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Abstract. We show that, under some mild hypotheses, the Gowers unifor-

mity norms (both in the additive and in the hypergraph setting) are essentially

equivalent to certain weaker norms which are easier to understand. We present

two applications of this equivalence: a variant of the Koopman–von Neumann

decomposition, and a proof of the relative inverse theorem for the Gowers

Us[N ]-norm using a norm-type pseudorandomness condition.

1. Introduction

1.1. This note is motivated by problems in arithmetic combinatorics and related

parts of Ramsey theory, and focuses on the relation between two notions of pseu-

dorandomness which appear in this context. The first notion is measured using the

Gowers uniformity norms [7, 8]. These norms are very useful in order to accurately

count the number of copies of certain “patterns” in subsets of discrete structures;

see, e.g., [17, Lemma 11.4]. However, they are defined by estimating the correlation

of a function with shifts of itself, and so their dual norms are hopelessly difficult to

understand in full generality.

To compensate this problem, one adopts a functional analytic point of view.

First one selects a class D of bounded functions (the “dual” functions), and then

associates with D a norm defined by the rule ‖f‖D := sup
{
|〈f, g〉| : g ∈ D

}
. If the

set D is appropriately selected, then the norm ‖ · ‖D is comparable to the Gowers

uniformity norm for bounded functions. Unfortunately, in general, the norm ‖ · ‖D
is significantly weaker, and this apparently excludes its applicability in the study

of sparse sets like the set of primes numbers.

Nevertheless, recently it was shown, first implicitly in [1] and then more explicitly

in [18, 19], that the Gowers uniformity norms and their aforementioned weaker

versions are essentially equivalent for a fairly large (and practically useful) family

of unbounded functions.

We analyze further this phenomenon (both in the additive and in the hypergraph

setting) and we show that it is more typical than anticipated. Compared with the
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results in [1, 18, 19] which rely on the “linear forms condition” (a pseudorandom-

ness hypothesis originating from [10]), our approach is more intrinsic and is based

exclusively on the properties of the Gowers uniformity norms. In a nutshell, our

main results (Propositions 2.1 and 3.1) follow from the Gowers–Cauchy–Schwarz

inequality and a simple decomposition method introduced in [2].

1.2. We present two applications of this equivalence. The first one is a variant

of the Koopman–von Neumann decomposition (Corollary 4.4 in the main text). It

asserts that a real-valued function f on a finite additive group can be approximated

in a Gowers uniformity norm by a bounded function, provided that |f | is majorized

by a function ν which satisfies a natural norm-type pseudorandomness condition.

It is important to note that, besides its separate theoretical interest, this approxi-

mation is essential for further applications. Indeed, Corollary 4.4 together with an

appropriate version of the generalized von Neumann theorem—e.g., [10, Proposi-

tion 5.3]—provides yet another approach1 to the relative Szemerédi theorem [10,

Theorem 3.5], one of the main two ingredients of the Green–Tao theorem [10].

The second application (which is presented in Section 5) is a proof of the relative

inverse theorem for the Gowers Us[N ]-norm, a result which is part of the nilpotent

Hardy–Littlewood method invented by Green and Tao [11]. Our approach is based

on Corollary 4.4 and, as such, it shows that the relative inverse theorem can also

be applied under a norm-type pseudorandomness condition.

1.3. Notation. For every positive integer n we set [n] := {1, . . . , n}, and for every

nonempty finite set V by |V | we denote its cardinality. Moreover, for every function

f : V → R by E[f(v) | v ∈ V ] we denote the average of f , that is,

E[f(v) | v ∈ V ] :=
1

|V |
∑
v∈V

f(v).

We also write Ev∈V f(v) to denote the average of f , or simply E[f ] if the set V is

understood from the context.

We use the following o(·) and O(·) notation. If a1, . . . , ak are parameters and η is

a positive real, then we write oη→0;a1,...,ak(X) to denote a quantity bounded in mag-

nitude by XFa1,...,ak(η) where Fa1,...,ak is a function which depends on a1, . . . , ak

and goes to zero as η → 0. Similarly, by Oa1,...,ak(X) we denote a quantity bounded

in magnitude by XCa1,...,ak where Ca1,...,ak is a positive constant depending on the

parameters a1, . . . , ak; we also write Y �a1,...,akX or X �a1,...,ak Y for the estimate

|Y | = Oa1,...,ak(X).

1See [1, 9, 16, 20] for other proofs of the relative Szemerédi theorem.
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2. The Gowers uniformity norm versus its weak version

2.1. Let Z be a finite additive group and let s > 2 be an integer. Also let f : Z → R
and recall that the Gowers uniformity norm ‖f‖Us(Z) of f is defined by the rule

(2.1) ‖f‖Us(Z) := E
[ ∏
ω∈{0,1}s

f(x+ ω · h)
∣∣∣x ∈ Z,h ∈ Zs]1/2s

where ω ·h :=
∑s
i=1 ωi hi for every ω = (ωi) ∈ {0, 1}s and every h = (hi) ∈ Zs. One

can also define these norms for complex-valued functions by appropriately inserting

complex conjugation operations—see [17] for details.

As we have noted, there is a natural weak version of the Us(Z)-norm. Specifically,

let f : Z → R and define2 the weak uniformity norm ‖f‖ws(Z) of f by setting

(2.2) ‖f‖ws(Z) := sup
{
E
[
f(x)

∏
ω∈{0,1}s\{0s}

hω(x+ ω · h)
∣∣x ∈ Z,h ∈ Zs]}

where the above supremum is taken over all families 〈hω : ω ∈ {0, 1}s \ {0s}〉 of

[−1, 1]-valued functions on Z, and 0s = (0, . . . , 0) ∈ {0, 1}s denotes the sequence of

length s taking the constant value 0. We observe that

(2.3) ‖f‖ws(Z) 6 ‖f‖Us(Z)

as can be seen by the Gowers–Cauchy–Schwarz inequality (see, e.g., [17, (11.6)]).

2.2. The main result. By (2.1) and (2.2), it follows readily that for every function

f : Z → [−1, 1] we have ‖f‖Us(Z) 6 ‖f‖
1/2s

ws(Z). The following proposition shows

that the estimate (2.3) can also be reversed provided that f is merely bounded

in magnitude by a function ν : Z → R+ satisfying a norm-type pseudorandomness

condition.

Proposition 2.1. Let Z be a finite additive group, let s > 2 be an integer and let

0 < η 6 1. Also let ν : Z → R+ such that

(2.4) ‖ν − 1‖U2s(Z) 6 η.

Finally, let f : Z → R with |f | 6 ν. If ‖f‖ws(Z) 6 η, then

(2.5) ‖f‖Us(Z) = oη→0;s(1).

Proposition 2.1 can be proved arguing as in [18, Theorem 11] and using slightly

stronger pseudorandomness hypotheses (see also [19, Proposition 3.7] for a variant

of this argument). We will give a proof using as a main tool the following simple

consequence of the Gowers–Cauchy–Schwarz inequality for the U2s(Z)-norm which

was first observed (in a slightly less general form) in the proof of Proposition 4

in [18].

2There is no standard terminology for these norms.



4 PANDELIS DODOS AND VASSILIS KANELLOPOULOS

Fact 2.2. Let Z be a finite additive group and let s > 2 be an integer. Also

let g : Z → R, let 〈g(k)
ω : k ∈ {1, 2}, ω ∈ {0, 1}s \ {0s}〉 be a family of real-valued

functions on Z, and set

I := E
[
g(x)

∏
k∈{1,2}

∏
ω∈{0,1}s\{0s}

g(k)
ω (x+ ω · hk)

∣∣∣x ∈ Z,h1,h2 ∈ Zs
]
.

Then we have

|I| 6 ‖g‖U2s(Z) ·
∏

k∈{1,2}

∏
ω∈{0,1}s\{0s}

‖g(k)
ω ‖U2s(Z).

Proof. We identify {0, 1}2s with {0, 1}s × {0, 1}s and we write every ω ∈ {0, 1}2s

as ω = (ω1, ω2) where ω1, ω2 ∈ {0, 1}s. We define a family 〈gω : ω ∈ {0, 1}2s〉
of real-valued functions on Z by setting: (i) g(0s,0s) = g, (ii) g(ω,0s) = g

(1)
ω and

g(0s,ω) = g
(2)
ω if ω ∈ {0, 1}s \ {0s}, and (iii) g(ω1,ω2) = 1 if ω1, ω2 ∈ {0, 1}s \ {0s}.

Noticing that

I = E
[ ∏
ω∈{0,1}2s

gω(x+ ω · h)
∣∣∣x ∈ Z, h ∈ Z2s

]
,

the result follows from the Gowers–Cauchy–Schwarz inequality. �

We proceed to the proof of Proposition 2.1.

Proof of Proposition 2.1. We will show that for every nonempty subset Ω of {0, 1}s

and for every (possibly empty) family 〈hω : ω ∈ {0, 1}s \ Ω〉 of [−1, 1]-valued

functions on Z we have3

(2.6) E
[ ∏
ω∈Ω

f(x+ ω · h)
∏

ω∈{0,1}s\Ω

hω(x+ ω · h)
∣∣∣x ∈ Z,h ∈ Zs] = oη→0;s(1).

Clearly, this is enough to complete the proof.

We proceed by induction on the cardinality of Ω. Since the left-hand side of (2.6)

is invariant under permutations of the cube, the initial case |Ω| = 1 follows from

our assumption that ‖f‖ws(Z) 6 η. Next, let m ∈ {1, . . . , 2s − 1} and assume that

(2.6) has been proved for every Ω ⊆ {0, 1}s with |Ω| = m. Fix Ω′ ⊆ {0, 1}s with

|Ω′| = m + 1. By permuting the cube if necessary, we may assume that 0s ∈ Ω′.

Set Ω := Ω′ \ {0s} and notice that |Ω| = m. Also let 〈hω : ω ∈ {0, 1}s \ Ω′〉 be an

arbitrary family of [−1, 1]-valued function on Z. We have to show that

E
[
f(x)

∏
ω∈Ω

f(x+ ω · h)
∏

ω∈{0,1}s\Ω′
hω(x+ ω · h)

∣∣∣x ∈ Z,h ∈ Zs] = oη→0;s(1)

or, equivalently,

(2.7) E[f(x)G(x) |x ∈ Z] = oη→0;s(1)

3In (2.6) we follow the convention that the product of an empty family of functions is equal to

the constant function 1.
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where G : Z → R is the marginal defined by the rule

(2.8) G(x) = E
[ ∏
ω∈Ω

f(x+ ω · h)
∏

ω∈{0,1}s\Ω′
hω(x+ ω · h)

∣∣∣h ∈ Zs].
Since |f | 6 ν and E[ν] 6 ‖ν‖U2s(Z) 6 1 + η, by the Cauchy–Schwarz inequality, it

is enough to prove that

(2.9) E[(ν − 1)G2] = oη→0;s(1) and E[G2] = oη→0;s(1).

The first estimate in (2.9) follows from Fact 2.2 and the fact that ‖ν−1‖U2s(Z) 6 η;

indeed, observe that

|E[(ν − 1)G2]| 6 ‖ν − 1‖U2s(Z) · ‖f‖
2|Ω|
U2s(Z) ·

∏
ω∈{0,1}s\Ω′

‖hω‖2U2s(Z) �s η.

For the second estimate, as in [2, Theorem 7.1], we will use a simple decomposition.

Specifically, let β > 0 be a cut-off parameter and writeG2 = 1[|G|6β]G
2+1[|G|>β]G

2.

As we shall see, any value of β greater than 1 would suffice for the proof; for

concreteness we will use the value β = 2. By linearity of expectation, it is enough

to show that

(2.10) E[1[|G|62]G
2] = oη→0;s(1) and E[1[|G|>2]G

2] = oη→0;s(1).

The first part of (2.10) can be handled easily by our inductive assumptions. Indeed,

set h0s = 1[|G|62](G/2) and notice that

E[1[G|62]G
2] = 2 · E

[
h0s

(
x)
∏
ω∈Ω

f(x+ ω · h)
∏

ω∈{0,1}s\Ω′
hω(x+ ω · h)

∣∣∣x ∈ Z,h ∈ Zs]
which is oη→0;s(1) since |h0s | 6 1 and Ω ⊆ {0, 1}s satisfies |Ω| = m. For the second

part of (2.10), observe that

(2.11) E[1[|G|>2]G
2] 6 E[1[N>2]N 2]

where N : Z → R is defined by N (x) = E[
∏
ω∈Ω ν(x+ω ·h) |h ∈ Zs]. The function

N satisfies the following moment estimate: for every A ⊆ Z and every k ∈ {1, 2}
we have

(2.12) E[1AN k] = P(A) + oη→0;s(1)

where P(A) = E[1A] = |A|/|Z| is the probability of A with respect to the uniform

probability measure P on Z. Indeed, since |E[1AN k] − P(A)| = |E[1A(N k − 1)]|,
the estimate in (2.12) follows from Fact 2.2, a telescopic argument and the fact

that ‖ν − 1‖U2s(Z) 6 η. Now, combining (2.11) and (2.12) for k = 2 and invoking

Markov’s inequality, we have

E[1[|G|>2]G
2] 6 P

(
[N > 2]

)
+ oη→0;s(1) 6 P

([
|N − 1| > 1

])
+ oη→0;s(1)

6 E
[
|N − 1|

]
+ oη→0;s(1).

On the other hand, by (2.12) for k = 1, we see that

E
[
|N − 1|

]
= E[1[N>1](N − 1)] + E[1[N<1](1−N )] = oη→0;s(1).
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Therefore, E[1[|G|>2]G
2] = oη→0;s(1) as desired. �

Remark 1. It is not hard to see that the proof of Proposition 2.1 in fact yields

that for every 0 < ε 6 1, if ν : Z → R+ satisfies ‖ν − 1‖U2s(Z) 6 η for some

0 < η 6 ε and f : Z → R is such that |f | 6 ν and ‖f‖ws(Z) 6 ε, then we have

‖f‖Us(Z) �s ε
C + oη→0(1) where C = (2s · 22s−1)−1.

Remark 2. By appropriately modifying the proof of Proposition 2.1, one can es-

tablish the equivalence between the Us(Z)-norm and its weak version using more

general pseudorandomness hypotheses. In particular, we have the following propo-

sition which is related to [2, Theorem 7.1].

Proposition 2.3. Let Z be a finite additive group, let s > 2 be an integer and

let 0 < η 6 1. Let 1 < p 6 ∞, let q denote the conjugate exponent of p and set

` := min{2n : n ∈ N and 2n > 2q}. Also let ν : Z → R+ such that

(2.13) ‖ν − ψ‖U`s(Z) 6 η

where ψ : Z → R satisfies4 ‖ψ‖Lp 6 1 and ‖ψ‖U`s(Z) 6 1. Finally, let f : Z → R
with |f | 6 ν. If ‖f‖ws(Z) 6 η, then

(2.14) ‖f‖Us(Z) = oη→0;s,p(1).

Observe that Proposition 2.1 corresponds to the case “p = ∞” and “ψ = 1”.

Also note that, by Hölder’s inequality, if p is sufficiently large, then the estimate

‖ψ‖U`s(Z) 6 1 follows from the estimate ‖ψ‖Lp
6 1.

3. The box norm versus the cut norm

3.1. Let V be a nonempty finite set and let s > 2 be an integer. Also let F : V s → R
and recall that the box norm ‖F‖�(V s) of F is defined by the rule

(3.1) ‖F‖�(V s) := E
[ ∏
ω∈[2]s

F
(
πω(x)

) ∣∣∣x ∈ V s×2
]1/2s

where for every ω = (ωi) ∈ [2]s by πω : V s×2 → V s we denote the projection

πω
(
(xij)

)
= (xi ωi

)si=1. These norms are the abstract versions of the Gowers uni-

formity norms; indeed, notice that for every finite additive group Z and every

f : Z → R we have

(3.2) ‖f‖Us(Z) = ‖f(x1 + · · ·+ xs)‖�(Zs).

We will also work with the following slight variants of the box norms which first

appeared in [13]: for every even integer ` > 2 we define the `-box norm ‖F‖�`(V s)

of F by setting

(3.3) ‖F‖�`(V s) := E
[ ∏
ω∈[`]s

F
(
πω(x)

) ∣∣∣x ∈ V s×`]1/`s
4Here, the Lp-norm of ψ is computed using the uniform probability measure on Z, that is,

‖ψ‖Lp
:= E[ |ψ(x)|p |x ∈ Z]1/p.



UNIFORMITY NORMS, THEIR WEAKER VERSIONS, AND APPLICATIONS 7

where, as above, for every ω = (ωi) ∈ [`]s by πω : V s×` → V s we denote the

projection πω
(
(xij)

)
= (xi ωi

)si=1. Clearly, the �2(V s)-norm coincides with the

�(V s)-norm. As the parameter ` increases, the quantity ‖F‖�`(V s) also increases

and measures the integrability of F . In particular, for bounded functions all these

norms are essentially equivalent. This fact, together with some basic properties of

the `-box norms, are discussed in the appendix.

The box norm also has a natural weak version which is known as the cut norm

and originates from [6]. Specifically, let V, s and F be as above, and define5 the cut

norm ‖F‖cut(V s) of F by the rule

(3.4) ‖F‖cut(V s) := sup
{
E
[
F
(
π1s(x)

) ∏
ω∈[2]s\{1s}

Hω

(
πω(x)

) ∣∣x ∈ V s×2
]}

where the above supremum is taken over all families 〈Hω : ω ∈ [2]s \ {1s}〉 of

[−1, 1]-valued functions on V s, and 1s = (1, . . . , 1) ∈ [2]s denotes the sequence of

length s taking the constant value 1. By the Gowers–Cauchy–Schwarz inequality

for the �(V s)-norm, we see that

(3.5) ‖F‖cut(V s) 6 ‖F‖�(V s).

Also observe that if F is [−1, 1]-valued, then ‖F‖�(V s) 6 ‖F‖
1/2s

cut(V s).

3.2. The main result. The following proposition is the analogue of Proposi-

tion 2.1 and establishes the equivalence of the box norm with the cut norm.

Proposition 3.1. Let V be a nonempty finite set, let s > 2 be an integer and let

0 < η 6 1. Also let ν : V s → R+ such that

(3.6) ‖ν − 1‖�4(V s) 6 η.

Finally, let F : V s → R with |F | 6 ν. If ‖F‖cut(V s) 6 η, then

(3.7) ‖F‖�(V s) = oη→0;s(1).

It is possible to prove Proposition 3.1 arguing as in [1, Theorem 2.17]. However,

as the reader has probably already noticed, Proposition 3.1 can be proved arguing

precisely as in Proposition 2.1, using instead of Fact 2.2 the following elementary

consequence of the Gowers–Cauchy–Schwarz inequality for the �4(V s)-norm.

Fact 3.2. Let V be a nonempty finite set and let s > 2 be an integer. Also let

G : V s → R, let 〈G(k)
ω : k ∈ {1, 2}, ω ∈ [2]s\{1s}〉 be a family of real-valued functions

on V s, and set6

I := E
[
G(y)

∏
k∈{1,2}

∏
ω∈[2]s\{1s}

G(k)
ω

(
πω(y, zk)

) ∣∣∣ y, z1, z2 ∈ V s
]
.

5In several places in the literature, the cut norm is defined by taking the supremum in (3.4)

over all families 〈Hω : ω ∈ [2]s \ {1s}〉 of [0, 1]-valued functions on V s. However, it is clear that

this more restrictive definition yields an equivalent norm.
6Here, we identify V s×2 with V s×V s via the bijection V s×23 (xij) 7→

(
(xi1), (xi2)

)
∈ V s×V s.

In particular, we write uniquely every x ∈ V s×2 as x = (y, z) ∈ V s × V s.
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Then we have

|I| 6 ‖G‖�4(V s) ·
∏

k∈{1,2}

∏
ω∈[2]s\{1s}

‖G(k)
ω ‖�4(V s).

Proof. Define a map {1, 3}s \ {1s} 3 ω = (ωi) 7→ ω′ = (ω′i) ∈ [2]s \ {1s} by setting

ω′i = 1 if ωi = 1, and ω′i = 2 if ωi = 3. Then we may write

I = E
[
G1s

(
π1s(x)

) ∏
ω∈[2]s\{1s}

Gω
(
πω(x)

) ∏
ω∈{1,3}s\{1s}

Gω
(
πω(x)

) ∣∣∣x ∈ V s×4
]

where G1s = G, Gω = G
(1)
ω for every ω ∈ [2]s \ {1s}, and Gω = G

(2)
ω′ for every

ω ∈ {1, 3}s \ {1s}. Thus, setting Gω = 1 for all other ω ∈ [4]s, we see that

I = E
[ ∏
ω∈[4]s

Gω
(
πω(x)

) ∣∣∣x ∈ V s×4
]

and the result follows from the Gowers–Cauchy–Schwarz inequality. �

Remark 3. We point out that Proposition 2.3 can also be extended in the hyper-

graph setting. Specifically, we have the following proposition; see [2, Section 7] for

further results in this direction.

Proposition 3.3. Let V be a nonempty finite set, let s > 2 be an integer and

let 0 < η 6 1. Let 1 < p 6 ∞, let q denote the conjugate exponent of p and set

` := min{2n : n ∈ N and 2n > 2q + 2}. Also let ν : V s → R+ such that

(3.8) ‖ν − ψ‖�`(V s) 6 η

where ψ : V s → R satisfies7 ‖ψ‖Lp
6 1 and ‖ψ‖�`(V s) 6 1. Finally, let F : V s → R

with |F | 6 ν. If ‖F‖cut(V s) 6 η, then

(3.9) ‖F‖�(V s) = oη→0;s,p(1).

3.3. Transferring Proposition 3.1 to the additive setting. There is an addi-

tive version of Proposition 3.1 which is somewhat distinct from Proposition 2.1 and

is obtained by transferring the `-box norms and the cut norm in the additive setting

via formula (3.2). Specifically, let Z be a finite additive group, let s > 2 be an inte-

ger and let f : Z → R. For every even integer ` > 2 we define the (s, `)-uniformity

norm ‖f‖Us
` (Z) of f by

(3.10) ‖f‖Us
` (Z) := ‖f(x1 + · · ·+ xs)‖�`(Zs).

Respectively, we define the s-additive cut norm ‖f‖cuts(Z) of f by the rule

(3.11) ‖f‖cuts(Z) := ‖f(x1 + · · ·+ xs)‖cut(Zs).

(Notice that the additive cut norm is slightly stronger than the weak uniformity

norm; in particular, we have ‖f‖ws(Z) 6 ‖f‖cuts(Z).) Taking into account (3.10)

and (3.11), we see that Proposition 3.1 can be reformulated as follows.

7Here, as in Proposition 2.3, the Lp-norm of ψ is computed using the uniform probability

measure on V s, that is, ‖ψ‖Lp
:= E[ |ψ(x)|p |x ∈ V s]1/p.
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Corollary 3.4. Let Z be a finite additive group, let s > 2 be an integer and let

0 < η 6 1. Also let ν : Z → R+ such that

(3.12) ‖ν − 1‖Us
4 (Z) 6 η.

Finally, let f : Z → R with |f | 6 ν. If ‖f‖cuts(Z) 6 η, then

(3.13) ‖f‖Us(Z) = oη→0;s(1).

4. A variant of the Koopman–von Neumann decomposition

4.1. Overview. The Koopman–von Neumann decomposition is a circle of results

asserting that, under certain circumstances, one can decompose a function f as

f = fbnd + ferr where fbnd is bounded in magnitude by 1 and ferr has small uni-

formity norm8. To see the relevance in this context of the equivalence between the

uniformity norms and their weaker versions, note that one can first approximate f

by a bounded function fbnd such that the difference f − fbnd is small in a weaker

norm, and then upgrade this information using the results in the previous sections.

This strategy (also used in [18, 19]) is quite effective partly because the afore-

mentioned weaker approximation can be achieved relatively easily using various

methods. We will use one of these methods, the so-called dense model theorem.

4.2. Consequences of the dense model theorem. We begin by recalling the

dense model theorem; we will state the formulation which is closest to the purposes

of this note (see [15, Theorem 1.1] or [19, Theorem 3.5]).

Proposition 4.1. Let X be a finite set and let F be a family of [−1, 1]-valued

functions on X. Also let 0 < η 6 1, and let ν : X → R+ such that E[ν] 6 1 + η and

satisfying

(4.1)
∣∣∣E[(ν − 1)

k∏
i=1

Fi

]∣∣∣ 6 η
for every F1, . . . , Fk ∈ F . Then for every g : X → R with 0 6 g 6 ν there exists

w : X → [0, 1] such that

(4.2) sup
{
|E
[
(g − w)F ]| : F ∈ F

}
= oη→0(1).

We will need two consequences of Proposition 4.1. The first one concerns func-

tions defined on a finite additive group Z. Recall that by ‖ · ‖cuts(Z) we denote the

additive cut norm defined in (3.11).

Corollary 4.2. Let Z be a finite additive group and let s > 2 be an integer. Also let

0 < η 6 1 and ν : Z → R+ such that ‖ν − 1‖cuts(Z) 6 η. Then for every g : Z → R
with 0 6 g 6 ν there exists w : Z → [0, 1] such that ‖g − w‖cuts(Z) = oη→0(1).

8As we have already noted in the introduction, in applications it is not enough to control the

error-term ferr using a weaker norm.
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Consequently, for every f : Z → R with |f | 6 ν there exists h : Z → [−1, 1] such

that ‖f − h‖cuts(Z) = oη→0(1).

The second consequence is the analogue of Corollary 4.2 for hypergraphs.

Corollary 4.3. Let V be a nonempty finite set and let s > 2 be an integer. Also let

0 < η 6 1 and ν : V s → R+ such that ‖ν−1‖cut(V s) 6 η. Then for every G : V s → R
with 0 6 G 6 ν there exists W : V s → [0, 1] such that ‖G −W‖cut(V s) = oη→0(1).

Consequently, for every F : V s → R with |F | 6 ν there exists H : V s → [−1, 1] such

that ‖F −H‖cut(V s) = oη→0(1).

Corollary 4.3 is a straightforward consequence of Proposition 4.1. On the other

hand, Corollary 4.2 follows by applying Proposition 4.1 for the family F of all

convex combinations9 of functions D : Z → R of the form

D(z) = E
[ ∏
ω∈[2]s\{1s}

Hω

(
πω(x)

) ∣∣∣x = (xij) ∈ Zs×2 with

s∑
i=1

xi1 = z
]

where Hω : Zs → [−1, 1] for every ω ∈ [2]s \ {1s}. Indeed, it is not hard to see

that this family F is closed under multiplication (see, e.g., the proof of Lemma 3.3

in [20]).

4.3. The main results. We are ready to state our first result in this section. It

is a variant of [10, Proposition 8.1] (see also [11, Proposition 10.3]).

Corollary 4.4. Let Z be a finite additive group, let s > 2 be an integer and let

0 < η 6 1. Also let ν : Z → R+ such that

(4.3) ‖ν − 1‖U2s(Z) 6 η.

Then for every f : Z → R with |f | 6 ν there exists h : Z → [−1, 1] such that

(4.4) ‖f − h‖Us(Z) = oη→0;s(1).

Moreover, if f is nonnegative, then h is also nonnegative.

Note that if Z is a finite additive group and f : Z → R+ is a function which

is approximated by a [0, 1]-valued function on Z in the sense of (4.4)—that is,

there exists h : Z → [0, 1] such that ‖f − h‖Us(Z) = o(1)—then f is majorized

by a function ν : Z → R+ satisfying ‖ν − 1‖Us(Z) = o(1); indeed, simply take

ν := f + (1−h). Thus we see that the pseudorandomness hypothesis (4.3) is nearly

optimal.

Proof of Corollary 4.4. We first observe that, by (4.3), the monotonicity of the

Gowers norms ‖ · ‖Us(Z) 6 ‖ · ‖U2s(Z), the identity (3.2) and (3.5), we have that

‖ν − 1‖cuts(Z) 6 η. Therefore, by Corollary 4.2, there exists h : Z → [−1, 1] such

9The need to convexify the set of “dual” functions is very natural from a functional analytic

perspective; see, e.g., [9].
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that ‖f − h‖cuts(Z) = oη→0(1). Set ν′ := (ν + 1)/2 and notice that |f − h|/2 6 ν′

and ‖ν′ − 1‖U2s(Z) 6 η. By Proposition 2.1, the result follows. �

Our second result is a variant of [16, Theorem 3.9].

Corollary 4.5. Let V be a nonempty finite set, let s > 2 be an integer and let

0 < η 6 1. Also let ν : V s → R+ such that

(4.5) ‖ν − 1‖�4(V s) 6 η.

Then for every F : V s → R with |F | 6 ν there exists H : Z → [−1, 1] such that

(4.6) ‖F −H‖�(V s) = oη→0;s(1).

Moreover, if F is nonnegative, then H is also nonnegative.

Proof. It is identical to the proof of Corollary 4.4. Indeed, by (4.5) and Corol-

lary 4.3, there exists H : V s → [−1, 1] such that ‖F − H‖cut(V s) = oη→0(1). By

Proposition 3.1, the result follows. �

5. On the relative inverse theorem for the Gowers Us[N ]-norm

5.1. Overview. In order to put the main result of this section in a proper context,

we begin with a brief discussion on the nilpotent Hardy–Littlewood method invented

by Green and Tao [11]. It is a powerful method for obtaining precise asymptotic

estimates (as N → +∞) for expressions of the form

(5.1)
∑

n∈K∩Zd

t∏
i=1

fi
(
ψi(n)

)
where f1, . . . , ft : Z → R are arithmetic functions supported on the set of positive

integers, K ⊆ [−N,N ]d is a convex body and ψ1, . . . , ψt : Zd → Z are affine linear

forms no two of which are affinely dependent. The first step of the method relies on

the generalized von Neumann theorem—see [11, Proposition 7.1]—which reduces

the estimation of the quantity in (5.1) to a norm estimate

(5.2) ‖fi − 1‖Us[N ] = os(1) for every s > 2 and every i ∈ {1, . . . , t}

where ‖·‖Us[N ] stands for the s-th Gowers uniformity norm on the interval [N ] which

we will shortly recall. This reduction can be performed provided that |f1|, . . . , |ft|
are simultaneously majorized by a function ν satisfying the “linear forms condition”

(see [11, Definition 6.2]). The second (and more substantial) step of the method

reduces the estimate (5.2) to a non-correlation estimate

(5.3) En∈[N ] (fi(n)− 1)F (gn · x) = os,G/Γ,M (1)

where G/Γ is an (s − 1)-step nilmanifold equipped with a smooth Riemannian

metric dG/Γ, F : G/Γ → [−1, 1] is a function with Lipschitz constant at most M ,

g ∈ G and x ∈ G/Γ. (We recall the notion of an (s − 1)-step nilmanifold below.)

For bounded functions, the equivalence between (5.2) and (5.3) is a deep result which
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is known as the inverse theorem for the Gowers Us[N ]-norm and is due to Green,

Tao and Ziegler [12]. One of the main steps in [11] was to transfer the inverse

theorem to the unbounded setting. This was achieved with the relative inverse

theorem for the Gowers Us[N ]-norm—see [11, Proposition 10.1]—which can be

applied provided that |fi| is majorized by a function ν satisfying the aforementioned

linear forms condition and an additional pseudorandomness condition known as the

“correlation condition” (see [11, Definition 6.3]).

Recently, a part of the proof of [11, Proposition 10.1] was revisited in [18]. One

pleasant consequence of the approach in [18] is that the relative inverse theorem

(and, consequently, the whole nilpotent Hardy–Littlewood method) can be applied

assuming that the majorant ν satisfies only the linear forms condition10.

Our aim in this section is to give yet another proof of the relative inverse theorem

using a norm-type pseudorandomness condition. To this end, it is convenient at

this point to properly introduce the concepts discussed so far.

5.1.1. Uniformity norms on intervals. Let N > 1 be an integer and let f : [N ]→ R
be a function. We select an integer N ′ > 2N and we identify (in the obvious way)

the discrete interval [N ] with a subset of the cyclic group ZN ′ := Z/N ′Z. The

Gowers uniformity norm ‖f‖Us[N ] of f on the interval [N ] is defined by setting

(5.4) ‖f‖Us[N ] := ‖f1[N ]‖Us(ZN′ )
/‖1[N ]‖Us(ZN′ )

where 1[N ] : ZN ′ → {0, 1} stands for the indicator function of [N ]. We note that the

quantity ‖f‖Us[N ] is, in fact, intrinsic and is independent of the choice of N ′—see

[11, Appendix B] for more details.

5.1.2. Nilmanifolds. Let s > 2 be an integer and recall that an (s − 1)-step nil-

manifold is a homogeneous space X := G/Γ where G is an (s − 1)-step nilpotent,

connected, simply connected Lie group, and Γ is a discrete cocompact subgroup

of G. The group G acts on G/Γ by left multiplication and this action will be de-

noted by (g, x) 7→ g · x. As in [11], we will assume that each nilmanifold G/Γ is

equipped with a smooth Riemannian metric dG/Γ; in particular, if F : G/Γ→ R is

a function, then its Lipschitz constant is computed using the metric dG/Γ.

5.2. The main result. We are ready to state the main result in this section. As

we have indicated, it is a refinement of [11, Proposition 10.1].

Theorem 5.1. For every integer s > 2, every C > 20 and every 0 < δ 6 1 there

exist η > 0, a constant M > 0, a finite collection M of (s − 1)-step nilmanifolds

(each equipped with a smooth Riemannian metric), and a constant c > 0 with the

10The possibility that one could dispense with the need for the correlation condition entirely,

was also noted in [4, Appendix A].
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following property. Let N be a positive integer and let N ′ ∈ [CN, 2CN ] be a prime.

Also let ν : ZN ′ → R+ satisfying

(5.5) ‖ν − 1‖U2s(ZN′ )
6 η.

Finally, let f : [N ]→ R with |f(n)| 6 ν(n) for every n ∈ [N ]. If ‖f‖Us[N ] > δ, then

there exist (G/Γ, dG/Γ) ∈M, a function F : G/Γ→ [−1, 1] with Lipschitz constant

at most M , g ∈ G and x ∈ G/Γ such that

(5.6) |En∈[N ] f(n)F (gn · x)| > c.

We notice that the estimate in (5.5) follows if we assume that the function ν

satisfies the (4s, 4s, 1)-linear forms condition in the sense of [11, Definition 6.2],

but (5.5) is certainly easier to grasp. It is likely that one can follow a similar

approach in other instances of the transfer method, and replace the linear forms

condition with a norm estimate of the form (5.5) for a suitable uniformity norm11.

Remark 4. Using Corollary 3.4 instead of Proposition 2.1, it is easy to verify that

Theorem 5.1 also holds if the majorant ν satisfies ‖ν − 1‖Us
4 (ZN′ )

6 η, a condition

which is slightly different from (5.5). However, the use of the U2s(ZN ′)-norm in

Theorem 5.1 is conceptually more natural in the present arithmetic context.

5.3. Preliminary tools. As in [11], the proof of Theorem 5.1 is based on three in-

gredients. The first one is the inverse theorem for the Gowers Us[N ]-norm [12].

It gives a criterion for checking that a bounded arithmetic function has non-

negligible uniformity norm.

Theorem 5.2. For every integer s > 2 and every 0 < δ 6 1 there exist a constant

M > 0, a finite collection M of (s − 1)-step nilmanifolds (each equipped with a

smooth Riemannian metric), and a constant c > 0 with the following property. Let

N be a positive integer, and let f : [N ] → [−1, 1] be a function with ‖f‖Us[N ] > δ.

Then there exist (G/Γ, dG/Γ) ∈ M, a function F : G/Γ → [−1, 1] with Lipschitz

constant at most M , g ∈ G and x ∈ G/Γ such that

(5.7) |En∈[N ] f(n)F (gn · x)| > c.

It is more natural to formulate Theorem 5.2 for complex-valued functions which

are bounded in magnitude by 1; however, we will not need the complex version of

Theorem 5.2 for the proof of Theorem 5.1.

To state the second ingredient, we first recall some definitions. Let s > 2 be an

integer. Also let N be a positive integer, let F : [N ]→ R be a function, and define

the dual uniformity norm ‖F‖Us[N ]∗ of F by the rule

(5.8) ‖F‖Us[N ]∗ := sup
{
|En∈[N ] f(n)F (n)| : ‖f‖Us[N ] 6 1

}
.

11In this direction we recall (see also [1]) that it is not known whether for every integer k > 3

there exists an integer s > k − 1 such that the relative Szemerédi theorem for k-term arithmetic

progressions holds true under the condition ‖ν − 1‖Us(ZN ) = o(1).



14 PANDELIS DODOS AND VASSILIS KANELLOPOULOS

We will need the following result which follows from [11, Proposition 11.2].

Proposition 5.3. Let s > 2 be an integer, let (G/Γ, dG/Γ) be an (s − 1)-step

nilmanifold, and let M > 0. Also let F : G/Γ→ [−1, 1] be a function with Lipschitz

constant at most M , g ∈ G and x ∈ G/Γ. Finally, let N be a positive integer and

let 0 < ε 6 1. Then there exists a decomposition

(5.9) F (gn · x) = F1(n) + F2(n) for every n ∈ [N ]

where the functions F1, F2 : [N ]→ R obey the estimates

(5.10) ‖F1‖`∞ = O(ε) and ‖F2‖Us[N ]∗ = Os,M,ε,G/Γ(1).

We point out that, by [11, Proposition 11.2], one can additionally ensure that the

function F2 in the above decomposition is an “averaged nilsequence” in the sense

of [11, Definition 11.1]. We also note that the proof of [11, Proposition 11.2] is

non-effective and yields no estimate for the dual uniformity norm of F2. However,

explicit estimates can be obtained by combining [14, Lemmas A.2 and A.3]—see

[14, Appendix A] for more details on this approach.

The last ingredient needed for the proof of Theorem 5.1 is the following version

of Corollary 4.4 which concerns functions defined on intervals of Z.

Corollary 5.4. For every integer s > 2, every C > 20 and every 0 < ε 6 1 there

exist a positive integer N0 and η > 0 with the following property. Let N > N0 be

an integer and let N ′ ∈ [CN, 2CN ] be a prime. Also let ν : ZN ′ → R+ satisfying

(5.11) ‖ν − 1‖U2s(ZN′ )
6 η.

Finally, let f : [N ] → R with |f(n)| 6 ν(n) for every n ∈ [N ]. Then there exists a

function h : [N ]→ [−1, 1] such that

(5.12) ‖f − h‖Us[N ] 6 ε.

Moreover, if f is nonnegative, then h is also nonnegative.

Proof. It is a consequence of Corollary 4.4 and a standard truncation argument.

Specifically, fix the parameters s, C and ε, and set

(5.13) α =
( ε

32C

)2s

and N0 = d2/αe.

Moreover, by Corollary 4.4, we select 0 < η 6 1 such that for every finite additive

group Z, every ν′ : Z → R+ satisfying ‖ν′− 1‖U2s(Z) 6 η and every g : Z → R with

|g| 6 ν′ there exists w : Z → [−1, 1] such that ‖g − w‖Us(Z) 6 εα/(32C). We will

show that N0 and η are as desired.

So, let N,N ′, ν and f be as in the statement of the corollary, and let f̃ : ZN ′ → R
be the extension of f obtained by setting f̃(n) = 0 if n /∈ [N ]. By the choice of η,

there exists H : ZN ′ → [−1, 1] satisfying

(5.14) ‖f̃ −H‖Us(ZN′ )
6

εα

32C
.
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We claim that ‖f − h‖Us[N ] 6 ε where h : [N ] → [−1, 1] is the restriction of H

on [N ]. Indeed, set l = bαNc and let 2L be the least even integer greater than

or equal to N ; notice that N > L > l > 2 and α/2 6 l/N 6 α. Next, write

N ′ = 2k+ 1 and identify ZN ′ with the interval {−k, . . . , k}. Let ϕ : ZN ′ → [0, 1] be

the cut-off function which is nonzero on the set {−l + 2, . . . , 2L+ l − 1}, increases

linearly from 0 to 1 between −l + 1 and 1, is equal to 1 on [2L], and decreases

linearly from 1 to 0 between 2L and 2L + l. Observe that f̃ϕ = f̃ and so, setting

h̃ := H1[N ], we have

(5.15) f̃ − h̃ = (f̃ −H)ϕ+H(ϕ− 1[N ]).

Also note that the Fourier transform ϕ̂ of ϕ satisfies the estimate ‖ϕ̂‖`1(ZN′ )
6 4L/l

(see, e.g., the proof of Lemma A.1 in [5] where this is explained in some detail).

Hence, by the triangle inequality and [17, (11.11)], we have12

(5.16) ‖(f̃ −H)ϕ‖Us(ZN′ )
6 ‖ϕ̂‖`1(ZN′ )

· ‖f̃ −H‖Us(ZN′ )
6

4N

l
‖f̃ −H‖Us(ZN′ )

.

On the other hand, since H(ϕ−1[N ]) is bounded in magnitude by 1 and is supported

on a subset of ZN ′ of cardinality at most 2l + 1, we obtain that

(5.17) ‖H(ϕ− 1[N ])‖Us(ZN′ )
6
(2l + 1

N ′

)1/2s

6
( 3l

CN

)1/2s

.

Finally, note that ‖1[N ]‖Us(ZN′ )
> E[1[N ]] = N/N ′ > 1/2C. Thus, by (5.15)–(5.17),

the triangle inequality and the definition of the Us[N ]-norm, we see that

‖f − h‖Us[N ] 6 2C
(4N

l
‖f̃ −H‖Us(ZN′ )

+
( 3l

CN

)1/2s)
.

By the previous inequality and taking into account the choice of α, l and the esti-

mate (5.14), we conclude that ‖f − h‖Us[N ] 6 ε. �

5.4. Proof of Theorem 5.1. We follow the proof from [11, Proposition 10.1] quite

closely13. We first observe that, by compactness, for every positive integer d there

exists a constant D > 1 such that for every N ∈ [d] and every f : [N ] → R we

have ‖f‖Us[N ] 6 D‖f̂‖`∞ . (Here, we identify [N ] with ZN .) Therefore, if N ∈ [d],

then Theorem 5.1 follows using as nilmanifold the torus R/Z. Thus, at the cost of

worsening the constants, it is enough to prove Theorem 5.1 for every sufficiently

large positive integer N .

So, fix the parameters s, C and δ, and let M,M and c be as in Theorem 5.2

when applied for δ/2. Next, by Proposition 5.3, we select K > 1 such that for

every (G/Γ, dG/Γ) ∈ M, every function F : G/Γ → [−1, 1] with Lipschitz constant

at most M , every g ∈ G, every x ∈ G/Γ and every positive integer N we have

the decomposition (5.9) with ‖F1‖`∞ 6 c/12 and ‖F2‖Us[N ]∗ 6 K. Finally, let N0

12Note that here we work with the complex version of the Gowers uniformity norm.
13Actually, there is a minor oversight in the proof of [11, Proposition 10.1] which is fixed in the

present paper. Specifically, the appeal to Proposition 8.2 at the top of [11, page 1796] is invalid

without appeal to the material from [11, Section 11].
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and η be as in Corollary 5.4 when applied for ε := min{δ/2, c/(4K)}. We claim

that Theorem 5.1 holds true for η,M,M and c/2 provided that N > N0. Indeed,

let N be an arbitrary positive integer with N > N0, and let N ′, ν and f be as in the

statement of the theorem. By Corollary 5.4, there exists h : [N ]→ [−1, 1] such that

‖f − h‖Us[N ] 6 ε; in particular, we have ‖h‖Us[N ] > δ/2 and so, by Theorem 5.2,

there exist (G/Γ, dG/Γ) ∈M, a function F : G/Γ→ [−1, 1] with Lipschitz constant

at most M , g ∈ G and x ∈ G/Γ such that

(5.18) |En∈[N ] h(n)F (gn · x)| > c.

Write F (gn · x) = F1(n) + F2(n) with ‖F1‖`∞ 6 c/12 and ‖F2‖Us[N ]∗ 6 K, and

notice that, by (5.18) and the triangle inequality, it suffices to show that

(5.19) |En∈[N ]

(
f(n)− h(n)

)
F1(n)| 6 c

4
and |En∈[N ]

(
f(n)− h(n)

)
F2(n)| 6 c

4
.

The first part of (5.19) follows from the fact that E
[
|f − h|

]
6 E[ν + 1] 6 3 and

‖F1‖`∞ 6 c/12. On the other hand, by the choice of ε and h, we have

|En∈[N ]

(
f(n)− h(n)

)
F2(n)| 6 ‖f − h‖Us[N ] · ‖F2‖Us[N ]∗ 6 εK 6

c

4

and the proof is completed.

Appendix A. Basic properties of uniformity norms

Proposition A.1. Let V be a nonempty finite set and let s > 2 be an integer.

(a) (Gowers–Cauchy–Schwarz inequality) Let ` > 2 be an even integer and for

every ω ∈ [`]s let Fω : V s → R. Then we have

(A.1)
∣∣∣E[ ∏

ω∈[`]s

Fω
(
πω(x)

)∣∣∣x ∈ V s×`]∣∣∣ 6 ∏
ω∈[`]s

‖Fω‖�`(V s).

In particular, if Z is a finite additive group, then we have

(A.2)
∣∣∣E[ ∏

ω∈{0,1}s
fω(x+ ω · h)

∣∣∣x ∈ Z,h ∈ Zs]∣∣∣ 6 ∏
ω∈{0,1}s

‖fω‖Us(Z)

for every family 〈fω : ω ∈ {0, 1}s〉 of real-valued functions on Z.

(b) For every even integer ` > 2 the quantity ‖ · ‖�`(V s) is a norm on RV s

.

Moreover, if `1 6 `2 are even positive integers, then for every F : V s → R
we have ‖F‖�`1

(V s) 6 ‖F‖�`2
(V s).

(c) Let ` > 2 be an even integer, let 0 < η 6 1, and let ν : V s → R+ satisfying

‖ν − 1‖�`+2(V s) 6 η. Then for every F : V s → R with |F | 6 ν we have

(A.3) ‖F‖�`(V s) 6 ‖F‖
1/`s

�(V s) + oη→0;s,`(1).

In particular, for every F : V s → [−1, 1] we have ‖F‖�`(V s) 6 ‖F‖
1/`s

�(V s).
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Proof. Part (a) for ` = 2 is well-known (see [11, Lemma B.2] or [17, Section 11.1]).

The general case can be proved with similar arguments—see [3, Proposition 2.1] for

details. Part (b) is an easy consequence of the Gowers–Cauchy–Schwarz inequality.

Part (c) is a special (but more informative) case of [11, Proposition 7.1]. For the

convenience of the reader we will sketch a proof.

We begin by introducing some pieces of notation. For every ω = (ωi) ∈ [`]s we

set S(ω) = {i ∈ [s] : ωi = `}, and for every (possibly empty) d ⊆ [s] let Ω′ω,d denote

the set of all ω′ = (ω′i) ∈ [` + 1]s such that ω′i ∈ {`, ` + 1} if i ∈ S(ω) ∩ d, and

ω′i = ωi otherwise. Next, for every d ⊆ [s] let Id = ([s] × [`]) ∪ (d × {` + 1}) and

define14 Fd, Gd : V Id → R by the rule

Fd(x
′) =

∏
ω′∈Ω′c,d

F
(
πω′(x

′)
)

and Gd(x
′) =

∏
ω∈Ad

∏
ω′∈Ω′ω,d

F
(
πω′(x

′)
)∏
ω∈Bd

∏
ω′∈Ω′ω,d

ν
(
πω′(x

′)
)

where c = (`, . . . , `) ∈ [`]s denotes the sequence of length s taking the constant

value `, Ad = {ω ∈ [`]s \ {c} : d ⊆ S(ω)}, Bd = {ω ∈ [`]s \ {c} : d * S(ω)} and

πω′(x
′) = (x′i ω′i

)si=1 for every x′ ∈ V Id and every ω′ = (ω′i) ∈ [` + 1]s such that

{i ∈ [s] : ω′i = `+ 1} ⊆ d. Finally, we set Qd = E[FdGd].

Now observe that Q∅ = E[
∏
ω∈[`]s F

(
πω(x)

)
|x ∈ V s×`] = ‖F‖`s�`(V s). Moreover,

Q[s] = E
[ ∏
ω′∈{`,`+1}s

F
(
πω′(x

′)
) ∏
ω′∈[`+1]s\{`,`+1}s

ν
(
πω′(x

′)
) ∣∣∣x′ ∈ V s×(`+1)

]
= ‖F‖2

s

�(V s) + oη→0;s,`(1).

Indeed, write Q[s] = Q
(1)
[s] +Q

(2)
[s] where Q

(1)
[s] = E

[ ∏
ω′∈{`,`+1}s F

(
πω′(x

′)
)]

and

Q
(2)
[s] = E

[ ∏
ω′∈{`,`+1}s

F
(
πω′(x

′)
)
·
( ∏
ω′∈[`+1]s\{`,`+1}s

ν
(
πω′(x

′)
)
− 1
)]
.

(Here, the first expectation is taken over all x′ ∈ V s×{`,`+1} and the second ex-

pectation is taken over all x′ ∈ V s×(`+1).) Notice that Q
(1)
[s] = ‖F‖2s

�(V s). On the

other hand, by a telescopic argument, the Gowers–Cauchy–Schwarz inequality for

the �`+2(V s)-norm and the fact that |F | 6 ν and ‖ν − 1‖�`+2(V s) 6 η, we obtain

|Q(2)
[s] | 6

(`+1)s∑
k=2s+1

‖F‖2
s

�`+2(V s) · ‖ν − 1‖�`+2(V s) · ‖ν‖
(`+1)s−k
�`+2(V s) = oη→0;s,`(1).

Finally, by repeated applications of the Cauchy–Schwarz inequality, we see that

Q2
d 6

(
1+oη→0;s,`(1)

)
·Qd∪{i} for every (possibly empty) d  [s] and every i ∈ [s]\d.

In particular, we have Q2s

∅ 6
(
1 + oη→0;s,`(1)

)
· Q[s]. Since Q∅ = ‖F‖`s�`(V s),

Q[s] = ‖F‖2s

�(V s) + oη→0;s,`(1) and

‖F‖�(V s) 6 ‖ν‖�(V s) 6 ‖ν‖�`+2(V s) 6 1 + η

the result follows. �

14In this definition, as in the proof of Proposition 2.1, we follow the convention that the product

of an empty family of functions is equal to the constant function 1.
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