
1 
Kenneth A. Ross 

EL EITARY 
YSIS: 

THE THEORY OF 
CAL 

, 

~ Springer 



Undergraduate Texts in Mathematics 

..... 
S.AzIer 

F' W Gehring 

K.A. Ribet 



A ...... ' \1od ; 1 .. ....."..... 

A"': 101-'" A C __ H-,. 
IiId ""Iooop/Iy 
11.-"'1' /0 ~'" 

A •• IIIIILI_ Tho H ....... '" -IImd •• , Ito MGlw-1u 
AjiMNI : 1nIn;;dua"", '" A_Y''' 

_ ~s.c.d_, 

A~""" S-Topolosy 
,1..-..... ' Gtoo;po IIId S);.,,,.,,,.,", 
A,1or. ~ A .... 0... kJaIoe. ...... -1In..-, U ... II< A Now "'-h to 

Rtal AnaI)'Ilo. 
IhkIN ...... ' C ........ ARilyao. 

S<OIIIId cd,,_ 
llu<HIfI'A'.,.-. Ln. AIPa 

Tlotoo&I> C MO, s.c.d ed_, 
-.'Af .. c-... "' .... 
,~-

81" ConICSIIId c..bioo. A 
C<>ncn>. I""odu<>;o. '0 Alrebn ... 

""~ 
I,f ..... ' An bll,od.;ollO," '" 

f>robobib." 1oIodtI .... 
~,F-.--1IId """,",cy '-I~ SmIIId V_ c:...,.... 

11""""'1' .. 1II0<"'-1CI. 
Irk_., MIIhetnoI>eaI JIIIrOdUC1;o. 

10 r.rn.. ,,--, and c.n. -_1Ikr. M_;a.J ~ M'_ ___ .: I,. • '''''' to 

Cr) ...... y 
I • .....,.... "'-iJ ' Top.1 .0:", $po<:cI: 

f ro;n Do_ to N.,p.bo;hood. 
C.II ..... , Tho Gro""h, ofs.-c.,mr' 

..... InlrOClUC1_1O S~oaIlild CmaaI 
"'01 ..... ", C • .....,. .. _ , Tho L..riootpo-

SO..-.... I ....... A ......... ,. ...... ,-
C ..... "" A c.n. ill loot""'"' c. .. ,oealCS. Stcoo!d.:l ...... 

o.o-..·t..In A 'odd Gaok to AI ..... 
~ A CaKmo ........ _ to 

H, .... AJ&dn SocoNIcd~_ 
C· OOCIAIlSoo.'1o: ~ ....... ,~y 

T1I<oty W,th SIodoooI ... ', ...... 1IId 
.. In~I"" 10 M .. hmw>eal 
F ........ Fourth .:I""",. 

C.I./UtlIo/O's...: IdHIa, V ........ 
IIId ,1.""'- SecooocI __ 

C_ l1oo;o: C .... '" Alfdn;< '-Ctorrlo: t-. AIJdM'a' ..... 10lr0Iiutwy 
A~ ,.....,.,.,,_ . 

Da.ppICe ...... , "'adl"" W"""1. "'" 
' 1'0'''''': A CIooa Look • 
M.haroM ..... 

Ik>'IIoo,TlIfJoyo(Scta. , ........... 
o(COO .... , ..... )' SrI 1'IIaIty ..... -01.-. CentnoI T-"'o 

Drh'otT: .... "rloltdlT 
E~"p •• "Fl.~ 

M"""",""uI Loaoc. Socoi>d cd" ..... , 
[1Ipr. M._. T_ioD. "'" FncIOI 

"""""" 0.). : ..... , ... , -.- .. Do_ 
EI s.c.ded-. 

[r-...;.yI:T ........ ~al ...... 
too", ,.,.,;caI ........ ""' .. 0rI< V ....... 
[,..., A. ,1.«",,,"",,,,'10 H,,,,", M __ 

[,_: I_CoItIIIut. 
Fl .... a-...... n Tho F~ 

1'IIaIty al Alptn. 
FIodoor: ,_" 1= ", .. ....."..... 
.................. 'CakId.T_:~ 

"'" 'biI_ "-_ Socoi>d .:1,,-
n.mI .. , f'1III<I_' ",.~ V.-ioblco. 

Socoi>d ed""", 
F .. "", ~ Opb __ fo; 

U ........ ' _ 

F-=ap;.,_T_ i . ..... .......... 
' ....... '_o(M_ 

Eao;.....a. ---



IIcllh A. K088 

lementary Analysis 
, IIf' TheonJ of Ca lculus 

~ Springer 



Kctuoodo A. It_ 
Doopot\rn<nI cl M .......... in 
U ... _yclOqao 

~OII""" 
"" 
St.vsU-O 
,.~ 

101..... D<.-
S_F ...... ""s... 

Uru_ry 
s..~-.CA94lJl 

"" 

Fill' CldIorioot 
~' " .... D<.-,.. "'" 
U.,>=iIy IJ{ lot"''",... 
..... Arbor. Ml4/11111J 

"" 

.•.• ,_~ _ ,o:'::~":~:OI:':~' 
u.-,.of~c.. ..... ,_ .... 0.. 
IlOM._A, 

" ""Y""'" u_.· _ •. __ _ 
'H.:',I' --I. ~ ~ liIIo 

QAJOJ.1l116 JU 1"J.10106 

IU~J7I.O.JI1_7 
.,.~o.W_X _ ................ 

ClI_~sO:_. __ u.c 

'-'-lJai ..... lry of Cabfun" .. 

~'" EIcrUIcy. CA 'JoInG.JIA(I 

"" 

An ...... _ . no. ~ _y ... be....-orcopiool io .. _Of.,... .. _ ..... _ 
.- of .. ,....-(s,.;oe._. __ u.c.lll~ __ -. 
NY 'OOIJ. IISA~_1or _.......... _ ......... Of -...,...,.... u.. _..,._ .. _ __---._ I; _ 

-..~_ .. _ . I'C_'~"_" I, $ .. _ 
__ ..... 1 $1 of ...... __ ....... -. ___ .... iI""" 
.......... ,IIof.-.h ..... be_ .... _of.,..;.. ... _ .. _..., ... 
...."... .. f • 10_, ......... 

--



Preface 

..... "'10" SUoni"l with the 12th printing, this book haa been IOet 

W1tX 10 thaI the book will be mo~ read.lble. In I»nicubr, there 
I I rruilert...l on each page, 10 there are more p;lgeL However, 

are tiMl only changes from prerious printlnp except that ['w.: 
bibliography. 

"",',," III the finn Edition 

.... ,Iy of this book, .nd the e:xerdaea, ahould give the , 
of tequcnca and gOO of fUnetiona. An abilil}' 

write Pfl)(lQ; ...nl be 1ItreAed. A prt:(:ise Ir.nowledp of 
Ia _nlial. TlIe beginner should memorize them; RICh 

wUl help leMIlll undc .... ndifll, 
l-ctl thc.ccne ilnd, except for the completcneaa:dom, 

or leM foImiliilr. Accordingly. reade ... and instructors 
''''''d to move quickly through this chapter and refer b;ick to II 

~~~~)j~J';'~:'~'~'~~!t critical sectiona in the book are Sectiona 1 Il In If these $CCtIoM are thoroughly d igeated 
r I lhl' remainder of the book . hould belmooth IIOIliing. 

v 



Vii ............ 

The first fou r chaptms form a unit for aahan course on analyaia. 
I cover these four chapters (czocpt for the optional IeCtions ~nd 
Section 20) In aboul 38 cl.tM periods; thlllncludeB time bl' qu~ 
~nd aamlnationa. For tueha shoncour'K, my phl106Opl\y It that the 
5tUdcntll .re relatively comfonable with derivatives and IntegTala but 
do not really undclSta nd lleQuences ~nd aeries, much leu aequencci 
and aerie. offunctloru, 80 Chapters 1- 4 fclCUS on these toplcl.. On two 
or three oc.c:&Iions I draw on the FUndamental Theo::lrem of Calcu1lU 
or the Mean Value Theo::lrem, which .ppear later in the book, but 0( 

OO\lrse theae Imponant theoreI!l5 are at 1uR dilCllsaed In a standard 
calculu. claaa. 

In the ea rly sectlonl, especially In Chapter 2, the pmoli are very 
detilUed with carefu l references foreven the most elementilry facts. 
MOR IOphlatkated reade,.. find ea::.eMlve dctillU .nd referencea • 
hindrance (they break the now of the proofand tend to obIcure the 
..... in tdeaa) ~nd would prefer to check the iteI!l5 mentillly .. they 
proceed. At;.cordingly, In Later chapten the pmofll wUJ be somewhat 
less detailed, and referencea lOr the alm plest facia wUl ollen be omll
led. Thlt ahould help prep;lre the reader for more ildv.nced boo .... 
which frequently give W!ry brlefltgumenla. 

Mutery of the baak concepts In this book should make the 
analysis In .uch areu .. oomplex varUbles, differential equ~tion .. 
nu merical analysla, and wtl&!icII more meaningful. The book can 
~bo aerve as a foundation fur an In-depth study of real analysla 
given In boo .... auch "12~ 125~ [2ti~ IlJ~ Il6L and [38J listed in the 
bibliography. 

RMden planning to teach calculus willibo benefit from a careful 
5tUdy ofanalysla. Even after Bludylng thia book (or writill3lt) it will 
not be e .. y to handle qUeMlonl auch aa "WhItis a number?", but II 
least this book ahould help give ~ clurer picl:ure of the lubtleties to 
which IIIch questions lead 

The opl:ionalleCtionl contain dixuAions of lOme top\cl WI I 
think Inllmponant or Interesting. Sometime. the topic Isdealt with 
Ilgh tly, and .uggestlons lOr funher read ing are given Though these 
aectlona ani nOI pan iwt..uly daigned furelaMmom uae, I hope tNt 
lOme readeTll wUl Ute them III blt*len their horbons and tee how 
this ..... terUl fila In the genelOll..::heme Or things. 



r_ ... lIMo PI,. Mltlon VII 

I tl.1l~e benefitted from numeroul helpfulluautloru from my 
INo(UU Robert freeman, William Kamo~, Rk:lulrd Koch, .ndJohn 

I ~hv, Ind from Timothy Hall, Clmll Khazad , and Jorp: LOpez. I 
.'r .1110 kad kelpful conve ..... lionl with my wjfe Lynn concerning 

.,."un.r Ind loa,te. Of COUrK, f!:maining errors in lrammar and 
, 'I.~ lI1~tla af!: the retporulb,lity of the author. 

·,fVt.ral uecrs luve Iupplled me with correctioru.oo Iuggestio ... 
h ... I'YiIlncorporated In l\1bsequent prlntinga. I thank them .11, in

d". Robert Measer of Albion College who aught. lubtle error 
ntl proof of Theorem \2.1. 

Kenneth .... Ross 
Eugene, Oregon 
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Introduction 
C UAPTER 

The underlyina'p;oce for all the analy.1I in th;. book II the Kt of 
n:al numbe .... In thi$ chilpcer we Kt down some basic pmperue. of 
this aet. These propertlell will aerve iI! our uiom. In th811enao that 
it is poAible to denw:. aU the properties of the rut numbe .. uSini 
only these uloma. However, W8 will avoid geltins bogged down In 
thll endeavor: Some readers may wish to n:fer to the appendix on 
.:t notation. 

§1 The Set N of Natural Numbers 

We denote the aet 11.2,3, ... 1 of all lUIn.ml numbel'll by N. Elements 
ofN will allO be called pDIIl1ue InI~ Each natul3l number II has 
a .ua:.euor, namely II + I Thus the M>CCeIaOr of2 ;'3,.nd 37 It the 
'UGGeuorof36. You will probably agree that the following properties 
of N are obvious; at Ie&st the first four .re. 

N I . I belongs to N. 
Nl. If n belonp to N, then itllucceuor II + I belonp to N. 
Nl. I II not the IUCJCeIiOr of any element in N 

I 



N4. If II and III in N have the Iilme auc.ceuor; then n ,. 1ft. 

N.5. A lubeel of N which contains I, ilnd which oontilina II + 1 
whenever It contains n, must equal N. 

Propeniet Nl through N.5 ilre known ill the ""'no A.nolltll or ""'no fbslulalM. it tUml 0111 that most f.1mlll.or propeT"tle. ofN can 
be proved based on theae 1lY(l uioma; lee ilJ or J28J. 

Let's focus our illlentMln on ulom NS, lhe one oiom lhat may 
not be obvlou.&. I lere" what the .. lorn Is ..... yi ... COnsider a ,ubIet 
S ofN ilIdeacribed in NS. Then 1 belonp to S. Since S conulnt n + I 
whenever it oonuins n, it follOWll that S must oonuin 2 _ 1 + I. 
Again, alDl:e S contains 11+ I whenever II conulns II, It follow. that S 
muatcontaln 3 =0 2+1.0nceagaln, slnceScontalnsn+1 whenever II 
contillnsn, it foJJowa thatS mUMoontaln 4,. 3+ I. We could continue 
this monolOlIOlU line of re.uonl"" 10 conclude !hilt S contaiN Jln)' 
number In N. Thus It...,ems rea&Onable to conclude thai S _ N. It Is 
this re;o.sonable conclulion that is alilerted by olom NS 

IJere Is another way 10 view "10m NoS. AMume ulom NoS .. flIbe. 
1"hen N contains I tel 3 auch thai 

(I> I eS, 
(") ifneS,thenn+l ES, 

and)'et S <F- N. CONider the .malleat member of the let tn eN: 
II , 3}. call It no. Since (I) hokll, It is clear thai 110 ~ I. SO no mUSI 
be. IUGCeAOl'" to lOme number tn N, namely no - I We mu,t have 
no - I e S Iince no Is the .manes! member of tn EN. n , S/ 8y 
(II), the IIUc.ceasor of no - I, namely no. mUSI illto be In S, which la, 
contradiction. Th" ditCuMlon mily be pLau.ible, but we empllil5iv:. 
that we hllve not pmwd uIom NS us!"" the successor notion .nd 
uloma NI through N4, becaule we implicitly uaed two unproven 
facta. We at$urned that every nonempty whset ofN contaiN a IMat 
element and we UIIumed Ihilt If ... <F- I then no is the auccessor 10 
lOme number In N 

A."I:lorn NoS .. the baaisohrat1wllotlCallndloawn. Let PI, p." P;" • 
be ~ lisl of tultemcnUl or propositioN that may or may not be 
true . The principle of mathematical Induction _Ttl Wt aU the 
IUtementa PI'~. p;" ••• are true provided 

(I l l PI "true, 



I . TlN:Ilet N oIs.. ..... I ,s._ .. 3 

(I ) p ..... it .rue whenever p. it trw::. 

"" will refer to CI,). i.e.. the fact thai P, is true. aa the brl.$tS {or 
".I·"ron and we will refer to f'd as.he ,ndutiron ~q1 For a sound 
I'",.,fh.ued on mathemallcal induction. propenles (I,)and (11) must 
I~"h be verified. In pra.cdce. (II) will be easy to chec" 

I \Mmple I 
I' OY'I' I + 2 + ... + n = ~n(n + I) for nalural numbe .... II 

"'"Iullon 
(IIIr nih propollition ~ 

p.,", + 2+··· + n ~ i"(n+ I)" 

Ih'" P, aSllenlthat 1 = ! · 1(1 + I). p) assertll thai 1 +2 _ ~ ·2(2+ I l. 
I' ... ssensthat 1 +2+·· ·+37 "" !.37(37+ I) = 703. etC. In p"Mlcular • 
. '. a .rue UAenion which serves lIS our basis for induction 

~or the Induction step. AUppose that p. is !TUe. That Is. we 

.""'" 
1+2+"'+n=in{n+l) 

till<' Since we wish 10 prove P . ... , from this, we add n + I ((I both 
.kln 10 obtain 

1+ 2+ ···+n+(n+ 1)_ in(II+ l)+(n+ I) 

- tln(n + I) + 2(n + 11J - tcn + IXn + 2) 

- t(II + 1)('1 + ')+ 1) 

l1,ul p .... , holds if p. holds. 8y the princ'pie of IIkIthemaucal 
~u(tion. we conclude that p. is true for all n 0 

We emphaslU thai prior 10 the last sentence of our solution w~ 
.hd not prove "PO+ I is true." We merely proved an impliciltion "if p. 
"true. then p •• , Is true' In a sense we proved an inhnite number 
,.It _nions. namely P, 15 true; If P, IS lrue then p) 15 true; il PI is 
"0" thcn P1 I,true; if p, ia true th ... n p. it true; etC Th .. n we applied 
m.th~mauc:.JllndkKllon 10 conclude P, IS (rue. P, is lru". PI ia tru .... 
". II tru~. N( We al$O oonlr-M Out fomm1 ;.! u ..... Ih ... on .. JUSt proved 
.". "d~ll'r to'llroVl" thdn tn denve. It can be. tn, ..... IIt.lIl~r to gu ... 



4 I . . ...... h.cuon 

such a resull. SOmetimes resulUi such .. thIa are dbcow:red by trial 
and enw; 

I'.umple Z 
All numbe .. of the form'" - r are divisible by 5. 

Solu tion 
More precleely, we show tNl"" - 20 Isdivlslble by 5 fo, ~ n E N. 
OUr nth propotllion Is 

Po: '7" - 20 Is divisible by 5.' 

The basis fOr Induction PI is dearly tTUe, .Ince 71 - 21 .. 5. For the 
Inducuon step, .... ppoee thai p. is Irue.1b w:rIIY Po+ 1, we write 

7"+1 - 2"+1 .. 7"+1 -7.2" +7·2" - 1· 2" -717" _ 2"1+ 5.2". 

Since .,. - 2" ]a a multiple of 5 by the inducUon hypolhe.it, il 1blkJw1i 
that 7'*' - ZO+' Is alto a multiple of5. In fact. If.,. _ r .. Sm, then 
.,.-+1 _ 2"+1 .. 5. (7m + 2"~ We haw: aIIown thai p. Impllel 1'.+1, '" 
the Induction ltep holds. .... n IppliQtion of mathemaliQllnducdon 
oomplctu the proof. 0 

Esam ple J 
Show Ih.It I .In MI ~ nlllnill for all D41lural numbe", n and all real 
numbers It. 

Sol u tio n 
OUr nth proposition Is 

p.:' I,InMI ~ nlain.o1 rorall real numbers II.' 

11le baalI for Induction Is again clear: SuPPD'C p. Is tTUe. We apply 
the lIdditlon fonnula for line 10 obtain 

Illn(n + 1)Jt1 _ I sin(M + 1t)1 _I sln IU'OOU + COIMlin.o1. 

Now we apply the niangle lneqll.lllly and propertlelofthe absolute 
value [see 3.7 and 3.51 to obtain 

I aln(n + 1)Jt1 ~ ) sin ""1' I caul + I cos.,..I·I_lnltl. 

Since I cosyl ~ I for all!J we see that 

Illn(n + 1}l'1 ~ Illn""l + lal n.o1 . 



, 5 

Now we apply the Indualon h~ p. to obuln 

Ilin(n + I)¥I :!; 1'11111'1"1 + lain.:1 = (n + 1)I,ln"j. 

1111,1. P.+l holda. Finally. the reau!! holda for aU n by mathematical 
Induction. a 

Exerciscs 
1.1. PmVI! 1' +2'+ ·· .+,,>. i r(n+IX2n+I) IOtan natlolrat mul\be,. ... 

· I .~. PmVI! J + 11 + ... + (81'1 _ S) _ 4nl ~ .. iI. aU fLltural numben n. 

' 1.3. Prove I' + z> + . .. +,,' ... (\ + l+ .. · + II)' lOran natural numbc", 

•• 
1.4. (a) Cueaa. rormu~ lOr 1 + 3 + ... + (lII - I) by eYah,l&tIna tho: 

.... m lOr " _ I , 2, ] , and" [fbi" II ... I, tho: IUm II Itmply l.] 

(b) Pruve,.out IOrmu.la lUI ....... themalk.ollnducdoll . 

.. ,. Prove I + I +t + .. + .... 2-. braD narunll nuroben ... 

· 1.1i . Pro"., that ( II )" - .. " .. dlvlliblc by 7 when PI ~. natural numbef; 

. 1.1. Pro..., that .,. - 8,. - 1 \a dlvilible by 36 fOr all poeltlve lntqe .. n. 

1.11. The prlncJple of m.othe ..... tlaIlnduction Gin be fIIU'!ndod u 101· 
~ A list p .. . p ... .. ,. of pTtIpo.;OOni !llrue provided (I) p ... Is 
true, ( II) 1' •• , II tru.e ... heneve, p." true.nd n ~ '", 

(a) J>rovc thall'll ;> ,,+ I lOr aUlntqe", PI ;ec 2. 

(b) f'rove that .. l ;> .r lOr .U intege'" II ~ 4. [llecall that II! _ 
n(n - 1) ... 2 . 1; ilreumple, 51_ ' · 4 · ] · 2 · \ _ 120.1 

1.1. (a) DecIde fOr which Integen the Inequ.al ity 2" > II' .. true. 

(b) Pmveyour clalm In (.) by mawmaticllindualon. 

I. 10. """"" (211 + I) + (211 + 3) + (211 + 5) + ... + (411 - I) _ 3,,1 lOr aU 
pwltiYI: intqen II 

I , ll . ro.. eIICh .. f: N, Iet p. denote the _nion ... ' +~ + I ".n o:~n 
Integer." 

(.) PYovt: that p •• , "truOl whioneve, p." ""e. 



6 I. 1.'""'''''.iD .. 

(b) FOr whkh .. II p • .oct\IaIty true? Wha. II the IQOI"J./ of thll 
c:en;:iIc? 

1.12. ror .. t N, let .. ! [read· .. faccorlJ,]'[ denot~ the produce 1 · 2 · J ... .. 
""" leI O! _ I and define 

(;) · kl( .... 1 k)1 lOr k . O. ] .. .. ... . 

"I1le "'-"W theort!:PIt usena that 

(/I + t )· . (:)/1. + (;) .... -'b+ (;}'.-'IJ' + ... 

+(": ,)"'-' + (:)"" 
_ .... + "".-I t + i"'. -])g"-'IJ' + ... + nab" - I + &" 

(a) VerifY the binoml.ol theomm m- .. _ I. 2 • • nd l 

(It) ShowthatC)+(.~,) - (·;')b-~ - ] . 2. , '" 
(0;) I'TcMo the binomial theomm UIIirljj malh~matlc&l Induceion 

and pa.rI (b). 

§2 The Set Q of Rational Numbers 

S""II children first lam 10 add and 10 multiply "",tuTllI numberL 
After Bubtracelon is Introduced. the need to t:lpand the number IY. 
tern 10 include 0 and neptlve numbers becomes apparenL AI thll 
point the world of numbers is enbry;ed 10 Include the tel Z of.1I 
Int~. Thus we have Z _ [0. 1. -I , 2. -2, ... 1. 

Soon the space Z .Iao becomea jnadequaltl when dlvlalon is in· 
troduced. The aoludon]a II) enbfie the world ofnumbcrs II) Include 
.11 tnctiona. ACcordingly. we study the apace Q of all mnonal num 
berI. i.e. , nurnbeTll of the form -i where "'. " E Z and n ", O. Note 
thai Q conta ins aU termlnatin& decl""l. such lIB 1.492 - VI. The 
connection between de<:imau and re.:ll numbe .. la di3cu1tlCd In 10.3 
.nd §16. The space Q ]a • highly ... Lisfactory aigebTllIc Iy$lem In 
which the lY&1c opeTlltlonl addition. multiplication, 5UbtTllCtlon .nd 
dIvision can be fu lly Itudlod No .yltern Is perfect, however. and Q 
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"lnadcqUlote In.orne way&. In this sealon _ will consider !he de
r~ orQ. In the ne-.t KCtion _ will wut the good ru,turel orQ 
and then move on to the system orrul numben. 

TIle let Q of nHion.! numbe~ is a very nice ~Igebraic s}'Stem 
until one tries to .olve equations like xl _ 2. It turns out thilt no 
mllonal number utlsfiea this CQuatlon, and yet there are good re;I' 

lIOns 10 bellt:vc th,u lOme kind of number utisfiea this CQUIotion. 
Conalder; lOr cumple, I aqUire with ,Ides hilvina lerlilh one; ace 
t'!&ure 2.1. If d represcnu the length ofme dlqonal, then from ge.
ometry we know thai I ~ + I~ '" dl , I.e., tP _ 2. Apparentlylhere 
iI. positive length whose square is 2, which _ write as ./i Bul 
.fi Cil nnQt be a rntionil number, as we will show In t:Umple 2. 
or coune, ./2 can be apprrudmaU'ld by ralic.mal numbe .... There 
are rational numbe ... whose sqWlret are close to 2; for cumplc. 
(l4142i = 1.m96I64lnd (1.414Ji _ 2.00024"9. 

II is evident that there .re lots or rndona! numbcn and yet there 
Ire "pps" in Q . Here is another w.y to view lhlssitualion. Consider 
the graph ortne polynomlal:xl - 21n figure 2.2. DoeIIlhe graph of 
xl- 2 cross the .. ·axla? We Ire inclined to say It doea, be<:aUIe when 
_ draw the .. ·ula we include "all" the points. We .1I0w no "gaps." 
IIUI notio:.e thai the graph of :xl- 2 sUps by.n the rational numbers 
on the .. .,uIs.11w:.t-all1a is our picture of the number line, and the 
llel of rational numbe ... again .ppean to have lignificant "ppL" 

There iUe even moreewUc numbe~ IUch lilt and e t .... t Ire not 

r.tlonal numbe ... but which come up nlturally in rmIthernatiCI. 11w: 
number 1f Is basic to the llIludy ofeln:le. and spheres, and e arises In 
problema ofexponentlal growth. 

We return to./2, This Isan exampleofwlut laalled an algebraic 
numberbeCilu.e it ulilfies!he equation:xl - 2,. 0 
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1.1 Dc6nltion. 
A number if ulJooA an a/sdImlC ruur<l::toer If It utilflea • polynoml.ll 
equation 

a..i" +a._,x"-l + ... + all! + ao _ 0 

when:: the coefficlen~ /10. II" ... ,II,. are Integcft, a. # 0 and n ~ I . 

RIItlonal numbe .. ill'e always a1&ebnlc numbe~ In fact, Ifr ="i
II 11 ratlonal number 1m, n E Z and n 'I O~ then It satisfiea the 
oqUOloon 11K _ m .. O. Nllmben defined In terms of.r, T. etc. [or 
fractional exponents, If you prel'er[ and ordinary atacbralc operatioN 
on the rational nl,lmbers are invanmly aJaebralc numbel'L 

EDmple t n. 3,2, (17)11), (1 + S,n)'1l and ((4 - 1 . JI " )/7)'11 all n:ptUenl 
.lgclmlLc numben.. In bel, l> i4 11 IOlutlon of 17 .. - .. = 0,3' /'2 
n::preaents I IOlutlon of xl- - J _ 0, and (17)'" represents 11 so. 
lutlan of ~ _ 17 = O. The expression a .. (2 + !j"l),,1 mcan& 
111 .. 2. + 5 111 or a l _ 2. ... 5113 10 thai {III 2)l .. S. Therefore 
we have a l . 6a~ + 12a1 _ 13 .. 0 which show. thai a .. (2 + 5111)"1 
.. uslie. the polynoml,d equation ~ - 6x" + I ~· 13 .. 0 Similarly, 
\hce>:prualonb {(4 .1.J'·)f7)'·lle""'",7~ .. 1·3"I,hence 



1 Jill _ 4 - 7f12, hence 12 _ (4 _7b"}l, hence 49b" - 5lif12 + 4 _ 0 , 
Thu, It ..atisfie. the polynomLtI equation 4!b" - 56r' + 4 _ O. 

The ntJ:1 thton:m rNybe r~milbr from elementary a!geb13. [I i5 
the Ihtortm IhiItjuttifie. the fol1owilll rtma.-u: the only possible 13· 

tlonalllOlurlons of ;tl-7.wl + 2.1- 12 '"' 0 art 201 , :i:2, ±3, ±4, %6, ± 11, 
10 the only pou.ible (rallonal) monomial faclOTli of;tl-7.wl + 2.1 - 12 
Irtx-I,x+l,x-2,x+2,x-3,x+3,x-4,x+4,x - 6,x+6, 
x 12, x+ 12. We won'! pu~ue these algtbralc; pmblerm; we mertly 
ltUlde thesc observationa in the hope that they would be £amUIar. 

The rteXllhtorem alllOallowa one to pm~ thl!u]gcbn[c numbc~ 
tMt do nOt look like I3lio",,1 numbc .. art not I1Itlonal numbers. Thu, 
./i Ia obvioualy .. rational number, whIle .fi . ./3, ..;s, elC. turn out 
w be nonl31lona1. See the examplc! fOliowina the theorem. Recall 
that an inlegC.r k II ill f«;:tor of an [nleger m or divrdu m If f Ia ~bo 
I n Integer. An Integer p O! 2 1$ ill prUnI! provided the only ~ltlve 
fIcto~ ofp Irt I and p. Jt CiIIn be aIlown that cvcry poeilive inUlger 
gn be written as a produCt of p rtl'l\C5 and that thla CiIIn be done ;n 
only one way, except fOr the ordcrofthe factors. 

1.1 Rational Zo:nlII Theorem. 
Suppoae IMl OG,a ..... , a. a~ mlllft13 and lhat r i3 a ralional number 
1tIl14{yi", fire polynonfiaJ apuuion 

a"x" +a.._1r'-L + ... +aLx + 110 = 0 ('J 

iIIIIen! n 2:: I, a.. ~ 0 and 110 It 0 wnf~' _ ; I<iI1ue p. q a~ inlq£n 

Mill", nocommon{actorsandq ¢ O. ThenqditWsa" andpdillldaao 

In other word&, the only ratlonal candidlll" fur solutions of (l) 
luve the form! where p divide. 110 and q divideIL a,. . 

I'roof 
Wt artalvcn 

(P)" (P) O-> p~ q + P.·L q + 
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We multiply through by q" and obtain 

a.,p" +u,,_ ,p"- 'q+a"_~-lrI+··· +aziq"-' +a,pq"-' +aoq" ~ D. 

(2) 
If we solve for aoJi' • we obtain 

a.,p" "" -q[a~_,p·-' +"._~->q+ ... +a,rq"-l +a,pq"-I +aoq"-' ). 

[t folloW!! that q divides a..F'. 8utp and q have no common factors, 
so q must divide " •. [Here are more details: P can be wrillen 3!1 

II produCt of primes P,P>"'A where the p,'s need not be distinCt. 
Ukewlse q can be written as a produCt of primes q,q," 'q,. Since q 
divides a.,p", the quantity ¥ '" -r:::..t( must be an integer: Since 
no p, can equal any q., the unique !actorlz.atlon of u" as a product of 
primes mu.st Include the product q,qz" ·ql. 11ms q divides u".J 

Now we solve (2) fora"q" and obtain 

aoq" '" - P(a.P"-' +"._ IP"-lq+,,"_~-3r1 + .. . +,,:tP'I'-1 +",q"-' J. 

Thus P dIVides aoq" . Since p and q have no common factors, p mUSt 
divide au. • 

Eumple 2 
./2 cannot represent a rational number. 

Proor 
By Theorem 2.2 the only rational numbers that could possibly be 
solutions of Ii' - 2 = 0 are ± 1,±2. [Here n = 2, "I'" I. ", = D, 
au = - 2. So "'tional solutions must have the form ~ wherep divides 
au = -2 and q divides al '" I.] One can substitute each of the fou r 
numbers ±I, ±2 Into the equation,r - 2 = 0 to quickly eliminate 
them ;us possible solutiona of the equation, Since ./2 represenUi a 
!IOlutlon of,r - 2 = 0, it cannot represent a rational number, • 

EDmple 3 
./l7 cannOt represent a "'tional number. 

p~r 

The only possible rational !IOlutiona of,r - 17 = 0 are ±I, ±17 and 
none of these numbers are !IOlutlona. • 



EDmploe -4 
6 ' ) cannot represent iI rational number. 

I'roof 
The only ponible rational AOlutloru of xl - 6 = 0 Ire * I, ±2, *3, *6. 
It Is ClIfy to verify that none of these eight numbera satisfies the 
equalion xl - 6 "" O. • 

eumple5 
.. .. (2 + 5" 1)"1 doc5 no( repreaent iI rational number. 

,-, 
In Exilmple I we showed that /I represents a AOlution of K' - '"' + 
12r - 13 .. O. By Theorem 2.2, the only poIiIible r.l\lon.llIOlutions 
'1') ±I, ±Il. when" _ 1 or - I, the leA hand side Oflhc equation 
~ - 6 .nd when" .. 13 or - 13, the leA hand side of the equ.tion 
IU,.". OUI to cqua.l4,657,458. 11118 lutcomputationoould be aY'Oided 
by ull", • lillie cornman Kille. tither observe thalli 18 "obviously" 
bllJ8e:r than 1 and lell than 13, Of" oo.el"Ye thaI 

l:f - 6· U' + 12 · U I - IJ _ 13(IJ~ - 6·13' + 12 · 13 - I);o! 0 

11nc;e the lenn In p-ncnthesel e;lnnOl be zero: it 18 one lelll than 
lOme multi ple of 13. • 

l:..omplc 6 
II ({4 - 2./3)17) ,1] docs not repreaent a rational number. 

,-, 
In I::Dlmpie I we showed thai b 18 I IOlution of 49X' - !i&' + -4 ,. O. 
The only poIIIIibie rational IOlutioru are 

*1 , ± 1/ 7, ± 1/ -49, ±2, ±217, * 21-49, *4, ±-417, ±4/ 49 

Iboomplete our proof, all we need todo IsIII05tltutc these eighteen 
14IIndidatea Into the equation 49.t - W + 4 _ O. Thla prospect 
" 110 dlac.ouraging. however, that we chOO5C II) lind a more clever 
oIpproaeh. In Exilmplc I , we al.:I showW that 12 '" (-4 - 71rt. Now 
If b were rational, then -4 - 71r would aIso be rational [£.v;rclac 2.61. 
10 the equation 12 _ r would have a rational IOlution But the only 
' ...... lblc rationallOlutlons to;xl .. 12 .. 0 are *1 , ±2, ::1:3, ±-4, ±6, *12, 
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and lhese .U can be eliminated by mentally 5ubetltutina them Into 
the equation. We oonc:1ude thaI 4 -71r unnO! be !'lItionai, $() b COInnal 
be !OIliena!. • 

AS iI pnalallNtter, miloyor all orthe rational candilbteagiven 
by the Rational Zeros11leorem can be eliminated by apprw:ilTlilti", 
the qlUlntity In quesliun lpemaps with the aid of • e;olcul'lIorl. It 
is nearly obv1oua WI the value. In Eumplea 1 through 5 are nOI 
Inrcgera, while.U the fllionai cand idates are. MycalculalOTuYllhal 
b in E1ample 6 iaapPlUl'im;o.lCiy .2767; the nuresl rational CAndidarc 
is +217 whlth ilapprmimatcly .2851. 

Excn::isc8 
2. 1. Show thai ./3, ./5, .ti . .fii, and 51 are not rational numbers. 

2.2. Show lhal 2'11, 5"", and (13)'" do nat rep~nt ratlona] numbers. 

• 2.3. Show thol (2 + .!i)tn doeI nat repreleRl I ratlorllli number; 

2.4. Show llYt (5 - ./l)'" doa not repn:-entl rational number; 

• :'/'.5. Show lhalll +./iF doeI not repruent. rational number. 

1.6. tn connection with £Umpl~ 6, diM:uMwhy 4 - 11i' must be "ulo",,1 
if b II rat1QnaI 

\.1r r (Q.r#O,o-..( .( " ,u .. t_ .. l""O< tht r~J< 
... 01. ,. " .. ,e ,r ~ . t _l 101 ... "" ,u"e ..., ' .. l .. ~fi._ . 

§3 The Set IR of Rcal Numbers 

The aet Q Is probably the larsest 'y"em of numbel'll with which 
you rully feel comfortilble. There au aome aubtledes but you lulvoe 
Iurned (0 cope with them. For example, Q Is not simply the .set 
t ~ , lit, n .. Z, n -,; 01, sinor. we reprdllOme ~In of different look
ing fnlctlo", .u equal. For cumple, ! and I are regarded u the 
sune element ofQ. A rigorou,development ofQhued on Z, which 
In tum Is bMed on N, would ""lulu us (0 Introduce the notion of 
equi valence clau; aee [38]. In th'- book we iMume a familiarity with 
and undel1U1ndina orQ a. an alpl1llc I)'stem lIowever, In order 



10 ~rify exactly what we need 10 know about Q. we let down aome 
of Iu ""'Ic uioms and propeniea. 

'!"he basic aJgcbl;llcopel;lOOnl in Q are addition and multlplfu.. 
tion GIven 1 pair <II. b of 1;10011;11 numbctt. the turn <II + b and the 
productab llao repreaent rational numbeB. Moreover, the following 
propertlell hold. 

A I . II + (b + c) _ (II + II) + c for all II. II, c. 
A2.II+b _ b+llforallll,lI. 
A3. II + 0 _ II for all II. 
A4. for each <II, there is an element - II tuCh thai <II + ( - <II) '" O. 
MI. ll(k)_(tib);foral\lI,b.c. 
M2. lib _ ba for all <II, b . 
.. 3.1I ·1_ <IIIOr&lI<ll. 
M4 .• ·or each II ". o. ~ is an element <11-1 IIUdt wt ",, _1 .. I . 

ilL Il(b +e) _ ab + <Ie: i:lr all <II, b,c. 

Propert~ Al and Ml are called the Q"PrilltlW /(lUll, and prop
rrtlet A2 and M2 are the commUUlIlW ill ..... Property DL is the 
d..tnbunw /(Iw; this Is the [ea3t obv\oUllaw and b the one rnalju5-
tltlea '(;,ctomation' and 'multiplying out'ln .lgcbl;l. A system rnal 
h ... more than one element and aalllllies theIe nine properties is 
CAlled I ~Id. The basic algebraic properdc:a ofQ can proved solely 
n" the balia of thelle field propertie& We do nOI want to pursue 
Ih is topic In any depth. but we UJustr.lle our ~Im by proyl", some 
I~,"n"r propertlellin Theorem 3.1 below 

The 8111 Q.1ao hu an order &uucture!!; ullsfylng 

01. Given a and b. either <II !!; b or b !!; a 
01. [fa !!;bandll!!;a,lhena_b. 
UJ. [fQ!!; bandb !!;c,\hena !!;c. 
().t . rfll!!;b,thcna+c!!;b+c. 
U'I.lfa!!;lIandO!!;c, thenox!!;k. 

Property 03 Is called the mm.nfiw iIIw. ThJa Ja the chaTlicteristic 
PfI)peny of In ordering. A field with an ordcrina IllIJarylng properties 
III through OS Ja called an ordcrtd field. MOlt of the algebr.lic and 
IIfd,.r properties ofQ ColIn be e5t;1bllshed for Iny ordered field. We 
_Ill prove a few orlhem In Theorem 3.2 below 
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' ICURI!: 3. 1 

'the mathemalic.tllym:m on which we will do our al1.ilytls will 
be the set R of an real nwnbcr.l. The set R will Include aU ratioral 
numbe.., ,II algebraic numbert, "', e, and mo~ It wUl be a tet Wt 
Colin be drawn uthe real number line; see Figure 3.1. That Ia, every 
real number will coTl9p:lI1d 10 a point on the number Une, and 
every point On the number line will OOTl9pond 10. real number; 
In particular, unlike Q, R will not have any "gaps.' we will al"" see 
that real numbera have decimal expaMiona; see 10.3lnd §I6. These 
remarks help describe R. but we certainly have not defined R ;III 

a concise mathemallc;al objec::L It IU~ OUt Wt R an be defined 
entirely In lenni of the IIttQ ofrallonal numbera; we Indicate In the 
oplioral §6 one way thai this can be done. aut then il Is. Iong.nd 
tedious tuk to show how 10 add and multiply the objectl defined In 
this w.y and 10 ahaw that the lit! R , with tileae operations, utlaflea 
all the familiar algebralc.nd OrUcr propenles duot we eJlpe<;I. to hold 
ror R. 1b develop R properly from Q In thll way and 10 develop Q 
properly from N would take us several chaptef'l. Thill would defeat 
the purpollt of this book, which is to ;u:eept R ... nUlthematial 
lI)'5tem and 10 Itudy .orne Importaot pmpertiel ofR and functio"* 
on R. Nevenhelesa, Ills desirable to specify exactly wlult propenlel 
ofR we Ire lSIuming. 

Real nurnbe .... le. , elemenf3 of R, an be lidded together and 
multiplied together. That 15, given real numbert 0 and It, the fUm 
o+1t and the product 011 1110 n:pre$ent teal numbera. MOI"I'>OYer, these 
operatlona satisfy the field propenlea AI through A4, M! through 
M4, and DL. 'the tet R;llso ha.a an order IItnIcture :5 Wt satisfies 
propenielOI through 05. ThUI, like Q, R II an ordered field. 

In the remainder of this IeCdon, we wUl obtain lOme reaulll 
for R WI are valid in any ordered field. In panlcular, these n:IUllS 
would be equ.Uy valid if we restricted our .tlention 10 Q These 
n:marlu empha.alze the limit,ritlet between R.nd Q. We have not 

yetlndi(.ll~d how R can be dlacingul.ahed from Q as a malhc.matleal 
object, although WI: ha....,. aasened that R hal no '&lPIl< • We will make 
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thl& obiervalion milch more precise In the nut ICCdon. and then we 
will give. 'pp filling" axiom that finally will dl$tlnguWt It from Q. 

1.1 Theorem. 
llw= ft;IlIowI", "'" co~nca 0{ 1M fWd propazlU. 

<I) lI+c _ b+ cimp/ta'lI = b. 
<"l II ' a _ a fOr 118 II, 

I III) ( - ll}b '" - 00 {or aU a, b; 
{I,,} (-llX-b) .. ab{oral/a,b, 
( ,,) DC _ Ix: and c". a Imply a = b, 

("I) ab _ a ,mpIia tellhua = a or b '" 0, 
{ora,b,CER. 

,-, 
<I) a+c _ b+c Impliell (a+ .:) +(-c) _ (b+c)+(-c), 10 by AI , 

we ha'le 11+ [c +(-c)] = b+I.:+{~)I. By M , lh\t. red\lces to 
II +0 _ b+O, lOa = bby Al. 

<"l We \lie Allnd DL to obIainll ' O _ a · (0+0) _ .. · 0+ 11·0, 
10 0 + 11 · 0 ", a· 0 + a· O. By (I) we eoncll.lde that 0 _ a · O. 

(III) Since II + (-a) _ 0, we have ab + (-11)11 _ III + (-a)1' b = 
O· b _ a _ lib + (-(ab). From (i) we obtain (-a)ll _ -Cab). 

(II,) lind (,,) are leA to Exercise 3.3. 
( ,,) [rob _ a and b '" a, then 0 .. b-I · 0 _ 0, b- ' '" (ab)· b-I = 

lI(bb- ' ) _ II · 1 = a. • 

1.:1 TIw:orem. 
1"" P'lo"""1 a'" colUllqllClICQ 0{ 1M propemlI 0{ IV! ordu£d fidd. 

(' ) ifa ~ b, lhen - b ~ -a, 
(II ) if II :5 b 11M C :5 0, fhert be :5 AC,' 

(III ) ifO:5l1aMO:5b,lnmO:5ab, 
(I ,,) O ~ IIJ{oralla, 
(.) 0<1 , 

( ... 1) Ira < a, tI1o!n 0 < a-'; 
(.11) Iro < a < b, IMn 0 < b-I < 11 -'; 

~a,b,cER 

Note that a < bmeansa :5bandll",b 
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....., 
( i) SUPIJ05C that /I :5 h. By 04 applied to c ~ (-II) + (-b), we 

hlIve /I + 1(-/1) + (-hl] :5 b + [(-/I) + (-b)[. It followti thai 
-b :5 -4.. 

(ii) If /I :5 b and c :5 0, then 0 :5 --c by (I). Now by OS we hl.ve 
/I(-c):5 b(-c), I.e., -1IC:5 -be. From (11 again, we see thai 
b<: :5 /Ie. 

em) If we pul/l .. 0 In property OS, weobu.in: 0:5 b and O!S c 
Imply 0 :5 be. Except fOr noulion, !hit ill euWy ilMertion 
(ill), 

(Iy) For any a, either a l": 0 or /I !S 0 by 01. If /I l": 0, then /I' l": 0 
by (Ui). If /I :5 0, then we hne -/I l": 0 by (I), 10 (-at l": 0, 
I.e.., /I' ? 0 

(v) II left to Exerclle3.4 . .. >t tV 

(vi) Suppoee thai 0 < /I but thai 0 < ,,_I &olla. L1>en we mUM have 
/I_I !S 0 and 0 :5 _/I-I. Now by (III) 0 :5 a{-a- 1) = -I, 10 
that I :5 0, contrary to (v). 

(vii) Ia left to Exercl5e 3.4. • 

Another Important notion that should be &omnlar III thai of 
abtolute yalue. 

3,3 Ocfinltlon. 
We define 

\aI-a if 1Il":0 .nd ~I .. -/I if a:5 O. 

lal Is called the IIb&ob.<te!GI1ie ora, 
Intuitively, tho ablolute val\lC of a reprexnts tho dlsunce be

tween 0 and a, bu t In &oct we wU1 dqine the idCII of'dillunce' In 
terTJl50fthe "abaolute Villue," which In tum waa defined In terms of 
the onleriq. 

3.4 Ocfinidon. 
For numbe ... a and b we define dist(II, oJ "" \a - hI ; dlst(lI. oJ 
represents the diMtI.,," lIetot«rl/l and h, 

L1>e basic pfOpen~ Orthe IbIo;>iute yalue are given In the next 
theorem 
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l .5 n..r:orem. 
(I) IaJ ~Op-alllleR. 

( n) IabJ_ IaJ·Jbtp-ah,beR. 
(UI) la+bJ-s IaI + (III,1Oralla,beR 

''roo' 
(I) Is OOvlou. from the definition. (The word 'OO"lou," lIS U&ed here 
l lanifies that the reader . hould be able IOquic;kty see why the resu lt 
ill true. Cenalnly If a ~ 0, then lal _ a ~ 0, while II " 0 implies 
"' I - - a > O. We will use upresaions like "obviou.aly" ,nd "clearly" 
In pl...::e of very almple argumenl.l, bUI we wl1l not ute these umtU 

\I) obec:ure IJUbtie p:llnm.1 
(U) 1l1.ere are four e;LIy uses here. I f a ~ 0 and b ~ 0, then 

lib ~ 0, 10 lal ·Ibl .. I1b .. labl. If a !: 0 ,nd b :s 0, then - II ~ 0, 
b ~ 0 ,nd (-aX- b) ~ 0 110 that ]/il l· JbI- (- IIX-b) _ all '" 1abI. If 

• ~ Oandb :s 0, then - b ~ O.ndll(- II) ~ OlOthal laHbJ - II{- b) .. 
(ab) _ lab1. If II :s 0 "nd b ~ O, lhen - II ~ 0 and (-11)11 ~ 0 10 Uu.1 

1111· Ibl - (-11)11 _ - all = labl. 
(UI) The Inequalities -Ial :s II :s ]al ,re obvlou', tlnee either II =

~I or elae a _ - ]al. Similarly -Ibl .:s b .:s Ibl. Now fou r applications 
"r04 yield 

lI'that 

- (Ial + Ibn!: a + b:s ]al + 1111 , 

Ill .. tel .. UlI WIll + b:s 1111 + IIII.nd alao thai -(a + b) :s ]al + 1bI. 
'lfIol.e ·11 + III It equal ro either a + b or -(a + b), we oonclude thai 

1 +- bt .:s lal + lb!· • 

I.f! Corollary. 
,hll(a, c) ~ dlal(II, b) + dist(b. ~) fOr aR a , h, c 6 R. 

""'<If 
""', un apply Inequality (Iii) ofThcorem 3.5 to /I It and b - C 10 
,>lll.tln I(a b) + (b - ell OS III bl + ,b eJ or dlll(a, e) _ la - cl .:s 
'. III +Ib cI OS dtal(lI,b)+dltt(b. c). • 
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• 

FIGURE 3.2 

The ineqWlHty In Corol1My 3.6 ill very cIoeely reblOd to an 
lnequ.ality ooncernl.,. poinl.l a, b , C In the pbne, and the Jauer In
equality can be Int.erpreted u a 'liHemenl about tm"8lC5: !he length 
of iI .Ide of. Imngle t. Leu than Or equal t.O the ,urn of the lengths 
of the other two aidea. See Figure 3.2. For this reason, the inequality 
In Corollary J 6 and Its close relative (UI) In 3.5 are often ailed the 
1hangie t~lIl1 

3.7 'niang.le Inequality. 
ja + hi .:".: 1111 + 1111 ~ CIll a,1I 

A useful variant of the lri.I.ngle IneqlUlll\y .. given In Exer· 
cIse 3.5{b). 

E~erci8c8 

:1.1. (.) Which of the propertiQ ... '· ... 4, MI -M4, Dt., 01-05 fall fOr N1 

(b) Which oro- pn:>pertiQ tail iI. Z? 

3.1. (a) The commutative law A2 wu ..-I In the proof of (II) In 
Theorem U Where? 

(b) The rommulatl"" Law 1\2 w ... 110 \lied In the proof of(UI) In 
Theoreml] where? 

.J.]. Prow: ( i .. ) and ("1 of Theorem 3.1 

·3.4. """'" (v) and ("'1) oI'~m l.2. 

l.5. Cal Show thal lbl ~ .. ifand only if _a ~ II':!" 

(b) Prove Wi t"" lilt l ~ '" '" ",".n a, II' <Ii!. 



• :1.5. (a) PI-ovo! thalia +"+<:1 s laHlbI+1cI iI. all ", ".t • It. Hi11l, ~pply 
the INngIe inequality IWioe. Do _ oonNde. e.,,1 caMa 

(b) Ule IndllCOon 10 prove 

la, +"1 + ... + ... 1 s ""I + lal l + ... + ""'I 

for .. "umbe,.",,"l, .. , .... 
• ).? (a) Show thallbl < " Ifand only If - " < b < II. 

(b) Show willa-I>[ < c ifandonly If"-.: < a < b+c. 

(c:) Show !.Nt Ia - III s c Ifand only Ifb - <: S":5 b +.:. 

· I.a. l.et II, b ~ It. Show !.Nt if" S b, for every b, > b, then" :5 b. 

§4 The Completeness Axiom 

In this I«llon we give the: eomplctcnelS a.dom lOr R. Thill Is the 
ulom that wl\J uaure ua Wt R has no ·P .. • It "-- f" .... reac:hing 
r.onaequenc::e. and .lmoIIt every aignilicant reault in this book relies 
"n It. MOIIt theorenu In this book would be £alae If we restricted our 
world of numbers to the let Q ofratkmal numbera. 

4, 1 Ik lln ltlon. 
1,1'1 S be. nonempty IUb5et ofR. 
(a) If S oonulllt . I~rgest element", (that iI.", belongs to S and 

• S II) for "II. E 5], then we call"" the maoim .. m O/"S Ind write 
.. _~XS. 

(b) If S oonul", a amallest element, then we c:.all the .mallest 
element the mznimwn O/"S and write It as min S 

' ..umpJc: I 
(a) t:very finIte nonemply subset of R has a rNJlmum and <II 

minimum Th .... 

ntaJ(I,2,3.4,51=5 ~nd mln(l,2,3,4,51 = 1, 

lItuIO,". -?~. 3, 4/31 = " ~nd mlnjO, 11", -7, ~.3, 4/31 = -7, 

mUIII E Z: - 4 < 11:5 1001 _ 100 .nd 

minI" E Z - 4 < II :5 1001 -.1 
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(b) Consider real numbers a and b where a < b. The following 
notation will be used throughout the book: 

[a, b] = {x E JR. : a ~ x ~ b}, 
[a, b) = {x E JR. : a ~ x < b}, 

Ca, b) = {x E JR. : a < x < b}, 
Ca, b] = {x E JR. : a < x ~ b}. 

[a, b] is called a closed interval, Ca, b) is called an open interval, 
while [a, b) and Ca, b] are called half-open or semi-open intervals. 
Observe that max[a, b] = band min[a, b] = a. The set Ca, b) has 
no maximum and no minimum, since the endpoints a and b 
do not belong to the set. The set [a, b) has no maximum, but a 
is its minimum. 

(c) The sets Z and Q! have no maximum or minimum. The set N 
has no maximum, but min N = 1. 

(d) The set {r E Q! : 0 ~ r ~ .J2} has a minimum, namely 0, but 
no maximum. This is because .J2 does not belong to the set, 
but there are rationals in the set arbitrarily close to .J2. 

(e) Consider the set {n(~l)" : n EN}. This is shorthand for the set 

The set has no maximum and no minimum. 

4.2 Definition. 
Let 8 be a nonempty subset of JR.. 

(a) If a real number M satisfies s ~ M for all s E 8, then M is called 
an upper bound of 8 and the set 8 is said to be bounded above. 

(b) If a real number m satisfies m ~ s for all s E 8, then m is called 
a lower bound of 8 and the set 8 is said to be bounded below. 

(c) The set 8 is said to be bounded if it is bounded above and 
bounded below. Thus 8 is bounded if there exist real numbers 
m and M such that 8 ~ [m, M]. 

Example 2 
(a) The maximum of a set is always an upper bound for the set. 

Likewise, the minimum of a set is always a lower bound for 
the set. 

(b) Consider u, h in ~,a < h. Th(: numher his;1ll upper bOIIll(j filr 

e;l(:h of the sets I{I, "I, (({, Ii), ItI, h), (fl, hi. I':vcry 1I11111bel i;lrgcr 
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than b is also an upper bound for each of these sets, but b is 
the smallest or least upper bound. 

(c) None of the sets Z, !Q and N is bounded above. The set N is 
bounded below; 1 is a lower bound for N and so is any number 
less than 1. In fact, 1 is the largest or greatest lower bound. 

(d) Any nonpositive real number is a lower bound for {r E Q : 
o ~ r ~ viz} and 0 is the set's greatest lower bound. The least 
upper bound is viz. 

(e) The set {nC- 1)" : n E N} is not bounded above. Among its many 
lower bounds, 0 is the greatest lower bound. 

We now formalize two notions that have already appeared in 
Example 2. 

4.3 Definition. 
Let S be a nonempty subset of lIt 
(a) If S is bounded above and S has a least upper bound, then we 

will call it the supremum of S and denote it by sup S. 
(b) If S is bounded below and S has a greatest lower bound, then 

we will call it the infimum of S and denote it by inf S. 

Note that, unlike max S and min S, sup Sand inf S need not 
belong to S. Note also that a set can have at most one maximum, min
imum, supremum and infimum. Sometimes the expressions "least 
upper bound" and "greatest lower bound" are used instead of the 
Latin "supremum" and "infimum" and sometimes sup S is written 
lub S and inf S is written glb S. We have chosen the Latin terminol
ogy for a good reason: We will be studying the notions "lim sup" and 
~im inf" and this notation is completely standard; no one writes "lim 
lub" for instance. 

Observe that if S is bounded above, then M = sup S if and only if 
(i) 8 ~ M for all 8 E S, and (ii) whenever Ml < M, there exists 81 E S 
such that 81 > MI. 

Example 3 
(a) Ifa setShas a maximum, then max S = supS. A similar remark 

applies to sets that have minimums. 
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(b) If a, b E lR and a < b, then 

supra, b] = sup(a, b) = supra, b) = sup(a, b] = b. 

(c) As noted in Example 2, we have inf N = 1. 
(d) !fA = {r E Ql: 0 S r S .J2}, then supA =.J2 and inf A = O. 

(e) We have inf{nC- 1)" : n E N} = O. 

Notice that, in Examples 2 and 3, every set S that is bounded 
above possesses a least upper bound, i.e., sup S exists. This is not an 
accident. Otherwise there would be a "gap" between the set Sand 
the set of its upper bounds. 

4.4 Completeness Axiom. 
Every nonempty subset S oflR that is bounded above has a least upper 
bound. In other words, sup S exists and is a real number 

The completeness axiom for Ql would assert that every nonempty 
subset of Ql, that is bounded above by some rational number, has a 
least upper bound that is a rational number. The set A = {r E Q : 
o S r S .J2} is a set of rational numbers and it is bounded above by 
some rational numbers [312 for example], but A has no least upper 
bound that is a rational number. Thus the completeness axiom does 
not hold for Ql! Incidentally, the set A can be described entirely in 
terms of rationals: A = {r E Ql : 0 S rand r2 S 2}. 

The completeness axiom for sets bounded below comes free. 

4.5 Corollary. 
l~very nonempty subset S oflR that is bounded below has a greatest lower 
bound inf S. 

Proof 
l.ct -8 be the set {-s : S E S}; -S consists of the negatives of the 
n u m hers in S. Since S is bounded below there is an m in lR such 
that m < s for all s E S. This implies that -m ::>: --s for all s E S, 
so m > u f()r all u in the set -So Thus -8 is hounded ahove hy 

rn. The Completeness Axiom 4.4 applies to -S, sO sup(S) exists. 
!"iglln: if.l sugg(~sts that we prove int'S -,c - sur( -8). 

! .el SII sup(-S); we need to prove 

(I) 
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t • • • 
m o The set S 

• • • I 
/sup (-S) 

o -m 

The set-S 

FIGURE 4.1 

and 

ift::::: s for all s E S, then t::::: -so. (2) 

The inequality (1) will show that -so is a lower bound for S, while 
(2) will show that -so is the greatest lower bound, that is, -so = inf S. 
We leave the proofs of (1) and (2) to Exercise 4.9. • 

It is useful to know: 

if a > 0, then 
1 

< a for some positive integer n, (*) 
n 

;md 

if b > 0, then b < n for some positive integer n. (* *) 

'I 'hese assertions are not as obvious as they may appear. If fact, there 
(:x ist ordered fields that do not have these properties. In other words, 
I here exists a mathematical system that satisfies all the properties 
/\ I-A4, MI-M4, DL and 01-05 in§3 and yet possesses elements a > 0 
,llld b > 0 such that a < lin and n < b for all n. On the other 
lund, such strange elements cannot exist in lR or CQl. We next prove 
III is; in view of the previous remarks we must expect to use the 
,mnpleteness Axiom. 

,1.(; Archimedean Property. 
I f II > 0 and b > 0, then for some positive integer n, we have na > b. 

I'his tells us that, even if a is quite small and b is quite large, some 
IIIlcgcr multiple of a will exceed b. Or, to quote [2], given enough 
11I1W, one can empty a large bathtub with a small spoon. [Note that if 
\\'(' sci h I, we ohtain assertion (*), and if we set a = I, we obtain 
,I:,';cllioll (**),1 
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Proof 
Assume the Archimedean property fails. Then there exist a > ° and 
b > ° such that na :s b for all n E N. In particular, b is an upper 
bound for the set S = Ina : n EN}. Let So = supS; this is where we 
are using the completeness axiom. Since a > 0, we have So < So +a, 
so So - a < so. [Th be precise, we obtain So :s So + a and So - a :s So 

by property 04 and the fact that a + (-a) = 0. Then we conclude 
So - a < So since So - a = So implies a = 0 by Theorem 3.1(i).] Since 
So is the least upper bound for S, So - a cannot be an upper bound 
for S. It follows that So - a < noa for some no E N. This implies 
that So < (no + 1 )a. Since (no + ])a is in S, So is not an upper bound 
for S and we have reached a contradiction. Our assumption that the 
Archimedean property fails must be in error. • 

We give one more result that seems obvious from our experi
ence with the real number line, but which cannot be proved for an 
arbitrary ordered field. 

4.7 Denseness of Q. 
If a, b E lR and a < b, then there is a rational r E Q such that a < r < b. 

Proof 
We need to show that a < ~ < b for some integers m and n where 
n > 0, and thus we need 

an < m < bn. (1) 

Since b - a > 0, the Archimedean property shows that there exists 
an n E N such that neb - a) > 1. Since bn - an > 1, it is fairly 
evident that there is an integer m between an and bn, so that (1) 
holds. However, the proof that such an m exists is a little delicate. 
We argue as follows. By the Archimedean property again, there exists 
an integer k > max{lanl, Ibn!}, so that 

-k < an < bn < k. 

Then the sct U E Z : -k < j :s k and an < j} is finite and nonempty 
and we can set 

m - min{j (;r::k < j < kand WI < /I. 
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Then an < m but m - 1 ::::: an. Also, we have 

m = (m - 1) + 1 ::::: an + 1 < an + (bn - an) = bn, 

so (1) holds. 

Exercises 

• 

·4.1. For each set below that is bounded above, list three upper bounds 
for the set. Otherwise write "NaI' BOUNDED ABOVE" or "NBA." 
~(a) [0,1] >'-(b) (0,1) 
(c) {2,7} (d) {]f, e} 
.(e){~:nEN} (f){0} 
(g) [0, 1] U [2, 3] (h) U~l [2n, 2n + 1] 

~ (i) n~=l[-~' 1 +~] )< (j) {I - -dn : n E N} 

(k) {n + (-~l" : n E N} (1) {r E Ql : r < 2} 
.(m) {r E Ql : r2 < 4} fr (n) {r E Ql : r2 < 2} 

(0) {x E JR: x < O} (p) {I,}, ]f2, 10} 

(q) {O,l,2,4,8,16} (r) n~l(l-~,l+~) 
.(8) {~:nENandnisprime} (t) {XEJR:X3 < 8} 
(n) {X2 : X E JR} ~(v) {cos(~): n E N} 

. (w) {sin(n;): n E N} 

'4.2. Repeat Exercise 4.1 for lower bounds. 

,4.3. For each set in Exercise 4.1, give its supremum if it has one. 
Otherwise write "NO sup." 

.4.4. Repeat Exercise 4.3 for infima [plural of infimum]. 

,4.5. Let S be a nonempty subset of JR that is bounded above. Prove that 
if sup S belongs to S, then sup S = max S. Hint: Your proof should 
be very short. 

,,4.6. Let S be a nonempty bounded subset ofR 

(a) Prove that inf S ::::: sup S. Hint: This is almost obvious; your 
proof should be short. 

(b) What can you say about S if inf S = sup S? 

>: 4.7. Let Sand T be nonempty bounded subsets of R 

(a) Prove that if S <; T, then inf T ::::: inf S ::::: sup S ::::: sup T. 
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(b) Prove that sup(S U T) = max{supS, sup T}. Note: In part (b), 
do not assume S <;: T. 

04.8. Let Sand T be nonempty subsets oflR with the following property: 
sst for all s E Sand t E T. 

( a) Observe that S is bounded above and that T is bounded below. 

(b) Prove that supS S infT. 

( c) Give an example of such sets Sand T where sn Tis nonempty. 

(d) Give an example of sets Sand T where sup S = inf T and S n T 
is the empty set. 

4.9. Complete the proof that inf S = - sup( -S) in Corollary 4.5 by 
proving (1) and (2). 

4.10. Prove that if a > 0, then there exists n E N such that ~ < a < n. 

A 4.11. Consider a,b E IR where a < b. Use Denseness ofQ4.7 to show 
that there are infinitely many rationals between a and b. 

\,4.12. Let IT be the set of real numbers that are not rational; elements of IT 
are called irrational numbers. Prove that if a < b, then there exists 
x E IT such that a < x < b. Hint: First show {r + ../2 : r E Q} <;: IT. 

4.13. Prove that the following are equivalent for real numbers a, b, c. 
[Equivalent means that either all the properties hold or none of the 
properties hold.] 

(a)!a-b!<c, 

(b) b - c < a < b + c, 

(c) a E (b - c, b + c). 

Hint: Use Exercise 3.7(b). 

4.14. Let A and B be nonempty bounded subsets of 1R, and let S be the 
set of all sums a + b where a E A and b E B. 

(a) Prove that supS = supA + supE. 

(b) Prove that inf S = inf A + inf B. 

y. 4.15. Let a, b E R Show that if a < b + 1 for all n E' 1':], thcn {/ < h. - n 
Compare Exercise 3.8. 

:4.16. Show that surlr E Q: r < al a filr cach (/ ( I~. 



§5. The Symbols +00 and -00 27 

§5 The Symbols +00 and -00 

The symbols +00 and -00 are extremely useful even though they 
are not real numbers. We will often write +00 as simply 00. We will 
adjoin +00 and -00 to the set lR and extend our ordering to the set 
lRU{ -00, +oo}. Explicitly, we will agree that -00 ::: a S +00 for all a 
inlRU{-oo, oo}. This provides the setlRU{ -00, +oo} with an ordering 
that satisfies properties aI, 02 and 03 of§3. We emphasize that we 
will not provide the set lR U {-oo, +oo} with any algebraic structure. 
We may use the symbols +00 and -00, but we must continue to 
remember that they do not represent real numbers. Do not apply a 
theorem or exercise that is stated for real numbers to the symbols 
+00 or -00. 

It is convenient to use the symbols +00 and -00 to extend the 
notation established in Example 1(b) of §4 to unbounded intervals. 
For real numbers a, b E lR, we adopt the following notation: 

[a, (0) = {x E lR : a S x}, 
C -00, b] = {x E lR : x S b}, 

Ca, (0) = {x E lR : a < x}, 
C -00, b) = {x E lR : x < b}. 

We occasionally also write (-00, (0) for R [a, (0) and (-00, b] are 
called closed intervals or unbounded closed intervals, while Ca, (0) and 
C -00, b) are caned open intervals or unbounded open intervals. 

Consider a nonempty subset S of R Recall that if S is bounded 
above, then sup S exists and represents a real number by the 
completeness axiom 4.4. We define 

sup S = +00 if S is not bounded above. 

Likewise, if S is bounded below, then inf S exists and represents a 
real number [Corollary 4.5]. And we define 

inf S = - 00 if S is not bounded below. 

For emphasis, we recapitulate: 
Let S be any nonempty subset of TIt The symbols sup Sand inf S 

always make sense. If S is bounded above, then sup S is a real num
ber; otherwise sup S = +00. If S is bounded below, then inf S is a real 
number; otherwise inf S = -00. Moreover; we have inf S ::: sup S. 

The exercises for this section clear up some loose ends. Most of 
them extend results in §4 to sets that are not necessarily bounded. 
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CHAPTER 

§7 Limits of Sequences 

A sequence is a function whose domain is a set that has the form 
{n E Z: n ~ m}; m is usually 1 or O. Thus a sequence is a function 
that has a specified value for each integer n ~ m. It is customary to 
denote a sequence by a letter such as s and to denote its value at n 
as Sn rather than sen). It is often convenient to write the sequence 
as (sn)~m or (sm, Sm+1, Sm+2, ... ). If m = 1 we may write (Sn)nEN 

or of course (S1, S2, S3, ... ). Sometimes we will write (sn) when the 
domain is understood or when the results under discussion do not 
depend on the specific value of m. In this chapter, we will be inter
ested in sequences whose range values are real numbers, i.e., each 
Sn represents a real number. 

Example 1 
Cal Consider the sequence (Sn)nEN where Sn = ~. This is the 

sequence (1, i, ~, 116 , -is, ... ). Formally, of course, this is the 
function with domain N whose value at each n is ~. The set of 

1 . {I 1 1 1 1 } va ues IS '4' 9' 16' 25' .. , . 
(b) Consider the sequence given by an = (-It for n ~ 0, i.e., 

(an)~=o where an = (-It. Note that the first term of the se-

31 
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quence is aD = 1 and the sequence is (I, -I, I, -I, I, -I, I, ... ). 
Formally, this is a function whose domain is {O, 1,2, ... } and 
whose set of values is {-I, I}. 

It is important to distinguish between a sequence and its 
set of values, since the validity of many results in this book 
depends on whether we are working with a sequence or a set. 
We will always use parentheses ( ) to signifY a sequence and 
braces { } to signifY a set. The sequence given by an = (-1 t 
has an infinite number of terms even though their values are 
repeated over and over. On the other hand, the set {( -1 r : n = 
0, 1,2, ... } is exactly the set {-I, l} consisting of two numbers. 

(e) Consider the sequence cosCJr), n E N. The first term of this 
sequence is coseD = cos 60° = ~ and the sequence looks like 

The set of values is {cos(n;) : n E N} = {~, -~, -1, l}. 

(d) If an = nUn, n E N, the sequence is (1, V2, 3113 , 4114 , .. . ). Ifwe 
approximate values to four decimal places, the sequence looks 
like 

(1,1.4142,1.4422,1.4142,1.3797,1.3480,1.3205,1.2968, ... ). 

It turns out that alOO is approximately 1.0471 and that alOOO is 
approximately 1.0069. 

(e) Consider the sequence bn = (1 + ~r, n E N. This is the se
quence (2, (~i, (~i, (%)4, ... ). Ifwe approximate the values to 
four decimal places, we obtain 

(2,2.25,2.3704,2.4414,2.4883,2.5216,2.5465,2.5658, ... ). 

Also b lOO is approximately 2.7048 and blOOD is approximately 
2.7169. 

The "limit" of a sequence (sn) is a real number that the values 
Sn are close to for large values of n. For instance, the values of the 
sequence in Example I(a) are close to 0 for large n and the values of 
the sequence in Example I(d) appear to be close to 1 for large n. The 
sequence (an) given by an = (-} t requires some thought. We rn ight 
say that 1 is a limit hccaus(~ in f;lct all -= I f()[ the large v:1111cs of' n 

that arc cv(~n, On the oth(~r h:ltld, (/" I Iwhich is qllilc;1 disl;ltlcc 

I 
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from 1] for other large values of n. We need a concise definition in 
order to decide whether 1 is a limit of an = (-1 y. It turns out that 
our definition will require the values to be close to the limit value 
for all large n, so 1 will not be a limit of the sequence an = ( -1 Y . 

7.1 Definition. 
A sequence (sn) of real numbers is said to converge to the real number 
S provided that 

for each E > 0 there exists a number N such that 
n > N implies ISn - sl < E. 

(1) 

If (sn) converges to s, we will write limn ---+ oo Sn = s, or Sn -* s. The 
number S is called the limit of the sequence (sn). A sequence that 
does not converge to some real number is said to diverge. 

Several comments are in order. First, in view of the Archimedean 
property, the number N in Definition 7.1 can be taken to be a natural 
number if we wish. Second, the symbol E [lower case Greek epsilon] 
in this definition represents a positive number, not some new ex
otic number. However, it is traditional in mathematics to use E and 8 
[lower case Greek delta] in situations where the interesting or chal
lenging values are the small positive values. Third, condition (1) is 
an infinite number of statements, one for each positive value of E. 

The condition states that to each E > 0 there corresponds a number 
N with a certain property, namely n > N implies ISn - sl < E. The 
value N depends on the value E, and normally N must be large if E 

is small. We illustrate these remarks in the next example. 

Example 2 

Consider the sequence Sn = ~~~!. Ifwe write Sn as ~=~ and note that 

~ and ~ are very small for large n, it seems reasonable to conclude 
that lim Sn = ~. In fact, this reasoning will be completely valid after 
we have the limit theorems in §9: 

. . [3+~] lim3+lim(*) 3+0 3 
hm Sn = hm --4 = 1 = = -. 

7 - ;::; lim 7 - 4lim(;::;) 7 - 4 . 0 7 
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However, for now we are interested in analyzing exactly what we 
mean by lim sn = ~. By Definition 7.1, lim sn = ~ means that 

for each E > a there exists a number N such that 
n > N implies I' 3n+l - lj < E. 

7n-4 7 
(1) 

As E varies, N varies. In Example 2 of the next section we will show 
that, for this particular sequence, N can be taken to be liE +~. Using 
this observation and a calculator; we find that for E equal to I, 0.1, 
0.01, 0.001 and 0.000001, respectively, N can be taken to be approx
imately 0.96, 4.45, 39.35, 388.33 and 387,755.67, respectively. Since 
we are interested only in integer values of n, we may as well drop 
the fractional part of N. Then we see that five of the infinitely many 
statements given by (1) are: 

n > a implies 13n + 1 _ ~I < 1· (2) 
7n - 4 7 

, 

n > 4 implies 13n + 1 _ ~I < 0.1; (3) 
7n - 4 7 

n > 39 implies 13n + 1 _ ~I < 0.01; (4) 
7n - 4 7 

n > 388 implies 13n + 1 _ ~I < 0.001; (5) 
7n - 4 7 

n > 387,755 implies 13n + 1 _ ~I < 0.000001. (6) 
7n - 4 7 

Thble 7.1 partially confirms assertions (2) through (6). We could go 
on and on with these numerical illustrations, but it should be dear 
that we need a more theoretical approach if we are going to prove 
results about limits. 
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Thble 7.1 

S - 3n+1 
n - 7n-4 ISn - ~I 

n approximately approximately 

1 l.3333 .9047 
2 0.7000 .2714 
3 0.5882 .1597 
4 0.5417 .1131 
5 0.5161 .0876 
6 0.5000 .0714 

40 0.4384 .0098 
400 0.4295 .0010 

Example 3 
We return to the examples in Example 1. 

(a) lim ~2 = O. This will be proved in Example 1 of the next section. 
(b) The sequence (an) where an = (-1 Y does not converge. Thus 

the expression "lim an" is meaningless in this case. We will 
discuss this example again in Example 4 of the next section. 

(c) The sequence cose;) does not converge. See Exercise 8.7. 
(d) The sequence nlln appears to converge to l. We will prove 

lim nlln = 1 in 9.7(c). 
(e) The sequence (bn ) where bn = (1 + ~Y converges to the num

ber e that should be familiar from calculus. The limit lim bn 

and the number e will be discussed further in the optional 
§37. Recall that e is approximately 2.7182818. 

We conclude this section by showing that limits are unique. That 
is, if lim Sn = S and lim Sn = t, then we must have S = t. In short, 
the values Sn cannot be getting arbitrarily close to different values 
for large n. Th prove this, consider E > O. By the definition of limit 
there must exist N1 so that 

implies 

and there must exist N2 so that 

n > N2 implies 

E 
ISn - sl < -

2 

E 
ISn - tl < -

2 
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For n > max{N1, N 2 }, the Triangle Inequality 3.7 shows that 

E E 
Is - tl = I(s - sn) + (sn - t)1 :::: Is - snl + ISn - tl :::: "2 + "2 = E. 

This shows that Is - tl < E for all E > O. It follows that Is - tl = 0, 
hence S = t. 

Exercises 
7.1. Write out the first five terms of the following sequences. 

(a) Sn = 3n~1 (b) bn = !~=i 
(c) Gn = f,;- (d) sinC n

4,,) 

7.2. For each sequence in Exercise 7.1, determine whether it converges. 
If it converges, give its limit. No proofs are required. 

7.3. For each sequence below, determine whether it converges and, ifit 
converges, give its limit. No proofs are required. 

( ) n (b b n'+3 a an = n+l ) n = n2-3 

(c) Gn = 2-n . (d) tn = 1 + ~ 
(e) Xn = 73 + (-lr (f) Sn = (2)1In 
(g) Yn = n! (h) dn = (-lrn 
( i) ( -1 )n (J') 7n' +8n 

n 2n3 -31 

(k) 96:;:: (1) siner) 
(m) sin(mI') (n) sinCZ~") 
(0) ~ sin n (p) 2;:~~5 

(~ ~ ~) C1+~t 
() 

4n2+3 6n+4 
S 3n2-2 ' (t) 9n'+7 

7.4. Give examples of 

( a) a sequence C xn) of irrational numbers having a limit lim x" that 
is a rational number. 

(b) a sequence (rn) of rational numbers having a limit lim rn that 
is an irrational number. 

v 7.5. Determine the following limits. No proofs are required, but show 
any relevant algebra. 

(a) lim Sn where Sn = .JY!2+l - n, 

(b) lime Jn2 + n - n), 
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(c) lime v'4n2 + n - 2n). 
Hint for (a): First show that Sn = ~ . 

n +l+n 

§8 A Discussion about Proofs 

In this section we give several examples of proofs using the definition 
of the limit of a sequence. With a little study and practice, students 
should be able to do proofs of this sort themselves. We will sometimes 
refer to a proof as a formal proof to emphasize that it is a rigorous 
mathematical proof. 

Example 1 
Prove that lim ;2 = o. 

Discussion. Our task is to consider an arbitrary E > 0 and show 
that there exists a number N [which will depend on E] such that 
n > N implies Idr - 01 < E. SO we expect our formal proof to begin 
with "Let E > 0" and to end with something like "Hence n > N 
implies 1 ;2 - 01 < E." In between the proof should specify an Nand 
then verify that N has the desired property, namely that n > N does 
indeed imply 1 dr - 01 < E. 

As is often the case with trigonometric identities, we will initially 
work backward from our desired conclusion, but in the formal proof 
we will have to be sure that our steps are reversible. In the present 
example, we want 1 ;2 - 01 < E and we want to know how big n 
must be. So we will operate on this inequality algebraically and try 
to "solve" for n. Thus we want dr < E. By multiplying both sides by n2 

and dividing both sides by E, we find that we want ~ < n2 or ~ < n. 

If our steps are reversible, we see that n > ~ implies 1 ;2 - 01 < E. 

This suggests that we put N = ~. 

Formal Proof 
Let E > O. Let N = ~. Then n > N implies n > ~ which implies 

n2 > ~ and hence E > ;2. Thus n > N implies Idr - 01 < E. This 
proves that lim 1, = O. • n 
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Example 2 
Prove that lim 3r1+1 = 0.. 

7'1-4 7 
Discussion. For each E > 0, we need to decide how big n must be 

to guarantee that 1311+1 
- 0.1 < E. Thus we want 711-4 7 

1
21 n + 7 - 21 n + 121 < E or 1 19 1 

7(7n - 4) 7(7n _ 4) < E. 

Since 7n - 4 > 0, we can drop the absolute value and manipulate 
the inequality further to "solve" for n: 

19 19 19 4 
- < 7n - 4 or 
7E 

- + 4 < 7n or 
7E 

- + - < n. 49E 7 

Our steps are reversible, so we will put N = 4
1iE + ~. Incidentally, 

we could have chosen N to be any number larger than ;:0 + ~. 

Formal Proof 
O d I N 19 4 Th N' I' 19 4 Let E > an et = 49E + 7' en n > Imp les n > 49E + 7' 

hence 7n > ~ + 4, hence 7n - 4 > ~;, hence 7(7;1
9
_4) < E, and hence 

1
3n+1 _ 0.1 < E. This proves lim 3n+1 = 0.. • 
7n-4 7 7n-4 7 

Example 3 
Prove that lim 4nl+3n = 4. 

nl-6 

Discussion. For each E > 0, we need to determine how large n 
must be to imply 

1
4n3 + 3n _ 41 < E or 

n 3 - 6 1
3n + 241 

3 < E. 
n - 6 

By considering n > I, we may drop the absolute values; thus we 
need to find how big n must be to give 3,;\~264 < E. This time it would 
be very difficult to "solve" for or isolate n. Recall that we need to find 
some N such that n > N implies 3~ll~264 < E, but we do not need to find 
the least such N. So we will simplify matters by making estimates. 
The idea is that 3n1+2

6
4 is bounded b\T some constant times -; = ~ 

n- - .) H' il 

for sufficiently large n. To find such a bound we will find an upper 
bound for the numerator and a lower bound for the denominator. 
For example, since 3n + 24 ::: 27n, it suffices for us to get Y121~16 < E. 

To make the denominator smaller and yet a constant multiple of n3 , 

we note that n3 
- 6 ::0: r.f provided n is sufficiently large; in fact, all 
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,\Te need is ~ :::: 6 or n3 
:::: 12 or n > 2. So it suffices to get :Z/~ < E 

or ~ < E or n > (ii, provided that n > 2. 
n V ~ 

Formal Proof 
Let E > 0 and let N = max{2, jii}. Then n > N implies n > jii, 
~ence ~i < E, hence :z/n2 < E. Since n > 2, we have ~3 ::: n3 

- 6 and 
also 27n :::: 3n + 24. Thus n > N implies 

3n + 24 27n 54 
---< -=- < E, 
n3 - 6 - ln3 n2 

2 

and hence 

1

4n3 + 3n I 3 - 4 < E, 
n - 6 

as desired. • 
Example 3 illustrates that direct proofs of even rather simple 

limits can get complicated. With the limit theorems of §9 we would 
just write 

. [4n
3

+3n] _. [4+:2] _lim4+3.lim(~)_ hm 3 - hm --6 - 1 - 4. 
n - 6 1 - - lim 1 - 6 ·lim(-) n3 n3 

Example 4 
Show that the sequence an = (-1 Y does not converge. 

Discussion. We will assume that lim ( -1 Y = a and obtain a con
tradiction. No matter what a is, either 1 or -1 will have distance at 
least 1 from a. Thus the inequality I( _1)n - al < 1 will not hold for 
all large n. 

Formal Proof 
Assume that lime -1 Y = a for some a E lR.. Letting E = 1 in the 
definition of the limit, we see that there exists N such that 

n > N implies I( -It - al < 1. 

By considering both an even and an odd n > N, we see that 

11 - al < 1 and 1-1 - al < 1. 
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Now by the Triangle Inequality 3.7 

2= 11-(-1)1 = 11-a+a-(-1)1:S 11-al+la-(-1)1 < 1+1 =2. 

This absurdity shows that our assumption that lime -1 r = a must 
be wrong, so the sequence (-1 r does not converge. • 

Example 5 
Let (sn) be a sequence of nonnegative real numbers and suppose 
that s = limsn . Note that s :::: 0; see Exercise 8.9(a). Prove that 
limFn =-/S. 

Discussion. We must consider E > 0 and show that there exists N 

such that 

n > N implies I~ - v'sl < E. 

This time we cannot expect to obtain N explicitly in terms of E be
cause of the general nature of the problem. But we can hope to show 
such N exists. The trick here is to violate our training in algebra and 
"irrationalize the denominator": 

Since Sn ~ s we will be able to make the numerator small [for large 
n). Unfortunately, if s = 0 the denominator will also be small. So we 
consider two cases. If s > 0, the denominator is bounded below by 
-/S and our trick will work: 

so we will select N so that ISn - sl < -/SE for n > N. Note that N 
exists, since we can apply the definition oflimit to -/SE just as well 
as to E. For s = 0, it can be shown directly that lim sn = 0 implies 
lim Fn = 0; the trick of "irrationalizing the denominator" is not 
needed in this case. 

Formal Proof 
Case I: s > O. Let E > O. Since lim Sn = s, there exists N such that 

n > N implir-s /.<'" - 81 < -,fw. 
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:'\ow n > N implies 

r;::- _ r.:. _ ISn - sl < ISn - sl vlsE _ 
Iysn ysl - r;. - r;. < r;. - E. 

,JSn"+yS yS yS 

Case II: s = O. This case is left to Exercise 8.3. • 
- Example 6 

Let (sn) be a convergent sequence of real numbers such that Sn i- 0 
for all n E Nand limsn = s i- o. Prove that inf{lsnl : n E N} > O. 

Discussion. The idea is that "most" of the terms Sn are close to S 
and hence not close to O. More explicitly, "most" of the terms sn are 
within ~ lsi of s, hence most Sn satisfy ISn I ~ ~ lsi. This seems clear 
from Figure 8.1, but a formal proof will use the triangle inequality. 

Formal Proof 
Let E = ~ lsi > O. Since lim Sn = s, there exists N in N so that 

n > N implies 

Now 

n > N implies 

since otherwise the triangle inequality would imply 

I I I I I I I I ~ + ~ = lsi S = S - Sn + Sn :S S - Sn + Sn < 
2 2 

which is absurd. If we set 

. {lSI } m = mm 2' ISll, IS21. ... , ISNI , 

most Sn here 
;----~)..'---~, 

(1) 

----------------------~I------~------~-----+I---s>O 
o S S 

2" 
most Sn here 

,--____ ~A~ __ _____ 

--+-----~------~----~I~-----------------------s<O 
S 

FIGURE 8.1 

§... 
2 

o 
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then we clearly have m > 0 and ISn I :::: m for all n E N in view of (1). 
Thus inf{lsnl : n EN} :::: m > 0, as desired. • 

Formal proofs are required in the following exercises. 

Exercises 
B.l. Prove the following: 

(a) lim (-~l" = 0 (b) lim )13 = 0 

(c) lim 2n-1 = .? (d) lim n,+6 = 0 3n+2 3 n -6 

B.2. Determine the limits of the following sequences, and then prove 
your claims. 
( ) n (b) b - 7n-19 

~ a an = n'+1 n - 3n+7 
(c) C = 4n+3 • (d) d - 2n+4 n 7n-5 n - 5n+2 
(e) Sn = ~ sin n 

B.3. Let (sn) be a sequence of nonnegative real numbers, and suppose 
that lim Sn = O. Prove that lim Fn = O. This will complete the 
proof for Example 5. 

'B.4. Let (tn) be a bounded sequence, i.e., there exists M such that Itnl :s 
M for all n, and let (sn) be a sequence such that limsn = O. Prove 
that lim(sntn) = O. 

B.5. (a) Consider three sequences (an), (bn) and (sn) such that an :s 
Sn :s bn for all n and lim an = lim bn = s. Prove that lim Sn = S. 

(b) Suppose that (sn) and (tn) are sequences such that Is,,1 :s tn for 
all n and lim tn = O. Prove that lim s" = O. 

B.6. Let (sn) be a sequence in lR. 

«a) Prove that limsn = 0 if and only iflim ISnl = o. 

(b) Observe that if Sn = (-1)", then lim ISnl exists, but lim Sn does 
not exist. 

B.7. Show that the following sequences do not converge. 
(a) cos(n]"-) (b) Sn = (-l)"n 

.(c) sine";) 

B.B. Prove the following [see Exercise 7.5]: 

(a) lim[Jn2+l - n] = 0 (b) lim[Jn2 + n - n] = ~ 
(c) lim[J4n2 + n - 2n] = i 
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8.9. Let (s,,) be a sequence that converges. 

(a) Show that if s" :::: a for all but finitely many n, then lim s" :::: a. 

(b) Show that if s" ::: b for all but finitely many n, then lim s" ::: b. 

(c) Conclude that if all but finitely many s" belong to [a, b], then 
lims" belongs to [a, b] . 

. 8.10. Let (s,,) be a convergent sequence, and suppose that lim Sn > a. 
Prove that there exists a number N such that n > N implies s" > a. 

§9 Limit Theorems for Sequences 

In this section we prove some basic results that are probably already 
familiar to the reader. First we prove that convergent sequences are 
bounded. A sequence (sn) of real numbers is said to be bounded if 
the set {sn : n E N} is a bounded set, i.e., if there exists a constantM 
such that Is" I .::: M for all n. 

9.1 Theorem. 
Convergent sequences are bounded. 

Proof 
Let (SI1) be a convergent sequence, and let s = lim Sn. Applying 
Definition 7.1 with E = 1 we obtain N in N so that 

n > N implies Is" - sl < l. 

From the triangle inequality we see that n > N implies ISI1I < lsi + 1. 

Define M = max{lsl + I, IS11, IS21, ... , ISNI}. Then we have Is,,1 .::: M 
for all n E N, so (s,,) is a bounded sequence. • 

In the proof of Theorem 9.1 we only needed to use property 7.1 (1 ) 
for a single value of E. Our choice of E = 1 was quite arbitrary. 

9.2 Theorem. 
If the sequence (SI1) converges to sand k E lR, then the sequence (ks,,) 
converges to ks. That is, lim(ksn ) = k lim SI1. 
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Proof 
We assume k #- 0, since this result is trivial for k = O. Let E > 0 
and note that we need to show that /ksn - ks/ < E for large n. Since 
lim Sn = 8, there exists N such that 

n > N implies 
E 

/sn - s/ < /k/. 

Then 

n > N implies /ksn - ks/ < E. • 
9.3 Theorem. 
If (sn) converges to sand (tn) converges to t, then (sn + tn) converges to 
s + t. That is, 

lime Sn + tn) = lim Sn + lim tn. 

Proof 
Let E > 0; we need to show that 

/sn + tn - (s + t)/ < E for large n. 

We note that /sn + tn - (s + t)/ ::'S /sn - s/ + /tn - t/. Since limsn = s, 
there exists Nl such that 

implies 

Likewise, there exists N2 such that 

n > N2 implies 

Let N = max{N1 , N2}. Then clearly 

E 
/sn - s/ < -

2 

E 
/tn - t/ < -

2 

E E 
n > N implies /sn + tn - (s + t)/ ::'S /sn - s/ + /tn - t/ < - + - = E. 

2 2 • 

9.4 Theorem. 
If(sn) converges to sand (tn) converges to t, then (sntn) converges to 81. 

That is, 

lim(s"I,,) (lirnslI)(lilll III). 
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Discussion. The trick here is to look at the inequality 

ISntn - stl = ISntn - Snt + Snt - stl 

:s ISntn - sntl + ISnt - stl = ISnl . Itn - tl + It I . ISn - si. 

I 'or large n, Itn - tl and ISn - sl are small and It I is, of course, constant. 
I'ortunately, Theorem 9.1 shows that ISnl is bounded, so we will be 
,Ible to show that ISntn - stl is small. 

proof 

I.ct E > O. By Theorem 9.1 there is a constant M > 0 such that 
I;)" I :s M for all n. Since lim tn = t there exists N1 such that 

E 
n > N1 implies It -tl < -. 

n 2M 

Also, since limsn = S there exists N z such that 

E 
n > N z implies ISn - sl < -2(-lt-I-+-1-)· 

I w(~ used 2(l tl+1) instead of 21tl' since t could be 0.] Now if N 
III<lX{N1' N 2 }, then n > N implies 

ISntn - stl :s ISnl . Itn - tl + It I . ISn - sl 
E E E E 

< M· - + It I . < - + - = E. 
- 2M 2(ltl + 1) 2 2 • 

lb handle quotients of sequences, we first deal with reciprocals. 

'1.5 Lemma. 
II (8,,) converges to s, if Sn i= 0 for all n, and if s i= 0, then (1/ sn) 
I ml/J(~r;~BS to 11 s. 

I Jiscussion. We begin by considering the equality 

lor i;lrgc n, the nurnerator is small. The only possible difficulty 
wOlild Iw il the d(~Il()millalor were also small fClr large n. This dif-
11t.lilly is s()lved ill I':x;rlllpic (j ()I' ~g where it is prov(~d that m 
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inf{lsnl : n E N} > O. Thus 

Is - snl 

misl ' 

and it is clear how our proof should proceed. 

Proof 
Let E > O. By Example 6 of §8, there exists m > 0 such that ISnl ~ m 
for all n. Since lim Sn = S there exists N such that 

n > N implies Is - snl < E' misi. 

Then n > N implies 

I 
~ - ~ I = _ls_-_sn_1 < _ls_-_sn_1 < E. 

Sn S ISnsl misl • 
9.6 Theorem. 
Suppose that (sn) converges to sand (tn) converges to t. If S "# 0 and 
Sn "# 0 for all n, then (tnl sn) converges to tis. 

Proof 
By Lemma 9.S (llsn) converges to lis, so 

. tn . 1 1 t 
hm - = hm - . tn = - . t = -

sn sn S S 

by Theorem 9.4. • 
The preceding limit theorems and a few standard examples allow 

one to easily calculate many limits. 

9.7 Basic Examples. 
(a) limn-HXl(;P) = 0 for p > O. 
(b) limn->-oo an = 0 if lal < l. 
(c) lim(nlln) = l. 

(d) limn->-oo(alln ) = 1 for a > O. 

Proof 
(a) LetE > OandletN=(~)I/p.Thenn > N impliesnP > ~and 

hence ( > --'--". Since --'--" > Il, this shows that n > N impli(~s 
n 11 
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I ~p - 01 < E. [The meaning of nP when p is not an integer will 
be discussed in §37.] 

(b) We may suppose that a #- 0, because limn---+ oo an = 0 is obvious 
for a = o. Since lal < I, we can write lal = l!b where b > O. By 
the binomial theorem [Exercise 1.12], (1 + bn ) ::': 1 + nb > nb, 
so 

Now consider E > 0 and let N = ~. Then n > N implies 
n > ~ and hence Ian - 01 < ;b < E. 

(e) Letsn = (nlln)_1 and note thatsn ::': 0 for all n. By Theorem 9.3 

it suffices to show that limsn = O. Since 1 + Sn = (n lln ), we 
have n = (1 + snY. For n ::': 2 we use the binomial expansion 
of (1 + snY to conclude 

1 1 
n = (1 + snt ::': 1 + nSn + "2 n (n - l)s~ > "2n(n - l)s~. 

Thus n > ~n(n - l)s~, so s~ < n:l. Consequently, we have 

Sn < J n:l for n ::': 2. A standard argument now shows that 

limsn = 0; see Exercise 9.7. 
(d) First suppose a ::': 1. Then for n ::': a we have 1 :::: alln < 

nlln. Since limnlln = I, it follows easily that lim(alln ) = 1; 

compare Exercise 8.S(a). Suppose that 0 < a < 1. Then ~ > 
I, so lim(~)]/n 1 from above. Lemma 9.5 now shows that 
lim(a1/ n) = 1. • 

Example 1 
Prove that lim Sn = ~, where 

n3 + 6n2 + 7 
Sn = . 

4n3 + 3n - 4 

Solution 
We have 

8" 
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By 9.7(a) we have lim ~ = 0 and lim ~ = O. Hence by Theorems 9.3 
and 9.2 we have 

lim (1 + ~ + :3 ) = lim(l) + 6 . lim (~) + 7 . lim (~3 ) = 1. 
Similarly, we have 

lim (4 + ~ - ~) = 4. 
n2 n3 

Hence Theorem 9.6 implies that limsn = ~. 

Example 2 
. d l' n-5 FIn 1m n2+7' 

Solution 

o 

Let Sn = 1~2~~' We can write Sn as ~~i, but then the denominator 

does not converge. So we write 

1 5 n - Yi2 
Sn = --7-' 

1 + ;J2 

Now lim(~ - ~) = 0 by 9.7(a) and Theorems 9.3 and 9.2. Likewise 
lim(l + :2) = I, so Theorem 9.6 tells us that limsn = ¥ = O. 0 

Example 3 
Find lim n

2
+3 

n+l . 

Solution 
2 

We can write ::13 as 

or 

Both fractions lead to problems: either the numerator does not con
verge or else the denominator converges to O. It turns out that :2:13 

does not converge and the symbol lim ::13 is undefined, at least for 
the present; see Example 6. The reader may have the urge to use the 
symbol +00 here. Our next task is to make such use of the symbol 
t 00 Icgiti mat<~. For a s(~qucnc(~ (8,,), lim 8" = +00 will signify that th(~ 
terms "" arc eventually ;dllarge. Ilcn~ is the concise definition. I I 

, 
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(1.8 Definition. 
l'Of a sequence (sn), we write limsn = +00 provided 

for each M > 0 there is a number N such that 
n > N implies Sn > M. 

I n this case we say that the sequence diverges to +00. 

Similarly, we write lim Sn = -00 provided 

for each M < 0 there is a number N such that 
n > N implies Sn < M. 

Henceforth we will say that (sn) has a limit or that the limit exists 
provided (sn) converges or diverges to +00 or diverges to -00. In 
I he definition of lim Sn = +00 the challenging values of M are large 
positive numbers: the larger M is the larger N will need to be. In the 
definition of lim Sn = -00 the challenging values of M are "large" 
rlegative numbers like -10,000,000,000. 

Example 4 
We have lim n2 = +00, lim ( -n) = -00, lim 2n = +00 and 
Ii m(.Jn + 7) = +00. Of course, many sequences do not have limits 
foo or -00 even if they are unbounded. For example, the sequences 
d(~fined by Sn = (-1 tn and tn = n COS2(~) are unbounded, but they 
do not diverge to +00 or -00, so the expressions lim[( -1 tn] and 
Ii m[ n cos2Cn] are meaningless. Note that tn = n when n is even 
.rnd tn = 0 when n is odd. 

The strategy for proofs involving infinite limits is very much the 
sa me as for finite limits. We give some examples. 

Example 5 
Civc a formal proof that lim(.Jn + 7) = +00. 

I Jiscussion. We must consider an arbitrary M > 0 and show that 
Iltnc (~xists N [which will depend on M] such that 

n > N implies In + 7 > M. 
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1b see how big N must be we "solve" for n in the inequality .JYt + 7 > 
M. This inequality holds provided.JYt > M - 7 or n > (M - 7)2. Thus 
we will take N = (M - 7i. 

Formal Proof 
Let M > 0 and let N = (M - 7)2. Then n > N implies n > (M - 7i, 
hence.JYt > M-7, hence .JYt+7 > M. This shows thatlim( -JYi+7) = 
+00. _ 

Example 6 
Give a formal proof that lim ::13 = +00; see Example 3. 

Discussion. Consider M > o. We need to determine how large 
n must be to guarantee that nn

2:13 > M. The idea is to bound the 

fraction ~;:13 below by some multiple of ~ = n; compare Example 3 

of §8. Since n2 + 3 > n2 and n + 1 :s 2n, we have :2:13 > ~~ = ~n, 
and it suffices to arrange for ~n > M. 

Formal Proof 
Let M > 0 and let N = 2M. Then n > N implies ~n > M, which 
implies 

n2 + 3 n2 1 
> - = -n > M. 

n + 1 2n 2 

Hence lim n
2
+3 = +00 

n+1 . -
The limit in Example 6 would be easier to handle if we could 

apply a limit theorem. But the limit theorems 9.2-9.6 do not apply. 
WARNING_ Do not attempt to apply the limit theorems 9.2-9.6 to 

infinite limits. Use Theorem 9.9 or 9.10 below or Exercises 9.9-9.12. 

9.9 Theorem. 
Let (sn) and (tn) be sequences such that lim Sn = +00 and lim tn > 0 
(lim tn can be finite or +00)' Then lim sntn = +00. 

Discussion. Let M > O. We need to show that s"t" > M for large 
n. We have lim 811 = +00, and we need to b(~ sure that the II/'S ,Ire 
bounded away from () for large n. We will choose ;J rcal lllltlllH',r m 
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so that 0 < m < lim tn and observe that tn > m for large n. Then all 
we need is Sn > ~ for large n. 

Proof 
Let M > O. Select a real number m so that 0 < m < lim tn. Whether 
lim tn = +00 or not, it is clear that there exists N] such that 

n > N] implies tn > m; 

see Exercise 8.10. Since lim Sn = +00, there exists N2 so that 

M 
n > N2 implies Sn > -. 

m 

Put N = max{N], N 2 }. Then n > N implies sntn > !:i . m = M. • 
m 

Example 7 
Use Theorem 9.9 to prove that lim ::} = +00; see Example 6. 

Solution 
n2 +3 _ n+~ _ n _ 3 _] 

We observe that -+] - -] -, - "ntn where Sn - n + - and tn - -] -, . It n +~ n +~ 

is easy to show that lim Sn ~ +00 and lim tn = 1. So by Theorem "9.9, 
we have lim sntn = +00. 0 

Here is another useful theorem. 

9.10 Theorem. 
For a sequence (sn) of positive real numbers, we have lim Sn = +00 if 
and only iflim( t) = O. 

Proof 
Let (sn) be a sequence of positive real numbers. We have to show 

lim Sn = +00 implies lim (sIn) = 0 (1) 

and 

lim (~ ) = 0 implies lim Sn = +00. 
Sn 

(2) 

In [his case [he proofs will appear very similar, but the thought 
processes will he 'Ill if(: dif'f(:renl. 
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To prove (1), suppose that lim Sn = +00. Let E > 0 and let M = ~. 
Since lim Sn = +00, there exists N such that n > N implies Sn > M = 
1. Therefore n > N implies E > 1.. > 0, so 
E ~ 

n > N implies 1 SIn - 01 < E. 

That is, lime t) = O. This proves (1). 
To prove (2), we abandon the notation of the last paragraph and 

begin anew. Suppose thatlim(t) = O. LetM > 0 and letE = it. Then 

E > 0, so there exists N such that n > N implies 11.. - 01 < E = -MI. 
Sn 

Since Sn > 0, we can write 

n > N implies 
1 1 

0< - < 
Sn M 

and hence 

n > N implies M < Sn. 

That is, lim Sn = +00 and (2) holds. • 

Exercises 
9.1. Using the limit theorems 9.2-9.6 and 9.7, prove the following. 

Justify all steps. 
(a) lim n~1 = 1 

(c) lim 17n5+73n4 -18n'+3 = lZ 
23n'+!3n1 23 

(b) lim 3n+~ = 1. 
6n-j 2 

9.2. Suppose that limxn = 3, limYn = 7 and that all Yn are nonzero. 
Determine the following limits: 
(a) lim(xn + Yn) (b) 1· 3Yn-xn 

1m 2 
Yn 

• 9.3. Suppose that lim an = a, lim bn = b, and that Sn 

lim Sn = a~,:4: carefully, using the limit theorems. 

9.4. Let 81 = 1 and for n ::: 1 let Sn+l =~. 

(a) List the first four terms of (sn). 

(b) It turns out that (sn) converges. Assume this fact and prove 
that the limit is ~(l + y'S). 
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t'+2 
'9.5. Let t1 = 1 and tn+1 = ~ for n :::: 1. Assume that (tn) converges 

and find the limit. 

9.6. Let Xl = 1 and Xn+1 = 3x~ for n :::: l. 

(a) Show that if a = lim Xn, then a = ~ or a = o. 

(b) Does limxn exist? Explain. 

(c) Discuss the apparent contradiction between parts (a) and (b). 

9.7. Complete the proof of 9.7(c), i.e., give the standard argument 
needed to show that lim Sn = o. 

9.B. Give the following when they exist. Otherwise assert "NOT EXIST." 
(a) lim n3 (b) lim( -n3) 

(c) lime -n)'" (d) lim(l.Ol)n 
(e) lim nn 

• 9.9. Suppose that there exists No such that Sn :::: tn for all n > No. 

(a) Prove that if lim Sn = +00, then lim tn = +00. 

(b) Prove that iflim tn = -00, then lim Sn = -00. 

(c) Prove that if lim Sn and lim tn exist, then lim Sn :::: lim tn. 

9.10. (a) Show that iflim Sn = +00 and k > 0, then lim(ksn ) = +00. 

(b) Show that lim Sn = +00 if and only iflim( -sn) = -00. 

(c) Show that iflimsn = +00 and k < 0, then lim(ksn) = -00. 

9.11. (a) Show that iflimsn = +00 and inf{tn : n E N} > -00, then 
lim(sn + tn) = +00. 

(b) Show thatiflimsn = +00 and lim tn > -00, then lim(sn+tn) = 
+00. 

(c) Show that if lim Sn = +00 and if (tn) is a bounded sequence, 
then lim(sn + tn ) = +00. 

• 9.12. Assume all Sn f:. 0 and that the limit L = lim I Sn+1 I exists. 
Sn 

(a) Show that if L < I, then Hmsn = o. Hint: Select a so that 
L < a < 1 and obtain N so that ISn+11 < alsn I for n :::: N. Then 
show that ISnl < an-NlsNI for n > N. 

(b) Show that if L > I, then lim ISnl = +00. Hint: Apply (a) to the 
sequence tn = ILl; see Theorem 9.lD. 
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9.13. Show that 

{" 
if lal < 1 

lim an = 1 if a=l 
n~CXl +00 if a > 1 

does not exist if a::: -l. 

9.14. Let p > O. Use Exercise 9.12 to show 

a" { 
0 if lal ::: 1 

lim - = +00 if a > 1 
n~CXl nP 

does not exist if a < -l. 

9.15. Show that limn ..... oo ~ = 0 for all a E lit n. 

9.16. Use Theorems 9.9, 9.10 or Exercises 9.9-9.15 to prove the following: 

(a) lim n4+Sn = +00 
n'+9 

(b) lim[~ + (-It] = +00 
3n 3 11 

(c) lim[;;< - nd = +00 

.9.17. Give a formal proof that lim n2 = +00 using only Definition 9.8. 
2 1 n+i 

9.18. (a) Verify 1 + a + a + ... + an = ~~a for a#- 1. 

(b) Find limn~oo(l + a + a2 + ... + an) for lal < l. 

(c) Calculate limn ..... oo(l + ~ + ~ + -b + ... +:in). 
(d) What is limHoo(l + a + a2 + ... + an) for a :::: I? 

§lO Monotone Sequences and Cauchy 
Sequences 

In this section we obtain two theorems [Theorems 10.2 and 10.11] 
that will allow us to conclude that certain sequences converge with
out knowing the limit in advance. These theorems are important 
because in practice the limits are not usually known in advance. 

10.1 Definition. 
A sequence C sn) of real numbers is called a nondecreasing sequence 
if Sn ::: Sn+l for all n, and C sn) is called a nonincreasing sequence 
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if Sn ::::: Sn+1 for all n. Note that if (sn) is nondecreasing, then 
Sn :::: Sm whenever n < m. A sequence that is nondecreasing or 
nonincreasing will be called a monotone sequence or a monotonic 
sequence. 

Example 1 
The sequences defined by an = 1 - ~, bn = n3 and Cn = (1 + ~t 
are nondecreasing sequences, although this is not obvious for the se
quence (cn ). The sequence dn = ';2 is nonincreasing. The sequences 

Sn = (-It, tn = cose;), Un = (-ltn and Vn = (-~)" are not mono
tonic sequences. Also Xn = nlln is not monotonic, as can be seen by 
examining the first four values; see Example l(d) in §7. 

Of the sequences above, (an), (cn), (dn), (sn), (tn), (vn) and (xn) 
are bounded sequences. The remaining sequences, (bn) and (un), 
are unbounded sequences. 

10.2 Theorem. 
All bounded monotone sequences converge. 

Proof 
Let (sn) be a bounded nondecreasing sequence. Let 8 denote the set 
{sn : n E N}, and let u = sup 8. Since 8 is bounded, u represents a 
real number. We show that lim Sn = u. Let E > O. Since u - E is not 
an upper bound for 8, there exists N such that SN > u - E. Since (sn) 
is nondecreasing, we have SN :::: Sn for all n ::::: N. Of course, Sn :::: u 
for all n, so n > N implies u - E < Sn :::: u, which implies ISn - ul < E. 

This shows that lim Sn = u. 
The proof for bounded nonincreasing sequences is left to 

Exercise 10.2. • 

Note that the Completeness Axiom 4.4 is a vital ingredient in the 
proof of Theorem 10.2. 

10.3 Discussion of Decimals. 
We have not given much attention to the notion that real numbers 
are simply decimal expansions. This notion is substantially correct, 
but there are subtleties to be faced. For example, different decimal ex
pansions can represent the same real number. The somewhat more 
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abstract developments of the set lR of real numbers discussed in §6 
turn out to be more satisfactory. 

We restrict our attention to nonnegative decimal expansions and 
nonnegative real numbers. From our point of view, every nonneg
ative decimal expansion is shorthand for the limit of a bounded 
nondecreasing sequence of real numbers. Suppose we are given a 
decimal expansion k.d1d2d3d4 •• . where k is a nonnegative integer 
and each dj belongs to {O, I, 2, 3, 4, 5, 6, 7, 8, 9}. Let 

d1 d2 dn 
S =k+-+-+···+-. n 10 102 IOn (1) 

Then (sn) is a nondecreasing sequence of real numbers, and (sn) 
is bounded [by k + I, in fact]. So by Theorem 10.2, (sn) converges 
to a real number that we traditionally write as k.d1 d2d3d4 •••• For 
example, 3.3333 ... represents 

lim 3+-+-+···+- . ( 
3 3 3 ) 

n---+oo 10 102 IOn 

To calculate this limit, we borrow the following fact about geometric 
series from Example 1 in §14: 

1· 2 n a 
1m a(l + r + r + ... + r ) = --

n---+oo 1 - r 
for Irl < 1; (2) 

see also Exercise 9.18. In our case, a = 3 and r = fa, so 3.3333··· 
represents 1~-'- = ~, as expected. Similarly, 0.9999· .. represents 

10 

. (9 9 9) fa J~~ 10 + 102 + ... + IOn = 1 - fa = 1. 

Thus 0.9999· .. and 1.0000· .. are different decimal expansions that 
represent the same real number! 

The converse of the preceding discussion also holds. That is, 
every nonnegative real number x has at least one decimal expansion. 
This will be proved, along with some related results, in the optional 
§16. 

Unbounded monotone sequences also have limits. 
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10.4 Theorem. 
(i) If (sn) is an unbounded nondecreasing sequence, then lim Sn = 

+00. 

(ii) If (sn) is an unbounded nonincreasing sequence, then lim Sn = 
-00. 

Proof 
(i) Let (sn) be an unbounded nondecreasing sequence. Let M > O. 
Since the set {sn : n E N} is unbounded and it is bounded below by 
51, it must be unbounded above. Hence for some N in N we have 
5x > M. Clearly n > N implies Sn ::::: SN > M, so lim Sn = +00. 

(ii) The proof is similar and is left to Exercise 10.5. • 

10.5 Corollary. 
If (sn) is a monotone sequence, then the sequence either converges, di
verges to +00, or diverges to -00. Thus lim Sn is always meaningful for 
monotone sequences. 

Proof 
Apply Theorems 10.2 and 10.4. • 

Let (Sn) be a bounded sequence in lR; it mayor may not converge. 
It is apparent from the definition of limit in 7.1 that the limiting 
behavior of (sn) depends only on sets of the form {sn : n > N}. For 
example, if lim Sn exists, clearly it must lie in the interval [UN, VN 1 
where 

UN = inf{sn : n > N} and VN = sup{sn : n > N}; 

see Exercise 8.9. As N increases, the sets {sn : n > N} get smaller, 
so we have 
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