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Abstract. We consider some variants of the Gowers box norms, introduced

by Hatami, and show their relevance in the context of sparse hypergraphs. Our

main results are the following. Firstly, we prove a generalized von Neumann

theorem for Lp graphons. Secondly, we give natural examples of pseudorandom

families, that is, sparse weighted uniform hypergraphs which satisfy relative

versions of the counting and removal lemmas.

1. Introduction

1.1. Overview. Let 〈(Xi,Σi, µi) : i ∈ e〉 be a nonempty finite family of probability

spaces and let (Xe,Σe,µe) denote their product. Recall that the box norm of a

random variable f : Xe → R is the quantity

(1.1) ‖f‖�(Xe) := E
[ ∏
ω∈{0,1}e

f(x(ω)
e )

∣∣∣x(0)
e ,x(1)

e ∈Xe

]1/2|e|
.

(For unexplained notation see Subsection 1.2 below.) These norms were introduced

by Gowers [9, 11] and are important tools in arithmetic and extremal combinatorics.

There are some slight variants of the box norms which first appeared1 in [14, 15]:

for every even integer ` > 2 we define the `-box norm of f : Xe → R by the rule

(1.2) ‖f‖�`(Xe) := E
[ ∏
ω∈{0,...,`−1}e

f(x(ω)
e )

∣∣∣x(0)
e , . . . ,x(`−1)

e ∈Xe

]1/`|e|
.

Clearly, the �2(Xe)-norm coincides with the �(Xe)-norm. As the parameter `

increases, the quantity ‖f‖�`(Xe) also increases and depends on the integrability

properties of f . In particular, for bounded functions all these norms are essentially

equivalent (see [6, Proposition A.1]), but for unbounded functions they behave quite

differently.

The starting point of this paper is the observation that the `-box norms can

serve as the proper higher-complexity2 analogues of the box norms in the context

of sparse hypergraphs and related structures. A strong indication which supports

this point of view is that the Gowers–Cauchy–Schwarz inequality also holds for the
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1Actually, the framework in [14, 15] is more general and includes several other variants of (1.1).
2Note, here, that if s, r are positive integers with s > r, then there is no analogue of the Gowers

Us-norm for r-uniform hypergraphs.
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�`(Xe)-norms. This fact together with several elementary properties are discussed

in Section 2.

The rest of this paper is devoted to the proof of our main results which use the

`-box norms in an essentially way (further examples showing the relevance of these

norms are given in [6]). In Section 3 we present a version of the generalized von

Neumann theorem for Lp graphons (Theorem 3.1 in the main text); as we shall

discuss in more detail in Section 3, the main point in this result is that it can

be applied to Lp graphons for any p > 1. The second part of this paper deals

with pseudorandom families [7], a class of sparse weighted uniform hypergraphs

whose most important feature is that they satisfy relative versions of the counting

and removal lemmas. Their definition is recalled in Section 4, but for a more

complete discussion of their properties we refer the reader to [7]. We present two

different types of examples of pseudorandom families (see Theorems 4.2 and 4.3 in

the main text). They both can be seen as deviations (in an Lp-sense) of hypergraphs

which satisfy the linear forms condition, a well-known pseudorandomness condition

originating from [12].

1.2. Background material. Our general notation and terminology is standard.

By N = {0, 1, . . . } we denote the set of all natural numbers. As usual, for every

positive integer n we set [n] := {1, . . . , n}. If f is an integrable real-valued random

variable defined on a probability space (X,Σ, µ), then by E[f(x) |x ∈ X] we shall

denote the expected value of f ; if the sample space X is understood from the

context, then the expected value of f will be denoted simply by E[f ]. All necessary

background from probability theory needed in this paper can be found, e.g., in [1].

As we have noted, the box norms and their variants are associated with finite

products of probability spaces. It is more convenient, however, to work with the

following more general structures.

Definition 1.1 ([18]). A hypergraph system is a triple

(1.3) H = (n, 〈(Xi,Σi, µi) : i ∈ [n]〉,H)

where n is a positive integer, 〈(Xi,Σi, µi) : i ∈ [n]〉 is a finite sequence of probability

spaces and H is a hypergraph on [n]. If H is r-uniform, then H will be called an

r-uniform hypergraph system.

For every hypergraph system H = (n, 〈(Xi,Σi, µi) : i ∈ [n]〉,H) by (X,Σ,µ)

we shall denote the product of the spaces 〈(Xi,Σi, µi) : i ∈ [n]〉. More generally,

let e ⊆ [n] be nonempty and let (Xe,Σe,µe) denote the product of the spaces

〈(Xi,Σi, µi) : i ∈ e〉. (By convention, we set X∅ to be the empty set.) The

σ-algebra Σe is not comparable with Σ, but it can be “lifted” to X by setting

(1.4) Be =
{
π−1
e (A) : A ∈ Σe

}
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where πe : X → Xe is the natural projection. Observe that if f ∈ L1(X,Be,µ),

then there exists a unique random variable f ∈ L1(Xe,Σe,µe) such that

(1.5) f = f ◦ πe

and note that the map L1(X,Be,µ) 3 f 7→ f ∈ L1(Xe,Σe,µe) is a linear isometry.

We will also deal with products of the space (Xe,Σe,µe). Specifically, let ` ∈ N
with ` > 2. For every x

(0)
e = (x

(0)
i )i∈e, . . . ,x

(`−1)
e = (x

(`−1)
i )i∈e in Xe and every

ω = (ωi)i∈e ∈ {0, . . . , `− 1}e we set

(1.6) x(ω)
e = (x

(ωi)
i )i∈e ∈Xe.

Notice that if ω = me for some m ∈ {0, . . . , `−1} (that is, ω = (ωi)i∈e with ωi = m

for every i ∈ e), then x
(ω)
e = x

(m)
e .

2. `-box norms

In this section we will present several elementary properties of the `-box norms.

We will follow the exposition in [13, Appendix B] quite closely. In what follows, let

H = (n, 〈(Xi,Σi, µi) : i ∈ [n]〉,H) denote a hypergraph system.

2.1. Basic properties. Let e ⊆ [n] be nonempty and let ` > 2 be an even integer.

Also let f ∈ L1(Xe,Σe,µe). We first observe that the `-box norm of f can be

recursively defined as follows. If e = {j} is a singleton, then by (1.2) we have

(2.1) ‖f‖�`(Xe) = E
[ `−1∏
ω=0

f(x
(ω)
j )

∣∣∣x(0)
j , . . . , x

(`−1)
j ∈ Xj

]1/`|e|
=
(
E[f ]`

)1/`
= |E[f ]|.

On the other hand, if |e| > 2, then for every j ∈ e we have

(2.2) ‖f‖�`(Xe) = E
[∥∥ `−1∏

ω=0

f( · , x(ω)
j )

∥∥`|e|−1

�`(Xe\{j})

∣∣∣x(0)
j , . . . , x

(`−1)
j ∈ Xj

]1/`|e|
.

We have the following proposition.

Proposition 2.1. Let e ⊆ [n] be nonempty and let ` > 2 be an even integer.

(a) (Gowers–Cauchy–Schwarz inequality) For every ω ∈ {0, . . . , ` − 1}e let

fω ∈ L1(Xe,Σe,µe). Then we have

(2.3)
∣∣∣E[ ∏

ω∈{0,...,`−1}e
fω(x(ω)

e )
∣∣∣x(0)

e , . . . ,x(`−1)
e ∈Xe

]∣∣∣ 6 ∏
ω∈{0,...,`−1}e

‖fω‖�`(Xe).

(b) Let f ∈ L1(Xe,Σe,µe). Then we have |E[f ]| 6 ‖f‖�`(Xe). Moreover, if

`1 6 `2 are even positive integers, then ‖f‖�`1 (Xe) 6 ‖f‖�`2 (Xe).

(c) If |e| > 2, then ‖·‖�`(Xe) is a norm on the vector subspace of L1(Xe,Σe,µe)

consisting of all f ∈ L1(Xe,Σe,µe) with ‖f‖�`(Xe) <∞.
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(d) Let 1 < p 6∞ and let q denote the conjugate exponent of p. Assume that

` > q and that e = {i, j} is a doubleton. Then for every f ∈ L1(Xe,Σe,µe),

every u ∈ Lp(Xi,Σi, µi) and every v ∈ Lp(Xj ,Σj , µj) we have

(2.4) |E[f(xi, xj)u(xi)v(xj) |xi ∈ Xi, xj ∈ Xj ]| 6 ‖f‖�`(Xe) ‖u‖Lp‖v‖Lp .

Proof of Proposition 2.1. (a) We follow the proof from [13, Lemma B.2] which pro-

ceeds by induction on the cardinality of e. The case “|e| = 1” is straightforward,

and so let r > 2 and assume that the result has been proved for every e′ ⊆ [n] with

1 6 |e′| 6 r − 1. Let e ⊆ [n] with |e| = r be arbitrary. Fix j ∈ e, set e′ = e \ {j}
and for every ω ∈ {0, . . . , ` − 1}e let fω ∈ L1(Xe,Σe,µe). Moreover, for every

ωj ∈ {0, . . . , `− 1} define Gωj : X`
e′ → R by

(2.5) Gωj (x
(0)
e′ , . . . ,x

(`−1)
e′ ) = E

[ ∏
ωe′∈{0,...,`−1}e′

f(ωe′ ,ωj)
(x

(ωe′ )
e′ , xj)

∣∣∣xj ∈ Xj

]
where (ωe′ , ωj) is the unique element ω of {0, . . . , `− 1}e such that ω(j) = ωj and

ω(i) = ωe′(i) for every i ∈ e′. Observe that∣∣∣E[ ∏
ω∈{0,...,`−1}e

fω(x(ω)
e )

∣∣∣x(0)
e , . . . ,x(`−1)

e ∈Xe

]∣∣∣ =
∣∣∣E[ `−1∏

ωj=0

Gωj

]∣∣∣
and, by Hölder’s inequality3, |E

[∏`−1
ωj=0Gωj

]
| 6 ∏`−1

ωj=0 E[G`ωj ]
1/`. Therefore, it is

enough to show that for every ωj ∈ {0, . . . , `− 1} we have

(2.6) E[G`ωj ] 6
∏

ωe′∈{0,...,`−1}e′
‖f(ωe′ ,ωj)

‖`�`(Xe)
.

Indeed, fix ωj ∈ {0, . . . , `− 1} and notice that, by (2.5),

(2.7) G`ωj(x
(0)
e′ , . . . ,x

(`−1)
e′ ) = E

[ ∏
ωe′∈{0,...,`−1}e′

`−1∏
ω=0

f(ωe′ ,ωj)
(x

(ωe′ )
e′ , x

(ω)
j )

]

where the expectation is over all x
(0)
j , . . . , x

(`−1)
j ∈ Xj . By (2.7) and Fubini’s

theorem, we see that

E[G`ωj ] = E
[
E
[ ∏
ωe′∈{0,...,`−1}e′

`−1∏
ω=0

f(ωe′ ,ωj)
(x

(ωe′ )
e′ , x

(ω)
j )

∣∣x(0)
e′ , . . . ,x

(`−1)
e′ ∈Xe′

]]

3Here, and in the rest of the proof, we use the following form of Hölder’s inequality: if (X,Σ, µ)

is a probability space, then for every integer k > 2, every p1, . . . , pk > 1 with
∑k

i=1 1/pi = 1, and

every f1, . . . , fk : X → R with fi ∈ Lpi (X,Σ, µ) for all i ∈ [k], we have

∣∣E[ k∏
i=1

fi
]∣∣ 6 k∏

i=1

‖fi‖Lpi .
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where the outer expectation is over all x
(0)
j , . . . , x

(`−1)
j ∈ Xj . Thus, applying the

induction hypothesis and Hölder’s inequality, we obtain that

E[G`ωj ] 6 E
[ ∏
ωe′∈{0,...,`−1}e′

∥∥ `−1∏
ω=0

f(ωe′ ,ωj)
( · , x(ω)

j )
∥∥
�`(Xe′ )

]
(2.8)

6
∏

ωe′∈{0,...,`−1}e′
E
[∥∥ `−1∏

ω=0

f(ωe′ ,ωj)
( · , x(ω)

j )
∥∥`|e′|
�`(Xe′ )

]1/`|e′|
.

By (2.2) and (2.8), we conclude that (2.6) is satisfied.

(b) It is a consequence of the Gowers–Cauchy–Schwarz inequality. Specifically, for

every ω ∈ {0, . . . , ` − 1}e let fω = f if ω = 0e and fω = 1 otherwise. By (2.3),

we see that |E[f ]| 6 ‖f‖�`(Xe). Next, let `1 6 `2 be even positive integers. As

before, for every ω ∈ {0, . . . , `2 − 1}e let fω = f if ω ∈ {0, . . . , `1 − 1}e; otherwise,

let fω = 1. Then we have

‖f‖`
|e|
1

�`1 (Xe)
= E

[ ∏
ω∈{0,...,`1−1}e

f(x(ω)
e )

∣∣∣x(0)
e , . . . ,x(`1−1)

e ∈Xe

]
= E

[ ∏
ω∈{0,...,`2−1}e

fω(x(ω)
e )

∣∣∣x(0)
e , . . . ,x(`2−1)

e ∈Xe

] (2.3)

6 ‖f‖`
|e|
1

�`2 (Xe)

which implies that ‖f‖�`1 (Xe) 6 ‖f‖�`2 (Xe).

(c) Absolute homogeneity is straightforward. The triangle inequality

‖f + g‖�`(Xe) 6 ‖f‖�`(Xe) + ‖g‖�`(Xe)

follows by raising both sides to the power `|e| and then applying (2.3). Finally, let

f ∈ L1(Xe,Σe,µe) with ‖f‖�`(Xe) = 0 and observe that it suffices to show that

f = 0 µe-almost everywhere. First we note that using (2.3) and arguing precisely

as in [13, Corollary B.3] we have that E[f · 1R] = 0 for every measurable rectangle

R of Xe (that is, every set R of the form
∏
i∈eAi where Ai ∈ Σi for every i ∈ e).

We claim that this implies that E[f · 1A] = 0 for every A ∈ Σe; this is enough

to complete the proof. Indeed, fix A ∈ Σe and let ε > 0 be arbitrary. Since

f is integrable, there exists δ > 0 such that E[ |f | · 1C ] < ε for every C ∈ Σe

with µe(C) < δ. Moreover, by Caratheodory’s extension theorem, there exists a

finite family R1, . . . , Rm of pairwise disjoint measurable rectangles of Xe such that,

setting B =
⋃m
k=1Rk, we have µe(A4B) < δ (see, e.g., [1, Theorem 11.4]). Hence,

E[f · 1B ] = 0 and so

|E[f · 1A]| = |E[f · 1A]− E[f · 1B ]| 6 E[ |f | · 1A4B ] < ε.

Since ε was arbitrary, we conclude that E[f · 1A] = 0.
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(d) Set I = E[f(xi, xj)u(xi)v(xj) |xi ∈ Xi, xj ∈ Xj ] and let `′ denote the conjugate

exponent of `. Notice that 1 < `′ 6 p. By Hölder’s inequality, we have

|I| =
∣∣E[E[f(xi, xj) v(xj) |xj ∈ Xj ]u(xi)

∣∣xi ∈ Xi

]∣∣(2.9)

6 E
[
E[f(xi, xj) v(xj) |xj ∈ Xj ]

`
∣∣xi ∈ Xi

]1/` · ‖u‖L`′ 6 I1/`
1 · ‖u‖Lp

where I1 = E
[∏`−1

ω=0 f(xi, x
(ω)
j ) v(x

(ω)
j )

∣∣xi ∈ Xi, x
(0)
j , . . . , x

(`−1)
j ∈ Xj

]
. Moreover,

I1 = E
[
E
[ `−1∏
ω=0

f(xi, x
(ω)
j )

∣∣xi ∈ Xi

]
·
`−1∏
ω=0

v(x
(ω)
j )

∣∣∣x(0)
j , . . . , x

(`−1)
j ∈ Xj

]
(2.10)

6 E
[
E
[ `−1∏
ω=0

f(xi, x
(ω)
j )

∣∣xi ∈ Xi

]` ∣∣∣x(0)
j , . . . , x

(`−1)
j ∈ Xj

]1/`
· ‖v‖`L`′

(2.2)
= ‖f‖`�`(Xe)

· ‖v‖`L`′ 6 ‖f‖
`
�`(Xe)

· ‖v‖`Lp .
By (2.9) and (2.10), the result follows. �

2.2. The (`, p)-box norms. We will need the following Lp versions of the `-box

norms. We remark that closely related norms appear4 in [3]. Recall that by

H = (n, 〈(Xi,Σi, µi) : i ∈ [n]〉,H) we denote a hypergraph system.

Definition 2.2. Let e ⊆ [n] be nonempty and let ` > 2 be an even integer. Also

let 1 6 p <∞ and f ∈ Lp(Xe,Σe,µe). The (`, p)-box norm of f is defined by

(2.11) ‖f‖�`,p(Xe) :=
∥∥|f |p∥∥1/p

�`(Xe)
.

Moreover, for every f ∈ L∞(Xe,Σe,µe) we set

(2.12) ‖f‖�`,∞(Xe) := ‖f‖L∞ .

We have the following analogue of Proposition 2.1.

Proposition 2.3. Let e ⊆ [n] be nonempty and let ` > 2 be an even integer.

(a) Let 1 6 p <∞. If fω ∈ Lp(Xe,Σe,µe) for every ω ∈ {0, . . . , `− 1}e, then

(2.13) E
[ ∏
ω∈{0,...,`−1}e

|fω|p(x(ω)
e )

∣∣∣x(0)
e , . . . ,x(`−1)

e ∈Xe

]
6

∏
ω∈{0,...,`−1}e

‖fω‖p�`,p(Xe)
.

(b) Let 1 < p, q <∞ be conjugate exponents, that is, 1/p+ 1/q = 1. Then for

every f ∈ Lp(Xe,Σe,µe) and every g ∈ Lq(Xe,Σe,µe) we have

(2.14) ‖fg‖�`(Xe) 6 ‖f‖�`,p(Xe) · ‖g‖�`,q(Xe).

(c) Assume that |e| > 2 and let 1 6 p < ∞. Then ‖ · ‖�`,p(Xe) is a norm on

the vector subspace of Lp(Xe,Σe,µe) consisting of all f ∈ Lp(Xe,Σe,µe)

with ‖f‖�`,p(Xe) <∞. Moreover, the following hold.

4Precisely, in [3], for every finite abelian group Z, every integer s > 2 and every f : Z → R
the quantity

∥∥ |f |2∥∥1/2
Us(Z)

was considered. (Here, ‖ · ‖Us(Z) stands for the s-th Gowers uniformity

norm for the group Z.) It is noted in [3] that this quantity is indeed a norm. The (`, p)-box norms

defined above are the analogues, in the hypergraph setting, of these norms.
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(i) For every f ∈ Lp(Xe,Σe,µe) we have ‖f‖Lp 6 ‖f‖�`,p(Xe).

(ii) For every 1 6 p1 6 p2 < ∞ and every f ∈ Lp2(Xe,Σe,µe) we have

‖f‖�`,p1 (Xe) 6 ‖f‖�`,p2 (Xe).

(iii) For every f ∈ L∞(Xe,Σe,µe) we have limp→∞ ‖f‖�`,p(Xe) = ‖f‖L∞ .

Proof. Part (a) follows immediately by (2.3). For part (b) fix a pair 1 < p, q < ∞
of conjugate exponents, and let f ∈ Lp(Xe,Σe,µe) and g ∈ Lq(Xe,Σe,µe) be

arbitrary. We define F,G : X`
e → R by F (x

(0)
e , . . . ,x

(`−1)
e ) =

∏
ω∈{0,...,`−1}e f(x

(ω)
e )

and G(x
(0)
e , . . . ,x

(`−1)
e ) =

∏
ω∈{0,...,`−1}e g(x

(ω)
e ). By Hölder’s inequality, we have

‖fg‖`|e|�`(Xe)
6 E[ |F ·G| ] 6 E[ |F |p]1/p · E[ |G|q]1/q.

Noticing that E[ |F |p]1/p = ‖f‖`|e|�`,p(Xe)
and E[ |G|q]1/q = ‖g‖`|e|�`,q(Xe)

we conclude

that (2.14) is satisfied.

We proceed to show part (c). Arguing as in the proof of the classical Minkowski

inequality we see that the (`, p)-box norm satisfies the triangle inequality. Absolute

homogeneity is clear and so, by Proposition 2.1, we conclude that ‖ · ‖�`,p(Xe) is

indeed a norm. Next, observe that part (c.i) follows by (2.13) applied for fω = f if

ω = {0}e and fω = 1 otherwise. For part (c.ii) set p = p2/p1 and notice that

‖f‖p1�`,p1 (Xe)
=
∥∥|f |p1∥∥

�`(Xe)

(2.14)

6
∥∥|f |p1∥∥

�`,p(Xe)
= ‖f‖p1�`,p2 (Xe)

.

Finally, let f ∈ L∞(Xe,Σe,µe). By part (c.i), we have

‖f‖Lp 6 ‖f‖�`,p(Xe) 6 ‖f‖L∞ .

Since limp→∞ ‖f‖Lp = ‖f‖L∞ , we obtain that limp→∞ ‖f‖�`,p(Xe) = ‖f‖L∞ and

the proof is completed. �

3. A generalized von Neumann theorem for Lp graphons

Let (X,Σ, µ) be a probability space and recall that a graphon5 is an integrable

random variable W : X ×X → R which is symmetric, that is, W (x, y) = W (y, x)

for every x, y ∈ X. If, in addition, W belongs to Lp for some p > 1, then W is said

to be an Lp graphon (see [2]).

Now let n be a positive integer and let G be a nonempty graph on [n]. Recall that

the maximum degree of G is the number ∆(G) := max
{
|{e ∈ G : i ∈ e}| : i ∈ [n]

}
.

Given two Lp graphons W and U , a natural problem (which is of importance in

the context of graph limits—see, e.g., [17]) is to estimate the quantity∣∣∣E[ ∏
{i,j}∈G

W (xi, xj)
∣∣∣x1, . . . , xn ∈ X

]
− E

[ ∏
{i,j}∈G

U(xi, xj)
∣∣∣x1, . . . , xn ∈ X

]∣∣∣.
5We remark that in several places in the literature, graphons are required to be [0, 1]-valued,

and the term kernel is used for (not necessarily bounded) integrable, symmetric random variables.
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Note that this problem essentially boils down to that of analysing the boundedness

of the multilinear operator

ΛG
(
(fe)e∈G

)
:= E

[ ∏
e={i,j}∈G

fe(xi, xj)
∣∣∣x1, . . . , xn ∈ X

]
where the functions (fe)e∈G belong to Lp. Not surprisingly, the behavior of this

operator depends heavily on the range of p one is working with. Undoubtedly, the

simplest case is when p = ∞; indeed, using Fubini’s theorem, it is not hard to see

that for bounded functions the operator ΛG is controlled by the cut norm6. The

next critical range for the behavior of ΛG is when ∆(G) 6 p < ∞. In this case,

Hölder’s inequality yields that ΛG is bounded in Lp. This information was used in

[2, Theorem 2.20] to show that ΛG is also controlled by the cut norm when p > ∆(G).

Unfortunately, in the regime 1 < p < ∆(G) the operator ΛG is not bounded but

merely densely defined in Lp. Nevertheless, experience from arithmetic combina-

torics (see, e.g., [9, 20]) and harmonic analysis (see, e.g., [16]) indicates that one

can still obtain nontrivial information provided that one replaces the Lp-norm with

a suitable box norm. It turns out that this intuition is correct as is shown in the

following theorem.

Theorem 3.1 (Generalized von Neumann theorem for Lp graphons). Let ∆ be a

positive integer, C > 1 and 1 < p 6 ∞. If p = ∞ or ∆ = 1, then we set ` = 2;

otherwise, let

(3.1) ` = min
{

2n : n ∈ N and 2n > p(∆−1)−1

(p(∆−1)−1 − 1)−1
}
.

Also let G = (n, 〈(Xi,Σi, µi) : i ∈ [n]〉,G) be a 2-uniform hypergraph system with

∆(G) = ∆. For every e ∈ G let fe ∈ Lp(X,Be,µ) such that

(3.2) ‖fe‖�`,p(Xe) 6 1

where fe is as in (1.5). Assume that for every (possibly empty) G′ ⊆ G we have

(3.3)
∥∥ ∏
e∈G′

fe
∥∥
Lp
6 C.

(Here, we follow the convention that the product of an empty family of functions is

equal to the constant function 1.) Then we have

(3.4)
∣∣∣E[∏

e∈G
fe

]∣∣∣ 6 C ·min
e∈G
‖fe‖�`(Xe).

Observe that (3.2) is an integrability condition; as we have already noted, this

condition is necessary if p < ∆. On the other hand, condition (3.3) is the analogue

of the “linear forms condition” appearing in several versions of the generalized von

Neumann theorem (see, e.g., [12, Proposition 5.3] and [19, Theorem 3.8]).

6We recall the definition of the cut norm in (4.2). We note, however, that we will not use the

cut norm in this section.
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Proof of Theorem 3.1. Let e ∈ G be arbitrary, and set

I := E
[
fe

∏
e′∈G\{e}

fe′
]

Clearly, it suffices to show that |I| 6 C · ‖fe‖�`(Xe).

To this end, we first observe that if ∆ = 1, then the result is straightforward.

Indeed, in this case we have ` = 2 and the edges of G are pairwise disjoint. Hence,

by part (b) of Proposition 2.1 and part (c.ii) of Proposition 2.3, we see that

|I| = |E[fe]| ·
∏

e′∈G\{e}

|E[fe′ ]| 6 ‖fe‖�2(Xe) ·
∏

e′∈G\{e}

‖fe′‖�2,p(Xe′ )

(3.2)

6 C · ‖fe‖�2(Xe).

Therefore, in what follows we will assume that ∆ > 2. To simplify the exposition

we will also assume that p 6= ∞. (The proof for the case p = ∞ is similar.) Write

e = {i, j}, and set G(i) = {e′ ∈ G \ {e} : i ∈ e′} and G∗(i) = {e′ ∈ G \ {e} : i /∈ e′};
notice that G\{e} = G(i)∪G∗(i). Let `′ be the conjugate exponent of ` and observe

that, by (3.1), we have ` > q′ where q′ is the conjugate exponent of p(∆−1)−1

. Hence,

(3.5) 1 < `′ 6 p(∆−1)−1

6 p.

We set

(3.6) Ie,G(i) = E
[ `−1∏
ω=0

fe(x
(ω)
i , xj)

∏
e′∈G(i)

fe′(x
(ω)
i , xe′\{i})

]
and

(3.7) IG(i) = E
[ ∏
e′∈G(i)

`−1∏
ω=0

|fe′ |`
′
(x

(ω)
i , xe′\{i})

]
where both expectations are over all x

(0)
i , . . . , x

(`−1)
i ∈ Xi and x[n]\{i} ∈X[n]\{i}.

Claim 3.2. We have |I| 6 C · I1/`
e,G(i).

Proof of Claim 3.2. Since i /∈ e′ for every e′ ∈ G∗(i), we have

I = E
[
E
[
fe(xi, xj)

∏
e′∈G(i)

fe′(xi, xe′\{i})
∣∣xi ∈ Xi

]
·
∏

e′∈G∗(i)

fe′(xe′)
]
.

By Hölder’s inequality, (3.3), (3.5) and (3.6), we obtain that

|I| 6 E
[
E
[
fe(xi, xj)

∏
e′∈G(i)

fe′(xi, xe′\{i})
∣∣xi ∈ Xi

]`]1/` · ∥∥ ∏
e′∈G∗(i)

fe′
∥∥
L`′

6 I
1/`
e,G(i) ·

∥∥ ∏
e′∈G∗(i)

fe′
∥∥
Lp
6 C · I1/`

e,G(i)

as desired. �

We proceed with the following claim.

Claim 3.3. We have Ie,G(i) 6 ‖fe‖`�`(Xe)
· I1/`′

G(i) .
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Proof of Claim 3.3. Note that j /∈ e′ for every e′ ∈ G(i), and so

Ie,G(i) = E
[
E
[ `−1∏
ω=0

fe(x
(ω)
i , xj)

∣∣xj ∈ Xj

]
·
∏

e′∈G(i)

`−1∏
ω=0

fe′(x
(ω)
i , xe′\{i})

]
.

Using this observation the claim follows by Hölder’s inequality and arguing precisely

as in the proof of Claim 3.2. �

The following claim is the last step of the proof.

Claim 3.4. We have IG(i) 6 1.

Proof of Claim 3.4. We may assume, of course, that G(i) is nonempty. We set

m = |G(i)| and we observe that 1 6 m 6 ∆− 1. Therefore, by (3.5), we see that

(3.8) 1 < (`′)r 6 (`′)∆−1 6 p

for every r ∈ [m]. Write G(i) = {e′1, . . . , e′m} and for every r ∈ [m] let jr ∈ [n] such

that e′r = {i, jr}. For every d ∈ [m] set

(3.9) Qd = E
[ m∏
r=d

`−1∏
ω=0

|fe′r |(`
′)d(x

(ω)
i , xjr )

]
and note that

(3.10) Q1 = IG(i) and Qm = E
[ `−1∏
ω=0

|fe′m |(`
′)m(x

(ω)
i , xjm)

]
.

(Here, the expectation is over all x
(0)
i , . . . , x

(`−1)
i ∈ Xi and x[n]\{i} ∈ X[n]\{i}.)

Now observe that it is enough to show that for every d ∈ [m− 1] we have

(3.11) Qd 6 Q
1/`′

d+1.

Indeed, by (3.11), we see that Q1 6 Q
1/(`′)m−1

m . Hence, by (3.10), the monotonicity

of the Lp norms and part (a) of Proposition 2.3, we obtain that

IG(i) 6 E
[ `−1∏
ω=0

|fe′m |(`
′)m(x

(ω)
i , xjm)

]`′/(`′)m
(3.12)

(3.8)

6 E
[ `−1∏
ω=0

|fe′m |p(x
(ω)
i , xjm)

]`′/p
6 ‖fe′m‖``

′

�`,p(Xe′m
)

(3.2)

6 1.

It remains to show (3.11). Fix d ∈ [m − 1] and notice that jd /∈ e′r for every

r ∈ {d+ 1, . . . ,m}. Thus,

Qd = E
[
E
[ `−1∏
ω=0

|fe′d |
(`′)d(x

(ω)
i , xjd)

∣∣xjd ∈ Xjd

]
·
m∏

r=d+1

`−1∏
ω=0

|fe′r |(`
′)d(x

(ω)
i , xjr )

]
.

By Hölder’s inequality and arguing as in the proof of (3.12), we see that

Qd 6 E
[ ∏
ω∈{0,...,`−1}e

′
d

|fe′d |
(`′)d(x

(ω)
e′d

)
]1/`
·Q1/`′

d+1 6 ‖fe′d‖
`(`′)d

�`,p(Xe′
d

) ·Q
1/`′

d+1
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as desired. �

By Claims 3.2, 3.3 and 3.4, we conclude that |I| 6 C · ‖fe‖�`(Xe), and so the

entire proof of Theorem 3.1 is completed. �

We close this section with the following counting lemma for Lp graphons. It

follows readily by Theorem 3.1 and a telescopic argument.

Corollary 3.5. Let ∆, C, p, ` and G be as in Theorem 3.1. For every e ∈ G let

fe, ge ∈ Lp(X,Be,µ) such that ‖fe‖�`,p(Xe) 6 1 and ‖ge‖�`,p(Xe) 6 1 where fe and

ge are as in (1.5) for fe and ge respectively. Assume that for every G1,G2 ⊆ G with

G1 ∩ G2 = ∅ we have ‖∏e∈G1 fe
∏
e∈G2 ge‖Lp 6 C. Then we have

(3.13)
∣∣∣E[∏

e∈G
fe

]
− E

[∏
e∈G

ge

]∣∣∣ 6 C ·∑
e∈G
‖fe − ge‖�`(Xe).

4. Pseudorandom families

4.1. We begin by introducing some pieces of notation. Let n, r be two positive

integers with n > r > 2 and let H = (n, 〈(Xi,Σi, µi) : i ∈ [n]〉,H) be an r-uniform

hypergraph system. Given e ∈ H let ∂e = {e′ ⊆ e : |e′| = |e| − 1} and set

(4.1) S∂e :=
{ ⋂
e′∈∂e

Ae′ : Ae′ ∈ Be′ for every e′ ∈ ∂e
}
⊆ Be.

Also recall that for every f ∈ L1(X,Be,µ) the cut norm of f is defined by

(4.2) ‖f‖S∂e = sup
{∣∣ ∫

A

f dµ
∣∣ : A ∈ S∂e

}
.

The cut norm is a standard tool in extremal combinatorics (see, e.g., [8, 17, 18]).

It is weaker than the box norm, but for bounded functions these two norms are

essentially equivalent (see [10, Theorem 4.1]).

The following class of sparse weighted uniform hypergraphs was introduced in

[7, Definition 6.1].

Definition 4.1. Let n, r ∈ N with n > r > 2, and let C > 1 and 0 < η < 1.

Also let 1 < p 6 ∞ and let q denote the conjugate exponent of p. Finally, let

H = (n, 〈(Xi,Σi, µi) : i ∈ [n]〉,H) be an r-uniform hypergraph system. For every

e ∈ H let νe ∈ L1(X,Be,µ) be a nonnegative random variable. We say that the

family 〈νe : e ∈ H〉 is (C, η, p)-pseudorandom if the following hold.

(C1) For every nonempty G ⊆ H we have E
[∏

e∈G νe
]
> 1− η.

(C2) For every e ∈ H there exists ψe ∈ Lp(X,Be,µ) with ‖ψe‖Lp 6 C and

satisfying the following properties.

(a) We have ‖νe − ψe‖S∂e 6 η.
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(b) For every e′ ∈ H \ {e} and every ω ∈ {0, 1} let g
(ω)
e′ ∈ L1(X,Be′ ,µ)

such that either 0 6 g
(ω)
e′ 6 νe′ or 0 6 g

(ω)
e′ 6 1. Let νe and ψe be as

in (1.5) for νe and ψe respectively. Then we have∣∣∣E[(νe −ψe)(xe) ∏
ω∈{0,1}

E
[ ∏
e′∈H\{e}

g
(ω)
e′ (xe,x[n]\e)

∣∣x[n]\e ∈X[n]\e
]∣∣∣xe ∈Xe

]∣∣∣ 6 η.
(C3) Let e ∈ H and let G ⊆ H \ {e} be nonempty, and define νe,G : Xe → R by

νe,G(xe) = E
[∏

e′∈G νe′(xe,x[n]\e)
∣∣x[n]\e ∈X[n]\e

]
. Then, setting

(4.3) ` := min
{

2n : n ∈ N and 2n > 2q +
(

1− 1

C

)
+

1

p

}
(where 1/p = 0 if p =∞), we have E[ν`e,G ] 6 C + η.

We note that closely related definitions were introduced in [4, 19] and we refer

the reader to [7, Section 6] for a detailed discussion on conditions (C1)–(C3) and

their relation with the notions of pseudorandomness appearing in [4, 19]. As we

have mentioned in the introduction, the most important property of pseudorandom

families is that they satisfy relative versions of the counting and removal lemmas;

see, in particular, [7, Theorems 2.2 and 7.1].

4.2. Motivation. In the second part of this paper our goal is to give examples of

pseudorandom families. We have already pointed out that these examples can be

seen as deviations (in an Lp-sense) of weighted hypergraphs which satisfy the linear

forms condition. This fact is not accidental. Indeed, by [7, Theorem 2.1], under

quite general hypotheses one can decompose a nonnegative random variable νe as

se + ue where se belongs to Lp and ue has negligible cut norm. Unfortunately, this

information is not strong enough to yield that the weighted hypergraph 〈νe : e ∈ H〉
satisfies relative versions of the counting and removal lemmas. However, as we

shall see, this problem can be bypassed by imposing slightly stronger integrability

conditions on each se and assuming that the random variables 〈ue : e ∈ H〉 are very

mildly correlated.

4.3. The first main result. The following theorem is our first result in this sec-

tion. Its proof is given in Section 5.

Theorem 4.2. Let n ∈ N with n > 3, C > 1 and 1 < p 6 ∞, and let ` be

as in (4.3). Also let 0 < η 6 (4C)−n`
n

and let H = (n, 〈(Xi,Σi, µi) : i ∈ [n]〉,H)

be a hypergraph system with H = K
(n−1)
n =

(
[n]
n−1

)
. (In particular, we have that H

is (n− 1)-uniform.) For every e ∈ H let λe ∈ L1(X,Be,µ) and ϕe ∈ Lp(X,Be,µ)

be nonnegative random variables, and let λe and ϕe be as in (1.5) for λe and ϕe

respectively. Assume that the following conditions are satisfied.

(I) We have

(4.4) 1− η 6 E
[ ∏
e∈H

∏
ω∈{0,...,`−1}e

λne,ωe (x(ω)
e )

∣∣∣x(0), . . . ,x(`−1) ∈X
]
6 1 + η
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for any choice of ne,ω ∈ {0, 1}.
(II) For every e ∈ H we have ‖ϕe‖�`,p(Xe) 6 C.

Then the family 〈λe + ϕe : e ∈ H〉 is (C ′, η′, p)-pseudorandom where C ′ = (4C)n`

and η′ = (4C)n` η1/`n−1

.

We remark that condition (I) in Theorem 4.2 is a modification of the linear forms

condition introduced in [19, Definition 2.8]; it expresses the fact that the weighted

hypergraph 〈λe : e ∈ H〉 contains roughly the expected number of copies of the

`-blow-up of H and its sub-hypergraphs. On the other hand, note that condition

(II) is an integrability condition; in particular, using Hölder’s inequality, it is easy

to see that ‖ϕe‖�`,p(Xe) 6 C provided that ‖ϕe‖Lq 6 C for some q sufficiently

large. Thus we see that the family 〈νe + ϕe : e ∈ H〉 is a perturbation of a system

of measures which appears in [19], the main point being that only integrability

conditions are imposed on each “noise” ϕe.

We proceed to give some concrete examples of weighted graphs and hypergraphs

which are obtained using Theorem 4.2. They are the simplest type of examples for

which the results obtained in [7] can be applied, yet they are out of the scope of

the counting lemmas developed by Tao [19], and by Conlon, Fox and Zhao [4].

4.3.1. Example: weighted graphs. Let V1, V2, V3 be three pairwise disjoint nonempty

sets; we view V1, V2 and V3 as discrete probability spaces equipped with their uni-

form probability measures. Also letH denote the graphK3 =
{
{1, 2}, {2, 3}, {1, 3}

}
(that is, H is the complete graph on three vertices). For every e = {i < j} ∈ H let

ϕe : Vi × Vj → R+ be any function satisfying7

(4.5) ‖ϕe‖L64 = E
[
ϕe(x, y)64

∣∣ (x, y) ∈ Vi × Vj
]1/64

6 1

and define

(4.6) λe = 1 and νe = 1 +ϕe.

V1

V2 V3

ν{1,2} = 1 + ϕ{1,2} ν{1,3} = 1 + ϕ{1,3}

ν{2,3} = 1 + ϕ{2,3}

7We do not know whether the estimate (4.5) is optimal; in fact, it is likely that the exponent

64 can be improved. We point out, however, that an integrability condition like (4.5) is necessary

in order to have a sparse version of the counting lemma.
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We will apply Theorem 4.2 for n = 3, C = 1 and p = 4 in order to show that the

weighted graph 〈νe : e ∈ H〉 is a (412, η, 4)-pseudorandom family for every η > 0.

(Here, νe is as in (1.5) for νe.) To this end notice first that, by (4.3), we have

` = 4. On the other hand, it is clear that (4.4)—that is, condition (I) in Theorem

4.2—is satisfied for every η > 0. Finally, for condition (II) observe that, by Hölder’s

inequality8, for every e = {i < j} ∈ H we have

‖ϕe‖�4,4(Vi×Vj) 6 ‖ϕ4
e‖L16

= ‖ϕe‖4L64

(4.5)

6 1.

Thus, condition (II) is also satisfied, which yields that 〈νe : e ∈ H〉 is indeed a

(412, η, 4)-pseudorandom family for every η > 0.

Our next goal is to show that the weighted graphs defined above cannot be

realized as dense subgraphs of weighted graphs which satisfy the aforementioned

“linear forms condition”, a pseudorandomness condition which forms the basis of the

sparse counting lemmas developed in [4, 19]. The framework in [4, 19] is asymptotic;

consequently, for every integer N > 1 we select, recursively, a positive integer mN ,

three pairwise disjoint nonempty sets V N1 , V N2 , V N3 and families 〈AN1,l : l ∈ [N ]〉,
〈AN2,l : l ∈ [N ]〉, 〈AN3,l : l ∈ [N ]〉 of nonempty sets such that the following hold.

(P1) We have m64
N+1 > 2N+2mN ; moreover, m1 = 2.

(P2) For every i ∈ {1, 2, 3} and every l ∈ [N ] we have ANi,l ⊆ V Ni .

(P3) For every e = {i < j} ∈ H and every l ∈ [N ] we have

|ANi,l ×ANj,l| =
( 1

m642

l

)
|V Ni × V Nj |.

In particular, we have ‖1ANi,l×ANj,l‖L64
= 1/m64

l .

Given the above data, for every integer N > 1 and every e = {i < j} ∈ H we define

ϕNe ,λ
N
e ,ν

N
e : V Ni × V Nj → R+ by setting

ϕNe =

N∑
l=1

1

2l

1ANi,l×ANj,l
‖1ANi,l×ANj,l‖L64

=

N∑
l=1

m64
l

2l
1ANi,l×ANj,l ,(4.7)

λNe = 1 and νNe = 1 +ϕNe .

Since ‖ϕNe ‖L64 6 1, by the previous discussion, we see that the weighted graph

〈νNe : e ∈ H〉 is a (412, η, 4)-pseudorandom family for every η > 0 and every N > 1.

Now assume, towards a contradiction, that there exist a constant M > 0 and

a sequence 〈κNe : e ∈ H〉 of weighted graphs9 which satisfy the “linear forms con-

dition” (see [4, Definition 2.8] or [19, Definition 2.8]) such that νNe0 6 M · κNe0 for

some e0 = {i < j} ∈ H and infinitely many N . Setting l0 := min{l > 1 : M 6 ml},

8Note that here, as in the proof of part (a) of Proposition 2.1, we use the generalized form of

Hölder’s inequality.
9Specifically, for every e = {i < j} ∈ H and every N > 1 we have κN

e : V N
i × V N

j → R+, and

κNe is as in (1.5) for κN
e .
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we thus have10

(4.8) 0 6 ϕNe0 6 ml0 · κNe0 for infinitely many N .

Next, set

σ =
1

2

(m64
l0+1/2

l0+1)−ml0

m642

l0+1

and notice that, by (P1) above, we have σ > 0. By (4.8) and [4, Lemma 2.15

and Theorem 2.16], for every integer N > 1 there exists hNe0 : V Ni × V Nj → R with

0 6 hNe0 6 ml0 and such that

(4.9) sup
{∣∣E[(ϕNe0−hNe0) 1A×B

]∣∣ : A ⊆ V Ni , B ⊆ V Nj
}
6 σ for infinitely many N .

On the other hand, by (P2), (P3), (4.7) and the fact 0 6 hNe0 6 ml0 , for every

N > l0 + 1 we have

(m64
l0+1/2

l0+1)−ml0

m642

l0+1

6
∣∣E[(ϕNe0 − hNe0) 1ANi,l0+1×A

N
j,l0+1

]∣∣
which clearly leads to a contradiction by (4.9) and the choice of σ.

4.3.2. Example: weighted hypergraphs. It is the hypergraph analogue of the previ-

ous example. Specifically, let n > 3 be an integer, and let V1, . . . , Vn be pairwise

disjoint nonempty sets which we view as discrete probability spaces equipped with

their uniform probability measures. Also let H denote the graph K
(n−1)
n (thus, H

is the complete (n − 1)-uniform hypergraph on n vertices). For every e ∈ H set

Ve =
∏
i∈e Vi, let ϕe : Ve → R+ be a function satisfying

(4.10) ‖ϕe‖L4n
= E

[
ϕe(xe)

4n
∣∣xe ∈ Ve

]1/4n
6 1

and define

(4.11) λe = 1 and νe = 1 +ϕe.

By Theorem 4.2, Hölder’s inequality and arguing precisely as in the previous exam-

ple, we see that the weighted hypergraph 〈νe : e ∈ H〉 is a (44n, η, 4)-pseudorandom

family for every η > 0. Moreover, a straightforward modification of the argument

in the previous example shows that there exist weighted hypergraphs of this form

which cannot be realized as dense subhypergraphs of weighted hypergraphs satis-

fying the “linear forms condition”.

10Note that here we do not use the fact that λN
e = 1 for every e ∈ H and every integer N > 1.

Actually, the same argument can be applied if 〈λN
e : e ∈ H〉 is any sequence of weighted graphs

which satisfy condition (I) in Theorem 4.2 for ` = 4 and η > 0 sufficiently small.
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4.4. The second main result. Our second main result provides a somewhat dif-

ferent type of examples of pseudorandom families.

Theorem 4.3. Let n ∈ N with n > 3, C > 1 and 1 < p 6 ∞, and let ` be as

in (4.3). Also let 0 < η 6 1/(n`) and let H = (n, 〈(Xi,Σi, µi) : i ∈ [n]〉,H)

be a hypergraph system with H = K
(n−1)
n =

(
[n]
n−1

)
. (Again observe that H is

(n − 1)-uniform.) For every e ∈ H let νe ∈ L1(X,Be,µ) and ψe ∈ Lp(X,Be,µ)

be nonnegative random variables, and let νe and ψe be as in (1.5) for νe and ψe

respectively. Assume that the following conditions are satisfied.

(I) We have

(4.12) 1− η 6 E
[ ∏
e∈H

∏
ω∈{0,...,`−1}e

ψne,ωe (x(ω)
e )

∣∣∣x(0), . . . ,x(`−1) ∈X
]
6 C + η

for any choice of ne,ω ∈ {0, 1}.
(II) For every e ∈ H we have 1 6 ‖νe‖�`,p(Xe) <∞, ‖ψe‖�`,p(Xe) 6 C and

(4.13) ‖νe −ψe‖�`(Xe) 6 η (C ·M)−(n−1)`

where M = max{‖νe‖�`,p(Xe) : e ∈ H}.
Then the family 〈νe : e ∈ H〉 is (C, η′, p)-pseudorandom where η′ = n`η.

Notice that in Theorem 4.3 each νe is decomposed as ψe + (νe − ψe). Here,

the condition on the first components—that is, condition (4.12)—is weaker than

that in Theorem 4.2, but this is offset by making stronger the condition on the

pseudorandom components. We also remark that Theorem 4.3 was motivated by

[5, Lemmas 5 and 6] which dealt11 with the case C = 1, p = ∞ and ψe = 1 for

every e ∈ H. Its proof is given in Section 6.

5. Proof of Theorem 4.2

Let n,C, p, ` and η be as in the statement of the theorem and set

(5.1) C̄ = (2C)n`, η̄ = (2C)n` η1/`n−1

, C ′ = (4C)n` and η′ = (4C)n`η1/`n−1

.

Also let H = (n, 〈(Xi,Σi, µi) : i ∈ [n]〉,H) be a hypergraph system with H=
(
n
n−1

)
and for every e ∈ H let λe ∈ L1(X,Be,µ) and ϕe ∈ Lp(X,Be,µ) be nonnegative

random variables satisfying (I) and (II).

We will need the following lemma. Its proof is given in Subsection 5.1.

Lemma 5.1. Let e ∈ H and let i ∈ [n] be the unique integer such that e = [n]\{i}.
For every e′ ∈ H\{e} and every ω ∈ {0, . . . , `−1} let g

(ω)
e′ ∈ L1(X,Be′ ,µ) such that

11We notice that if ψe = 1 for every e ∈ H, then a slight weakening of (4.13) is only needed.

Specifically, one can assume that ‖νe−1‖�2(Xe) 6 ηM
−(n−1) where M = max{‖νe‖L∞ : e ∈ H};

see [5] for details.
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either: (i) 0 6 g(ω)
e′ 6 λe′ , or (ii) 0 6 g(ω)

e′ 6 ϕe′ , or (iii) 0 6 g(ω)
e′ 6 1. Then we have

(5.2)
∣∣∣E[(λe − 1)(xe)

`−1∏
ω=0

∏
e′∈H\{e}

g
(ω)
e′ (xe, x

(ω)
i )

∣∣∣xe ∈Xe, x
(0)
i , x

(1)
i ∈ Xi

]∣∣∣ 6 η̄
and

(5.3) E
[ `−1∏
ω=0

∏
e′∈H\{e}

g
(ω)
e′ (xe, x

(ω)
i )

∣∣∣xe ∈Xe, x
(0)
i , . . . , x

(`−1)
i ∈ Xi

]
6 C̄

where η̄ and C̄ are as in (5.1).

After this preliminary discussion we are ready to enter into the main part of the

proof. For every e ∈ H set νe = λe+ϕe and let νe be as in (1.5) for νe. Recall that

we need to verify conditions (C1)–(C3) in Definition 4.1 for the family 〈νe : e ∈ H〉.
First, let G ⊆ H be nonempty. Since 0 6 λe 6 νe, by (4.4), we have

1− η 6 E
[∏
e∈G

λe

]
6 E

[∏
e∈G

νe

]
and so, condition (C1) is satisfied.

Next, for every e ∈ H let ψe = ϕe + 1. By part (c.i) of Proposition 2.3,

‖ψe‖Lp 6 ‖ϕe‖Lp + 1 6 ‖ϕe‖�`,p(Xe) + 1 6 C + 1
(5.1)

6 C ′.

Fix e ∈ H and for every f ∈ ∂e let Af ∈ Bf . For every e′ ∈ H \ {e} and

every ω ∈ {0, . . . , ` − 1} we define g
(ω)
e′ ∈ L1(X,Be′ ,µ) by setting g

(ω)
e′ = 1 if

ω ∈ {1, . . . , `− 1} and g
(0)
e′ = 1Af where f = e′ ∩ e. By (5.2), we have

(5.4)
∣∣∣E[(λe − 1)(xe)

∏
f∈∂e

1Af (xe, xi)
∣∣∣xe ∈Xe, x

(0)
i , x

(1)
i ∈ Xi

]∣∣∣ 6 η̄.
Hence, by (5.4), the definition of the cut norm and the fact that νe − ψe = λe − 1,

we conclude that ‖νe − ψe‖S∂e 6 η′. That is, condition (C2.a) is satisfied.

We proceed to verify condition (C2.b). Let e ∈ H be arbitrary and let i ∈ [n] be

the unique integer such that e = [n]\{i}. Also let ω ∈ {0, 1}. For every e′ ∈ H\{e}
let g

(ω)
e′ ∈ L1(X,Be′ ,µ) such that either 0 6 g(ω)

e′ 6 νe′ or 0 6 g(ω)
e′ 6 1. We set

G(ω)
e,ν =

{
e′ ∈ H \ {e} : 0 6 g(ω)

e′ 6 νe′
}

and G(ω)
e,1 =

{
e′ ∈ H \ {e} : 0 6 g(ω)

e′ 6 1
}

and for every e′ ∈ G(ω)
e,ν let

(5.5) g
(ω)
e′,λ = g

(ω)
e′ 1

[g
(ω)

e′ 6λe′ ]
and g

(ω)
e′,ϕ = (g

(ω)
e′ − λe′) 1

[g
(ω)

e′ >λe′ ]
.

Finally, for every G ⊆ G(ω)
e,ν set

(5.6) A
(ω)
G =

∏
e′∈G

g
(ω)
e′,λ

∏
e′∈G(ω)

e,ν \G

g
(ω)
e′,ϕ

∏
e′∈G(ω)

e,1

g
(ω)
e′ .

(Recall that, by convention, the product of an empty family of functions is equal to

the constant function 1.) The following properties are straightforward consequences

of the relevant definitions.
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(a) For every ω ∈ {0, 1} and every e′ ∈ G(ω)
e,ν we have g

(ω)
e′,λ, g

(ω)
e′,ϕ ∈ L1(X,Be′ ,µ),

0 6 g(ω)
e′,λ 6 λe′ , 0 6 g(ω)

e′,ϕ 6 ϕe′ and g
(ω)
e′ = g

(ω)
e′,λ + g

(ω)
e′,ϕ.

(b) For every xe ∈Xe and every x
(0)
i , x

(1)
i ∈ Xi we have

(5.7)
∏

ω∈{0,1}

∏
e′∈H\{e}

g
(ω)
e′ (xe, x

(ω)
i ) =

∑
G0⊆G(0)

e,ν

∑
G1⊆G(1)

e,ν

∏
ω∈{0,1}

A
(ω)
Gω (xe, x

(ω)
i ).

By (a), we see that every factor of A
(ω)
G satisfies the assumptions of Lemma 5.1.

Therefore,

E
[
(νe −ψe)(xe)

∏
ω∈{0,1}

E
[ ∏
e′∈H\{e}

g
(ω)
e′ (xe, xi)

∣∣xi ∈ Xi

] ∣∣∣xe ∈Xe

]
= E

[
(λe − 1)(xe)

∏
ω∈{0,1}

∏
e′∈H\{e}

g
(ω)
e′ (xe, x

(ω)
i )

∣∣∣xe ∈Xe, x
(0)
i , x

(1)
i ∈ Xi

]
(5.7)
=

∑
G0⊆G(0)

e,ν

∑
G1⊆G(1)

e,ν

E
[
(λe − 1)(xe)

∏
ω∈{0,1}

A
(ω)
Gω (xe, x

(ω)
i )

∣∣∣xe ∈Xe, x
(0)
i , x

(1)
i ∈ Xi

]
(5.2)

6 2|G
(0)
e,ν | 2|G

(1)
e,ν | η̄ 6 4n−1η̄

(5.1)

6 η′

which implies, of course, that condition (C2.b) is satisfied.

It remains to verify condition (C3). Fix e ∈ H and, as above, let i ∈ [n] be the

unique integer such that e = [n] \ {i}. Also let G ⊆ H \ {e} be nonempty and let

νe,G : Xe → R be as in Definition 4.1. Then notice that

E[ν`e,G ] = E
[
E
[ ∏
e′∈G

νe′(xe, xi)
∣∣xi ∈ Xi

]` ∣∣∣xe ∈Xe

]

= E
[ `−1∏
ω=0

∏
e′∈G

νe′(xe, x
(ω)
i )

∣∣∣xe ∈Xe, x
(0)
i , . . . , x

(`−1)
i ∈ Xi

]
.

Next, observe that for every xe ∈Xe and every x
(0)
i , . . . , x

(`−1)
i ∈ Xi we have

`−1∏
ω=0

∏
e′∈G

νe′(xe, x
(ω)
i ) =

`−1∏
ω=0

∏
e′∈G

(λe′ + ϕe′)(xe, x
(ω)
i ) =

=
∑
G0⊆G

· · ·
∑
G`−1⊆G

`−1∏
ω=0

∏
e′∈Gω

λe′(xe, x
(ω)
i )

∏
e′∈G\Gω

ϕe′(xe, x
(ω)
i ).

Therefore, setting

BG′ =
∏
e′∈G′

λe′
∏

e′∈G\G′
ϕe′

for every G′ ⊆ G, we obtain that

E[ν`e,G ] =
∑
G0⊆G

· · ·
∑
G`−1⊆G

E
[ `−1∏
ω=0

BGω (xe, x
(ω)
i )

∣∣∣xe ∈Xe, x
(0)
i , . . . , x

(`−1)
i ∈ Xi

]
(5.3)

6 2|G|`C̄ 6 2(n−1)`C̄
(5.1)

6 C ′.
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This shows that condition (C3) is satisfied, and so the entire proof of Theorem 4.2

is completed.

5.1. Proof of Lemma 5.1. The argument is similar to that in the proofs of

[4, Lemma 6.3] and [19, Proposition 5.1]. Proofs of this sort originate from the

work of Green and Tao [12, 13].

We proceed to the details. First we need to introduce some pieces of notation.

Let d be a (possibly empty) subset of e and write X = Xe\d × Xd∪{i}. (Recall

that i ∈ [n] is the unique integer such that e = [n] \ {i}.) Notice that every

element of the space Xe\d ×X`
d∪{i} is written as (xe\d,x

(0)
d∪{i}, . . . ,x

(`−1)
d∪{i}) where

xe\d ∈ Xe\d and x
(0)
d∪{i}, . . . ,x

(`−1)
d∪{i} ∈ Xd∪{i}. On the other hand, for every

x
(0)
d∪{i} = (x

(0)
j )j∈d∪{i}, . . . ,x

(`−1)
d∪{i} = (x

(`−1)
j )j∈d∪{i} ∈Xd∪{i}, every d′ ⊆ d ∪ {i}

and every ω = (ωj)j∈d′ ∈ {0, . . . , `−1}d′ by x
(ω)
d′ we shall denote the unique element

of Xd′ defined by the rule

(5.8) x
(ω)
d′ = (x

(ωj)
j )j∈d′ .

Next, for every d ⊆ e we define Fd, Gd : Xe\d×X`
d∪{i} → R as follows. First, set

(5.9) Fd(xe\d,x
(0)
d∪{i}, . . . ,x

(`−1)
d∪{i}) =

∏
ω∈{0,...,`−1}d

(
λe(xe\d,x

(ω)
d )− 1

)
and notice that Fd does not depend on the value of x

(0)
i , . . . , x

(`−1)
i ∈ Xi. The

definition of the function Gd is somewhat more involved. For every e′ ∈ H \ {e}
and every ω ∈ {0, . . . , `−1} let g

(ω)
e′ be as in the statement of the lemma and let g

(ω)
e′

be as in (5.1) for g
(ω)
e′ . Given e′ ∈ H \ {e} and ω ∈ {0, . . . , ` − 1}e′∩(d∪{i}) it is

convenient to introduce an auxiliary function ge′,d,ω : Xe\d×X`
d∪{i} → R by defining

ge′,d,ω(xe\d,x
(0)
d∪{i}, . . . ,x

(`−1)
d∪{i}) according to the following cases

(5.10)


g

(ωi)
e′ (xe′\(d∪{i}),x

(ω)
d∪{i}) if d ⊆ e′,

λe′(xe′\(d∪{i}),x
(ω)
e′∩(d∪{i})) if d * e′ and g

(ωi)
e′ 6 λe′ ,

1 if d * e′ and either g
(ωi)
e′ 6 ϕe′ or g

(ωi)
e′ 6 1.

(Here, ωi is the i-th coordinate of ω. Moreover, xe′\(d∪{i}) stands for the natural

projection of xe\d into Xe′\(d∪{i}); note that this projection is well-defined since

e′ \ (d ∪ {i}) ⊆ e \ d.) We now define

(5.11) Gd =
∏

e′∈H\{e}

∏
ω∈{0,...,`−1}e′∩(d∪{i})

ge′,d,ω.

Finally, we set

(5.12) Qd = E[FdGd] and Rd = E[Gd].

Claim 5.2. The following hold.

(a) We have that Q∅ and R∅ coincide with the quantities appearing in the left-

hand side of (5.2) and (5.3) respectively.
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(b) We have |Qe| 6 2η and 0 6 Re 6 1 + η.

Proof of Claim 5.2. For part (a) it is enough to observe that

F∅(xe, x
(0)
i , . . . , x

(`−1)
i ) = λe(xe)− 1

and

G∅(xe, x
(0)
i , . . . , x

(`−1)
i ) =

∏
e′∈H\{e}

∏
ω∈{0,...,`−1}{i}

g
(ωi)
e′ (xe′\{i}, x

(ω)
i )

=

`−1∏
ω=0

∏
e′∈H\{e}

g
(ω)
e′ (xe, x

(ω)
i ).

For part (b) notice that

Qe = E
[ ∏
ω∈{0,...,`−1}e

(
λe(x

(ω)
e )− 1

) ∏
e′∈H\{e}

∏
ω∈{0,...,`−1}e′

λ
ne′,ω
e′ (x(ω)

e )
∣∣∣x(0), . . . ,x(`−1) ∈X

]
and

Re = E
[ ∏
e′∈H\{e}

∏
ω∈{0,...,`−1}e′

λ
ne′,ω
e′ (x(ω)

e )
∣∣∣x(0), . . . ,x(`−1) ∈X

]
where for every e′ ∈ H \ {e} and every ω ∈ {0, . . . , ` − 1}e′ we have ne′,ω ∈ {0, 1}
and ne′,ω = 1 if and only if g

(ωi)
e′ 6 λe′ . Therefore, by (4.4), we conclude that

|Qe| 6 2η and 0 6 Re 6 1 + η. �

The following claim is the last step of the proof.

Claim 5.3. For every d  e and every j ∈ e \ d we have Qd∪{j} > 0, and

(5.13) |Qd|1/`
|d|
6 (2C)`Q

1/`|d|+1

d∪{j} and R
1/`|d|

d 6 (2C)`R
1/`|d|+1

d∪{j} .

Proof of Claim 5.3. We will only show that |Qd|1/`
|d|
6 (2C)`Q

1/`|d|+1

d∪{j} . The proof

of the corresponding inequality for Rd is identical. (In particular, it follows by

setting Fd = 1 below.)

Fix d  e and j ∈ e \ d, and set ej = [n] \ {j} and f = [n] \ (d ∪ {i, j}).
Also write Xej = Xf ×Xd∪{i} and Xe\d ×X`

d∪{i} = Xj ×Xf ×X`
d∪{i}, and let

π : Xe\d ×X`
d∪{i} →Xf ×X`

d∪{i} denote the natural projection.

For every ω ∈ {0, . . . , `− 1}d∪{i} we define gej ,d,ω : Xf ×X`
d∪{i} → R by

(5.14) gej ,d,ω(xf ,x
(0)
d∪{i}, . . . ,x

(`−1)
d∪{i}) = g(ωi)

ej (xf ,x
(ω)
d∪{i}).

(Recall that ωi is the i-th coordinate of ω and g
(ωi)
ej is as in (5.1) for g

(ωi)
ej .) Observe

that, by (5.10), for every ω ∈ {0, . . . , `− 1}d∪{i} we have

(5.15) gej ,d,ω = gej ,d,ω ◦ π.
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Next, let Ωλ, Ωϕ and Ω1 denote the subsets of {0, . . . , `− 1}d∪{i} consisting of all

ω such that g
(ωi)
ej 6 λej , g

(ωi)
ej 6 ϕej and g

(ωi)
ej 6 1 respectively. Set

(5.16) Gj,d,λ =
∏
ω∈Ωλ

gej ,d,ω, Gj,d,ϕ =
∏
ω∈Ωϕ

gej ,d,ω and Gj,d,1 =
∏
ω∈Ω1

gej ,d,ω

and notice that these functions are defined on Xf × X`
d∪{i}. We also define

G′j,d : Xe\d ×X`
d∪{i} → R by the rule

(5.17) G′j,d =
∏

e′∈H\{e,ej}

∏
ω∈{0,...,`−1}e′∩(d∪{i})

ge′,d,ω.

By (5.11) and (5.15)–(5.17), we have Gd = G′j,d ·
[
(Gj,d,λ Gj,d,ϕ Gj,d,1) ◦ π

]
and so

(5.18) Qd = E
[
E[FdG

′
j,d |xj ∈ Xj ] · (Gj,d,λ Gj,d,ϕ Gj,d,1)

]
where the outer expectation is over the space Xf × X`

d∪{i}. Denote by `′ the

conjugate exponent of ` and recall that ` is an even positive integer. By (5.18),

Hölder’s inequality and the fact that 0 6 Gj,d,1 6 1, we obtain that

|Qd| =
∣∣E[E[FdG

′
j,d |xj ∈ Xj ] ·

(
(G

1/`
j,d,λ G

1/`′

j,d,λ) Gj,d,ϕ Gj,d,1

)]∣∣(5.19)

6 E
[
E[FdG

′
j,d |xj ∈ Xj ]

` ·Gj,d,λ

]1/` · E[Gj,d,λ G`′

j,d,ϕ]1/`
′
.

Now define Gj,d,λ,Gj,d,ϕ : Xf ×X`
d∪{i} → R by

(5.20) Gj,d,λ(xf ,x
(0)
d∪{i}, . . . ,x

(`−1)
d∪{i}) =

∏
ω∈Ωλ

λej (xf ,x
(ω)
d∪{i})

and

(5.21) Gj,d,ϕ(xf ,x
(0)
d∪{i}, . . . ,x

(`−1)
d∪{i}) =

∏
ω∈Ωϕ

ϕej (xf ,x
(ω)
d∪{i}).

By (5.14) and (5.16), we see that 0 6 Gj,d,λ 6 Gj,d,λ and 0 6 Gj,d,ϕ 6 Gj,d,ϕ.

Therefore, by (5.19), we have

(5.22) |Qd| 6 E
[
E[FdG

′
j,d |xj ∈ Xj ]

` ·Gj,d,λ

]1/` · E[Gj,d,λ G
`′

j,d,ϕ]1/`
′
.

It is easy to see that

(5.23) E
[
E[FdG

′
j,d |xj ∈ Xj ]

` ·Gj,d,λ

]
= Qd∪{j}

which implies, in particular, that Qd∪{j} > 0. On the other hand, by (5.20), (5.21)

and part (a) of Proposition 2.1, we obtain that

(5.24) E[Gj,d,λ G
`′

j,d,ϕ] 6 ‖λej‖|Ωλ|�`(Xej
) · ‖ϕ`

′

ej‖
|Ωϕ|
�`(Xej

).

By (4.4), it is clear that ‖λej‖�`(Xej
) 6 1 + η 6 2. Moreover, by (4.3), we see

that 1 < `′ < p. Hence, by part (c.ii) of Proposition 2.3 and condition (II) in

Theorem 4.2, we have ‖ϕ`′ej‖�`(Xej
) 6 ‖ϕej‖`

′

�`,p(Xej
) 6 C

`′ . Thus, by (5.24),

(5.25) E[Gj,d,λ G
`′

j,d,ϕ]1/`
′
6 2|Ωλ|/`

′ · C |Ωϕ| 6 (2C)|Ωλ|+|Ωϕ| 6 (2C)`
|d|+1

.
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Combining (5.22), (5.23) and (5.25), we get that |Qd| 6 Q
1/`
d∪{j}(2C)`

|d|+1

which is

equivalent to saying that |Qd|1/`
|d|
6 (2C)`Q

1/`|d|+1

d∪{j} . The proof of Claim 5.3 is

completed. �

By induction and using Claim 5.3, we see that

(5.26) |Q∅| 6 (2C)(n−1)`Q1/`n−1

e and R∅ 6 (2C)(n−1)`R1/`n−1

e .

Invoking (5.26) and Claim 5.2, we conclude that (5.2) and (5.3) are satisfied, and

so the proof of Lemma 5.1 is completed.

6. Proof of Theorem 4.3

Let H and 〈νe, ψe : e ∈ H〉 be as in the statement of the theorem, and for every

e ∈ H let νe and ψe be as in (1.5) for νe and ψe respectively.

The following lemma is the first main step of the proof.

Lemma 6.1. Let e ∈ H and let i ∈ [n] be the unique integer such that e = [n]\{i}.
For every e′ ∈ H \ {e} and every ω ∈ {0, . . . , ` − 1} let g

(ω)
e′ ∈ L1(X,Be′ ,µ) such

that either: (i) 0 6 g(ω)
e′ 6 νe′ , or (ii) 0 6 g(ω)

e′ 6 ψe′ , or (iii) 0 6 g(ω)
e′ 6 1. Then

(6.1)
∣∣∣E[(νe−ψe)(xe)`−1∏

ω=0

∏
e′∈H\{e}

g
(ω)
e′ (xe, x

(ω)
i )

∣∣∣xe ∈Xe, x
(0)
i , . . . , x

(`−1)
i ∈ Xi

]∣∣∣6η.
Proof. It is similar to the proof of Lemma 5.1. Specifically, let d ⊆ e be arbitrary.

For every e′ ∈ H \ {e} with d ⊆ e′ and every ω ∈ {0, . . . , ` − 1}d∪{i} we define

ge′,d,ω : Xe\d ×X`
d∪{i} → R by setting

(6.2) ge′,d,ω(xe\d,x
(0)
d∪{i}, . . . ,x

(`−1)
d∪{i}) = g

(ωi)
e′ (xe′\(d∪{i}),x

(ω)
d∪{i})

where ωi is the i-th coordinate of ω and g
(ωi)
e′ is as in (1.5) for g

(ωi)
e′ . Also define

Fd, Gd : Xe\d ×X`
d∪{i} → R by

(6.3) Fd(xe\d,x
(0)
d∪{i}, . . . ,x

(`−1)
d∪{i}) =

∏
ω∈{0,...,`−1}d

(νe −ψe)(xe\d,x(ω)
d )

and

(6.4) Gd =
∏

e′∈H\{e}
d⊆e′

∏
ω∈{0,...,`−1}d∪{i}

ge′,d,ω.

(Here, as in Section 3, we follow the convention that the product of an empty family

of functions is equal to the constant function 1.) Finally, let

(6.5) Qd = E[FdGd].

Note that Q∅ coincides with the quantity appearing in the left-hand side of (6.1).

Moreover, we have

(6.6) Qe = ‖νe −ψe‖`
n−1

�`(Xe)
.
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Claim 6.2. For every d  e and every j ∈ e \ d we have Qd∪{j} > 0 and

(6.7) |Qd|1/`
|d|
6 (C ·M)` ·Q1/`|d|+1

d∪{j} .

Proof of Claim 6.2. As in the proof of Claim 5.3, fix d  e and j ∈ e \ d, and

set ej = [n] \ {j} and f = [n] \ (d ∪ {i, j}). Write Xej = Xf × Xd∪{i} and

Xe\d ×X`
d∪{i} = Xj × (Xf ×X`

d∪{i}), and for every ω ∈ {0, . . . , `− 1}d∪{i} define

gej ,d,ω : Xf ×X`
d∪{i} → R by

(6.8) gej ,d,ω(xf ,x
(0)
d∪{i}, . . . ,x

(`−1)
d∪{i}) = g(ωi)

ej (xf ,x
(ω)
d∪{i}).

If π : Xe\d ×X`
d∪{i} →Xf ×X`

d∪{i} is the natural projection map, then, by (6.2),

we see that gej ,d,ω = gej ,d,ω ◦ π for every ω ∈ {0, . . . , `− 1}d∪{i}.
Let Ων , Ωψ and Ω1 denote the subsets of {0, . . . , ` − 1}d∪{i} consisting of all ω

such that g
(ωi)
ej 6 νej , g

(ωi)
ej 6 ψej and g

(ωi)
ej 6 1 respectively. We set

(6.9) Gj,d,ν =
∏
ω∈Ων

gej ,d,ω, Gj,d,ψ =
∏
ω∈Ωψ

gej ,d,ω and Gj,d,1 =
∏
ω∈Ω1

gej ,d,ω.

Moreover, let G′j,d : Xe\d ×X`
d∪{i} → R be defined by

(6.10) G′j,d =
∏

e′∈H\{e,ej}
d⊆e′

∏
ω∈{0,...,`−1}d∪{i}

ge′,d,ω.

Observe that Gd = G′j,d ·
[
(Gj,d,ν Gj,d,ϕ Gj,d,1) ◦ π

]
. Hence, if `′ denotes the con-

jugate exponent of `, then, by Hölder’s inequality, we have

|Qd| =
∣∣E[E[FdG

′
j,d |xj ∈ Xj ] · (Gj,d,ν Gj,d,ψ Gj,d,1)

]∣∣(6.11)

6 E
[
E[FdG

′
j,d |xj ∈ Xj ]

`
]1/` · E[(Gj,d,ν Gj,d,ψ)`

′]1/`′
where the outer expectation is over the space Xf ×X`

d∪{i}. Note that

(6.12) E
[
E[FdG

′
j,d |xj ∈ Xj ]

`
]

= Qd∪{j}

and, consequently, Qd∪{j} > 0. Next, define Gj,d,ν ,Gj,d,ψ : Xf ×X`
d∪{i} → R by

(6.13) Gj,d,ν(xf ,x
(0)
d∪{i}, . . . ,x

(`−1)
d∪{i}) =

∏
ω∈Ων

νej (xf ,x
(ω)
d∪{i})

and

(6.14) Gj,d,ψ(xf ,x
(0)
d∪{i}, . . . ,x

(`−1)
d∪{i}) =

∏
ω∈Ωψ

ψej (xf ,x
(ω)
d∪{i}).

By (6.8) and (6.9), we see that 0 6 Gj,d,ν 6 Gj,d,ν and 0 6 Gj,d,ϕ 6 Gj,d,ϕ. On

the other hand, by (4.3), we have 1 < `′ < p. Therefore, by (6.13), (6.14) and

parts (a) and (c.ii) of Proposition 2.3, we obtain that

E
[
(Gj,d,ν Gj,d,ψ)`

′]1/`′
6 E

[
(Gj,d,ν Gj,d,ψ)`

′]1/`′
(6.15)

6 ‖νej‖|Ων |�`,p(Xej
) · ‖ψej‖

|Ωψ|
�`,p(Xej

) 6 (C ·M)`
|d|+1

.
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By (6.11), (6.12) and (6.15), we see that |Qd| 6 Q
1/`
d∪{j}(C ·M)`

|d|+1

and the proof

of Claim 6.2 is completed. �

By the above claim, we have

|Q∅| 6 (C ·M)(n−1)`Q1/`n−1

e .

As we have noted, Q∅ coincides with the quantity appearing in the left-hand side

of (6.1). Thus, combining the previous estimate with (4.13) and (6.6), we conclude

that (6.1) is satisfied, and so the proof of Lemma 5.1 is completed. �

We proceed with the following lemma which is the second main step of the proof.

Lemma 6.3. Let e ∈ H and let i ∈ [n] be the unique integer such that e = [n] \ {i}.
Also let e′ ∈ H \ {e} and ω′ ∈ {0, . . . , ` − 1}. For every e′′ ∈ H \ {e} and every

ω ∈ {0, . . . , ` − 1} with (e′′, ω) 6= (e′, ω′) let g
(ω)
e′′ ∈ L1(X,Be′′ ,µ) such that either:

(i) 0 6 g(ω)
e′′ 6 νe′′ , or (ii) 0 6 g(ω)

e′′ 6 ψe′′ , or (iii) 0 6 g(ω)
e′′ 6 1. Then

(6.16)
∣∣∣E[(νe′ −ψe′)(xe′\{i}, x(ω′)

i )
∏

e′′∈H\{e}
ω∈{0,...,`−1}
(e′′,ω) 6=(e′,ω′)

g
(ω)
e′′ (xe′′\{i}, x

(ω)
i )

]∣∣∣ 6 η

where the expectation is over all xe ∈ Xe and x
(0)
i , . . . , x

(`−1)
i ∈ Xi. (Here, xe′\{i}

and xe′′\{i} are the projections of xe into Xe′\{i} and Xe′′\{i} respectively.)

Proof. Without loss of generality, and to simplify the exposition, we will assume

that ω′ = 0. For every d ⊆ e′ \ {i} let Fd, Gd : Xe\d ×X`
d∪{i} → R be defined by

Fd(xe\d,x
(0)
d∪{i}, . . . ,x

(`−1)
d∪{i}) =

∏
ω∈{0,...,`−1}d

(νe′ −ψe′)(xe′\(d∪{i}),x(ω)
d , x

(0)
i )

and

Gd =
∏

(e′′,ω)∈Γd

ge′′,d,ω

where: (a) the set Γd consists of all pairs (e′′, ω) ∈ H\{e}×{0, . . . , `−1}d∪{i} such

that d ⊆ e′′ \ {i} and (e′′, ωi) 6= (e′, 0), and (b) for every (e′′, ω) ∈ Γd the function

ge′′,d,ω : Xe\d ×X`
d∪{i} → R is defined by

ge′′,d,ω(xe\d,x
(0)
d∪{i}, . . . ,x

(`−1)
d∪{i}) = g

(ωi)
e′′ (xe′′\(d∪{i}),x

(ωd)
d , x

(ωi)
i ).

(As before, ωi is the i-th coordinate of ω and g
(ωi)
e′′ is as in (1.5) for g

(ωi)
e′′ . More-

over, xe′\(d∪{i}) and xe′′\(d∪{i}) are the projections of xe\d into Xe′\(d∪{i}) and

Xe′′\(d∪{i}) respectively.)

Next, setting Qd = E[FdGd] and arguing precisely as in the proof of Lemma 6.1,

we obtain that Qd∪{j} > 0 and |Qd|1/`
|d|
6 (C ·M)`Q

1/`|d|+1

d∪{j} for every d  e′ \ {i}
and every j ∈ e′ \ (d ∪ {i}). Therefore,

(6.17) |Q∅| 6 (C ·M)(n−2)`Q
1/`n−2

e′\{i} .
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Now observe that |Q∅| coincides with the quantity appearing in the left-hand side

of (6.16). On the other hand, we have

Qe′\{i} = E[Fe′\{i}Ge′\{i} |x(0)
e′ , . . . ,x

(`−1)
e′ ∈Xe′ ]

where

Fe′\{i}(x
(0)
e′ , . . . ,x

(`−1)
e′ ) =

∏
ω∈{0,...,`−1}e′\{i}

(νe′ −ψe′)(x(ω)
e′\{i}, x

(0)
i )

and

Ge′\{i}(x
(0)
e′ , . . . ,x

(`−1)
e′ ) =

∏
ω∈{0,...,`−1}e′\{i}×[`−1]{i}

g
(ωi)
e′ (x

(ωe′\{i})

e′\{i} , x
(ωi)
i ).

(The arguments of the functions in the definitions of Fe′\{i} and Ge′\{i} follow from

our previous conventions, mutatis mutandis.) Thus, by part (a) of Proposition 2.1,

we obtain that

Qe′\{i} 6 ‖νe′ −ψe′‖`
n−2

�`(Xe′ )
·
`−1∏
ω=1

‖g(ω)
e′ ‖`

n−2

�`(Xe′ )

and consequently, by (6.17),

(6.18) |Q∅| 6 (C ·M)(n−2)` · ‖νe′ −ψe′‖�`(Xe′ )
·
`−1∏
ω=1

‖g(ω)
e′ ‖�`(Xe′ )

.

By part (c.ii) of Proposition 2.3, for every ω ∈ [`− 1] we have

‖g(ω)
e′ ‖�`(Xe′ )

6 ‖g(ω)
e′ ‖�`,1(Xe′ )

6 ‖g(ω)
e′ ‖�`,p(Xe′ )

.

Hence, by (6.18) and condition (II),

|Q∅| 6 (C ·M)(n−2)` · ‖νe′ −ψe′‖�`(Xe′ )
· (C ·M)`−1

6 (C ·M)(n−1)` · ‖νe′ −ψe′‖�`(Xe′ )
6 η

and the proof of Lemma 6.3 is completed. �

We are now in a position to complete the proof of the theorem. Recall that

we need to show that the family 〈νe : e ∈ H〉 satisfies conditions (C1)–(C3) in

Definition 4.1 for the constants C and η′ = n`η. For condition (C1) let G ⊆ H\{e}
be nonempty. Set m = |G| and let e′1, . . . , e

′
m be an enumeration of G. Notice that∣∣∣E[ ∏

e′∈G
νe′
]
− E

[ ∏
e′∈G

ψe′
]∣∣∣ 6 m∑

j=1

∣∣∣E[∏
k<j

ψe′k(νe′j − ψe′j )
∏
k>j

νe′k

]∣∣∣(6.19)

(6.1)

6 (n− 1) η

and so, by condition (I), we obtain that

E
[ ∏
e′∈G

νe′
]
> E

[ ∏
e′∈G

ψe′
]
− (n− 1) · η > 1− η′.
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That is, condition (C1) is satisfied. Condition (C2.a) follows arguing precisely as

in the proof of Theorem 4.2, while condition (C2.b) is an immediate consequence

of (6.1). Finally, for condition (C3) fix e ∈ H and let i ∈ [n] be the unique integer

such that e = [n] \ {i} ∈ H. Also let G ⊆ H\{e} be nonempty. By the choice of η′,

it is enough to show that

(6.20) E[ν`e,G ] 6 C + (|G| · `+ 1) η.

To this end, set

∆ :=
∣∣∣E[ `−1∏

ω=0

∏
e′∈G

νe′(xe′\{i}, x
(ω)
i )

]
− E

[ `−1∏
ω=0

∏
e′∈G

ψe′(xe′\{i}, x
(ω)
i )

]∣∣∣
(both expectations are over the space Xe ×X`

i ) and note that, by condition (I),

E[ν`e,G ] 6 ∆ + C + η.

Next, by enumerating the set G×{0, . . . , `−1} and applying a telescoping argument

as in (6.19), we see that ∆ is bounded by a sum of |G| · ` terms each of which has

the form of the quantity appearing in the left-hand side of (6.16). Therefore,

by Lemma 6.3, we conclude that (6.20) is satisfied, and so the entire proof of

Theorem 4.3 is completed.
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