minimums.
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(b) Ifa,b e Rand a < b, then
sup[a, b] = sup(a, b) = sup|a, b) = sup(a, b] = b.

(c) As noted in Example 2, we have inf N = 1.
() IfA={reQ:0<r<+/2} thensupA = +/2 and inf A = 0.
(e) We have inf{n"V" :n e N} = 0.

Notice that, in Examples 2 and 3, every set S that is bounded
above possesses a least upper bound, i.e., sup S exists. This is not an
accident. Otherwise there would be a “gap” between the set S and
the set of its upper bounds.

4.4 Completeness Axiom.
Every nonempty subset S of R that is bounded above has a least upper
bound. In other words, sup S exists and is a real number.

The completeness axiom for (Q would assert that every nonempty
subset of Q, that is bounded above by some rational number, has a
least upper bound that is a rational number. The set A = {r € Q :
0<r< ﬁ} is a set of rational numbers and it is bounded above by
some rational numbers [3/2 for example], but A has no least upper
bound that is a rational number. Thus the completeness axiom does
not hold for Q! Incidentally, the set A can be described entirely in
terms of rationals: A = {r e Q: 0 < r and r? < 2}.

The completeness axiom for sets bounded below comes free.

4.5 Corollary.
Fivery nonempty subset S of R that is bounded below has a greatest lower
bound inf S.

Proof
lLet —S be the set {—s : s € §}; —S consists of the negatives of the
numbers in S. Since S is bounded below there is an m in R such
that m < s for all s € 8. This implies that —m > s for all s € S,
so  m > u for all u in the set —S. Thus —S is bounded above by

m. 'The Completeness Axiom 4.4 applies to —S, so sup(--S) cxists.
Figure 4.1 suggests that we prove inf' S = — sup(—S8).

Letsy  sup(-8); we need to prove

So s forall s S, ()
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f 1
m 0 The set S
sup (—S)
L 4 ,
1 4
0 —m
The set —S
FIGURE 4.1
and
ift<s forall ses§ then t< —s. (2)

'The inequality (1) will show that —sy is a lower bound for §, while
(2) will show that —sg is the greatest lower bound, that is, —sg = inf S.
We leave the proofs of (1) and (2) to Exercise 4.9. |

It is useful to know:
ifa > 0, then % < a for some positive integer n, (*)
and
ifb >0, then b < n forsome positive integer n. (**)

‘I'hese assertions are not as obvious as they may appear. If fact, there
cxist ordered fields that do not have these properties. In other words,
there exists a mathematical system that satisfies all the properties
A1-A4, M1-M4, DL and O1-05in §3 and yet possesses elementsa > 0
and b > 0suchthata < 1/nand n < b for all n. On the other
hand, such strange elements cannot exist in R or Q. We next prove
this; in view of the previous remarks we must expect to use the
t.ompleteness Axiom.

‘1.6 Archimedean Property.
Ila > 0andb > 0, then for some positive integer n, we have na > b.

This tells us that, even if a is quite small and b is quite large, some
micger multiple of a will exceed b. Or, to quote [2], given enough
Lune, one can empty a large bathtub with a small spoon. [Note that if
we sel b - 1, we obtain assertion (%), and if we set a = 1, we obtain

Aansertion (sx).|
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Proof

Assume the Archimedean property fails. Then there exista > 0 and
b > 0 such that na < b for all n € N. In particular, b is an upper
bound for the set S = {na : n € N}. Let s, = sup §; this is where we
are using the completeness axiom. Since a > 0, we have sy < sp+a4,
S0 sp —a < sp. [To be precise, we obtain so < sp+a and sp —a < 59
by property O4 and the fact that a + (—a) = 0. Then we conclude
Sp—a < §g since sop —a = so implies a = 0 by Theorem 3.1(i).] Since
o is the least upper bound for §, s — a cannot be an upper bound
for S. It follows that s — a < mnga for some ny, € N. This implies
that sp < (ng + 1)a. Since (ng + 1)a is in §, sp is not an upper bound
for § and we have reached a contradiction. Our assumption that the
Archimedean property fails must be in error. ]

We give one more result that seems obvious from our experi-
ence with the real number line, but which cannot be proved for an
arbitrary ordered field.

4.7 Denseness of Q.
Ifa,b € Randa < b, then thereis arationalr € Q suchthata < r < b.

Proof
We need to show that a < 7 < b for some integers m and n where
n > 0, and thus we need

an < m < bn. €))

Since b — a > 0, the Archimedean property shows that there exists
an n € N such that n(b — a) > 1. Since bn — an > 1, it is fairly
evident that there is an integer m between an and bn, so that (1)
holds. However, the proof that such an m exists is a little delicate.
We argue as follows. By the Archimedean property again, there exists
an integer k > max{|an|, |bn|}, so that

—k < an < bn < k.

Thentheset{j € Z: —k < j <k and an < j}is finite and nonempty
and we can set

m=—min{j e 7 : -k <j<kand an < j}.
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Then an < mbutm — 1 < an. Also, we have
m=(m-1)+1<an+1 < an+ (bn — an) = bn,

so (1) holds. [

Exercises

*4.1. For each set below that is bounded above, list three upper bounds
for the set. Otherwise write “NOT BOUNDED ABOVE” or “NBA.”

»(a) [0,1] =(b) (0,1)
(c) 2,7} (d) {m, e}
»(e) {{:neN} {0}
(® [0,1]V([23] (h) U3, [2n, 2n + 1]
s (1) N2y [—1 141 ¥ (1-5:neN}
k) n+EX neN M {reQ:r<2)
J(m) {reQ:r* < 4} *(M) {reQ:r* <2}
(0) (xeR:x < 0} (» {1,%,7%10}
(q4) {0,1,2,4,8,16} () N2, (1-11+1
o(s) {£ :neNandnisprime} (t) {xeR:x* < 8}
() {¥*:xeR} #(v) {cos(E):neN}

+(w) {sin(5"):neN}
»4,2. Repeat Exercise 4.1 for lower bounds.

-4.3. For each set in Exercise 4.1, give its supremum if it has one.
Otherwise write “NO sup.”

-4.4. Repeat Exercise 4.3 for infima [plural of infimum)].

+4.5. Let S be a nonempty subset of R that is bounded above. Prove that
if sup S belongs to S, then sup § = max S. Hint: Your proof should
be very short.

< 4.6. Let S be a nonempty bounded subset of R.

(a) Prove that inf S < sup§S. Hint: This is almost obvious; your
proof should be short.

(b) What can you say about § if inf § = sup §?
% 4.7. Let S and T be nonempty bounded subsets of R.

(a) Prove thatif SC T, theninf T <inf§ <supS <supT.
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4.9.

4.10.
A 4.11.

©4.12.

4.13.

4.14.

¥ 4.15.

»4.16.

(b) Prove that sup(SU T) = max{supS, sup T}. Note: In part (b),
do not assume S C T.

. Let S and T be nonempty subsets of R with the following property:

s<tforallse Sandte T.

(a) Observe that S is bounded above and that T is bounded below.
(b) Prove that supS < inf T.

(c) Give an example of such sets S and T where SNT is nonempty.

(d) Give an example of sets S and T where sup S = inf T'and SNT
is the empty set.

Complete the proof that inf S = —sup(-S8) in Corollary 4.5 by
proving (1) and (2).

Prove that if a > 0, then there exists n € N such that % <a<n.

Consider a,b € R where a < b. Use Denseness of Q 4.7 to show
that there are infinitely many rationals between a and b.

Let I be the set of real numbers that are not rational; elements of [
are called irrational numbers. Prove that if a < b, then there exists
x € Isuch thata < x < b. Hint: First show {r + v/2:r € Q} C I

Prove that the following are equivalent for real numbers a, b, c.
[Equivalent means that either all the properties hold or none of the
properties hold.]

(a) la—b| <c,
(b) b—~c<a<b+c,
(c) ae(b—c¢b+o).
Hint: Use Exercise 3.7(b).

Let A and B be nonempty bounded subsets of R, and let S be the
set of all sums a + b where a € A and b € B.

(a) Prove that supS =supA + supB.
(b) Prove thatinf S = inf A + inf B.

Let a,b € R. Show that ifa < b+ + forall n € N, then a < b,
Compare Exercise 3.8.

Show thatsup{r e Q:r < a}  u forcacha ¢ R.



§5. The Symbols +oc and —co 27

§5 The Symbols +oo and —o0

The symbols +o0c and —oo are extremely useful even though they
are not real numbers. We will often write +oo as simply cc. We will
adjoin 400 and —oo to the set R and extend our ordering to the set
RU{—oc, +oc}. Explicitly, we will agree that —co < a < +oo foralla
in RU{--o0, oo}. This provides the set RU{—o00, 400} with an ordering
that satisfies properties O1, O2 and O3 of §3. We emphasize that we
will not provide the set RU {—oc, +o0} with any algebraic structure.
We may use the symbols +oo and —oo, but we must continue to
remember that they do not represent real numbers. Do not apply a
theorem or exercise that is stated for real numbers to the symbols
400 or —00.

It is convenient to use the symbols +o0 and —oc to extend the
notation established in Example 1(b) of §4 to unbounded intervals.
For real numbers a, b € R, we adopt the following notation:

[a,00) ={x e R:a <x}, (a,00)={xeR:a < x},
(oo, b ={x e R:x < b}, (—oo, by =[x e R:x < b}.

We occasionally also write (—oc, o¢) for R. [g, 00) and (—oc, b] are
called closed intervals or unbounded closed intervals, while (a, o) and
(—00, b) are called open intervals or unbounded open intervals.

Consider a nonempty subset S of R. Recall that if § is bounded
above, then supS exists and represents a real number by the
completeness axiom 4.4. We define

supS = +oc if § is not bounded above.

Likewise, if S is bounded below, then inf S exists and represents a
real number [Corollary 4.5). And we define

inf S = —o0 if § is not bounded below.

For emphasis, we recapitulate:

Let S be any nonempty subset of R. The symbols sup S and inf S
always make sense. If S is bounded above, then supS is a real num-
ber; otherwise sup S = +o00. If S is bounded below, then inf S is a real
number; otherwise inf S = —oo. Moreover, we have inf S < sup S.

The exercises for this section clear up some loose ends. Most of
them extend results in §4 to sets that are not necessarily bounded.



Sequences

CHAPTER

§7 Limits of Sequences

A sequence is a function whose domain is a set that has the form
{n € Z : n > m}; mis usually 1 or 0. Thus a sequence is a function
that has a specified value for each integer n > m. It is customary to
denote a sequence by a letter such as s and to denote its value at n
as s, rather than s(n). It is often convenient to write the sequence
as (8.)%2.,, OT (Sm, Sm+1,Smt2,.-.). If m = 1 we may write (Sy)neN
or of course (81, Sz, 83, - . .). Sometimes we will write (s,) when the
domain is understood or when the results under discussion do not
depend on the specific value of m. In this chapter, we will be inter-
ested in sequences whose range values are real numbers, i.e., each
s, represents a real number.

Example 1
(a) Consider the sequence (8n)nen where s, = 1 . This is the
sequence (1, h 9, 116, 5¢, -+ -). Formally, of course this is the
function with domam N whose value at each n is nz . The set of
values is {1, 1 o 9, 116, 215, . h
(b) Consider the sequence given by a, = (=1)" forn > 0, i.e,

()52, where a, = (—1)". Note that the first term of the se-

31
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)

CY

(e)

quence isap = 1 and the sequence is (1, —-1,1,—-1,1, ~1,1,...).
Formally, this is a function whose domain is {0, 1, 2, ...} and
whose set of values is {—1, 1}.

It is important to distinguish between a sequence and its
set of values, since the validity of many results in this book
depends on whether we are working with a sequence or a set.
We will always use parentheses ( ) to signify a sequence and
braces { } to signify a set. The sequence given by a,, = (—1)"
has an infinite number of terms even though their values are
repeated over and over. On the other hand, the set {(—1)" : n =
0,1, 2,...}is exactly the set {—1, 1} consisting of two numbers.
Consider the sequence cos(3), n € N. The first term of this
sequence is cos(%3) = cos60° = % and the sequence looks like

)

The set of values is {cos(7) : n € N} = {%, —%, —1,1}L

If a, = n", n e N, the sequence is (1,+/2, 33,44, .. ). If we
approximate values to four decimal places, the sequence looks
like

(1,1.4142,1.4422,1.4142,1.3797,1.3480,1.3205, 1.2968, . . .).

1 1
I T The

1

1 1 1 1
D) 1 T

2121 Yy 1 -1

1 1 i
‘El—lr_' » g T o

It turns out that a,gy is approximately 1.0471 and that ajgg is
approximately 1.0069.

Consider the sequence b, = (1 + +)", n € N. This is the se-
quence (2, (3%, (%)%, ()%, ...). If we approximate the values to
four decimal places, we obtain

(2,2.25,2.3704, 2.4414, 2.4883, 2.5216, 2.5465, 2.5658, . . .).

Also by is approximately 2.7048 and byggo is approximately
2.7169.

The “limit” of a sequence (s,) is a real number that the values
s, are close to for large values of n. For instance, the values of the
sequence in Example 1(a) are close to 0 for large n and the values of
the sequence in Example 1(d) appear to be close to 1 for large n. The
sequence (a,) given by a, = (—1)" requires some thought. We might
say that 1 is a limit because in fact a,, = 1 for the large values ol n
that arc cven. On the other hand, a,, [which is quite a distance
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from 1] for other large values of n. We need a concise definition in
order to decide whether 1 is a limit of a, = (—1)". It turns out that
our definition will require the values to be close to the limit value
for all large n, so 1 will not be a limit of the sequence a,, = (—1)".

7.1 Definition.
A sequence (8,,) of real numbers is said to converge to the real number
s provided that

for each € > 0 there exists a number N such that
n > N implies |s, — s| < €.

M)

If (s,) converges to s, we will write lim,_,o s, = s, or s, — s. The
number s is called the limit of the sequence (s,). A sequence that
does not converge to some real number is said to diverge.

Several comments are in order. First, in view of the Archimedean
property, the number N in Definition 7.1 can be taken to be a natural
number if we wish. Second, the symbol € [lower case Greek epsilon]
in this definition represents a positive number, not some new ex-
otic number. However, it is traditional in mathematics to use € and §
[lower case Greek delta] in situations where the interesting or chal-
lenging values are the small positive values. Third, condition (1) is
an infinite number of statements, one for each positive value of e.
The condition states that to each € > 0 there corresponds a number
N with a certain property, namely n > N implies |s, — 8| < €. The
value N depends on the value ¢, and normally N must be large if ¢
is small. We illustrate these remarks in the next example.

Example 2
3+
74

n

% and % are very small for large n, it seems reasonable to conclude
that lims, = % In fact, this reasoning will be completely valid after
we have the limit theorems in §9:

Consider the sequence s, = ;Zﬂ If we write s, as

and note that

2 —

_ C | 3+1 lim 3 + lim(1) 340 3
lims, = lim = | = —I— = ==,
- = lim7 —4lim(3) 7—-4-0 7
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However, for now we are interested in analyzing exactly what we
mean by lims, = % By Definition 7.1, lim s, = % means that

for each € > 0 there exists a number N such that

n > N implies |2 — 2| < €.

)

As € varies, N varies. In Example 2 of the next section we will show
that, for this particular sequence, N can be taken to be 4%’; + %. Using
this observation and a calculator, we find that for € equal to 1, 0.1,
0.01, 0.001 and 0.000001, respectively, N can be taken to be approx-
imately 0.96, 4.45, 39.35, 388.33 and 387,755.67, respectively. Since
we are interested only in integer values of n, we may as well drop
the fractional part of N. Then we see that five of the infinitely many
statements given by (1) are:

n >0 implies — =< 1; 2

P m—4 7‘ )
o 3n+1 3

n > 4 implies - = < 0.1; 3)
n—-4 7
. . 3n+1 3

n > 39 implies - -1 < 0.01; 4)
n—4 7
L 3n+1 3

n > 388 implies — =1 < 0.001; (5)
mn—-4 7
L 3n+1 3

n > 387,755 implies — —1 < 0.000001. (6)
m—4 7

Table 7.1 partially confirms assertions (2) through (6). We could go
on and on with these numerical illustrations, but it should be clear
that we need a more theoretical approach if we are going to prove
results about limits.
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Table 7.1

_ 3n+l _ 3

Sn = 7y In 7
n approximately approximately

1 1.3333 .9047

2 0.7000 2714

3 0.5882 .1597

4 0.5417 1131

5 0.5161 .0876

6 0.5000 .0714
40 0.4384 .0098
400 0.4295 .0010

Example 3
We return to the examples in Example 1.

(a) lim & = 0. This will be proved in Example 1 of the next section.

(b) The sequence (a,) where a,, = (—1)" does not converge. Thus
the expression “lima,” is meaningless in this case. We will
discuss this example again in Example 4 of the next section.

(c) The sequence cos(’3") does not converge. See Exercise 8.7.

(d) The sequence n!’" appears to converge to 1. We will prove
lim n'" = 1 in 9.7(c).

(e) The sequence (b,) where b, = (1 + 1) converges to the num-
ber e that should be familiar from calculus. The limit lim b,
and the number e will be discussed further in the optional
§37. Recall that e is approximately 2.7182818.

We conclude this section by showing that limits are unique. That
is, if lim s, = s and lims, = t, then we must have s = t. In short,
the values s, cannot be getting arbitrarily close to different values
for large n. To prove this, consider € > 0. By the definition of limit
there must exist Ny so that

€

n > N; implies |[s, —s| < 5

and there must exist N, so that

€
n >N, implies |[s, —t] < >
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For n > max{N;, N;}, the Triangle Inequality 3.7 shows that

[s =t =1(s—58n)+ (8n — )] <|8—8ul +ISn +——

—tl=5
2

This shows that [s — t| < ¢ for all ¢ > 0. It follows that |s — t| = 0,
hence s = t.

Exercises

7.1. Write out the first five terms of the following sequences.
(a) 8, = ﬁ (b) b — 3n+1
(©) on=1 (d) sin(%)

7.2. For each sequence in Exercise 7.1, determine whether it converges.
If it converges, give its limit. No proofs are required.

7.3. For each sequence below, determine whether it converges and, if it
converges, give its limit. No proofs are requlred

(@ an. =75 ('D)b“H3
() cn=27" @ t,=1+2
(€) %u =73+ (~1)" () s.= (2"
() ynlzn n! (h) d"z: (-1)'n
M S- O

&) T8 (@ sin(*)
(m) sin(nn) (n) sm(Z””)
(0) %nsinn (p) 2;:;5

@ 3 - @ O +5)
() 325 NORE=

7.4. Give examples of

(a) asequence (x,) of irrational numbers having a limit lim x,, that
is a rational number.

(b) a sequence (r,) of rational numbers having a limit limr, that
is an irrational number.

¢ 7.5. Determine the following limits. No proofs are required, but show
any relevant algebra.

(a) lims, where s, = vn’+1—n,
(b) lim(vn? +n—n),
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(c) lim(v/4n? +n — 2n).

Hint for (a): First show that s, = Jn_z“jr~pr—n

§8 A Discussion about Proofs

In this section we give several examples of proofs using the definition
of the limit of a sequence. With a little study and practice, students
should be able to do proofs of this sort themselves. We will sometimes
refer to a proof as a formal proof to emphasize that it is a rigorous
mathematical proof.

Example 1
Prove that lim # = 0.

Discussion. Our task is to consider an arbitrary € > 0 and show
that there exists a number N [which will depend on €] such that
n > N implies In% — 0| < €. So we expect our formal proof to begin
with “Let € > 0” and to end with something like “Hence n > N
implies |nl—2 — 0] < €.” In between the proof should specify an N and
then verify that N has the desired property, namely thatn > N does
indeed imply |# —0] < e.

As is often the case with trigonometric identities, we will initially
work backward from our desired conclusion, but in the formal proof
we will have to be sure that our steps are reversible. In the present
example, we want ];117 — 0] < € and we want to know how big n
must be. So we will operate on this inequality algebraically and try
to “solve” for n. Thus we want % < ¢. By multiplying both sides by n?
and dividing both sides by ¢, we find that we want 2 < n” or 71—; < n.

If our steps are reversible, we see that n > ﬁ implies ];12— -0} < e

This suggests that we put N = ﬁ

Formal Proof
Lete > 0. Let N = ﬁ Then n > N implies n > ﬁ which implies

n* > 1 and hence € > ;. Thus n > N implies |5 — 0] < €. This
proves that lim -5 = 0. [ |
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Example 2
3n+l 3

Prove that lim L=

Discussion. For each € > 0, we need to decide how big n must be

to guarantee that |25 — 2| < . Thus we want
2In+7—2In+12 19
E U —
7(7n — 4) 7(7n — 4)

Since 7n — 4 > 0, we can drop the absolute value and manipulate
the inequality further to “solve” for n:
19 19 19 4
— + =< n
U3 7€ 49¢ 7
Our steps are reversible, so we will put N = % + % Incidentally,
we could have chosen N to be any number larger than j—(i + %

Formal Proof
Lete > Oand let N = 41—996—{—4 Then n > N implies n > 41—996—!-~
hence 7n > 2 + 4, hence 7n—4 > 12 hence 52— < ¢, and hence

7e! 7(7n—4)
Sntl 3 3nt+t 3
|5 l < €. This proves lim 5147 = = B
Example 3

Prove that lim
Discussion. For each € > 0, we need to determine how large n
must be to imply

4n +3n _
=5 = 4.

4nd + 3n
n:—6

3n+ 24
n? —6

< € Or

By considering n > 1, we may drop the absolute values; thus we
need to find how big n must be to give % < €. This time it would
be very difficult to “solve” for or isolate n. Recall that we need to find
some N such thatn > Nimplies =75 3““4 < ¢, butwe donotneedto find
the least such N. So we will s1mp11fy matters by making estimates.
The idea is that 3”+24 is bounded by some constant times 5 = ”%
for sufficiently large n. To find such a bound we will find an upper
bound for the numerator and a lower bound for the denominator.
For example, since 3n + 24 < 27n, it suffices for us to get —27—} < €.
To make the denommator smaller and yet a constant multiple of n®,

we note that n® — 6 > 11— provided n is sufficiently large; in fact, all
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27n
n3/2

we need is § >6o0rn®>12o0rn > 2. So it suffices to get < €

or% < eorn > /2 provided thatn > 2.

Formal Proof
Lete > 0 and let N = max({2,,/2}. Thenn > N implies n > /2

R . 3
nence 2 < ¢ hence 2% < €. Since n > 2, we have & < n® — 6 and

also 27n = 3n + 24. Thus n > N implies
3n+24 27n 54
—_—<

< = — < €
n—6 T Ind n?2 7
and hence
4n® 4 3n
3 — 4] < g,
n°—=6
as desired. [ |

Example 3 illustrates that direct proofs of even rather simple
limits can get complicated. With the limit theorems of §9 we would
just write

_ {4n3+3n] . [4+%] lim 4 + 3 - lim(:})
lim| ——— | =lim = =4

&1 lim1-6-lim(k)
Example 4
Show that the sequence a,, = (—1)" does not converge.

Discussion. We will assume that lim(—1)" = a and obtain a con-
tradiction. No matter what a is, either 1 or —1 will have distance at
least 1 from a. Thus the inequality |(—1)" — a| < 1 will not hold for
all large n.

Formal Proof
Assume that lim(—1)" = a for some a € R. Letting € = 1 in the
definition of the limit, we see that there exists N such that

n >N implies |(-1)"—al < 1.
By considering both an even and an odd n > N, we see that

1—al<1 and |[—1-—af < 1.
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Now by the Triangle Inequality 3.7
2=1—(-Dl=1—a+a— (=Dl <1—a|+la—(-1)| < 1+1=2.

This absurdity shows that our assumption that lim(—1)* = a must
be wrong, so the sequence (—1)" does not converge. n

Example 5
Let (s,) be a sequence of nonnegative real numbers and suppose
that s = lims,. Note that s > 0; see Exercise 8.9(a). Prove that
lim /s, = /s.

Discussion. We must consider € > 0 and show that there exists N
such that

n >N implies |/s; —+/s| < e

This time we cannot expect to obtain N explicitly in terms of € be-
cause of the general nature of the problem. But we can hope to show
such N exists. The trick here is to violate our training in algebra and
“irrationalize the denominator”:

WS VS HS)  su—s
I gy S SR

Since s, —> s we will be able to make the numerator small [for large
n]. Unfortunately, if s = 0 the denominator will also be small. So we
consider two cases. If s > 0, the denominator is bounded below by
/8 and our trick will work:

I$p — s}

Iv/$n — /5| < 7

so we will select N so that |s, — 8| < +/se for n > N. Note that N
exists, since we can apply the definition of limit to /se just as well
as to €. For s = 0, it can be shown directly that lims, = 0 implies
lim /s, = 0; the trick of “irrationalizing the denominator” is not
needed in this case.

Formal Proof
Case I: s > 0. Let € > 0. Since lims,, = s, there exists N such that

n >N implics |[s, —s| < sc.
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Now n > N implies
— g <8 S| fe

Vo= VAl = s P

Case II: s = 0. This case is left to Exercise 8.3. [ ]

Example 6

Let (s,) be a convergent sequence of real numbers such that s, # 0

for all n € N and lims,, = s # 0. Prove that inf{|s,| : n € N} > 0.
Discussion. The idea is that “most” of the terms s,, are close to s

and hence not close to 0. More explicitly, “most” of the terms s,, are

within %Isl of s, hence most s, satisfy |s,| > %lsl. This seems clear

from Figure 8.1, but a formal proof will use the triangle inequality.

Formal Proof
Let € = %Isl > 0. Since lim s,, = s, there exists N in N so that
o Is
n >N implies |s, —s| <
Now
N Is|
n >N implies |[s,| > 5 (1)

since otherwise the triangle inequality would imply

Is| | Is]

Is| = Is — Sp + 8al < |8 —8p| + 8] < S t5 = Is]
which is absurd. If we set
.
m = min 71]Slxr[SZIr"'rlle ’

most s,, here
A

s —
1 ] |
T T t 1 s>0
0 S s
2
most s, here
A
' B
[ ! ] !
T 1 — T s<0
s S 0
2

FIGURE 8.1
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then we clearly have m > 0 and |s,| > m for all n € N in view of (1).
Thus inf{|s,|: n € N} > m > 0, as desired. |

Formal proofs are required in the following exercises.

Exercises
8.1. Prove the following:
(@ lim&r =0 (b) lim -1 =0
(c) lim 221 = 2 (d) lim 32 =0

8.2. Determine the limits of the following sequences, and then prove
your claims.

7n—19

«(a) a, = nzrji-é (b) bn = 23nn+47
_ Ant __ 2n+

(¢) e = 72—5 ‘(d) dn = 52+2

(e) s, = isinn

8.3. Let (s,) be a sequence of nonnegative real numbers, and suppose
that lims, = 0. Prove that lim ,/s; = 0. This will complete the
proof for Example 5.

<8.4. Let (t,) be a bounded sequence, i.e., there exists M such that |t,] <
M for all n, and let (s,) be a sequence such that lims, = 0. Prove
that lim(s,t,) = 0.

8.5. (a) Consider three sequences (a,), (b») and (s,) such that a, <
$p < b, for all n and lim a,, = limb,, = s. Prove that lims,, = s.

(b) Suppose that (s,) and (t,) are sequences such that |s,| < t, for
all n and limt, = 0. Prove that lims, = 0.

8.6. Let (s,) be a sequence in R.
<(a) Prove that lims, = 0 if and only if lim |s,,| = 0.

(b) Observe thatif' s, = (—1)", then lim [s,] exists, but lim s,, does
not exist.

8.7. Show that the following sequences do not converge.
(a) cos(%Z) () 0= (~1)'n
«(€) sin(%)
8.8. Prove the following [see Exercise 7.5]:
(a) lim[vnZ +1-n]=0 (b) im[vVnZ+n—-nj=1
(¢) im[v4nZ +n—2n] =}
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8.9. Let (s,) be a sequence that converges.

(a) Show thatif's, > a for all but finitely many n, then lims, > a.

(b) Show thatif's, < b for all but finitely many n, thenlims, < b.

(c) Conclude that if all but finitely many s, belong to [a, b], then
lim s, belongs to [a, b).

»8.10. Let (s,) be a convergent sequence, and suppose that lims, > a.
Prove that there exists a number N such thatn > N impliess, > a.

§9 Limit Theorems for Sequences

In this section we prove some basic results that are probably already
familiar to the reader. First we prove that convergent sequernces are
bounded. A sequence (s,) of real numbers is said to be bounded if
the set {s, : n € N} is a bounded set, i.e., if there exists a constant M
such that |s,,| < M for all n.

9.1 Theorem.
Convergent sequences are bounded.

Proof
Let (sn) be a convergent sequence, and let s = lims,. Applying
Definition 7.1 with € = 1 we obtain N in N so that

n > N implies |s, —s| < 1.

From the triangle inequality we see that n > N implies |s,| < |s{+1.
Define M = max{|s| + 1, |s11, sz, .. ., sSy|}. Then we have [s,| < M
for all n € N, so (s,) is a bounded sequence. |

In the proof of Theorem 9.1 we only needed to use property 7.1(1)
for a single value of €. Our choice of € = 1 was quite arbitrary.

9.2 Theorem.
If the sequence (s,) converges to s and k € R, then the sequence (ks,)
converges to ks. That is, lim(ks,) = klims,.



|
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Proof

We assume k # 0, since this result is trivial for k = 0. Let ¢ > 0
and note that we need to show that |ks,, — ks| < ¢ for large n. Since
lims, = s, there exists N such that

n >N implies s, —s| <

'[?] .

Then

n > N implies [ks, —ks| < €.

9.3 Theorem.
If (sn) converges to s and (t,) converges to t, then (s, + t,) converges to
s+t Thatis,

lim(s, + t,) = lims, + limt,.

Proof
Let € > 0; we need to show that

[Sp +t, —(s+ 1) < € forlarge n.

We note that |s, +t, — (s + )| < |s, — 8| + |t, — t]. Since lims, = s,
there exists Ny such that

€
n > N; implies s, —s| < 7

Likewise, there exists N, such that
. . €
n > N; implies |[t, —t]| < 5

Let N = max{Nj, Nb}. Then clearly

€ €
n > N implies |sn+tn—(s+t)|Slsn—s[+|tn—t[<§+§:e.
|

9.4 Theorem.
If (sn) converges to s and (t,) converges to t, then (Suty) converges to st.
That is,

Him(s,t,,) — (lims)(limd,).
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Discussion. The trick here is to look at the inequality

[Sntyn — St| = [Sptn — Sut + Sat — St
< |Sutn — Spt| + [Spt — St| = |8ul - [tn — £ + [t] - |8y — 8]

'or large n, |t, —t| and |s,, —s| are small and |¢] is, of course, constant.
| l'ortunately, Theorem 9.1 shows that |s,| is bounded, so we will be
| able to show that |s,t, — st| is small.

’roof
let € > 0. By Theorem 9.1 there is a constant M > 0 such that
ls,] < M for all n. Since limt, = t there exists N; such that

€
n > N; implies |, —t] < —.
1 p [tn | M

Also, since lim s, = s there exists N, such that

€
n > N, implies s, —s] <« ————.
2 p ln ] 2(]t|+1)

|We used 2(l—f|€+.1—) instead of éﬁ, since t could be 0.] Now if N =

max{Ny, Ny}, then n > N implies

Isntn - Stl =< 'Snl ) |tn - tl + |t| ' Isn - SI

<M € e e+e
- 2M

AT A
20l+1) 2 2

To handle quotients of sequences, we first deal with reciprocals.

9.5 Lemma.
11" (s,) converges to s, if s, # 0 for all n, and if s # 0, then (1/sy)
converges to 1/s.

Discussion. We begin by considering the equality

1 1

Sn S

s8-8,

SpS

For large n, the numerator is small. The only possible difficulty
would be il the denominator were also small for large n. This dif-
heulty s solved in Example 6 of §8 where it is proved that m
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inf{|s,| : n € N} > 0. Thus
1 1

S, 8

§—S8
_ls=sl

’

m|s|
and it is clear how our proof should proceed.
Proof

Let € > 0. By Example 6 of §8, there exists m > 0 such that |s,| > m
for all n. Since lim s, = s there exists N such that

n > N implies |s—s,| < €-m]s|.
Then n > N implies

_ IS — 8yl - [ ~ Snl

susl — mls| n

9.6 Theorem.
Suppose that (s,) converges to s and (t,) converges to t. If s # 0 and
sp, # 0 for all n, then (t,/s,) converges to t/s.

Proof
By Lemma 9.5 (1/s,) converges to 1/s, so
t 1 1 t
lim = =lim— t, = — -t = -
Sn Sp s s
by Theorem 9.4. u

The preceding limit theorems and a few standard examples allow
one to easily calculate many limits.

9.7 Basic Examples.
(@) lim,— (=) =0forp > 0.
(b) lim,a" =0if|al < 1.
(c) im(n") =1.
(d) lim, (@™ =1 fora > 0.

Proof

(a) Lete > 0and let N = (%)'/’7. Then n > N implies n” > }and

hence ¢ > L. Since 2. > 0, this shows that n > N implics

et n'
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(b)

(<)

(d)

# — 0] < €. [The meaning of n” when p is not an integer will

be discussed in §37.]

We may suppose that a # 0, because lim, .o, a" = 0 is obvious
fora = 0. Since |a| < 1, we can write |a| = ﬁ where b > 0. By
the binomial theorem [Exercise 1.12], (1 +b") > 1+ nb > nb,

SO
1 1

"0 =la" = ——— :
la” = 0] = la”) (A +b)y ~ nb

Now consider € > 0 and let N = % Then n > N implies

1 n_. 1
n > - and hence [@" — 0] < 5 < €.

Lets, = (nl/”)——l and note thats, > 0 for all n. By Theorem 9.3
it suffices to show that lims, = 0. Since 1 + s, = (n””), we
have n = (1 + s,)". For n > 2 we use the binomial expansion

of (1 + s,)" to conclude

n 1 2 1 2
n=01+s)" =21+ns,+ -Z-n(n —1)s; > En(n — 1)s;,.

2
n

§n < /727 for n > 2. A standard argument now shows that

lims, = 0; see Exercise 9.7.

First suppose a > 1. Then for n > a we have 1 < a’/n <
n/". Since limn!'" = 1, it follows easily that lim(a"") = 1;
compare Exercise 8.5(a). Suppose that 0 < a < 1. Then 61—1 >

1, so lim($)"" = 1 from above. Lemma 9.5 now shows that

Thus n > in(n— 1)s?, so s < =%. Consequently, we have

lim(a'™) = 1. [

Example 1
Prove that lims, = %, where

n +6n’+7

Sy =

4n3 +3n—4
Solution
We have
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By 9.7(a) we have lim ;11- = 0 and lim 7113 = 0. Hence by Theorems 9.3
and 9.2 we have

: 6 7 : (1 . 1
hm(1+—+—3):hm(1)+6-hm(—)+7-hm(——3) =
n o n n n

Similarly, we have
. 3 4
hm(4+—-——) = 4.
B

Hence Theorem 9.6 implies that lims, = ;. a
Example 2
H H n-—>5
Find lim 5=,
Solution
Let s, = 5> +7 We can write s,, as - +Z, but then the denominator
does not converge. So we write
1_ 5
8y = 1
n 1 + ;17_2
Now lim(+ — 3) = 0 by 9.7(a) and Theorems 9.3 and 9 2. Likewise
lim(1 + nz) =1, so Theorem 9.6 tells us that lims, = T =0. O
Example 3
n’+3
Find lim 7%=,
Solution
43
n+1
n+3 1+ 2
1 or 1 1

1+5 n
Both fractions lead to problems: either the numerator does not con-
verge or else the denominator converges to 0. It turns out that ’;La

n+3

does not converge and the symbol lim is undefined, at least for
the present; see Example 6. The reader may have the urge to use the
symbol 400 here. Our next task is to make such use of the symbol
I oo legitimate. For a sequence (s,,), lims, = 4o0 will signify that the
terms s, arc eventually all large. Tere is the concise definition. 1
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9.8 Definition.
I'or a sequence (s,), we write lim s, = +oo provided

for each M > 0 there is a number N such that
n > N implies s, > M.

[n this case we say that the sequence diverges to -+00.
Similarly, we write lims, = —oc provided

for each M < 0 there is a number N such that
n > N implies s, < M.

Henceforth we will say that (s,) has a limit or that the limit exists
provided (s,) converges or diverges to +oo or diverges to —oo. In
the definition of lim s, = 400 the challenging values of M are large
positive numbers: the larger M is the larger N will need to be. In the
definition of lims, = —oo the challenging values of M are “large”
negative numbers like —10,000,000,000.

Ixample 4

We have limn? = +oo, lim(—n) = -—oo, lim2" = +oo0 and
lim(y/n + 7) = +o00. Of course, many sequences do not have limits
-oo or —oo even if they are unbounded. For example, the sequences
defined by s, = (—1)"n and t, = ncos?(%%) are unbounded, but they
do not diverge to +o00 or —oc, so the expressions lim[(—1)"n] and
lim[n cos®(%F)] are meaningless. Note that t, = n when n is even
and t, = 0 when n is odd.

The strategy for proofs involving infinite limits is very much the
same as for finite limits. We give some examples.

kxample 5
Give a formal proof that lim(y/n + 7) = +o0.

Discussion. We must consider an arbitrary M > 0 and show that
there exists N [which will depend on M] such that

n>N implics Vn+7>M.
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To see how big N must be we “solve” for n in the inequality /n+7 >
M. This inequality holds provided «/n > M—7orn > (M—7)* Thus
we will take N = (M — 7).

Formal Proof
LetM > Oandlet N = (M —7)%. Thenn > N implies n > (M — 7)?,
hence /n > M—7, hence ¢/n+7 > M. This shows thatlim(/n+7) =

+00. ]
Example 6

2
Give a formal proof that lim ﬂn—i—l% = 400; see Example 3.

Discussion. Consider M > (. We need to determine how large
2 . «
n must be to guarantee that =2 > M. The idea is to bound the

n+1
. 2 . 2
fraction V,‘hff below by some multiple of *~ = n; compare Example 3
. 2 4" 2
of §8. Since n? +3 > n? and n + 1 < 2n, we have ’;:13 > L =1n,

and it suffices to arrange for %n > M.

Formal Proof
Let M > 0 and let N = 2M. Then n > N implies %n > M, which
implies

n+3 n? 1

> — = —n > M.
n+t1 2n 2

. 2
Hence lim ’;;*13 = +o00. [ ]

The limit in Example 6 would be easier to handle if we could
apply a limit theorem. But the limit theorems 9.2-9.6 do not apply.

WARNING. Do not attempt to apply the limit theorems 9.2-9.6 to
infinite limits. Use Theorem 9.9 or 9.10 below or Exercises 9.9-9.12.

9.9 Theorem.
Let (s,) and (t,) be sequences such that lims, = +oo and lim¢t, > 0
[lim t, can be finite or +00). Then lim s,t, = +o0.

Discussion. Let M > 0. We need to show that s,t, > M for large
n. We have lims,, = +o0, and we need to be sure that the 1,’s arc
bounded away from 0 for large n. We will choose a real number m
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so that 0 < m < limt, and observe that ¢, > m for large n. Then all
we need is s, > 2 for large n.

Proof
Let M > 0. Select a real number m so that 0 < m < lim¢t,. Whether
limt, = 400 or not, it is clear that there exists N; such that

n > Ny implies ¢, > m;

see Exercise 8.10. Since lim s,, = +00, there exists N, so that
. . M
n > N; implies s, > —.
m

Put N = max{Ny, N;}. Thenn > N implies s;t, > %-m=M. R

Example 7
2

Use Theorem 9.9 to prove that lim 22 = +o0; see Example 6.
Solution s

2 n+=
We observe that ’;—jﬁ = 1+§ = §,t, where s, = n+% andt, = l-i—l It
is easy to show thatlims, = +oo and lim ¢, = 1. So by Theorem 9.9,
we have lim s, t,, = +00. O

Here is another useful theorem.

9.10 Theorem.
For a sequence (8,) of positive real numbers, we have lims, = +oo if
and only if lim(;-) = 0.

Proof
Let (s,) be a sequence of positive real numbers. We have to show

1
lims, = +o0 implies lim (—) =0 €Y}
Sn

and

1
lim <—) =0 implies lims, = +o00. (2)
Sn

In this case the proofs will appear very similar, but the thought
processes will be quite different.
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To prove (1), suppose thatlims, = +00. Lete > OandletM = %
Since lim s,, = +o0, there exists N such thatn > N impliess, > M =
t. Therefore n > N impliese > + > 0, so

1
— -0
Sp

n > N implies < €.

That is, lim(si) = 0. This proves (1).
To prove (2), we abandon the notation of the last paragraph and

begin anew. Suppose that lim(si) =0.LetM > Oandlete = ﬁ Then

€ > 0, so there exists N such that n > N implies |- — 0| < € = &

i
Since s, > 0, we can write
) ) 1 1
n >N implies 0< — < —
Sn M
and hence
n >N implies M < s,.
That is, lim s, = +o0 and (2) holds. n
Exercises

9.1. Using the limit theorems 9.2-9.6 and 9.7, prove the following.
Justify all steps.

o 17747300 180243 _ 17
(€) lim 3= = 5

9.2. Suppose that limx, = 3, limy, = 7 and that all y, are nonzero.
Determine the following limits:

(@) lim(x, + y») (b) lim @y—jx
3
«9.3. Suppose that lima, = a, limb, = b, and that s, = ag:‘f‘f". Prove
lims, = “;;ff carefully, using the limit theorems.

9.4. Letsy =1andforn>1lets, ; =+/sn + 1.
(a) List the first four terms of (s,).

(b) It turns out that (s,) converges. Assume this fact and prove
that the limit is $(1 + +/5).
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9.6.

9.7.

9.8.

2 9.9,

9.10.

9.11.

<9.12,

. Lett) = 1 and tyy; =

2
t"zfz for n > 1. Assume that (t,) converges

and find the limit.

Letx; = 1 and x,4; = 3x% forn > 1.

(a) Show that ifa = limx,, thena = ora = 0.
(b) Does lim x, exist? Explain.

(c) Discuss the apparent contradiction between parts (a) and (b).

Complete the proof of 9.7(c), i.e., give the standard argument
needed to show that lims, = 0.

Give the following when they exist. Otherwise assert “NOT EXIST.”
(a) limn® (b) lim(—n)

(c) lim(—n)" (d) lim(1.01)"

(e) limn"

Suppose that there exists Ny such that s, < t, for all n > Ng.
(a) Prove that iflims, = +oo, then limt, = 4occ.

(b) Prove that iflimt, = —oc, then lims, = —co.

(c) Prove that iflim s, and lim¢, exist, then lims,, < lim¢,.
(a) Show that iflims, = +oo and k > 0, then lim(ks,) = +o0.
(b) Show that lims, = +oo if and only if lim(—s,) = —oc.

(c) Show that iflims, = +o0 and k < 0, then lim(ks,) = —oc.

(a) Show that if lims, = 400 and inf{t, : n € N} > —oo, then
im(s, +t,) = +oc.

(b) Show thatiflims, = +ocandlim¢, > —oo, thenlim(s,+t,) =
+oC.

(c) Show that if lims, = +o0 and if (#,) is a bounded sequence,
then lim(s, + t,) = +o0.

Assume all s, # 0 and that the limit L = lim | SZ“ | exists.

(a) Show that if L < 1, then lims, = 0. Hint: Select a so that
L < a < 1 and obtain N so that |s,,;| < a|s,| forn > N. Then
show that |s,| < a" Visy| forn > N.

(b) Show thatif L > 1, then lim|s,| = 4o00. Hint: Apply (a) to the

sequence t, = ]—Sl—l; see Theorem 9.10.
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9.13. Show that

0 if Jal <1
1 it a=1
. n
;}Lrga ] 4+ if a>1

does not exist if a< ~-1.
9.14. Letp > 0. Use Exercise 9.12 to show

, 0 if Jal <1
lim — = +o0o if a>1
e does not exist if a < —1.

9.15. Show that lim,,_, (:T =0foralla e R.

9.16. Use Theorems 9.9, 9.10 or Exercises 9.9-9.15 to prove the following:

(@) lim %8 = fo0

(b) Lim[7; +(~1)"] = +o0
(c) lim[% ~ 5] =+oo
«9.17. Give a formal proof that lim n® = +oo using only Definition 9.8.
9.18. (a) Verify 1 +a+a’+-- +a" = 5% fora # 1.
(b) Findlim,oe(l+a+a®+---+a*) for|al < 1.
(¢) Calculate limyoo(1+5+ 3+ 5+ + 3)-
(d) Whatislim,,e(l +a+a*+---+a") fora>17?

§10 Monotone Sequences and Cauchy
Sequences

In this section we obtain two theorems [Theorems 10.2 and 10.11]
that will allow us to conclude that certain sequences converge with-
out knowing the limit in advance. These theorems are important
because in practice the limits are not usually known in advance.

10.1 Definition.
A sequence (s,) of real numbers is called a nondecreasing sequence
if s, < su4q for all n, and (s,) is called a nonincreasing sequence
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if s, > sp4;1 for all n. Note that if (s,) is nondecreasing, then
S, < s, whenever n < m. A sequence that is nondecreasing or
nonincreasing will be called a monotone sequence or a monotonic
sequence.

Example 1
The sequences defined by a, =1 — %, b, = n* and ¢, = (1 + 1)"
are nondecreasing sequences, although this is not obvious for the se-
quénce (cn)- The sequence d,, = ,—q% is nonincreasing. The sequences
Sp = (=1)", tp = cos(F), up = (—1)'mand v, = % are not mono-
tonic sequences. Also x, = n'’” is not monotonic, as can be seen by
examining the first four values; see Example 1(d) in §7.

Of the sequences above, (a,), (¢»), (dn), (Sn), (trn), (Vn) and (x,)
are bounded sequences. The remaining sequences, (by,) and (u,),

are unbounded sequences.

10.2 Theorem.
All bounded monotone sequences converge.

Proof
Let (s,) be a bounded nondecreasing sequence. Let S denote the set
{s, : n € N}, and let u = supS. Since S is bounded, u represents a
real number. We show that lims,, = u. Let € > 0. Since u — € is not
an upper bound for §, there exists N such that sy > u — €. Since (s,)
is nondecreasing, we have sy < s, for all n > N. Of course, 8, < u
foralln,son > Nimpliesu—¢ < s, < u, which implies |s, —u| < e.
This shows that lim s, = u.

The proof for bounded nonincreasing sequences is left to
Exercise 10.2. n

Note that the Completeness Axiom 4.4 is a vital ingredient in the
proof of Theorem 10.2.

10.3 Discussion of Decimals.

We have not given much attention to the notion that real numbers
are simply decimal expansions. This notion is substantially correct,
butthere are subtleties to be faced. For example, different decimal ex-
pansions can represent the same real number. The somewhat more
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abstract developments of the set R of real numbers discussed in §6
turn out to be more satisfactory.

We restrict our attention to nonnegative decimal expansions and
nonnegative real numbers. From our point of view, every nonneg-
ative decimal expansion is shorthand for the limit of a bounded
nondecreasing sequence of real numbers. Suppose we are given a
decimal expansion k.dyd,dzd, - - - where k is a nonnegative integer
and each d; belongs to {0, 1, 2,3,4,5,6,7,8,9}. Let

di | dy dn

n =kt =+ 2 .
Tttt

)

Then (s,) is a nondecreasing sequence of real numbers, and (s,)
is bounded [by k + 1, in fact]. So by Theorem 10.2, (s,) converges
to a real number that we traditionally write as k.dyddad, - - -. For
example, 3.3333 - - - represents

lim (3+ - +3 5
S w02 T e )

To calculate this limit, we borrow the following fact about geometric
series from Example 1 in §14:

lima(l +7+r? 4. +7" =2 for Ir| < 1; 2
lim a( )= @
see also Exercise 9 18 Inourcase, a = 3andr = 101 so 3.3333-
represents 1—_3—_ = 3, as expected. Similarly, 0.9999 - - - represents

10

(9 9 9 5

,}E{,lo( Tt 10'7)_1—;6_1'

Thus 0.9999 - - - and 1.0000- - - are different decimal expansions that
represent the same real number!

The converse of the preceding discussion also holds. That is,
every nonnegative real number x has at least one decimal expansion.
This will be proved, along with some related results, in the optional
§16.

Unbounded monotone sequences also have limits.
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10.4 Theorem.
(1) If (sn) is an unbounded nondecreasing sequence, then lims, =
+0o0.
(ii) If (sn) is an unbounded nonincreasing sequence, then lims, =
—00.

Proof

(i) Let (s») be an unbounded nondecreasing sequence. Let M > 0.
Since the set {s, : n € N} is unbounded and it is bounded below by
s$1, it must be unbounded above. Hence for some N in N we have
sy > M. Clearly n > N implies s, > sy > M, so lims, = +oc.

(ii) The proof is similar and is left to Exercise 10.5. [ ]

10.5 Corollary.

If (sx) is a monotone sequence, then the sequence either converges, di-
verges to +00, or diverges to —oo. Thus lim s, is always meaningful for
MONOtoNe SequUences.

Proof
Apply Theorems 10.2 and 10.4. |

Let (s») be abounded sequence in R; it may or may not converge.
It is apparent from the definition of limit in 7.1 that the limiting
behavior of (s,) depends only on sets of the form {s, : n > N}. For
example, if lim s, exists, clearly it must lie in the interval [uy, vn]
where

uy = inf{s, : n > N} and vy =sup{s,:n > N};

see Exercise 8.9. As N increases, the sets {s, : n > N} get smaller,
so we have

U <up<uz<-.-- and =V >V3>--;
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