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Abstract. We prove a density version of the Carlson–Simpson theorem. Spe-

cifically we show the following.

For every integer k > 2 and every set A of words over k satisfying

lim sup
n→∞

|A ∩ [k]n|
kn

> 0

there exist a word c over k and a sequence (wn) of left variable words over k

such that the set

{c} ∪
{
caw0(a0)a . . .a wn(an) : n ∈ N and a0, . . . , an ∈ [k]

}
is contained in A.

While the result is infinite-dimensional its proof is based on an appropriate

finite and quantitative version, also obtained in the paper.
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1. Introduction

1.1. Overview. Our topic is Ramsey theory, the general area of combinatorics

that studies the basic pigeonhole principles of discrete structures and organizes, in

a systematic way, the results obtained by iterating them.

1.1.1. The coloring versions. The first pigeonhole principle relevant to our discus-

sion in this paper is the Hales–Jewett theorem [20]. To state it we need to introduce

some pieces of notation and some terminology. For every integer k > 2 let [k]<N

be the set of all finite sequences having values in [k] := {1, . . . , k}. The elements of

[k]<N are referred to as words over k, or simply words if k is understood. If n ∈ N,

then [k]n stands for the set of words of length n. We fix a letter v that we regard

as a variable. A variable word over k is a finite sequence having values in [k] ∪ {v}
where the letter v appears at least once. If w is a variable word and a ∈ [k], then

w(a) is the word obtained by substituting all appearances of the letter v in w by

a. A combinatorial line of [k]n is a set of the form {w(a) : a ∈ [k]} where w is a

variable word over k of length n.

Hales–Jewett theorem. For every k, r ∈ N with k > 2 and r > 1 there exists an

integer N with the following property. If n > N , then for every r-coloring of [k]n

there exists a combinatorial line of [k]n which is monochromatic. The least integer

N with this property will be denoted by HJ(k, r).

The Hales–Jewett theorem is the bread and butter of Ramsey theory and is often

regarded as an abstract version of the van der Waerden theorem [38]. The exact

asymptotics of the numbers HJ(k, r) are still unknown. The best known upper

bounds are primitive recursive and are due to Shelah [33].

The second pigeonhole principle relevant to our discussion is the Halpern–Läuchli

theorem [21], a rather deep result that concerns partitions of finite products of

infinite trees.

Halpern–Läuchli theorem. For every finite tuple (T1, . . . , Td) of uniquely rooted

and finitely branching trees without maximal nodes and every finite coloring of the

level product

(1.1)
⋃
n∈N

T1(n)× · · · × Td(n)

of (T1, . . . , Td) there exist strong subtrees (S1, . . . , Sd) of (T1, . . . , Td) having a com-

mon level set such that the level product of (S1, . . . , Sd) is monochromatic.

We recall that a subtree S of a tree (T,<) is said to be strong if: (a) S is

uniquely rooted, (b) there exists an infinite subset LT (S) = {l0 < l1 < · · · } of

N, called the level set of S, such that for every n ∈ N the n-level S(n) of S is a

subset of T (ln), and (c) for every s ∈ S and every immediate successor t of s in T

there exists a unique immediate successor s′ of s in S with t 6 s′. The notion of

a strong subtree was highlighted with the work of Milliken [25, 26] who used the
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Halpern–Läuchli theorem to show that the family of strong subtrees of a uniquely

rooted and finitely-branching tree is partition regular.

The Hales–Jewett theorem and the Halpern–Läuchli theorem are pigeonhole

principles of quite different nature. Nevertheless, they do admit a common ex-

tension which is due to Carlson and Simpson [6]. To state it we recall that a left

variable word over k is a variable word over k whose leftmost letter is the variable v.

The concatenation of two words x and y over k is denoted by xay.

Carlson–Simpson theorem. For every integer k > 2 and every finite coloring of

the set of all words over k there exist a word c over k and a sequence (wn) of left

variable words over k such that the set

(1.2) {c} ∪
{
caw0(a0)a . . .a wn(an) : n ∈ N and a0, . . . , an ∈ [k]

}
is monochromatic.

The Carlson–Simpson theorem belongs to the circle of results that provide in-

formation on the structure of the wildcard1 set of the variable word obtained by

the Hales–Jewett theorem; see, e.g., [3, 22, 24, 34, 40]. This extra information

(namely, that the sequence (wn) consists of left variable words) can be used to

derive the Halpern–Läuchli theorem when the trees T1, . . . , Td are homogeneous2,

a special case which is sufficient for all known combinatorial applications of the

Halpern–Läuchli theorem (see [29]).

1.1.2. The density versions. It is a remarkably fruitful phenomenon that many

pigeonhole principles have a density version. These density versions are strength-

enings of their coloristic counterparts and assert that every large subset of a “struc-

ture” must contain a “substructure”. In fact, the first pigeonhole principle we dis-

cussed so far, namely the Hales–Jewett theorem, admits a density version which is

due to Furstenberg and Katznelson [15].

Density Hales–Jewett theorem. For every integer k > 2 and every 0 < δ 6 1

there exists an integer N with the following property. If n > N , then every subset

A of [k]n with |A| > δkn contains a combinatorial line of [k]n. The least integer N

with this property will be denoted by DHJ(k, δ).

The density Hales–Jewett theorem is a fundamental result of Ramsey theory.

It has several strong results as consequences, most notably the famous Szemerédi

theorem on arithmetic progressions [36] and its multidimensional version [13]. The

best known upper bounds for the numbers DHJ(k, δ) are obtained in [28] and have

an Ackermann-type dependence with respect to k.

1We recall that if w = (wi)
n−1
i=0 is a variable word over k of length n, then its wildcard set is

defined to be the set
{
i ∈ {0, . . . , n− 1} : wi = v

}
.

2A tree T is homogeneous if it is uniquely rooted and there exists an integer b > 2 such that

every t ∈ T has exactly b immediate successors; e.g., every dyadic, or triadic tree is homogeneous.
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It turns out that the Halpern–Läuchli theorem also has a density version that

was obtained relatively recently in [8].

Density Halpern–Läuchli theorem. For every finite tuple (T1, . . . , Td) of ho-

mogeneous trees and every subset A of the level product of (T1, . . . , Td) satisfying

(1.3) lim sup
n→∞

|A ∩
(
T1(n)× · · · × Td(n)

)
|

|T1(n)× · · · × Td(n)|
> 0

there exist strong subtrees (S1, . . . , Sd) of (T1, . . . , Td) having a common level set

such that the level product of (S1, . . . , Sd) is a subset of A.

We should point out that the assumption in the above result that the trees

T1, . . . , Td are homogeneous is not redundant. On the contrary, various examples

given in [4] show that it is essentially optimal.

1.2. The main results. In view of the above it is natural to ask whether the

Carlson–Simpson theorem has a density analogue which would extend, among oth-

ers, both the density Hales–Jewett theorem and the density Halpern–Läuchli the-

orem. Our goal in this paper is to answer this question affirmatively. Specifically,

we show the following theorem.

Theorem A. For every integer k > 2 and every set A of words over k satisfying

(1.4) lim sup
n→∞

|A ∩ [k]n|
kn

> 0

there exist a word c over k and a sequence (wn) of left variable words over k such

that the set

(1.5) {c} ∪
{
caw0(a0)a . . .a wn(an) : n ∈ N and a0, . . . , an ∈ [k]

}
is contained in A.

The proof of Theorem A follows a strategy that was already applied in a closely

related context and was described in some detail in [10, §1.3]. It consists of reducing

Theorem A to an appropriate finite version. This finite version, which represents

the combinatorial core of Theorem A, is the content of the following theorem which

is the second main result of the paper.

Theorem B. For every integer k > 2, every integer m > 1 and every 0 < δ 6 1

there exists an integer N with the following property. If L is a finite subset of N of

cardinality at least N and A is a set of words over k satisfying |A∩ [k]n| > δkn for

every n ∈ L, then there exist a word c over k and a finite sequence (wn)m−1
n=0 of left

variable words over k such that the set

(1.6) {c} ∪
{
caw0(a0)a . . .a wn(an) : n ∈ {0, . . . ,m− 1} and a0, . . . , an ∈ [k]

}
is contained in A. The least integer N with this property will be denoted by

DCS(k,m, δ).



A DENSITY VERSION OF THE CARLSON–SIMPSON THEOREM 5

The main point in Theorem B is that the result is independent of the position

of the finite set L. Its proof is based on a density increment strategy—a powerful

method pioneered by Roth [31]—and yields explicit upper bounds for the numbers

DCS(k,m, δ). These upper bounds are admittedly rather weak. They are in line,

however, with several other bounds obtained recently in the area; see, e.g., [9, 17,

28, 30].

Although Theorem B refers to left variable words, it can be used to obtain

variable words with quite divergent structure. Specifically, given two sequences

(pn) and (wn) of variable words over k, we say that the sequence (wn) is of pattern

(pn) if pn is an initial segment of wn for every n ∈ N. So, for instance, if qn = (v)

for every n ∈ N, then a sequence (wn) of variable words over k is of pattern (qn) if

and only if it consists of left variable words. We show the following theorem.

Theorem C. Let k ∈ N with k > 2 and let (pn) be an arbitrary sequence of variable

words over k. Then for every set A of words over k satisfying

(1.7) lim sup
n→∞

|A ∩ [k]n|
kn

> 0

there exist a word c over k and a sequence (wn) of variable words over k of pattern

(pn) such that the set

(1.8) {c} ∪
{
caw0(a0)a . . .a wn(an) : n ∈ N and a0, . . . , an ∈ [k]

}
is contained in A.

Of course, there is also a finite version of Theorem C in the spirit of Theorem B.

This is the content of Theorem 11.1 in the main text.

1.3. Structure of the paper. The paper is organized as follows. In §2 we set

up our notation and terminology, and we recall some tools which are needed for

the proof of the main results. Of particular importance is the notion of a Carlson–

Simpson tree introduced in §2.5. It is the analogue, within the context of left

variable words, of the notion of a combinatorial subspace.

The next four sections contain several preparatory results needed for the proof

of Theorem B. This material is not only independent of the rest of the paper but

also of independent interest. In §3 we state and prove a “regularity lemma” for

subsets of [k]<N. The lemma asserts that every dense subset of [k]<N is inherently

pseudorandom and is proved via an energy increment strategy, an influential method

introduced by Szemerédi [37]. In the next section, §4, we present a partition result

for Carlson–Simspon trees which is, essentially, a variant of the classical Graham–

Rothschild theorem [19]. Finally, in §5 and §6 we develop a method of “gluing”

a pair x and y of words over k. The method can be thought of as a natural

extension of the familiar practice of concatenating x and y. It is encoded by what

we call a convolution operation which is introduced and studied in §5. Iterations of

convolution operations are studied in §6. We emphasize that the results in §6 are
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invoked only in §9. However, the material in §3, §4 and §5 is heavily used and the

reader is advised to gain some familiarity with the contents of these sections before

reading the rest of the paper.

The next four sections are devoted to the proof of Theorem B. The results in

§7 are independent of the rest of the argument. In particular, this section can be

read separately. The main part of the proof is contained in §8 and §9. The reader

will find a detailed outline and an exposition of the key ideas in §8.1 and §9.1. The

proof of Theorem B is completed in §10.

Finally, the last section of the paper contains a discussion on some consequences

of Theorem B, including the proofs of Theorem A and Theorem C.

2. Background material

By N = {0, 1, 2, . . . } we shall denote the natural numbers. For every integer

n > 1 we set [n] = {1, . . . , n}. If X is a nonempty finite set, then by Ex∈X we

shall denote the average 1
|X|
∑
x∈X where, as usual, |X| stands for the cardinality

of X. For every function f : N → N and every ` ∈ N by f (`) : N → N we shall

denote the `-th iteration of f defined recursively by the rule f (0)(n) = n and

f (`+1)(n) = f
(
f (`)(n)

)
for every n ∈ N.

Let X be a nonempty (possibly infinite) set and let A be a subset of X. For

every nonempty finite subset Y of X the density of A in Y is defined by

(2.1) densY (A) =
|A ∩ Y |
|Y |

.

If it is clear from the context to which set Y we are referring (for instance, if Y

coincides with X), then we shall drop the subscript Y and we shall denote the

above quantity simply by dens(A).

2.1. Words. For every k ∈ N with k > 2 and every n ∈ N let [k]n be the set of all

sequences of length n having values in [k]. Precisely, [k]0 contains just the empty

sequence while if n > 1, then

(2.2) [k]n =
{

(s0, . . . , sn−1) : si ∈ [k] for every i ∈ {0, . . . , n− 1}
}
.

Also let

(2.3) [k]<n =
⋃

{i∈N:i<n}

[k]i.

Notice, in particular, that [k]<0 is empty. We set

(2.4) [k]<N =
⋃
n∈N

[k]n.

The elements of [k]<N are called words over k, or simply words if k is understood.

The length of a word x over k, denoted by |x|, is defined to be the unique natural

number n such that x ∈ [k]n. For every i ∈ N with i 6 |x| by x|i we shall denote
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the word of length i which is an initial segment of x. The concatenation of two

words x, y will be denoted by xay.

2.2. Located words. For every k ∈ N with k > 2 and every (possibly empty)

finite subset J of N by [k]J we shall denote the set of all functions from J into [k].

An element of the set

(2.5)
⋃

J⊆N finite

[k]J

will be called a located word over k. If x ∈ [k]J is a located word over k and S is

a subset of J , then x|S stands for the restriction of x on S; notice that x|S ∈ [k]S .

Moreover, for every x ∈ [k]I and every y ∈ [k]J , where I and J are two finite

subsets of N with I∩J = ∅, by (x, y) we shall denote the unique element z of [k]I∪J

satisfying z|I = x and z|J = y.

Of course, every word over k is a located word over k. Indeed, notice that

(2.6) [k]{m∈N:m<n} = [k]n

for every n ∈ N. Conversely, we may identify located words over k with words over

k as follows. Let J be a nonempty finite subset of N. We set j = |J | and we write

the set J in increasing order as {n0 < · · · < nj−1}. The canonical isomorphism

associated with J is the bijection IJ : [k]j → [k]J defined by the rule

(2.7) IJ(x)(ni) = x(i)

for every i ∈ {0, . . . , j − 1}. Observing that [k]∅ = [k]0 = {∅}, we define the

canonical isomorphism I∅ associated with the empty set to be the identity.

2.3. Variable words. Let k,m ∈ N with k > 2 and m > 1, and fix a tuple

v0, . . . , vm−1 of distinct letters. An m-variable word over k is a finite sequence

having values in [k]∪{v0, . . . , vm−1} such that: (a) for every i ∈ {0, . . . ,m− 1} the

letter vi appears at least once, and (b) if m > 2, then for every i, j ∈ {0, . . . ,m−1}
with i < j all occurrences of vi precede all occurrences of vj . For every m-variable

word w over k and every a0, . . . , am−1 ∈ [k] by w(a0, . . . , am−1) we shall denote the

unique word over k obtained by substituting in w all appearances of the letter vi

with ai for every i ∈ {0, . . . ,m − 1}. A left variable word over k is an 1-variable

word over k whose leftmost letter is the variable v.

2.4. Combinatorial subspaces. Let k,m ∈ N with k > 2 and m > 1. An

m-dimensional combinatorial subspace of [k]<N is a set of the form

(2.8) V =
{
w(a0, . . . , am−1) : a0, . . . , am−1 ∈ [k]

}
where w is an m-variable word over k. The 1-dimensional combinatorial subspaces

are called combinatorial lines.

For every m-dimensional combinatorial subspace V of [k]<N and every ` ∈ [m] let

Subs`(V ) be the set of all `-dimensional combinatorial subspaces of [k]<N which are
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contained in V . We will need the following special case of the Graham–Rothschild

theorem [19].

Theorem 2.1. For every integer k > 2, every pair of integers d > m > 1 and every

integer r > 1 there exists an integer N with the following property. If n > N and V

is an n-dimensional combinatorial subspace of [k]<N, then for every r-coloring of the

set Subsm(V ) there exits W ∈ Subsd(V ) such that the set Subsm(W ) is monochro-

matic. The least integer N with this property will be denoted by GR(k, d,m, r).

Detailed expositions as well as infinite extensions of Theorem 2.1 can be found

in various places in the literature; see, e.g., [2, 5, 14, 23, 29]. Also we remark that

there exist primitive recursive upper bounds for the numbers GR(k, d,m, r) which

are due to Shelah [33].

2.5. Carlson–Simpson trees. We are about to introduce a family of combinato-

rial objects which will be of particular importance throughout the paper.

Definition 2.2. Let k ∈ N with k > 2. A Carlson–Simpson tree of [k]<N is a set

of the form

(2.9) W = {c}∪
{
caw0(a0)a . . .a wn(an) : n ∈ {0, . . . ,m−1} and a0, . . . , an ∈ [k]

}
where c is a word over k and (wn)m−1

n=0 is a nonempty finite sequence of left variable

words over k.

It is easy to see that the sequence (c, w0, . . . , wm−1) that generates a Carlson–

Simpson tree W via formula (2.9) is unique. This unique sequence will be called

the generating sequence of W . The corresponding natural number m will be called

the dimension of W and will be denoted by dim(W ). The 1-dimensional Carlson–

Simpson trees will be called Carlson–Simpson lines.

Let W be an m-dimensional Carlson–Simpson tree of [k]<N and (c, w0, . . . , wm−1)

its generating sequence. The 0-level W (0) of W is defined by

(2.10) W (0) = {c}.

Observe that W (0) is contained in [k]`0 where `0 is the length of c. Moreover, for

every n ∈ [m] the n-level W (n) of W is defined by

(2.11) W (n) =
{
caw0(a0)a . . .a wn−1(an−1) : a0, . . . , an−1 ∈ [k]

}
.

Notice that W (n) is an n-dimensional combinatorial subspace of [k]<N and is con-

tained in [k]`n where `n is the sum of the lengths of c, w0, . . . , wn−1. The set

{`0 < · · · < `m} will be called the level set of W and it will be denoted by L(W ).

For every m-dimensional Carlson–Simpson tree W of [k]<N and every ` ∈ [m]

by Subtr`(W ) we shall denote the set of all `-dimensional Carlson–Simpson trees

of [k]<N which are contained in W . An element of Subtr`(W ) will be called an

`-dimensional Carlson–Simpson subtree of W , or simply Carlson–Simpson subtree

of W if the dimension ` is understood.
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The archetypical example of a Carlson–Simpson tree of [k]<N of dimension m is

the set [k]<m+1. In fact, every Carlson–Simpson tree of dimension m can be thought

of as a “copy” of [k]<m+1 inside [k]<N. Specifically, let W be an m-dimensional

Carlson–Simpson tree of [k]<N and let (c, w0, . . . , wm−1) be its generating sequence.

The canonical isomorphism associated with W is the bijection IW : [k]<m+1 → W

defined by IW (∅) = c and

(2.12) IW
(
(a0, . . . , an−1)

)
= caw0(a0)a . . .a wn−1(an−1)

for every n ∈ [m] and every (a0, . . . , an−1) ∈ [k]n. The canonical isomorphism IW

preserves all structural properties one is interested in while working in the cate-

gory of Carlson–Simpson trees. For instance, if ` ∈ [m] and V is a Carlson–Simpson

subtree of [k]<m+1 of dimension `, then its image IW (V ) under the canonical isomor-

phism is an `-dimensional Carlson–Simpson subtree of W . Thus, for most practical

purposes, we may identify W with [k]<m+1 via the canonical isomorphism IW .

More generally, let W and U be two Carlson–Simpson trees of [k]<N of the

same dimension. The canonical isomorphism associated with the pair W,U is the

bijection IW,U : W → U defined by the rule

(2.13) IW,U (t) = (IU ◦ I−1
W )(t)

where IW and IU are the canonical isomorphisms associated with W and U . Of

course, the map IW,U will be used to transfer information from W to U and vice

versa.

Finally, for every m-dimensional Carlson–Simpson tree W of [k]<N and every

k′ ∈ {2, . . . , k} we define the k′-restriction W � k′ of W to be the set

(2.14) {c} ∪
{
caw0(a′0)a . . .a wn(a′n) : n ∈ {0, . . . ,m− 1} and a′0, . . . , a

′
n ∈ [k′]

}
where (c, w0, . . . , wm−1) stands for the generating sequence of W . Notice that the

canonical isomorphism of W maps [k′]<m+1 onto W � k′. Therefore, W � k′ can be

naturally identified as a Carlson–Simpson tree of [k′]<N.

2.6. Insensitive sets. Let k ∈ N with k > 2 and let x, y be two words over k. Also

let i, j ∈ [k] with i 6= j. We say that x and y are (i, j)-equivalent if: (a) x and y

have common length, and (b) if n is the common length of x and y, then for every

s ∈ [k] \ {i, j} and every r ∈ N with r < n we have x(r) = s if and only if y(r) = s.

If n ∈ N and A is a subset of [k]n, then A is said to be (i, j)-insensitive if for

every x ∈ A and every y ∈ [k]n if x and y are (i, j)-equivalent, then y ∈ A. The

notion of an (i, j)-insensitive set was introduced by Shelah [33] and highlighted in

Polymath’s proof [28] of the density Hales–Jewett theorem. It can be naturally

extended to subsets of [k]<N as follows.

Definition 2.3. Let k ∈ N with k > 2 and i, j ∈ [k] with i 6= j. Also let A be a

subset of [k]<N. We say that A is (i, j)-insensitive if for every n ∈ N the set A∩ [k]n

is (i, j)-insensitive. If W is Carlson–Simpson tree of [k]<N, then we say that A is
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(i, j)-insensitive in W if I−1
W (A ∩W ) is an (i, j)-insensitive subset of [k]<N where

IW is the canonical isomorphism associated with W .

It is easy to see that the family of all (i, j)-insensitive subsets of [k]<N is closed

under intersections, unions and complements. The same remark, of course, applies

to the family of all (i, j)-insensitive sets in a Carlson–Simpson tree W of [k]<N.

2.7. Furstenberg–Weiss measures. Let k,m ∈ N with k > 2 and m > 1.

The Furstenberg–Weiss measure dmFW associated with [k]<m+1 is the probability

measure on [k]<N defined by

(2.15) dmFW(A) = En∈{0,...,m}dens[k]n(A).

This class of measures was introduced by Furstenberg and Weiss [16] and has proven

to be useful in various problems in Ramsey theory (see, e.g., [9, 27]). We will need

the following two variants.

Definition 2.4. Let k ∈ N with k > 2.

(i) For every Carlson–Simpson tree W of [k]<N the Furstenberg–Weiss measure

dWFW associated with W is the probability measure on [k]<N defined by

(2.16) dWFW(A) = En∈{0,...,dim(W )} densW (n)(A).

(ii) For every nonempty finite subset L of N the generalized Furstenberg–Weiss

measure dL associated with L is the probability measure on [k]<N defined by

(2.17) dL(A) = En∈L dens[k]n(A).

It is, of course, clear that if L is an initial interval of N of cardinality ` > 2, then

the generalized Furstenberg–Weiss measure dL associated with L coincides with the

Furstenberg–Weiss measure d`−1
FW .

2.8. Probabilistic preliminaries. We record, for future use, three probabilistic

facts. The first one is an immediate consequence of Markov’s inequality.

Lemma 2.5. Let (Ω,Σ, µ) be a probability space and 0 < δ 6 1. Also let (Ai)
n
i=1

be a finite family of measurable events in (Ω,Σ, µ) such that µ(Ai) > δ for every

i ∈ [n]. Then, setting Lω = {i ∈ [n] : ω ∈ Ai} for every ω ∈ Ω, we have

(2.18) µ
(
{ω : |Lω| > (δ/2)n}

)
> δ/2.

Proof. For every i ∈ [n] let 1Ai be the indicator function of the event Ai and set

Z = 1
n

∑n
i=1 1Ai . Then E[Z] > δ and the result follows. �

To state the second result we recall that if (Ω,Σ, µ) is a probability space and

Y ∈ Σ with µ(Y ) > 0, then µY stands for the conditional probability measure of µ

relative to Y defined by

(2.19) µY (A) :=
µ(A ∩ Y )

µ(Y )

for every A ∈ Σ.
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Lemma 2.6. Let (Ω,Σ, µ) be a probability space and 0 < λ, β, ε 6 1. Let A and

B be two measurable events in (Ω,Σ, µ) with A ⊆ B and such that µ(A) > λµ(B)

and µ(B) > β. Suppose that Q = (Qi)
n
i=1 is a finite family of pairwise disjoint

measurable events in (Ω,Σ, µ) such that µ(B \∪Q) 6 εβ/2 and µ(Qi) > 0 for every

i ∈ [n]. Then, setting

(2.20) I =
{
i ∈ [n] : µQi(A) > (λ− ε)µQi(B) and µQi(B) > βε/4

}
,

we have

(2.21)
∑
i∈I

µ(Qi) > βε/4.

In particular, if µ(Qi) = µ(Qj) for every i, j ∈ [n], then |I| > (βε/4)n.

Proof. Notice, first, that µ(A \ ∪Q) 6 εβ/2. This is easily seen to imply that

(2.22)

n∑
i=1

µ(A ∩Qi)
µ(B)

> λ− ε/2.

For every i ∈ [n] let ai = µQi(A)/µQi(B), bi = µQi(B) and ci = µ(Qi)/µ(B)

with the convention that ai = 0 if µ(B ∩ Qi) = 0. Then inequality (2.22) can be

reformulated as

(2.23)

n∑
i=1

aibici > λ− ε/2.

Notice that

(2.24)

n∑
i=1

bici 6 1 and

n∑
i=1

ci 6
1

β
.

Also observe that I = {i ∈ [n] : ai > λ − ε and bi > βε/4}. Since 0 6 ai, bi 6 1

for every i ∈ [n], combining (2.23), (2.24) and the previous remarks, we see that∑
i∈I ci > ε/4 and the proof is completed. �

The final result of this subsection is the following.

Lemma 2.7. Let 0 < θ < ε 6 1 and n ∈ N with n > (ε2 − θ2)−1. If (Ai)
n
i=1 is a

family of measurable events in a probability space (Ω,Σ, µ) satisfying µ(Ai) > ε for

every i ∈ [n], then there exist i, j ∈ [n] with i 6= j such that µ(Ai ∩Aj) > θ2.

Proof. We set X =
∑n
i=1 1Ai where 1Ai is the indicator function of the event Ai

for every i ∈ [n]. Then E[X] > εn so, by convexity,

(2.25)
∑
i∈[n]

∑
j∈[n]\{i}

µ(Ai ∩Aj) = E[X(X − 1)] > εn(εn− 1).

Therefore, there exist i, j ∈ [n] with i 6= j such that µ(Ai ∩Aj) > θ2. �
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3. A regularity lemma for subsets of [k]<N

3.1. Statement of the main result. Our goal in this section is to prove a

“regularity lemma” for subsets of [k]<N. Roughly speaking, the lemma asserts that

if n is large enough and A is a subset of [k]n, then we may find a set of coordinates

I ⊆ {m ∈ N : m < n} of preassigned cardinality such that the set A, viewed as a

subset of the product [k]I × [k]{m∈N:m<n}\I , behaves like a randomly chosen set.

To put things in a proper perspective we need, first, to determine the kind of

randomness we are referring to. This is the content of the following definition.

Definition 3.1. Let k ∈ N with k > 2 and F a family of subsets of [k]<N. Also

let 0 < ε 6 1 and L a nonempty finite subset of N. The family F will be called

(ε, L)-regular provided that for every A ∈ F , every n ∈ L, every (possibly empty)

subset I of {l ∈ L : l < n} and every y ∈ [k]I we have

(3.1) |dens
(
{w ∈ [k]{m∈N:m<n}\I : (y, w) ∈ A ∩ [k]n}

)
− dens(A ∩ [k]n)| 6 ε.

Notice that for every y ∈ [k]I the set {w ∈ [k]{m∈N:m<n}\I : (y, w) ∈ A∩ [k]n} is

just the section A ∩ [k]n at y. So what Definition 3.1 guarantees is that for every

n ∈ L and every I ⊆ {l ∈ L : l < n} the density of the sections of A ∩ [k]n along

elements of [k]I are essentially equal to the density of A ∩ [k]n.

We are now ready to state the main result of this section.

Lemma 3.2. For every 0 < ε 6 1 and every k, `, q ∈ N with k > 2 and `, q > 1

there exists an integer n with the following property. If N is a finite subset of N
with |N | > n and F is a family of subsets of [k]<N with |F| = q, then there exists

a subset L of N with |L| = ` such that F is (ε, L)-regular. The least integer n with

this property will be denoted by Reg(k, `, q, ε).

The proof of Lemma 3.2 will be given in §3.2. It is based on an energy increment

strategy, a powerful method introduced by Szemerédi in his proof of the celebrated

regularity lemma [37]. The argument is, of course, effective and yields explicit

upper bounds for the numbers Reg(k, `, q, ε).

3.2. Proof of Lemma 3.2. We begin with the following definition which is the

most important ingredient of the proof.

Definition 3.3. Let k, n ∈ N with k > 2. Also let I be a (possibly empty) subset

of {m ∈ N : m < n}. For every subset A of [k]n we define the energy of A with

respect to I to be the quantity

(3.2) eI(A) = Ey∈[k]I dens(Ay)2

where Ay = {w ∈ [k]{m∈N:m<n}\I : (y, w) ∈ A} is the section of A at y.

We will isolate some basic properties of the energy which are needed for the

proof. To this end, we need to introduce some pieces of notation. Specifically, let

k, n ∈ N with k > 2 and let I, J be two subsets of {m ∈ N : m < n} with I ∩J = ∅.



A DENSITY VERSION OF THE CARLSON–SIMPSON THEOREM 13

We set M = {m ∈ N : m < n} \ (I ∪ J). If we are given a subset A of [k]n, then

we may view the set A as a subset of the product [k]I × [k]J × [k]M and so we may

define the section A(y,z) = {v ∈ [k]M : (y, z, v) ∈ A} for every (y, z) ∈ [k]I × [k]J .

Notice that

(3.3) dens(Ay) = Ez∈[k]Jdens(A(y,z)) and dens(Az) = Ey∈[k]Idens(A(y,z))

for every y ∈ [k]I and every z ∈ [k]J . We have the following.

Fact 3.4. Let k, n ∈ N with k > 2. Also let I be a subset of {m ∈ N : m < n}.
Then for every subset A of [k]n we have that eI(A) 6 1. Moreover, if J is a subset

of {m ∈ N : m < n} with I ∩ J = ∅, then

(3.4) eI∪J(A)− eJ(A) = Ez∈[k]JEy∈[k]I

(
dens(A(y,z))− Ey∈[k]Idens(A(y,z))

)2

.

In particular, eJ(A) 6 eI∪J(A).

Proof. The fact that eI(A) 6 1 follows immediately by Definition 3.3. Observe that

(3.5) eI∪J(A) = Ez∈[k]J

(
Ey∈[k]Idens(A(y,z))

2
)

and

(3.6) eJ(A)
(3.3)
= Ez∈[k]J

(
Ey∈[k]Idens(A(y,z))

)2

.

Combining (3.5) and (3.6) the result follows. �

The first step towards the proof of Lemma 3.2 is the following.

Sublemma 3.5. Let k, n ∈ N with k > 2. Also let I and J be two subsets of

{m ∈ N : m < n} with I∩J = ∅. Finally let A be a subset of [k]n and 0 < ε < k−|I|.

If eI∪J(A)− eJ(A) 6 ε4, then

(3.7) dens
({
z ∈ [k]J : |dens(A(y,z))− dens(Az)| 6 ε for every y ∈ [k]I

})
> 1− ε.

Proof. We set Y = [k]I and Z = [k]J . For every z ∈ Z let fz : Y → [0, 1] be the

random variable defined by fz(y) = dens(A(y,z)). Let E(fz) = Ey∈Y fz(y) be the

expected value of fz and let Var(fz) = E(f2
z )−E(fz)

2 be its variance. Notice that

E(fz) = dens(Az). By (3.4), we see that Ez∈ZVar(fz) = eI∪J(A)− eJ(A). Hence,

by our assumptions, we have

(3.8) Ez∈ZVar(fz) 6 ε
4

and so, by Markov’s inequality,

(3.9) dens
(
{z ∈ Z : Var(fz) 6 ε

3}
)
> 1− ε.

Fix z0 ∈ Z with Var(fz0) 6 ε3. By Chebyshev’s inequality, we have

(3.10) dens
(
{y ∈ Y : |fz0(y)− E(fz0)| 6 ε}

)
> 1− ε
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and since ε < |Y |−1 we obtain that |fz0(y) − E(fz0)| 6 ε for every y ∈ Y . This is

equivalent to saying that |dens(A(y,z0))− dens(Az0)| 6 ε for every y ∈ [k]I and the

proof is completed. �

Sublemma 3.5 will be used in the following form.

Corollary 3.6. Let k, n ∈ N with k > 2. Also let I and J be two subsets of

{m ∈ N : m < n} with I∩J = ∅. Finally, let A be a subset of [k]n and 0 < ε < k−|I|.

If eI∪J(A)− eJ(A) 6 ε4/16, then |dens(Ay)− dens(A)| 6 ε for every y ∈ [k]I .

Proof. We set ε0 = ε/2 and

(3.11) Z0 =
{
z ∈ [k]J : |dens(A(y,z))− dens(Az)| 6 ε0 for every y ∈ [k]I}.

By Sublemma 3.5, we have dens([k]J \ Z0) 6 ε0. Hence, for every y ∈ [k]I ,

|dens(Ay)− dens(A)|
(3.3)

6 Ez∈[k]J |dens(A(y,z))− dens(Az)|(3.12)

6 Ez∈Z0 |dens(A(y,z))− dens(Az)|+ ε0

(3.11)

6 ε0 + ε0 = ε

as desired. �

We proceed to the second step of the proof of Lemma 3.2.

Sublemma 3.7. Let k,m, q ∈ N with k > 2 and q > 1 and 0 < ε < k−m. Also

let N be a finite subset of N with |N | >
(
qb16ε−4c + 1

)
m + 1 and F a family of

subsets of [k]max(N) with |F| = q. Then, setting N ′ = N \{max(N)}, there exists a

subinterval M of N ′ (i.e., M is of the form J ∩N ′ for some interval J of N) with

|M | = m and such that for every A ∈ F , every subset I of M and every y ∈ kI we

have |dens(Ay)− dens(A)| 6 ε.

Proof. Clearly we may assume that m > 1. We set r0 = qb16ε−4c + 1. Write the

first r0 ·m elements of N ′ in increasing order as {n0 < n1 < · · · < nr0·m−1}. For

every p ∈ {0, . . . , r0 − 1} let

(3.13) Ip =
{
np·m+j : j ∈ {0, . . . ,m− 1}

}
and Jp = {j ∈ N : j < np·m}.

Notice that max(Jp) < min(Ip) < max(N). Moreover, Ip ∪ Jp ⊆ Jp+1 if p 6 r0− 2.

Hence, by Fact 3.4, we have

(3.14) eJp(A) 6 eIp∪Jp(A) 6 eJp+1
(A) 6 eIp+1∪Jp+1

(A) 6 1

for every p ∈ {0, . . . , r0 − 2} and every A ∈ F . For every A ∈ F let

(3.15) PA =
{
p ∈ {0, . . . , r0 − 1} : eIp∪Jp(A)− eJp(A) > ε4/16

}
.

The previous discussion implies that the set PA has cardinality at most b16ε−4c.
Therefore, we may select p0 ∈ {0, . . . , r0 − 1} such that p0 /∈ PA for every A ∈ F ;
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in particular, eIp0∪Jp0 (A)− eJp0 (A) 6 ε4/16. Since Ip0 ∩ Jp0 = ∅, by Corollary 3.6,

we conclude that

(3.16) |dens(Ay)− dens(A)| 6 ε

for every y ∈ [k]Ip0 and every A ∈ F .

We set M = Ip0 . We will show that with this choice all requirements of the

sublemma are satisfied. Indeed, notice that M is a subinterval of N ′ with |M | = m.

We fix A ∈ F . Also let I ⊆ M and y ∈ [k]I be arbitrary. Observe that for every

z ∈ [k]M\I we have (y, z) ∈ [k]Ip0 . Hence,

|dens(Ay)− dens(A)| = |Ez∈[k]M\Idens(A(y,z))− dens(A)|(3.17)

6 Ez∈[k]M\I |dens(A(y,z))− dens(A)|
(3.16)

6 ε

and the proof is completed. �

We are in the position to complete the proof of Lemma 3.2. To this end, we need

to introduce some numerical invariants. Specifically, for every 0 < ε 6 1 and every

k, `, q ∈ N with k > 2 and `, q > 1 let

(3.18) ρ = ρ(k, `, q, ε) = min{ε, k−`/2}

and define Fk,`,q,ε : N→ N by the rule

(3.19) Fk,`,q,ε(m) = (qb16ρ−4c+ 1)m+ 1.

Proof of Lemma 3.2. We will show that

(3.20) Reg(k, `, q, ε) 6 F (`)
k,`,q,ε(0)

for every 0 < ε 6 1 and every k, `, q ∈ N with k, ` > 2 and q > 1. Indeed, let N

be a finite subset of N with |N | > F (`)
k,`,q,ε(0) and fix a family F of subsets of [k]<N

with |F| = q. We select a subset M0 of N with |M0| = F
(`)
k,`,q,ε(0). By repeated

applications of Sublemma 3.7, we may construct a family {M1, . . . ,M`−1} of finite

subsets of M0 such that for every i ∈ [`− 1]

(a) |Mi| = F
(`−i)
k,`,q,ε(0),

(b) Mi is a subinterval of Mi−1 \ {max(Mi−1)}, and

(c) for every A ∈ F , every subset I of Mi and every y ∈ kI we have

(3.21) |dens
(
{w ∈ [k]C : (y, w) ∈ A ∩ [k]max(Mi−i)}

)
− dens(A ∩ [k]max(Mi−1))| 6 ε

where C = {m ∈ N : m < max(Mi−1)} \ I.

We set L = {max(M`−1) < · · · < max(M0)
}

. Using properties (b) and (c), it is

easy to check that the family F is (ε, L)-regular, as desired. �
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4. A variant of the Graham–Rothschild theorem for left variable

words

Recall that for every Carlson–Simpson tree V of [k]<N and every ` ∈ [dim(V )]

by Subtr`(V ) we denote the set of all `-dimensional Carlson–Simpson subtrees of

V . This section is devoted to the proof of the following partition result.

Theorem 4.1. For every integer k > 2, every pair of integers d > m > 1 and

every integer r > 1 there exists an integer N with the following property. If

n > N and W is an n-dimensional Carlson–Simpson tree of [k]<N, then for ev-

ery r-coloring of the set Subtrm(W ) there exists U ∈ Subtrd(W ) such that the set

Subtrm(U) is monochromatic. The least integer N with this property will be denoted

by CS(k, d,m, r).

Theorem 4.1 is, of course, a variant of Theorem 2.1. It can be hardly charac-

terized as new since it follows using fairly standard arguments. Nevertheless, we

have decided to include a proof for two reasons. The first one is self-containedness.

Secondly, because we want to emphasize the bounds we get from the argument for

the numbers CS(k, d,m, r).

We start by introducing some pieces of notation. Specifically, let k, d,m ∈ N
with k > 2 and d > m > 1. Also let W be a d-dimensional Carlson–Simpson tree

of [k]<N and V ∈ Subtrm(W ). The depth of V in W , denoted by depthW (V ), is

defined to be the unique integer i ∈ {m, . . . , d} such that the m-level V (m) of V is

contained in the i-level W (i) of W , or equivalently, V (m) ∈ Subsm
(
W (i)

)
. We set

(4.1) Subtrmax
m (W ) =

{
V ∈ Subtrm(W ) : depthW (V ) = dim(W )

}
.

That is, Subtrmax
m (W ) is the set of all m-dimensional Carlson–Simpson subtrees of

W of maximal depth. Part of our interest in this subclass is justified by the following

simple, though important, fact. Its proof is a rather straightforward consequence

of the relevant definitions.

Fact 4.2. For every integer d > 1, every d-dimensional Carlson–Simpson tree W

of [k]<N and every m ∈ [d] the map

(4.2) Subtrmax
m (W ) 3 V 7→ V (m) ∈ Subsm

(
W (d)

)
is a bijection.

Combining Theorem 2.1 and Fact 4.2 we obtain the following corollary.

Corollary 4.3. Let k ∈ N with k > 2. Also let d,m, r ∈ N with d > m > 1 and

r > 1. If n > GR(k, d,m, r), then for every n-dimensional Carlson–Simpson tree W

of [k]<N and every r-coloring of the set Subtrmax
m (W ) there exists U ∈ Subtrmax

d (W )

such that the set Subtrmax
m (U) is monochromatic.

The proof of Theorem 4.1 is based on a strengthening of Corollary 4.3. To state

it, it is convenient to introduce the following definition. For every k,m, r ∈ N with
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k > 2 and m, r > 1 we define the function gk,m,r : N→ N by the rule gk,m,r(n) = 0

if n < m− 1 and

(4.3) gk,m,r(n) = GR(k, n+ 1,m, r)

if n > m− 1. We have the following lemma.

Lemma 4.4. Let k,m, r ∈ N with k > 2 and m, r > 1. Also let q, n ∈ N with

q > 1 and n > g
(q)
k,m,r(m). Then for every n-dimensional Carlson–Simpson tree W

of [k]<N and every r-coloring of the set Subtrm(W ) there exists U ∈ Subtrmax
m+q(W )

with the following property. For every pair S, T ∈ Subtrm(U) with depthU (S) =

depthU (T ) the Carlson–Simpson trees S and T have the same color.

Proof. We fix a coloring c : Subtrm(W ) → [r]. For every i ∈ {0, . . . , q} we set

ni = g
(q−i)
k,m,r(m). Notice that, by (4.3), for every i ∈ {0, . . . , q − 1} we have

(4.4) ni = GR(k, ni+1 + 1,m, r) > ni+1 + 1 > nq = m.

We select U0 ∈ Subtrmax
n0

(W ). By (4.4) and Corollary 4.3, we may construct a family

{U1, . . . , Uq} of Carlson–Simpson subtrees of U0 with the following properties.

(a) For every i ∈ [q] we have dim(Ui) = ni + 1.

(b) We have U1 ∈ Subtrmax
n1+1(U0). Moreover, if q > 2, then for every i ∈ [q− 1]

we have Ui+1 ∈ Subtrmax
ni+1

(U ′i) where U ′i = Ui \ Ui(ni + 1).

(c) For every i ∈ [q] the set Subtrmax
m (Ui) is monochromatic with respect to c.

For every i ∈ [q] let (ci, w
(i)
0 , . . . , w

(i)
ni ) be the generating sequence of Ui. We define

U to be the Carlson–Simpson tree of [k]<N generated by the sequence

(4.5) (cq, w
(q)
0 , . . . , w(q)

nq )a(w(q−1)
nq−1

, . . . , w(2)
n2
, w(1)

n1
).

We will show that U is as desired. Indeed, notice first that

(4.6) dim(U) = (nq + 1) + (q − 1) = m+ q.

Also observe that U ∈ Subtrmax
m+q(U0) and so U ∈ Subtrmax

m+q(W ). Finally let ` ∈ [q]

be arbitrary and set i` = q−`+1 ∈ [q]. By the definition of U and (b) above, we see

that U(m+ `) is contained in Ui`(ni` + 1). Hence, for every pair S, T ∈ Subtrm(U)

with depthU (S) = depthU (T ) = m+` we have that S, T ∈ Subtrmax
m (Ui`). Invoking

(c), we conclude that c(S) = c(T ) and the proof is completed. �

We are ready to proceed to the proof of Theorem 4.1.

Proof of Theorem 4.1. Let k ∈ N with k > 2. Also let d,m, r ∈ N with d > m > 1

and r > 1. We will show that

(4.7) CS(k, d,m, r) 6 g(d·r−m)
k,m,r (m).

Indeed, let n > g
(d·r−m)
k,m,r (m) and let W be an arbitrary n-dimensional Carlson–

Simpson tree of [k]<N. We fix a coloring c : Subtrm(W ) → [r]. By Lemma 4.4,

there exists a Carlson–Simpson subtree R of W with dim(R) = d · r such that for
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every S ∈ Subtrm(R) the color c(S) of S depends only on the depth of S in R.

Therefore, by the classical pigeonhole principle, there exist a subset I of {0, . . . , d·r}
with |I| = d+1 and r0 ∈ [r] such that for every i ∈ I and every S ∈ Subtrm(R) with

depthR(S) = i we have c(S) = r0. Let U be any d-dimensional Carlson–Simpson

subtree of R which is contained in the set
⋃
i∈I R(i). By the previous discussion,

we see that the coloring c restricted on Subtrm(U) is constantly equal to r0. The

proof of Theorem 4.1 is thus completed. �

5. The convolution operation

The concatenation of two finite sequences provides us with a canonical way to

“glue” a pair of elements of [k]<N. Our goal in this section is to describe a different

“gluing” method which will be of fundamental importance throughout the paper.

The method is particularly easy to grasp for pairs of sequences of given length.

Specifically, let n,m > 1 and fix a subset L of {0, . . . , n+m− 1} of cardinality n.

Given an element x of [k]n and an element y of [k]m, the outcome of the “gluing”

method for the pair x, y is the unique element z of [k]n+m which is “equal” to x on

L and to y on the rest of the coordinates. This simple process can, of course, be

extended to arbitrary pairs of [k]<N. This is the content of the following definition.

Definition 5.1. Let k ∈ N with k > 2 and let L = {l0 < · · · < l|L|−1} be a

nonempty finite subset of N. For every i ∈ {0, . . . , |L| − 1} we set

(5.1) Li = {l ∈ L : l < li} and Li = {n ∈ N : n < li and n /∈ Li}.

Also let nL = max(L)− |L|+ 1 and set

(5.2) XL = [k]nL .

We define the convolution operation cL : [k]<|L| × XL → [k]<N associated with L

as follows. For every i ∈ {0, . . . , |L| − 1}, every t ∈ [k]i and every x ∈ XL we set

(5.3) cL(t, x) =
(
ILi(t), ILi(x||Li|)

)
∈ [k]li

where ILi and ILi are the canonical isomorphisms defined in §2.2.

More generally, let V be a Carlson–Simpson tree of [k]<N and assume that L is

contained in {0, . . . ,dim(V )}. The convolution operation cL,V : [k]<|L| ×XL → V

associated with (L, V ) is defined by the rule

(5.4) cL,V (t, x) = IV
(
cL(t, x)

)
where IV is the canonical isomorphism defined in §2.5.

Before we proceed let us give a specific example. Let k = 5 and L = {1, 3, 7, 9},
and notice that XL = [5]6. In particular, the convolution operation cL associated

with the set L is defined for pairs in [5]<4 × [5]6. Then for the pair t = (1, 2) and

x = (3, 5, 4, 2, 4, 1) we have

(5.5) cL(t, x) = (3,1, 5,2, 4, 2, 4)
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where in (5.5) we indicated with boldface letters the contribution of t.

The rest of this section is devoted to the study of convolution operations. We

notice that all properties described below follow by carefully manipulating the rele-

vant definitions. In fact, once the basic definitions have been properly understood,

most of the material of this section should be regarded as fairly straightforward.

We begin with the following fact.

Fact 5.2. Let k ∈ N with k > 2. Let V be a Carlson–Simpson tree of [k]<N and let

L = {l0 < · · · < l|L|−1} be a nonempty finite subset of {0, . . . ,dim(V )}. For every

t ∈ [k]<|L| we set

(5.6) Ωt =
{

cL,V (t, x) : x ∈ XL

}
.

Then for every t, t′ ∈ [k]<|L| with t 6= t′ we have Ωt ∩Ωt′ = ∅. Moreover, for every

i ∈ {0, . . . , |L| − 1} the family {Ωt : t ∈ [k]i} forms an equipartition of V (li).

Proof. By the definition of the convolution operation, we see that Ωt ∩ Ωt′ = ∅ if

t 6= t′. It is also easy to check that the family {Ωt : t ∈ [k]i} forms a partition

of V (li). Therefore, to complete the proof it is enough to observe that for every

i ∈ {0, . . . , |L| − 1} and every t ∈ [k]i we have

(5.7) I−1
V (Ωt) =

{
x ∈ [k]li : x|Li = ILi(t)

}
.

Clearly this implies that |Ωt| = |Ωt′ | for every t, t′ ∈ [k]i. �

Using similar elementary observations we obtain the following fact.

Fact 5.3. Let k, V and L be as in Fact 5.2. For every t ∈ [k]<|L| and every

s ∈ [k]<N we set

(5.8) Y ts = {x ∈ XL : cL,V (t, x) = s}.

Then for every t ∈ [k]<|L| and every s, s′ ∈ Ωt with s 6= s′, where Ωt is as in (5.6),

the sets Y ts and Y ts′ are nonempty disjoint subsets of XL. Moreover, the family

{Y ts : s ∈ Ωt} forms an equipartition of XL.

We will also need the following fact.

Fact 5.4. Let k, V and L be as in Fact 5.2. For every t ∈ [k]<|L| and every

s ∈ [k]<N let Ωt and Y ts be as in (5.6) and (5.8) respectively. Then for every

i ∈ {0, . . . , |L| − 1} and every t, t′ ∈ [k]i there exists a map gt,t′ : Ωt → Ωt′ with the

following properties.

(i) For every s ∈ Ωt we have that Y ts = Y t
′

gt,t′ (s)
.

(ii) The map gt,t′ is a bijection.

(iii) The map gt,t′ preserves the lexicographical order.

(iv) If t and t′ are (r, r′)-equivalent for some r, r′ ∈ [k] with r 6= r′ (see §2.6),

then s and gt,t′(s) are (r, r′)-equivalent for every s ∈ Ωt.
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Proof. For every s ∈ Ωt we select xs ∈ Y ts and we set

(5.9) gt,t′(s) = cL,V (t′, xs).

It is easy to check that gt,t′ is well-defined and satisfies the above properties. �

We proceed with the following lemma.

Lemma 5.5. Let k ∈ N with k > 2. Let V be a Carlson–Simpson tree of [k]<N and

let L = {l0 < · · · < l|L|−1} be a nonempty finite subset of {0, . . . ,dim(V )}. Also let

t ∈ [k]<|L| and A ⊆ [k]<N and set B = c−1
L,V (A). Then the following hold.

(i) We have densΩt(A) = dens{t}×XL(B) where Ωt is as in (5.6).

(ii) For every i ∈ {0, . . . , |L| − 1} we have densV (li)(A) = dens[k]i×XL(B).

Proof. For every s ∈ Ωt let Y ts be as in (5.8). By the definition of B and Ωt,

B ∩ ({t} ×XL) =
{

(t, x) : cL,V (t, x) ∈ A ∩ Ωt
}

(5.10)

=
⋃

s∈A∩Ωt

{
(t, x) : cL,V (t, x) = s

}
=

⋃
s∈A∩Ωt

{t} × Y ts .

By Fact 5.3, for every s ∈ Ωt we have

(5.11)
|Y ts |
|XL|

=
1

|Ωt|
.

Therefore,

dens{t}×XL(B) =
|B ∩ ({t} ×XL)|
|{t} ×XL|

(5.10)
=

∑
s∈A∩Ωt

|{t} × Y ts |
|{t} ×XL|

(5.12)

=
∑

s∈A∩Ωt

|Y ts |
|XL|

(5.11)
=
|A ∩ Ωt|
|Ωt|

= densΩt(A).

This completes the proof of the first part of the lemma. To see that part (ii) is

satisfied, let i ∈ {0, . . . , |L| − 1} be arbitrary. By Fact 5.2, we see that

(5.13) densV (li)(A) = Et∈[k]idensΩt(A).

By (5.13) and the first part of the lemma, the result follows. �

The final three lemmas of this section contain some coherence properties of

convolution operations. The first one shows that convolution operations preserve

Carlson–Simpson trees.

Lemma 5.6. Let k, V and L be as in Lemma 5.5. Also let W be a Carlson–Simpson

subtree of [k]<|L| and x ∈ XL. Then, setting

(5.14) Wx =
{

cL,V (w, x) : w ∈W
}
,
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we have that Wx is a Carlson–Simpson subtree of V of dimension dim(W ). More-

over, for every i ∈ {0, . . . ,dim(W )} we have

(5.15) Wx(i) =
{

cL,V (w, x) : w ∈W (i)
}
.

Proof. Set ` = |L| and let {l0 < · · · < l`−1} be the increasing enumeration of L.

Set

(5.16) J0 = {n ∈ N : n < l0} and Ji = {n ∈ N : li−1 − i+ 1 6 n 6 li − i− 1}

for every i ∈ [` − 1]. Observe that the family {J0, J1, . . . , J`−1} forms a partition

of {0, . . . , l`−1 − `} into successive intervals some of which are possibly empty. Let

(5.17) c = I−1
J0

(x|J0).

Moreover, for every i ∈ {0, . . . , `− 2} we define

(5.18) wi = vaI−1
Ji+1

(x|Ji+1
).

Clearly wi is a left variable word over k for every i ∈ {0, . . . , ` − 2}. Let Sx be

the Carlson–Simpson tree generated by the sequence (c, w0, . . . , w`−2) and observe

that cL(t, x) = ISx(t) for every t ∈ [k]<|L|. Hence, for every t ∈ [k]<|L| we have

(5.19) cL,V (t, x) = IV
(
ISx(t)

)
.

Using (5.19) and invoking the definition of Wx in (5.14), the result follows. �

The next result enables us to transfer quantitative information from the space

[k]<N to the space on which the convolution operations are acting.

Lemma 5.7. Let k, V and L be as in Lemma 5.5. Also let W be a Carlson–Simpson

subtree of [k]<|L| and x ∈ XL, and define Wx as in (5.14). If A is a subset of [k]<N

and B = c−1
L,V (A), then for every i ∈ {0, . . . ,dim(W )} we have

(5.20) densWx(i)(A) = densW (i)×{x}(B).

Proof. We define the Carlson–Simpson tree Sx exactly as we did in the proof of

Lemma 5.6. By (5.19), for every t ∈ [k]<|L| we have that (t, x) ∈ B if and only if

IV (ISx(t)) ∈ A and the result follows. �

We close this section with the following lemma.

Lemma 5.8. Let k, V and L be as in Lemma 5.5. Also let W be a Carlson–Simpson

subtree of [k]<|L| and let A be a subset of [k]<N. Then for every i ∈ {0, . . . ,dim(W )}
we have

(5.21) denscL,V (W (i)×XL)(A) = Ex∈XLdensWx(i)(A)

where Wx is as in (5.14). In particular, for every i ∈ {0, . . . , |L| − 1} we have

(5.22) densV (li)(A) = Ex∈XLdensRx(i)(A)

where Rx = {cL,V (t, x) : t ∈ [k]<|L|} for every x ∈ XL.
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Proof. Let i ∈ {0, . . . ,dim(W )}. There exists a unique l ∈ {0, . . . , |L| − 1} such

that W (i) is contained in [k]l. By Fact 5.2, the family {Ωt : t ∈ W (i)} forms an

equipartition of cL,V (W (i)×XL). Therefore, setting B = c−1
L,V (A), by Lemma 5.5,

denscL,V (W (i)×XL)(A) = Et∈W (i)densΩt(A)(5.23)

= Et∈W (i)dens{t}×XL(B)

= densW (i)×XL(B)

= Ex∈XLdensW (i)×{x}(B)

(5.20)
= Ex∈XLdensWx(i)(A).

Finally notice that V (li) = cL,V ([k]i×XL) for every i ∈ {0, . . . , |L|−1}. Therefore,

equality (5.22) follows by (5.21) and the proof is completed. �

6. Iterated convolutions

Our goal in this section is to study iterations of convolution operations. We

remark that this material will be used only in §9. The exact statements that we

need are isolated in §6.2.

6.1. Definitions and basic properties. We start with the following definition.

Definition 6.1. Let L = (Ln)dn=0 be a finite sequence of nonempty finite subsets

of N. Also let k ∈ N with k > 2 and V = (Vn)dn=0 a finite sequence of Carlson–

Simpson trees of [k]<N with the same length as L. We say that the pair (L,V)

is k-compatible, or simply compatible if k is understood, provided that for every

n ∈ {0, . . . , d} we have Ln ⊆ {0, . . . ,dim(Vn)} and, if n < d, then Vn+1 ⊆ [k]<|Ln|.

Notice that if (L,V) is a compatible pair and L′,V′ are initial subsequences

of L, V with a common length, then the pair (L′,V′) is also compatible. Also

observe that for every compatible pair (L,V) =
(
(Ln)dn=0, (Vn)dn=0

)
and every

n ∈ {0, . . . , d} we can define the convolution operation cLn,Vn : [k]<|Ln|× XLn → Vn

associated with (Ln, Vn) as described in §5. What Definition 6.1 guarantees is that

for compatible pairs we can iterate these operations. This is the content of the

following definition.

Definition 6.2. Let k ∈ N with k > 2 and let (L,V) =
(
(Ln)dn=0, (Vn)dn=0

)
be a

k-compatible pair. We set

(6.1) XL =

d∏
n=0

XLn .

By recursion on d we define the iterated convolution operation

(6.2) cL,V : [k]<|Ld| ×XL → V0

associated with (L,V) as follows. For d = 0 this is the cL0,V0 convolution operation

defined in (5.4).
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If d > 1, then let L′ = (Ln)d−1
n=0 and V′ = (Vn)d−1

n=0 and assume that the operation

cL′,V′ has been defined. We set

(6.3) cL,V(s, x0, . . . , xd) = cL′,V′
(
cLd,Vd(s, xd), x0, . . . , xd−1

)
for every s ∈ [k]<|Ld| and every (x0, . . . , xd) ∈ XL. In this case, the quotient map

(6.4) qL,V : [k]<|Ld| ×XL → [k]<|Ld−1| ×XL′

associated with (L,V) is defined by the rule

(6.5) qL,V(t,x, x) =
(
cLd,Vd(t, x),x

)
for every t ∈ [k]<|Ld| and every (x, x) ∈ XL′ ×XLd .

The rest of this subsection is devoted to several lemmas establishing proper-

ties of iterated convolutions. Just as in §5, all this material follows by carefully

manipulating the relevant definitions. We begin with the following elementary fact.

Fact 6.3. Let k > 2 and (L,V) =
(
(Ln)dn=0, (Vn)dn=0

)
a k-compatible pair. If d > 1

and (L′,V′) =
(
(Ln)d−1

n=0, (Vn)d−1
n=0

)
, then cL,V = cL′,V′ ◦ qL,V.

The next two lemmas are multidimensional analogues of Lemmas 5.6 and 5.7.

Lemma 6.4. Let k > 2 and (L,V) =
(
(Ln)dn=0, (Vn)dn=0

)
a k-compatible pair.

Also let W be a Carlson–Simpson subtree of [k]<|Ld| and x ∈ XL. Then the set

(6.6) Wx =
{

cL,V(w,x) : w ∈W
}

is a Carlson–Simpson subtree of V0 with the same dimension as W . Moreover, for

every i ∈ {0, . . . ,dim(W )} we have

(6.7) Wx(i) =
{

cL,V(w,x) : w ∈W (i)
}
.

Proof. Both assertions are proved by induction on d and using similar arguments.

We will give the details only for the first one. The case “d = 0” is the content of

Lemma 5.6. So, let d > 1 and assume that the result has been proved up to d− 1.

Fix a compatible pair (L,V) =
(
(Ln)dn=0, (Vn)dn=0

)
and let W and x be as in the

statement of the lemma. Write x = (x0, . . . , xd) and set x′ = (x0, . . . , xd−1) and

S = {cLd,Vd(w, xd) : w ∈W}. Also let L′ = (Ln)d−1
n=0 and V′ = (Vn)d−1

n=0 and observe

that the pair (L′,V′) is compatible. By Lemma 5.6, S is a Carlson–Simpson subtree

of Vd with dim(S) = dim(W ). By Definition 6.1, we have that S is contained in

[k]<|Ld−1|. Therefore, applying the inductive assumptions for the pair (L′,V′), we

see that Sx′ is a Carlson–Simpson subtree of V0 of dimension dim(W ). Noticing

that Sx′ coincides with Wx the result follows. �

Lemma 6.5. Let k,L,V,W and x be as Lemma 6.4. Also let A be a subset of

[k]<N and set B = c−1
L,V(A). Then for every i ∈ {0, . . . ,dim(W )} we have

(6.8) densW (i)×{x}(B) = densWx(i)(A).
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Proof. By induction on d. The case “d = 0” follows from Lemma 5.7. Let d > 1

and assume that the result has been proved up to d − 1. Fix a k-compatible pair

(L,V) =
(
(Ln)dn=0, (Vn)dn=0

)
and let W,x, A and B be as in the statement of the

lemma. Write x = (x0, . . . , xd) and define x′, S,L′ and V′ precisely as in the proof

of Lemma 6.4. We set C = c−1
L′,V′(A). For every y ∈ XL′ let Cy and By be the

sections of C and B at y. By Fact 6.3, we see that By = c−1
Ld,Vd

(Cy). Hence,

densW (i)×{x}(B) = densW (i)×{x′}×{xd}(B)(6.9)

= densW (i)×{x′}×{xd}(Bx′ × {x′})

= densW (i)×{xd}(Bx′)

= densW (i)×{xd}
(
c−1
Ld,Vd

(Cx′)
)

Invoking Lemma 5.7 we have

(6.10) densW (i)×{xd}
(
c−1
Ld,Vd

(Cx′)
)

= densS(i)(Cx′).

Next observe that

(6.11) densS(i)(Cx′) = densS(i)×{x′}(Cx′ × {x′}) = densS(i)×{x′}(C).

As we have already pointed out in the proof of Lemma 6.4, the set Sx′ coincides

with Wx. Since C = c−1
L′,V′(A), we may apply our inductive hypothesis to the

Carlson–Simpson tree S, the element x′ and the set A to infer that

(6.12) densS(i)×{x′}(C) = densSx′ (i)
(A) = densWx(i)(A).

Combining equalities (6.9) up to (6.12) the result follows. �

We proceed with the following lemma.

Lemma 6.6. Let k > 2 and (L,V) =
(
(Ln)dn=0, (Vn)dn=0

)
a k-compatible pair.

Assume that d > 1 and set L′ = (Ln)d−1
n=0 and V′ = (Vn)d−1

n=0. Let C be a subset of

[k]<|Ld−1| ×XL′ and set B = q−1
L,V(C). Finally let t ∈ [k]<|Ld| and set

(6.13) Ωt = {cLd,Vd(t, x) : x ∈ XLd}.

Then q−1
L,V(Ωt ×XL′) = {t} ×XL and

(6.14) densΩt×XL′ (C) = dens{t}×XL
(B).

Proof. By the definition of the quotient map qL,V in (6.5), we have

(6.15) q−1
L,V(Ωt ×XL′) = c−1

Ld,Vd
(Ωt)×XL′ .

Since c−1
Ld,Vd

(Ωt) = {t} ×XLd , by (6.15), we see that q−1
L,V(Ωt ×XL′) = {t} ×XL.

Now for every x′ ∈ XL′ let Cx′ and Bx′ be the sections of C and B at x′

respectively. Observe that Cx′ ⊆ [k]<|Ld−1| and Bx′ ⊆ [k]<|Ld| ×XLd . Also notice

that Bx′ = c−1
Ld,Vd

(Cx′) for every x′ ∈ XL′ . Hence, by Lemma 5.5,

(6.16) dens{t}×XLd (Bx′) = densΩt(Cx′)
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for every x′ ∈ XL′ . Therefore,

dens{t}×XL
(B) = Ex′∈XL′dens{t}×XLd (Bx′)(6.17)

(6.16)
= Ex′∈XL′densΩt(Cx′) = densΩt×XL′ (C)

as desired. �

We close this subsection with the following consequence of Lemma 6.6.

Corollary 6.7. Let k > 2 and (L,V) =
(
(Ln)dn=0, (Vn)dn=0

)
a k-compatible pair.

Assume that d > 1 and set L′ = (Ln)d−1
n=0 and V′ = (Vn)d−1

n=0. Let A be a subset of

[k]<N and set Ad = c−1
L,V(A) and Ad−1 = c−1

L′,V′(A). Then for every t ∈ [k]<|Ld|

(6.18) densXL
(Adt ) = Es∈ΩtdensXL′ (A

d−1
s )

where Adt is the section of Ad at t, Ωt ⊆ Vd ⊆ [k]<|Ld−1| is as in (6.13) and Ad−1
s

is the section of Ad−1 at s.

Proof. We fix t ∈ [k]<|Ld|. Notice that

(6.19) Ad = c−1
L,V(A) = q−1

L,V

(
c−1
L′,V′(A)

)
= q−1

L,V(Ad−1).

By (6.19) and Lemma 6.6 applied to the sets “B = Ad” and “C = Ad−1” we obtain

densXL
(Adt ) = dens{t}×XL

(Ad)(6.20)

(6.14)
= densΩt×XL′ (A

d−1) = Es∈ΩtdensXL′ (A
d−1
s )

and the proof is completed. �

6.2. Consequences. As we have already mentioned, in this subsection we will

collect some results which will be of particular importance in §9. The first two of

them follow by repeated applications of Corollary 6.7. The details are left to the

reader.

Corollary 6.8. Let k > 2 and (L,V) =
(
(Ln)dn=0, (Vn)dn=0

)
a k-compatible pair.

Let 0 < γ 6 1 and let A be a subset of [k]<N. We set Ad = c−1
L,V(A) and

A0 = c−1
L0,V0

(A). Suppose that densXL0
(A0

s) > γ for every s ∈ [k]<|L0| where A0
s

is the section of A0 at s. If t ∈ [k]<|Ld| and Adt is the section of Ad at t, then

densXL
(Adt ) > γ.

Corollary 6.9. Let k > 2 and (L,V) =
(
(Ln)dn=0, (Vn)dn=0

)
a k-compatible pair.

Let 0 < λ 6 1, and let A and B be two subsets of [k]<N with A ⊆ B. We set

Ad = c−1
L,V(A), A0 = c−1

L0,V0
(A), Bd = c−1

L,V(B) and B0 = c−1
L0,V0

(B). Suppose that

densXL0
(A0

s) > λ · densXL0
(B0

s ) for every s ∈ [k]<|L0| where A0
s and B0

s are the

sections of A0 and B0 at s. If t ∈ [k]<|Ld|, then densXL
(Adt ) > λ · densXL

(Bdt )

where Adt and Bdt are the sections of Ad and Bd at t.

The final result is a consequence of Lemma 6.6.
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Corollary 6.10. Let k > 2 and (L,V) =
(
(Ln)dn=0, (Vn)dn=0

)
a k-compatible pair.

Assume that d > 1 and set L′ = (Ln)d−1
n=0 and V′ = (Vn)d−1

n=0. Let t ∈ [k]<|Ld|

and let C0 be a nonempty subset of Ωt × XL′ where Ωt is as in (6.13). Also let

C1 ⊆ [k]<|Ld−1| ×XL′ . Then, setting Bi = q−1
L,V(Ci) for every i ∈ {0, 1}, we have

that densC0
(C1) = densB0

(B1).

Proof. Notice that q−1
L,V(C0 ∩ C1) = B0 ∩ B1. Since q−1

L,V(Ωt ×XL′) = {t} ×XL,

we see that B0 ⊆ {t} ×XL. Therefore,

densC0
(C1) =

|C0 ∩ C1|
|C0|

=
densΩt×XL′ (C0 ∩ C1)

densΩt×XL′ (C0)
(6.21)

(6.14)
=

dens{t}×XL
(B0 ∩B1)

dens{t}×XL
(B0)

=
|B0 ∩B1|
|B0|

= densB0
(B1)

as desired. �

7. Preliminary tools for the proof of Theorem B

In this section we will gather some results that are part of the proof of Theorem B

but are not directly related to the main argument. Specifically, in §7.1 we prove the

first instance of Theorem B which can be seen as a variant of the classical Sperner

theorem [35]. In §7.2 we show how one can estimate the number DCS(k,m+ 1, δ)

assuming that the numbers DCS(k,m, β) have been defined for every 0 < β 6 1.

This result is part of an inductive scheme that we will discuss in detail in §8.1.

Finally, in §7.3 we present some consequences.

7.1. Estimating the numbers DCS(2, 1, δ). We have the following proposition.

Proposition 7.1. Let 0 < δ 6 1. Also let A be a subset of [2]<N and let N be a

finite subset of N such that

(7.1) |N | > Reg
(
2,CS(2, d17δ−2e, 1, 2) + 1, 1, δ/4

)
.

If |A ∩ [2]n| > δ2n for every n ∈ N , then there exists a Carlson–Simpson line R of

[2]<N which is contained in A. In particular,

(7.2) DCS(2, 1, δ) 6 Reg
(
2,CS(2, d17δ−2e, 1, 2) + 1, 1, δ/4

)
.

We should point out that the estimate for the numbers DCS(2, 1, δ) obtained by

Proposition 7.1 is rather weak and far from being optimal. However, the proof of

Proposition 7.1 is conceptually close to the proof of the general case of Theorem B,

and as such, should serve as a motivating introduction to the main argument.

We start with the following lemma.

Lemma 7.2. Let A and N be as in Proposition 7.1. Then there exists L ⊆ N with

(7.3) |L| = CS(2, d17δ−2e, 1, 2) + 1
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and satisfying the following property. Let cL : [2]<|L| ×XL → [2]<N be the convolu-

tion operation associated with L and set B = c−1
L (A). Then for every t ∈ [2]<|L| we

have dens(Bt) > 3δ/4 where Bt = {x ∈ XL : (t, x) ∈ B} is the section of B at t.

Proof. By Lemma 3.2 and our assumptions on the size of the set N , there exists a

subset L of N with |L| = CS(2, d17δ−2e, 1, 2)+1 and such that the family F := {A}
is (δ/4, L)-regular. Write the set L in increasing order as {l0 < · · · < l|L|−1} and

for every i ∈ {0, . . . , |L| − 1} let Li and Li be as in (5.1). Since |A∩ [2]n| > δ2n for

every n ∈ L and the singleton {A} is (δ/4, L)-regular, we see that

(7.4) dens
(
{w ∈ [2]Li : (y, w) ∈ A ∩ [2]li}

)
> 3δ/4

for every i ∈ {0, . . . , |L|−1} and every y ∈ [2]Li . By the definition of the convolution

operation in (5.3), for every i ∈ {0, . . . , |L| − 1} and every t ∈ [2]i we have

(7.5) Ωt
(5.6)
=
{

cL(t, x) : x ∈ XL

}
=
{
z ∈ [2]li : z|Li = ILi(t)

}
.

Thus, by (7.4) applied to “y = ILi(t)”, we obtain

(7.6) densΩt(A) = dens
(
{w ∈ [2]Li :

(
ILi(t), w

)
∈ A ∩ [2]li}

)
> 3δ/4.

Finally, by Lemma 5.5, we have

(7.7) densΩt(A) = dens{t}×XL(B) = densXL(Bt).

Combining (7.6) and (7.7) the result follows. �

For the next step of the proof of Proposition 7.1 we need to introduce some

terminology. Specifically, let W be an m-dimensional Carlson–Simpson tree of

[2]<N and let (c, w0, . . . , wm−1) be its generating sequence. Also let t, t′ ∈ W . We

say that t′ is a successor of t in W if there exist i, j ∈ {0, . . . ,m − 1} with i 6 j

as well as ai, . . . , aj ∈ [2] such that t′ = tawi(ai)
a . . .a wj(aj). If, in addition, we

have ai = 1, then we say that t′ is a left successor of t in W .

Lemma 7.3. Let L and {Bt : t ∈ [2]<|L|} be as in Lemma 7.2. Then there exists

a Carlson–Simpson subtree W of [2]<|L| with dim(W ) = d17δ−2e and such that

(7.8) dens(Bt ∩Bt′) > δ2/16

for every t, t′ ∈W with t′ left successor of t in W .

Proof. For every Carlson–Simpson line S of [2]<N let us denote by (cS , wS) its

generating sequence. We set

(7.9) L =
{
S ∈ Subtr1

(
[2]<|L|

)
: dens(BcS ∩BcaSwS(1)) > δ

2/16
}
.

By Theorem 4.1 and (7.3), there exists a Carlson–Simpson subtree W of [2]<|L| with

dim(W ) = d17δ−2e such that either Subtr1(W ) ⊆ L or Subtr1(W )∩L = ∅. Observe

that for every t, t′ ∈W we have that t′ is a left successor of t in W if and only if there

exists a Carlson–Simpson line S ofW such that t = cS and t′ = caSwS(1). Therefore,

the proof will be completed once we show that Subtr1(W ) ∩ L 6= ∅. To this end
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we argue as follows. Set d = dim(W ) = d17δ−2e and let (c, w0, . . . , wd−1) be the

generating sequence of W . We set t0 = c and ti = caw0(1)a . . .a wi−1(1) for every

i ∈ [d]. By our assumptions, we have dens(Bti) > 3δ/4 for every i ∈ {0, . . . , d}.
Hence, by Lemma 2.7 applied for “ε = 3δ/4” and “θ = δ/4”, there exist i, j ∈
{0, . . . , d} with i < j and such that dens(Bti ∩ Btj ) > δ2/16. If R is the unique

Carlson–Simpson line of W with cR = ti and wR = wai . . .
a wj−1, then the previous

discussion implies that R ∈ L, as desired. �

The following lemma is the last step towards the proof of Proposition 7.1.

Lemma 7.4. Let W be the Carlson–Simpson tree obtained by Lemma 7.3. Then

W contains a Carlson–Simpson line S such that

(7.10)
⋂
t∈S

Bt 6= ∅.

Proof. As in Lemma 7.3, set d = dim(W ) = d17δ−2e and let (c, w0, . . . , wd−1) be

the generating sequence of W . For every i ∈ {0, . . . , d− 2} we set

(7.11) ti = caw0(2)a . . .a wi(2) and si = tai wi+1(1)a . . .a wd−1(1).

Observe that si is a left successor of ti in W . Therefore, by Lemma 7.3, setting

Ci = Bti ∩ Bsi we have dens(Ci) > δ2/16 for every i ∈ {0, . . . , d − 2}. Also let

sd−1 = caw0(2)a . . .a wd−1(2) and Cd−1 = Bsd−1
and notice that, by Lemma 7.2,

we have dens(Cd−1) > 3δ/4 > δ2/16. Since d > 16/δ2 there exist 0 6 i < j 6 d− 1

such that Ci ∩ Cj 6= ∅. We define

(7.12) c′ = ti and w′ = wai+1 . . .
a waj y

where y = wj+1(1)a . . .a wd−1(1) if j < d − 1 and y = ∅ otherwise. Let S be the

Carlson–Simpson line of W generated by the sequence (c′, w′) and observe that

S = {ti} ∪ {si, sj}. Hence,

(7.13)
⋂
t∈S

Bt ⊇ Ci ∩ Cj 6= ∅

and the proof is completed. �

We are ready to proceed to the proof of Proposition 7.1.

Proof of Proposition 7.1. Let S be the Carlson–Simpson line obtained by Lemma

7.4. We select x0 ∈ XL such that x0 ∈ Bt for every t ∈ S and we set

(7.14) R =
{

cL(t, x0) : t ∈ S
}
.

By Lemma 5.6, we have that R is a Carlson–Simpson line of [2]<N. Next, recall that

B = c−1
L (A). Since (t, x0) ∈ B for every t ∈ S, we conclude that R is contained in

A, as desired. �
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7.2. Estimating the numbers DCS(k,m + 1, δ). Let k,m ∈ N with k > 2

and m > 1 and assume that for every 0 < β 6 1 the number DCS(k,m, β) has

been defined. This assumption, of course, implies that for every ` ∈ [m] and every

0 < β 6 1 the number DCS(k, `, β) has been defined. Therefore, for every ` ∈ [m]

and every 0 < δ 6 1 we may set

(7.15) Λ(k, `, δ) = dδ−1DCS(k, `, δ)e

and

(7.16) Θ(k, `, δ) =
2δ

|Subtr`
(
[k]<Λ(k,`,δ)

)
|
.

Moreover, let

(7.17) Λ0 = Λ0(k, δ) = Λ(k, 1, δ2/16) and Θ0 = Θ0(k, δ) = Θ(k, 1, δ2/16)

and define hδ : N→ N by the rule

(7.18) hδ(n) = Λ0 + d2Θ−1
0 ne.

It is, of course, clear that for the definition of Λ0, Θ0 and hδ we only need to have

the number DCS(k, 1, δ2/16) at our disposal. The main result of this section is the

following dichotomy.

Proposition 7.5. Let k ∈ N with k > 2 and assume that for every 0 < β 6 1 the

number DCS(k, 1, β) has been defined.

Let 0 < δ 6 1 and define Λ0 and Θ0 as in (7.17). Also let L be a nonempty

finite subset of N and A ⊆ [k]<N such that dens[k]`(A) > δ for every ` ∈ L. Finally,

let n ∈ N with n > 1 and assume that |L| > hδ(n) where hδ is as in (7.18). Then,

setting L0 to be the set of the first Λ0 elements of L, we have that either

(i) there exist a subset L′ of L \ L0 with |L′| > n and a word t0 ∈ [k]`0 for

some `0 ∈ L0 such that

(7.19) dens[k]`−`0

(
{s ∈ [k]<N : ta0 s ∈ A}

)
> δ + δ2/8

for every ` ∈ L′, or

(ii) there exist a subset L′′ of L \L0 with |L′′| > n and a Carlson–Simpson line

V of [k]<N contained in A with L(V ) ⊆ L0 and such that, setting `1 to be

the unique integer with V (1) ⊆ [k]`1 , for every ` ∈ L′′ we have

(7.20) dens[k]`−`1

(
{s ∈ [k]<N : tas ∈ A for every t ∈ V (1)}

)
> Θ0/2.

Proposition 7.5 can be used to estimate the numbers DCS(k,m + 1, δ) via a

standard iteration. In particular, we have the following corollary.

Corollary 7.6. Let k,m ∈ N with k > 2 and m > 1 and assume that for every

0 < β 6 1 the number DCS(k,m, β) has been defined. Then, for every 0 < δ 6 1

(7.21) DCS(k,m+ 1, δ) 6 h(d8δ−2e)
δ

(
DCS(k,m,Θ0/2)

)
.
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Proof. We fix 0 < δ 6 1. For notional convenience we set N0 = DCS(k,m,Θ0/2).

Let L be an arbitrary finite subset of N with |L| > h(d8δ−2e)
δ (N0) and A a subset of

[k]<N such that dens[k]`(A) > δ for every ` ∈ L. By our assumptions on the size

of the set L and repeated applications of Proposition 7.5, it is possible to find a

subset L′′ of L with |L′′| > N0 and a Carlson–Simpson line V of [k]<N contained

in A such that, setting `1 to be the unique integer with V (1) ⊆ [k]`1 , we have that

`1 < min(L′′) and

(7.22) dens[k]`−`1

(
{s ∈ [k]<N : tas ∈ A for every t ∈ V (1)}

)
> Θ0/2

for every ` ∈ L′′. By the choice of N0 and (7.22), there exists an m-dimensional

Carlson–Simpson tree U of [k]<N such that

(7.23) U ⊆ {s ∈ [k]<N : tas ∈ A for every t ∈ V (1)}.

Therefore, setting

(7.24) S = V (0) ∪
⋃

t∈V (1)

{tau : u ∈ U},

we see that S is a Carlson–Simpson tree of [k]<N of dimension m + 1 which is

contained in A. The proof is thus completed. �

For the proof of Proposition 7.5 we need to do some preparatory work. Specif-

ically, let L be a finite subset of N with |L| > 2 and consider the convolution

operation cL : [k]<|L| × XL → [k]<N associated with L. For every x ∈ XL let

Rx = {cL(t, x) : t ∈ [k]<|L|} and recall that, by Lemma 5.6, the set Rx is a

Carlson–Simpson tree of [k]<N of dimension |L| − 1. Therefore, we may consider

the Furstenberg–Weiss measure dRxFW associated with Rx defined in §2.7. On the

other hand, we may also consider the generalized Furstenberg–Weiss measure dL

associated with the set L. The following lemma relates these classes of measures.

Lemma 7.7. Let k ∈ N with k > 2 and let L be a finite subset of N with |L| > 2.

Then for every subset A of [k]<N we have

(7.25) Ex∈XLdRxFW(A) = dL(A).

In particular, there exists a Carlson–Simpson tree W of [k]<N of dimension |L| − 1

with L(W ) = L and such that dWFW(A) > dL(A).

Lemma 7.7 follows by Lemma 5.8. More precisely, notice that equality (7.25)

follows from (5.22) by averaging over all i ∈ {0, . . . , |L| − 1}.
The next fact is straightforward.

Fact 7.8. Let k,m ∈ N with k > 2 and m > 1. Also let 0 < η 6 1/2 and

assume that the number DCS(k,m, η) has been defined. Finally, let W be a Carlson–

Simpson tree of [k]<N with dim(W ) > Λ(k,m, η)−1 where Λ(k,m, η) is as in (7.15).

Then every subset B of [k]<N with dWFW(B) > 2η contains a Carlson–Simpson tree

of dimension m.
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The final ingredient of the proof of Proposition 7.5 is the following lemma.

Lemma 7.9. Let k,m ∈ N with k > 2 and m > 1 and assume that for every

0 < β 6 1 the number DCS(k,m, β) has been defined.

Let 0 < ρ, γ 6 1 and let L be a finite subset of N with |L| > Λ(k,m, ργ/4) where

Λ(k,m, ργ/4) is as in (7.15). Also let B be a subset of [k]<N such that dL(B) > ρ.

If {At : t ∈ B} is a family of measurable events in a probability space (Ω,Σ, µ)

satisfying µ(At) > γ for every t ∈ B, then there exists an m-dimensional Carlson–

Simpson tree V of [k]<N which is contained in B and such that

(7.26) µ
( ⋂
t∈V

At

)
> Θ(k,m, ργ/4)

where Θ(k,m, ργ/4) is as in (7.16).

Proof. We set η = ργ/4 and Λ = Λ(k,m, η). Notice that, by passing to an appro-

priate subset of L if necessary, we may assume that |L| = Λ. By Lemma 7.7, there

exists a Carlson–Simpson tree W of [k]<N of dimension Λ− 1 with L(W ) = L and

such that dWFW(B) > dL(B) > ρ. For every ω ∈ Ω let Bω = {t ∈ B ∩W : ω ∈ At}
and set

(7.27) Y = {ω ∈ Ω : dWFW(Bω) > ργ/2}.

Since dWFW(B) > ρ and µ(At) > γ for every t ∈ B, we see that µ(Y ) > ργ/2. By

Fact 7.8, for every ω ∈ Y there exists an m-dimensional Carlson–Simpson tree Vω

of [k]<N such that Vω ⊆ Bω. Hence, there exist V ∈ Subtrm(W ) and G ∈ Σ with

Vω = V for every ω ∈ G and such that

(7.28) µ(G) >
µ(Y )

|Subtrm(W )|
>

2η

|Subtrm([k]<Λ)|
(7.16)

= Θ(k,m, η).

It is easy to see that V satisfies the conclusion of the lemma. �

We are now ready to proceed to the proof of Proposition 7.5.

Proof of Proposition 7.5. Let M = L\L0 and set M` = {m− ` : m ∈M} for every

` ∈ L0. Moreover, for every ` ∈ L0 and every t ∈ [k]` let

(7.29) At = {s ∈ [k]<N : tas ∈ A}.

By (7.16) and (7.17), we see that Θ0 6 δ2/8. Hence, for every ` ∈ L0 we have

(7.30) |M`| = |M | > 2Θ−1
0 n > 8δ−2n.

Also observe that for every ` ∈ L0 we have

(7.31) Et∈[k]`dM`
(At) = dM (A).

Next recall that dens[k]`(A) > δ for every ` ∈ L. Therefore,

(7.32) dL0(A) > δ and dM (A) > δ.

We consider the following cases.
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Case 1: there exist `0 ∈ L0 and t0 ∈ [k]`0 such that dM`0
(At0) > δ + δ2/4. In this

case we have that

(7.33) |{m ∈M`0 : dens[k]m(At0) > δ + δ2/8}| > (δ2/8)|M`0 |
(7.30)

> n.

We set L′ = {m ∈ M : dens[k]m−`0 (At0) > δ + δ2/8}. By (7.33), we see that with

this choice the first alternative of Proposition 7.5 holds true.

Case 2: for every ` ∈ L0 and every t ∈ [k]` we have dM`
(At) < δ+δ2/4. Combining

(7.31), (7.32) and taking into account our assumptions, in this case we see that for

every ` ∈ L0 we have

(7.34) |{t ∈ [k]` : dM`
(At) > δ/2}| > (1− δ/2)k`.

We set

(7.35) B =
⋃
`∈L0

{t ∈ A ∩ [k]` : dM`
(At) > δ/2}.

By (7.32) and (7.34), we obtain that dL0
(B) > δ/2. Let

(7.36) (Ω, µ) =
∏
`∈L0

(
[k]<N,dM`

)
be the product of the discrete probability spaces

(
[k]<N,dM`

)
. For every t ∈ B we

define a measurable event Ãt of Ω as follows. We set

(7.37) Ãt =
∏
`∈L0

X`
t

where X`
t = At if ` = |t| and X`

t = [k]<N otherwise. Notice that for every ` ∈ L0

and every t ∈ B ∩ [k]` we have

(7.38) µ(Ãt) = dM`
(At)

(7.35)

> δ/2.

Recall that |L0| = Λ0
(7.17)

= Λ(k, 1, δ2/16). Since dL0
(B) > δ/2, by Lemma 7.9

applied for “ρ = γ = δ/2”, there exists a Carlson–Simpson line V of [k]<N which is

contained in B and such that

(7.39) µ
( ⋂
t∈V

Ãt

)
> Θ(k, 1, δ2/16)

(7.17)
= Θ0.

Notice, in particular, that the level set L(V ) of V is contained in L0. Let `1 be the

unique integer with V (1) ⊆ [k]`1 and observe that `1 ∈ L0. By the definition of the

events {Ãt : t ∈ B} in (7.37) and (7.39), we obtain that

(7.40) dM`1

( ⋂
t∈V (1)

At

)
= µ

( ⋂
t∈V (1)

Ãt

)
> Θ0.

Let

(7.41) M ′`1 =
{
m ∈M`1 : dens[k]m

( ⋂
t∈V (1)

At

)
> Θ0/2

}
.
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By (7.40), we have

(7.42) |M ′`1 | > (Θ0/2)|M`1 |
(7.30)

> n.

We set

(7.43) L′′ = {`1 +m : m ∈M ′`1}.

It is clear that |L′′| > n. Moreover, L′′ is contained in L \L0 and so `1 < min(L′′).

Finally, notice that for every ` ∈ L′′ we have that ` − `1 ∈ M ′`1 . Therefore, by

(7.29) and (7.41), we conclude that

(7.44) dens[k]`−`1

(
{s ∈ [k]<N : tas ∈ A for every t ∈ V (1)}

)
> Θ0/2.

That is, the second alternative of Proposition 7.5 is satisfied. The above cases are

exhaustive and so the proof is completed. �

7.3. Consequences. Let k,m ∈ N with k > 2 and m > 1 and assume that for

every 0 < β 6 1 the number DCS(k,m, β) has been defined. For every 0 < γ 6 1

we set

(7.45) θ(k,m, γ) = Θ(k,m, γ/4)

where Θ(k,m, γ/4) is as in (7.16). Recall that for every Carlson–Simpson tree W

of [k]<N and every k′ ∈ {2, . . . , k} by W � k′ we denote the k′-restriction of W

defined in (2.14). We have the following corollary.

Corollary 7.10. Let k,m ∈ N with k > 2 and m > 1 and assume that for every

0 < β 6 1 the number DCS(k,m, β) has been defined.

Let 0 < γ 6 1 and d ∈ N with d > Λ(k,m, γ/4) − 1 where Λ(k,m, γ/4) is as in

(7.15). Also let V be a Carlson–Simpson tree of [k + 1]<N with

(7.46) dim(V ) > CS(k + 1, d,m, 2).

If {At : t ∈ V } is a family of measurable events in a probability space (Ω,Σ, µ)

satisfying µ(At) > γ for every t ∈ V , then there exists W ∈ Subtrd(V ) such that

for every U ∈ Subtrm(W ) we have

(7.47) µ
( ⋂
v∈U�k

Av

)
> θ(k,m, γ)

where θ(k,m, γ) is as in (7.45).

Proof. We set θ = θ(k,m, γ) and we define

(7.48) U =
{
U ∈ Subtrm(V ) : µ

( ⋂
v∈U�k

Av

)
> θ
}
.

By (7.46) and Theorem 4.1, it is possible to select W ∈ Subtrd(V ) such that either

Subtrm(W ) ⊆ U or Subtrm(W ) ∩ U = ∅. Therefore, it is enough to show that

Subtrm(W ) ∩ U 6= ∅.
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To this end we argue as follows. Let IW : [k + 1]<d+1 → W be the canonical

isomorphism associated with W and for every t ∈ [k]<d+1 set A′t = AIW (t). By

Lemma 7.9, there exists an m-dimensional Carlson–Simpson subtree R of [k]<d+1

such that

(7.49) µ
( ⋂
t∈V

A′t

)
> θ.

Let S be the unique element of Subtrm(W ) such that S � k = IW (R). Then, by

(7.49), we conclude that S ∈ U and the proof is completed. �

The last result of this section is the following corollary.

Corollary 7.11. Let k,m ∈ N with k > 2 and m > 1 and assume that for every

0 < β 6 1 the number DCS(k,m, β) has been defined.

Let 0 < γ 6 1 and d ∈ N with d > Λ(k,m, γ/4) − 1 where Λ(k,m, γ/4) is as in

(7.15). Also let V be a Carlson–Simpson tree of [k + 1]<N with

(7.50) dim(V ) > CS(k + 1, d,m, 2).

Finally let {At : t ∈ V } be a family of measurable events in a probability space

(Ω,Σ, µ) satisfying µ(At) > γ for every t ∈ V . Assume, in addition, that there

exists r ∈ [k] such that At = At′ for every t, t′ ∈ V which are (r, k + 1)-equivalent

(see §2.6). Then there exists W ∈ Subtrd(V ) such that for every U ∈ Subtrm(W )

we have

(7.51) µ
( ⋂
v∈U

Av

)
> θ(k,m, γ)

where θ(k,m, γ) is as in (7.45).

Proof. Since At = At′ for every t, t′ ∈ V which are (r, k + 1)-equivalent, for every

` ∈ [dim(V )] and every R ∈ Subtr`(V ) we have

(7.52)
⋂
t∈R

At =
⋂

t∈R�k

At.

Using this observation, the result follows by Corollary 7.10. �

8. A probabilistic version of Theorem B

8.1. Overview. In this subsection we give an outline of the proof of Theorem B.

Very briefly, and oversimplifying dramatically, the proof proceeds by induction on

k and is based on a density increment strategy.

The first step is given in Corollary 7.6. Indeed, by Corollary 7.6, the proof of

Theorem B reduces to the task of estimating the numbers DCS(k, 1, δ). To achieve

this goal we follow an inductive scheme that can be described as follows:

(8.1) DCS(k,m, β) for every m and β ⇒ DCS(k + 1, 1, δ).

Precisely, in order to estimate the numbers DCS(k+ 1, 1, δ) we need to have at our

disposal the numbers DCS(k,m, β) for every integer m > 1 and every 0 < β 6 1.
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The base case—that is, the estimation of the numbers DCS(2, 1, δ)—is, of course,

the content of Proposition 7.1.

At this point it is useful to recall the philosophy of the density increment method.

One starts with a subset A of a “structured” set S of density δ and assumes that A

does not contain a subset of a certain kind. The goal is then to find a sufficiently

large “substructure” S ′ of S such that the density of A inside S ′ is at least δ + γ,

where γ is a positive constant that depends only on δ. Usually this task is rather

difficult to achieve at once, and so, one first tries to increase the density of A inside

a relatively “simple” subset of S. We refer to the essay [18] of Gowers for a thorough

exposition of this method.

The proof of the inductive scheme described in (8.1) follows the strategy just

mentioned above. Specifically, fix the parameters k and δ and let A be a subset of

[k + 1]<N not containing a Carlson–Simpson line such that dens[k+1]n(A) > δ for

sufficiently many n ∈ N. What we find is a Carlson–Simpson tree W of [k + 1]<N

such that the density of the set A has been significantly increased in sufficiently

many levels of W . This is done in two steps. Firstly we show that there exists a

Carlson–Simpson tree V of [k+ 1]<N and a subset D of V which is the intersection

of relatively few insensitive sets and correlates with the set A more than expected

in many levels of V (it is useful to view D as a “simple” subset of V ). This is

the content of Corollary 8.6 below. In the second step we use this information to

achieve the density increment. We will not comment at this point on the second

step, since we will do so in §9.1; here we simply mention that the statement of main

interest is Corollary 9.15.

We will, however, discuss in detail the proof of the first step which is analogous

to the first part of Polymath’s proof of the density Hales–Jewett theorem. In

fact, this is more than an analogy since we are using a beautiful argument from

Polymath’s proof (see [28, §7.2]) to reduce the proof of Corollary 8.6—the main

result of this step—to a “probabilistic” version of Theorem B. The analogy, however,

with Polymath’s proof breaks down at this point and the main bulk of the argument

is quite different.

The aforementioned “probabilistic” version of Theorem B refers to the question

whether a dense subset of [k + 1]<N not only will contain a Carlson–Simpson line

but, actually, a non-trivial portion of them. Results of this type figure prominently

in Ramsey theory and have found significant applications (see, e.g., [7, 32] and the

references therein). A classical result in this direction is the “probabilistic” version

of Szemerédi’s theorem, essentially due to Varnavides [39], asserting that for every

integer k > 3 and every 0 < δ 6 1 there exists a constant c(k, δ) > 0 such that every

subset A of [n] with |A| > δn contains at least c(k, δ)n2 arithmetic progressions of

length k, as long as n is sufficiently large.

However, some density results do not admit a “probabilistic” version of the form

stated above. The most well-known example is the density Hales–Jewett theorem.
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Indeed, if n is large enough, then one can find a highly dense subset of, say, [2]n

containing just a tiny portion of combinatorial lines; see [28, §3.1]. This example

can modified, in a straightforward way, to show that Theorem B also fails to admit

a naive “probabilistic” version.

This phenomenon appears to be quite discouraging, but it can be bypassed. So

far there has been only one method in the literature dealing with this problem.

It was introduced by the participants of the polymath project and was based on

the technique of changing the measure. Part of the novelty of the present paper

is the development of a new method which not only is conceptually easy to grasp

but also appears to be quite robust (the clearest sign for this is that it can be

combined with the arguments in [28] to give a very simple proof [11] of the density

Hales–Jewett theorem). The idea is to avoid the pathological behavior by passing

to an appropriate “substructure”. This is done applying the following three basic

steps. We will describe them in abstract setting since we feel that no clarity will

be gained by restricting our discussion to the specifics of Theorem B.

Step 1. By an application of Szemerédi’s regularity method [37], we show that a

given dense set A of our “structured” set S is sufficiently pseudorandom. This

enables us to model the set A as a family of measurable events {Bt : t ∈ R} in a

probability space (Ω,Σ, µ) indexed by a Ramsey space R closely related, of course,

with S. The measure of the events is controlled by the density of A.

Step 2. We apply coloring arguments and our basic density result to show that there

exists a “substructure” R′ of R such that the events in the subfamily {Bt : t ∈ R′}
are highly correlated. The reasoning can be traced in an old paper of Erdős and

Hajnal [12]. We also notice that it is precisely in this step that we need to pass

to a “substructure”. As can be seen from the examples mentioned above, this is a

necessity rather than a coincidence.

Step 3. We use a double counting argument to locate a “substructure” S ′ of S such

that the set A contains a non-trivial portion of subsets of S ′ of the desired kind

(combinatorial lines, Carlson–Simpson lines, etc.).

Some final comments on the computational effectiveness of the method. In all

cases of interest known to the authors, the tools used in the three steps described

above have primitive recursive (and fairly reasonable) bounds. However, the argu-

ment yields very poor lower bounds for the correlation of the events {Bt : t ∈ R′} in

the second step. These lower bounds are partly responsible for the Ackermannian

behavior of the numbers DCS(k,m, δ).

8.2. The main dichotomy. Let k,m ∈ N with k > 2 and m > 1 and assume that

for every 0 < β 6 1 the number DCS(k,m, β) has been defined. Hence, for every

0 < δ 6 1 we may set

(8.2) ϑ = ϑ(k,m, δ) = Θ(k,m, δ/8) and η = η(k,m, δ) =
δϑ

30k
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where Θ(k,m, δ/8) is as in (7.16). Moreover let

(8.3) Λ′ = Λ(k,m, δ/8)
(7.15)

= d8δ−1DCS(k,m, δ/8)e

and for every n ∈ N set

(8.4) `(n,m) = CS(k + 1, n+ Λ′,m, 2) + 1.

We define the map G : N× N× (0, 1]→ N by the rule

(8.5) G(n,m, ε) = Reg(k + 1, `(n,m), 1, ε).

Also for every Carlson–Simpson tree V of [k]<N and every 1 6 m 6 i 6 dim(V ) let

(8.6) Subtr0
m(V, i) =

{
R ∈ Subtrm(V ) : R(0) = V (0) and R(m) ⊆ V (i)

}
.

As we have pointed out in §2.5, if W is a Carlson–Simpson tree of [k + 1]<N, then

its k-restriction W � k can be identified as a Carlson–Simpson tree of [k]<N. Hence,

we may also consider the set Subtr0
m(W � k, i) whenever W is a Carlson–Simpson

tree of [k + 1]<N.

We are ready to state the main result of this section.

Proposition 8.1. Let k,m ∈ N with k > 2 and m > 1 and assume that for every

0 < β 6 1 the number DCS(k,m, β) has been defined.

Let 0 < δ 6 1 and define ϑ, η and Λ′ as in (8.2) and (8.3) respectively. Also let

n ∈ N with n > 1 and let N be a finite subset of N such that

(8.7) |N | > G
(
dη−4ne,m, η2/2

)
where G is as in (8.5). If A ⊆ [k + 1]<N satisfies |A ∩ [k + 1]l| > δ(k + 1)l

for every l ∈ N , then there exist a Carlson–Simpson tree W of [k + 1]<N with

dim(W ) = dη−4ne+ Λ′ and I ⊆ {m, . . . ,dim(W )} with |I| > n such that either

(i) for every i ∈ I we have densW (i)(A) > δ + η2/2, or

(ii) for every i ∈ I we have densW (i)(A) > δ − 2η and, moreover,

(8.8) dens
(
{V ∈ Subtr0

m(W � k, i) : V ⊆ A}
)
> ϑ/2.

For the proof of Proposition 8.1 we need to do some preparatory work. We start

with the following lemma.

Lemma 8.2. Let k,m, δ, ϑ, η,Λ′, n and N be as in Proposition 8.1. If A is a

subset of [k + 1]<N satisfying |A ∩ [k + 1]l| > δ(k + 1)l for every l ∈ N , then

there exist a subset L of N with |L| = CS(k + 1, dη−4ne + Λ′,m, 2) + 1 and a

Carlson–Simpson subtree W of [k + 1]<|L| of dimension dη−4ne + Λ′ such that,

setting cL : [k + 1]<|L| ×XL → [k + 1]<N to be the convolution operation associated

with L and B = c−1
L (A), the following properties hold.

(i) For every t ∈ [k + 1]<|L| we have dens(Bt) > δ − η2/2 where Bt is the

section of B at t.
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(ii) For every U ∈ Subtrm(W � k) we have

(8.9) dens
( ⋂
t∈U

Bt

)
> ϑ.

Proof. By (8.7) and the definition of the function G in (8.5), we may apply Lemma

3.2 and we obtain L ⊆ N with |L| = CS(k+ 1, dη−4ne+ Λ′,m, 2) + 1 and such that

the family F := {A} is (η2/2, L)-regular. Using this information and arguing as in

the proof of Lemma 7.2 we see that the first part of the lemma is satisfied.

For part (ii), set V = [k + 1]<|L|. Also let γ = δ/2 and d = dη−4ne+ Λ′. Notice

that d > Λ′ − 1 = Λ(k,m, γ/4)− 1. Moreover, by part (i), we have

(8.10) dim(V ) = |L| − 1 = CS(k + 1, d,m, 2)

and dens(Bt) > δ − η2/2 > γ for every t ∈ [k + 1]<|L|. Hence, by Corollary 7.10,

we obtain a d-dimensional Carlson–Simpson subtree W of [k + 1]<|L| such that

(8.11) dens
( ⋂
t∈U�k

Bt

)
> θ(k,m, γ)

for every U ∈ Subtrm(W ). Since Subtrm(W � k) ⊆ {U � k : U ∈ Subtrm(W )} and

θ(k,m, γ) = Θ(k,m, γ/4) = ϑ the result follows. �

To state the next result towards the proof Proposition 8.1 we need to recall some

notation introduced in §5. Specifically, let L be a nonempty finite subset of N and

consider the convolution operation cL : [k + 1]<|L| × XL → [k + 1]<N associated

with L. As in (5.14), for every Carlson–Simpson subtree W of [k+1]<|L| and every

x ∈ XL we set

(8.12) Wx =
{

cL(w, x) : w ∈W
}
.

Recall that, by Lemma 5.6, Wx is a Carlson–Simpson tree of [k + 1]<N with

dim(Wx) = dim(W ). We have the following lemma.

Lemma 8.3. Let k ∈ N with k > 2, L a nonempty finite subset of N and consider

the convolution operation cL : [k + 1]<|L| ×XL → [k + 1]<N associated with the set

L. Also let W be a Carlson–Simpson subtree of [k + 1]<|L| and A ⊆ [k + 1]<N.

We set B = c−1
L (A) and for every t ∈ [k + 1]<|L| let Bt be the section of B at t.

Moreover, for every x ∈ XL let Wx be as in (8.12). Then the following hold.

(i) For every i ∈ {0, . . . ,dim(W )} we have

(8.13) Ex∈XLdensWx(i)(A) = Et∈W (i)dens(Bt).

(ii) For every 1 6 m 6 i 6 dim(W ) we have

Ex∈XLdens
(
{V ∈Subtr0

m(Wx � k, i) : V ⊆ A}
)

= EU∈Subtr0m(W �k,i)dens
( ⋂
t∈U

Bt

)
.
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Proof. (i) Fix i ∈ {0, . . . ,dim(W )}. By Lemma 5.8, we have

(8.14) Ex∈XLdensWx(i)(A) = denscL(W (i)×XL)(A).

Also notice that

(8.15) cL(W (i)×XL) =
⋃

t∈W (i)

cL({t} ×XL)
(5.6)
=

⋃
t∈W (i)

Ωt.

Next observe that W (i) ⊆ [k+ 1]l for some l ∈ {0, . . . , |L| − 1}. Therefore, by Fact

5.2, we see that |Ωt| = |Ωt′ | for every t, t′ ∈W (i). Hence,

(8.16) denscL(W (i)×XL)(A) = Et∈W (i)densΩt(A).

Finally, by Lemma 5.5, for every t ∈W (i) we have

(8.17) densΩt(A) = dens{t}×XL(B) = dens(Bt).

Combining (8.14), (8.16) and (8.17) we conclude that (8.13) is satisfied.

(ii) We fix 1 6 m 6 i 6 dim(W ) and we set

(8.18) A =
{

(U, x) ∈ Subtr0
m(W � k, i)×XL : Ux ⊆ A

}
where, as in (8.12), Ux = {cL(u, x) : u ∈ U}. Also for every U ∈ Subtr0

m(W � k, i)

and every x ∈ XL let

(8.19) AU = {x ∈ XL : (U, x) ∈ A}

and

(8.20) Ax = {U ∈ Subtr0
m(W � k, i) : (U, x) ∈ A}

be the sections of A at U and x respectively. Notice that

(8.21) x ∈ AU ⇔ (U, x) ∈ A⇔ Ux ⊆ A⇔ x ∈
⋂
t∈U

Bt.

This, of course, implies that for every U ∈ Subtr0
m(W � k, i) we have

(8.22) AU =
⋂
t∈U

Bt.

Moreover, it is easy to see that for every x ∈ XL the map

(8.23) Subtr0
m(W � k, i) 3 U 7→ Ux ∈ Subtr0

m(Wx � k, i)

is a bijection. Therefore, for every x ∈ XL we have

dens
(
{V ∈ Subtr0

m(Wx � k, i) : V ⊆ A}
)

=
|{V ∈ Subtr0

m(Wx � k, i) : V ⊆ A}|
|Subtr0

m(Wx � k, i)|

=
|{U ∈ Subtr0

m(W � k, i) : Ux ⊆ A}|
|Subtr0

m(W � k, i)|
= dens(Ax).
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Taking into account (8.22) and the above equalities we conclude that

Ex∈XLdens({V ∈Subtr0
m(Wx � k, i) : V ⊆A}) = Ex∈XLdens(Ax)

= EU∈Subtr0m(W �k,i)dens(AU )

= EU∈Subtr0m(W �k,i)dens
( ⋂
t∈U

Bt

)
and the proof is completed. �

We are ready to proceed to the proof of Proposition 8.1.

Proof of Proposition 8.1. We fix A ⊆ [k + 1]<N such that |A ∩ [k + 1]l| > δ(k + 1)l

for every l ∈ N . For notational convenience, we set d = dη−4ne + Λ′. Let L and

W be as in Lemma 8.2 when applied to the fixed set A. Notice that dim(W ) = d.

Invoking the first parts of Lemmas 8.2 and 8.3, for every i ∈ {0, . . . , d} we have

(8.24) Ex∈XLdensWx(i)(A) > δ − η2/2.

On the other hand, by the second parts of the aforementioned lemmas, we see that

(8.25) Ex∈XLdens
(
{V ∈ Subtr0

m(Wx � k, i) : V ⊆ A}
)
> ϑ

for every i ∈ {m, . . . , d}.
Let J = {m, . . . , d} and notice that

(8.26) |J | = d−m+ 1 > dη−4ne.

Also for every i ∈ J set

(8.27) X0
i = {x ∈ XL : densWx(i)(A) > δ + η2/2},

(8.28) X1
i = {x ∈ XL : densWx(i)(A) > δ − 2η}

and

(8.29) X2
i =

{
x ∈ XL : dens

(
{V ∈ Subtr0

m(Wx � k, i) : V ⊆ A}
)
> ϑ/2

}
.

Finally let J0 = {i ∈ J : dens(X0
i ) > η3}. We distinguish the following cases.

Case 1: we have |J0| > |J |/2. By Lemma 2.5, there exists x0 ∈ XL such that

(8.30) |{i ∈ J0 : x0 ∈ X0
i }| >

η3|J0|
2
>
η3|J |

4

(8.26)

>
η3dη−4ne

4
> n.

We set “I = {i ∈ J : x0 ∈ X0
i }” and “W = Wx0

”. With these choices it is easy to

see that the first part of the proposition is satisfied.

Case 2: we have |J0| < |J |/2. In this case we set J̄0 = J \ J0. Let i ∈ J̄0 be

arbitrary and notice that

(8.31) dens(X0
i ) = dens

(
{x ∈ XL : densWx(i)(A) > δ + η2/2}

)
< η3.

Combining (8.24) and (8.31) we see that dens(X1
i ) > 1− η. On the other hand, by

(8.25), we have dens(X2
i ) > ϑ/2. Therefore, by the choice of η in (8.2), we conclude
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that dens(X1
i ∩X2

i ) > ϑ/4 for every i ∈ J̄0. By a second application of Lemma 2.5,

we find x1 ∈ XL such that

(8.32) |{i ∈ J̄0 : x1 ∈ X1
i ∩X2

i }| >
ϑ|J̄0|

8
>
ϑ|J |
16

(8.26)

>
ϑdη−4ne

16

(8.2)

> n.

We set “I = {i ∈ J̄0 : x1 ∈ X1
i ∩X2

i }” and “W = Wx1” and we notice that with

these choices the second part of the proposition is satisfied. The above cases are

exhaustive and the proof is completed. �

8.3. Obtaining insensitive sets. Let k ∈ N with k > 2 and assume that for every

0 < β 6 1 the number DCS(k, 1, β) has been defined. For every 0 < δ 6 1 let

(8.33) ϑ1 = ϑ1(k, δ) = ϑ(k, 1, δ) and η1 = η1(k, δ) = η(k, 1, δ)

where ϑ(k, 1, δ) and η(k, 1, δ) are as in (8.2). Also define G1 : N× (0, 1]→ N by

(8.34) G1(n, ε) = G(n, 1, ε)

where G is as in (8.5). We have the following lemma.

Lemma 8.4. Let k ∈ N with k > 2 and assume that for every 0 < β 6 1 the

number DCS(k, 1, β) has been defined.

Let 0 < δ 6 1 and define ϑ1 and η1 as in (8.33). Also let n ∈ N with n > 1 and

let N be a finite subset of N such that

(8.35) |N | > G1

(
dη−4

1 (k + 1)ne, η2
1/2
)

where G1 is as in (8.34). Finally let A ⊆ [k+1]<N such that |A∩ [k+1]l| > δ(k+1)l

for every l ∈ N and assume that A contains no Carlson–Simpson line of [k+ 1]<N.

Assume, moreover, that for every Carlson–Simpson tree W of [k + 1]<N we have

(8.36) |
{
i ∈ {0, . . . ,dim(W )} : densW (i)(A) > δ + η2

1/2
}
| < n.

Then there exist a Carlson–Simpson tree V of [k + 1]<N, a subset C of V and a

subset J of {0, . . . ,dim(V )} with the following properties.

(i) We have |J | > n.

(ii) We have C =
⋂k
r=1 Cr where the set Cr is (r, k + 1)-insensitive in V for

every r ∈ [k]. Moreover, densV (j)(C) > ϑ1/2 for every j ∈ J .

(iii) The sets A and C are disjoint.

(iv) For every j ∈ J we have densV (j)(A) > δ − 5kη1.

Lemma 8.4 will be reduced to Proposition 8.1. The reduction will be achieved

using essentially the same arguments as in [28, §7.2].

First we need to introduce some pieces of notation. Specifically, let W be a

Carlson–Simpson tree of [k + 1]<N and set d = dim(W ). Consider the canonical

isomorphism IW : [k + 1]<d+1 → W associated with W (see §2.5) and for every

r ∈ [k + 1] let

(8.37) W [r] =
{

IW (s) : s ∈ [k + 1]<d+1 with |s| > 1 and s(0) = r
}
.
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Notice that if dim(W ) > 2, then W [r] is a Carlson–Simpson subtree of W with

dim(W [r]) = dim(W ) − 1. On the other hand, if W is a Carlson–Simpson line,

then W [r] is the singleton {IW (r)}; we will identify in this case W [r] with IW (r).

Next observe that for every Carlson–Simpson subtree U of the k-restriction W � k

of W there exists a unique Carlson–Simpson tree R of [k+1]<N such that R � k = U .

We will call this unique Carlson–Simpson tree R as the extension of U and we will

denote it by Ū . Notice that the extension of U is a Carlson–Simpson subtree of W .

Also we will need the following elementary fact.

Fact 8.5. Let W be a Carlson–Simpson tree of [k + 1]<N with dim(W ) > 2 and

set V = W [k + 1]. If j ∈ {0, . . . ,dim(V )} and U ∈ Subtr0
1(W � k, j + 1), then

Ū [k + 1] ∈ V (j). Moreover, the map

(8.38) Subtr0
1(W � k, j + 1) 3 U 7→ Ū [k + 1] ∈ V (j)

is a bijection.

We are ready to give the proof of Lemma 8.4.

Proof of Lemma 8.4. By our assumptions we may apply Proposition 8.1 for m = 1

and we obtain a Carlson–Simpson tree W of [k + 1]<N and I ⊆ {1, . . . ,dim(W )}
with |I| > (k + 1)n and such that densW (i)(A) > δ − 2η1 and

(8.39) dens
(
{U ∈ Subtr0

1(W � k, i) : U ⊆ A}
)
> ϑ1/2

for every i ∈ I. For every r ∈ [k + 1] let Vr = W [r]. We set

(8.40) V = Vk+1,

(8.41) C =
⋃
i∈I

{
Ū [k + 1] : U ∈ Subtr0

1(W � k, i) with U ⊆ A
}

and

(8.42) J =
{
j ∈ {0, . . . ,dim(V )} : densV (j)(A) > δ − 5kη1 and j + 1 ∈ I

}
.

We claim that V , C and J are as desired. First we argue to show that |J | > n. Let

J0 = {j ∈ {0, . . . ,dim(V )} : j + 1 ∈ I}. Observe that J ⊆ J0 and

(8.43) |J0| > (k + 1)n.

Let j ∈ J0 \ J be arbitrary and notice that densV (j)(A) < δ − 5kη1. On the other

hand, j + 1 ∈ I and so

(8.44) Er∈[k+1]densVr(j)(A) = densW (j+1)(A) > δ − 2η1.

Thus, there exists rj ∈ [k] such that densVrj (j)(A) > δ + η1. Therefore, by the

classical pigeonhole principle, there exists r0 ∈ [k] such that

(8.45) |{j ∈ J0 \ J : densVr0 (j)(A) > δ + η1}| >
|J0 \ J |
k

(8.43)

> n+
n− |J |
k

.
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Moreover, by (8.36), we have

(8.46) |{j ∈ J0 \ J : densVr0 (j)(A) > δ + η1}| < n.

Combining (8.45) and (8.46) we conclude that |J | > n.

We continue with the proof of part (ii). Let r ∈ [k] be arbitrary. For every l ∈ N
and every s ∈ [k+1]l let sk+1→r be the unique element of [k]l obtained by replacing

all appearances of k + 1 in s by r. We set

(8.47) Cr =
{

IV (s) : s ∈
⋃
i∈I

[k + 1]i−1 and sk+1→r ∈ I−1
Vr

(A)
}

where IV and IVr are the canonical isomorphisms associated with V and Vr respec-

tively. It is easy to check that Cr is (r, k + 1)-insensitive in V . Next we argue to

show that C coincides with C1 ∩ · · · ∩ Ck. First we notice that C ⊆ C1 ∩ · · · ∩ Ck.

To see the other inclusion, let t ∈ C1 ∩ · · · ∩Ck be arbitrary and set s = I−1
V (t). Let

i be the unique element of I such that s ∈ [k + 1]i−1 and set

(8.48) Ut = {W (0)} ∪
{

IVr (s
k+1→r) : r ∈ [k]

}
.

Notice that Ut ∈ Subtr0
1(W � k, i). Next observe that, by (8.39), we have W (0) ∈ A.

On the other hand, we have IVr (s
k+1→r) ∈ A for every r ∈ [k] since t ∈ C1∩· · ·∩Ck.

This shows that Ut ⊆ A. Observing that t = Ūt[k + 1] we conclude that t ∈ C.

Finally let j ∈ J . Notice that

(8.49) densV (j)(C) = densV (j)

(
{Ū [k+1] : U ∈ Subtr0

1(W � k, j+1) with U ⊆ A}
)

and recall that j + 1 ∈ I. Hence, by Fact 8.5, we have

(8.50) densV (j)(C) = dens
(
{U ∈ Subtr0

1(W � k, j + 1) : U ⊆ A}
) (8.39)

> ϑ1/2

as desired.

The fact that A and C are disjoint follows by our assumption that A contains no

Carlson–Simpson line of [k+ 1]<N and the definition of the set C. Finally, part (iv)

is an immediate consequence of (8.42). The proof is completed. �

8.4. Consequences. In this subsection we summarize what we have achieved in

Proposition 8.1 and Lemma 8.4. We remark that the resulting statement is the first

main step towards the proof of Theorem B.

Corollary 8.6. Let k ∈ N with k > 2 and assume that for every 0 < β 6 1 the

number DCS(k, 1, β) has been defined.

Let 0 < δ 6 1 and define η1 as in (8.33). Also let n ∈ N with n > 1 and let N

be a finite subset of N such that

(8.51) |N | > G1

(
dη−4

1 (k + 1)kne, η2
1/2
)

where G1 is as in (8.34). Finally, let A ⊆ [k+1]<N such that |A∩[k+1]l| > δ(k+1)l

for every l ∈ N and assume that A contains no Carlson–Simpson line of [k+ 1]<N.
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Then there exist a Carlson–Simpson tree V of [k + 1]<N, a subset D of V and a

subset I of {0, . . . ,dim(V )} with the following properties.

(i) We have |I| > n.

(ii) We have D =
⋂k
r=1Dr where the set Dr is (r, k + 1)-insensitive in V for

every r ∈ [k].

(iii) For every i ∈ I we have densV (i)(A ∩ D) > (δ + η2
1/2)densV (i)(D) and

densV (i)(D) > η2
1/2.

Proof. First assume that there exists a Carlson–Simpson tree W of [k + 1]<N such

that

(8.52) |
{
i ∈ {0, . . . ,dim(W )} : densW (i)(A) > δ + η2

1/2
}
| > kn.

In this case we set “V = W”, “I = {i ∈ {0, . . . ,dim(W )} : densW (i)(A) > δ+η2
1/2}”

and “Dr = V ” for every r ∈ [k]. It is clear that with these choices the result follows.

Otherwise, by Lemma 8.4, there exist a Carlson–Simpson tree V of [k + 1]<N, a

subset J of {0, . . . ,dim(V )} with |J | > kn and a set C = C1 ∩ · · · ∩ Ck, where Cr

is (r, k + 1)-insensitive in V for every r ∈ [k], such that

(a) A ∩ C = ∅,
(b) densV (j)(C) > ϑ1/2 for every j ∈ J and

(c) densV (j)(A) > δ − 5kη1 for every j ∈ J
where ϑ1 and η1 are as in (8.33). In particular, for every j ∈ J we have

(8.53)
densV (j)(A)

densV (j)(V \ C)
>
δ − 5kη1

1− ϑ1/2
> (δ − 5kη1)(1 + ϑ1/2) > δ + 7kη1.

We set Q1 = V \C1 and Qr = (V \Cr) ∩C1 ∩ · · · ∩Cr−1 if r ∈ {2, . . . , k}. Clearly

the family (Qr)
k
r=1 forms a partition of V \ C. Let j ∈ J be arbitrary. Applying

Lemma 2.6 for “ε = kη1” we see that there exists rj ∈ [k] such that

(8.54) densV (j)(A ∩Qrj ) > (δ + 6kη1)densV (j)(Qrj )

and

(8.55) densV (j)(Qrj ) > (δ − 5kη1)η1/4.

Hence, there exist r0 ∈ [k] and a subset I of J with |I| > |J |/k > n such that ri = r0

for every i ∈ I. We set “D = Qr0”. Also let “Dr = Cr” if r < r0, “Dr0 = V \Cr0”

and “Dr = V ” if r > r0. Clearly Dr is (r, k + 1)-insensitive in V for every r ∈ [k]

and D1 ∩ · · · ∩Dk = D. Moreover, by the choice of η1, for every i ∈ I we have

(8.56) densV (i)(A ∩D)
(8.54)

> (δ + 6kη1)densV (i)(D) > (δ + η2
1/2)densV (i)(D)

and

(8.57) densV (i)(D)
(8.55)

> (δ − 5kη1)η1/4 > η
2
1/2.

The proof is thus completed. �
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9. An exhaustion procedure: achieving the density increment

9.1. Motivation. As we have seen in Corollary 8.6 if a dense subset A of [k+ 1]<N

fails to contain a Carlson–Simpson line, then there exist a Carlson–Simpson tree

V of [k + 1]<N and a structured subset D of V (recall that D is the intersection of

relatively few insensitive sets) that correlates with the set A more than expected

in many levels of V . Our goal in this section is to use this information to achieve

density increment for the set A. A natural strategy for doing so—initiated by Ajtai

and Szemerédi in [1]—is to produce an “almost tiling” of the set D, that is, to

construct a collection V of pairwise disjoint Carlson–Simpson trees of sufficiently

large dimension which are all contained in D and are such that the set D \ ∪V
is essentially negligible. Once this is done, one then expects to be able to find a

Carlson–Simpson tree W belonging to the “almost tiling” V such that the density of

the set A has been significantly increased in sufficiently many levels of W . However,

as is shown below, this is not possible in general.

Example 9.1. Let m ∈ N with m > 1 and 0 < ε 6 1 be arbitrary. Also let q, ` ∈ N
with q > ` > 1 and such that 2`(2` − 1)2−q 6 ε. With these choices it is possible

to select a family {xt ∈ [2]q−` : t ∈ [2]<`} such that for every t, t′ ∈ [2]<` with

t 6= t′ we have that xt 6= xt′ . For every i ∈ {0, . . . , `− 1} and every t ∈ [2]i we set

z1
t = ta(1`−i)axt and z2

t = ta(2`−i)axt and we define

(9.1) F =
{
zjt : t ∈ [2]<` and j ∈ [2]

}
.

Notice that F ⊆ [2]q and dens(F) 6 ε. Also observe that {z1
t , z

2
t } ∩ {z1

t′ , z
2
t′} = ∅

provided that t 6= t′. We set D = [2]<` ∪ [2]q ∪ · · · ∪ [2]q+m−1 and

(9.2) A = [2]<` ∪
{
yas : y ∈ [2]q \ F and s ∈ [2]<m

}
.

It is clear that D is a highly structured subset of [2]<N—it is the union of certain

levels of [2]<N—and A is a subset of D of relative density at least 1 − ε. Next for

every t ∈ [2]<` let

(9.3) Vt = {t} ∪
{
zjat s : j ∈ [2] and s ∈ [2]<m

}
.

Observe that V = {Vt : t ∈ [2]<`} is a family of pairwise disjoint m-dimensional

Carlson–Simpson trees which are all contained in D. Also notice that, no matter

how large ` is, V is maximal, that is, the set D \ ∪V contains no Carlson–Simpson

tree of dimension m. However, Vt ∩A is the singleton {t} for every t ∈ [2]<`.

The above example shows that, in our context, the problem of achieving the den-

sity increment cannot be solved by merely producing an arbitrary “almost tiling”

of the structured set D. To overcome this obstacle we devise a refined exhaustion

procedure that can be roughly described as follows. At each step of the process

we are given a subset D′ of D and we produce a collection E of Carlson–Simpson

trees of sufficiently large dimension which are all contained in D′. These Carlson–

Simpson trees are not pairwise disjoint since we are not aiming at producing a
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tiling. Instead, what we are really interested in is whether a sufficient portion of

them behaves “as expected”. If this is the case, then we can easily achieve the

density increment. Otherwise, using coloring arguments, we can show that for “al-

most every” Carlson–Simpson tree V of the collection E , the restriction of our set

A in V is quite “thin” and in a very canonical way. We then remove from D′ an

appropriately chosen subset of ∪E and we repeat the argument for the resulting

set. The above process is shown that it will eventually terminate, completing thus

the proof of this step.

At a technical level, in order to execute the steps described above we need to

represent any subset of [k + 1]<N as a family of measurable events indexed by an

appropriately chosen Carlson–Simpson tree of [k+1]<N. The philosophy is identical

to that in §8.2. However, due to the recursive nature of the process, we need to

work with iterated convolutions. In particular, the reader is advised to review the

material in §6 before studying this section.

9.2. The main result. Let k ∈ N with k > 2 and assume that for every integer

l > 1 and every 0 < β 6 1 the number DCS(k, l, β) has been defined. This

assumption permits us to introduce some numerical invariants. Specifically, for

every integer m > 1 and every 0 < γ 6 1 we set

(9.4) m̄ = m̄(m, γ) =
⌈512

γ3
m
⌉

and

(9.5) M = Λ(k, m̄, γ2/32)
(7.15)

=
⌈32

γ2
DCS(k, m̄, γ2/32)

⌉
.

Also let

(9.6) α = α(k,m, γ) = θ(k, m̄, γ2/8) and p0 = p0(k,m, γ) = bα−1c

where θ(k, m̄, γ2/8) is as in (7.45). Finally we define, recursively, three sequences

(n1
p), (n2

p) and (Np) in N—also depending on the parameters m and γ—by the rule

n1
0 = n2

0 = N0 = 0 and

(9.7)


n1
p+1 = (Np + 1)m̄+Np,

n2
p+1 = CS(k + 1, n1

p+1, m̄, m̄+ 1),

Np+1 = CS(k + 1,max{n2
p+1,M}, m̄, 2).

We are mainly interested in the sequence (Np). The sequences (n1
p) and (n2

p) are

auxiliary ones which will be used in the proof of the following lemma.

Lemma 9.1. Let k ∈ N with k > 2 and assume that for every integer l > 1 and

every 0 < β 6 1 the number DCS(k, l, β) has been defined.

Let 0 < γ, δ 6 1 and r ∈ [k]. Also let V be a Carlson–Simpson tree of [k + 1]<N

and let I be a nonempty subset of {0, . . . ,dim(V )}. Assume that we are given

subsets A,Dr, . . . , Dk of [k + 1]<N with the following properties.

(a) The set Dr is (r, k + 1)-insensitive in V .
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(b) We have densV (i)(Dr ∩ · · · ∩Dk ∩A) > (δ+ 2γ)densV (i)(Dr ∩ · · · ∩Dk) and

densV (i)(Dr ∩ · · · ∩Dk) > 2γ for every i ∈ I.

Finally, let m ∈ N with m > 1 and suppose that

(9.8) |I| > Reg(k + 1, Np0 + 1, 2, γ2/2)

where p0 and Np0 are defined in (9.6) and (9.7) respectively for the parameters m

and γ. Then there exist a Carlson–Simpson subtree W of V and a subset I ′ of

{0, . . . ,dim(W )} of cardinality m with the following properties. If r < k, then

(9.9) densW (i)(Dr+1 ∩ · · · ∩Dk ∩A) > (δ + γ/2)densW (i)(Dr+1 ∩ · · · ∩Dk)

and

(9.10) densW (i)(Dr+1 ∩ · · · ∩Dk) >
γ3

256

for every i ∈ I ′. On the other hand if r = k, then

(9.11) densW (i)(A) > δ + γ/2

for every i ∈ I ′.

The proof of Lemma 9.1 will be given in §9.3. As the reader might have already

guessed, Lemma 9.1 is the main result of this section and incorporates the exhaus-

tion procedure outlined in §9.1. It will be used in §9.4 where we shall achieve the

density increment.

9.3. Proof of Lemma 9.1. The first step of the proof relies on an application of

the regularity lemma presented in §3. Precisely, let B = Dr+1 ∩ · · · ∩Dk if r < k;

otherwise, let B = V . Identifying the Carlson–Simpson tree V with [k+1]<dim(V )+1

via the canonical isomorphism IV (see §2.5), we may apply Lemma 3.2 to the family

F = {Dr ∩ B,Dr ∩ B ∩ A} and we obtain a subset L of I of cardinality Np0 + 1

such that F is (γ2/2, L)-regular. We set

(9.12) A0 = c−1
L,V (A), B0 = c−1

L,V (B) and D0 = c−1
L,V (Dr).

The fact that F is (γ2/2, L)-regular and conditions (a) and (b) in the statement

of the lemma have some consequences which are isolated in the following fact. Its

proof is similar to the proof of Lemma 7.2 and is left to the reader.

Fact 9.2. For every t ∈ [k+ 1]<|L| let A0
t , B

0
t and D0

t be the sections at t of A0, B0

and D0 respectively. Then for every t, t′ ∈ [k + 1]<|L| the following hold.

(i) If t, t′ are (r, k + 1)-equivalent (see §2.6), then D0
t and D0

t′ coincide.

(ii) We have densXL(D0
t ∩B0

t ∩A0
t ) > (δ + γ)densXL(D0

t ∩B0
t ).

(iii) We have densXL(D0
t ∩B0

t ) > γ.

We are ready to proceed to the main part of the proof. We will argue by contra-

diction. In particular, assuming that the lemma is not satisfied, we shall determine

an integer d ∈ [p0] and we shall construct
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(1) a (k+1)-compatible pair
(
(Ln)dn=0, (Vn)dn=0

)
with L0 = L and V0 = V , and

(2) for every p ∈ [d], every ` ∈ [p] and every s ∈ [k + 1]<|Lp| a family Q`,ps of

subsets of XLp , where Lp = (Ln)pn=0 and Vp = (Vn)pn=0.

The construction is done recursively so that, setting

(9.13) Ap = c−1
Lp,Vp

(A), Bp = c−1
Lp,Vp

(B) and Dp = c−1
Lp,Vp

(Dr),

for every p ∈ [d] the following conditions are satisfied.

(C1) The set Lp has cardinality Np0−p + 1.

(C2) For every ` ∈ [p] and every s ∈ [k + 1]<|Lp| the family Q`,ps consists of

pairwise disjoint subsets of the section Dp
s of Dp at s.

(C3) For every s ∈ [k + 1]<|Lp| the sets ∪Q1,p
s , . . . ,∪Qp,ps are pairwise disjoint.

(C4) For every ` ∈ [p], every pair s, s′ ∈ [k + 1]<|Lp| with the same length and

every Q ∈ Q`,ps and Q′ ∈ Q`,ps′ we have densXLp
(Q) = densXLp

(Q′).

(C5) For every ` ∈ [p] and every s ∈ [k + 1]<|Lp| we say that an element Q of

Q`,ps is good provided that densQ(Dp
s ∩Bps ∩Aps) > (δ+γ/2)densQ(Dp

s ∩Bps )

and densQ(Dp
s ∩Bps ) > γ3/256. Then, setting

(9.14) G`,ps = {Q ∈ Q`,ps : Q is good}

we have

(9.15)
|G`,ps |
|Q`,ps |

<
γ3

256
.

(C6) For every ` ∈ [p] and every s ∈ [k + 1]<|Lp| we have densXLp
(∪Q`,ps ) > α

where α is as in (9.6).

(C7) For every ` ∈ [p] and every s, s′ ∈ [k+ 1]<|Lp| we have Q`,ps = Q`,ps′ if s and

s′ are (r, k + 1)-equivalent.

(C8) If p = d, then there exists s0 ∈ [k + 1]<|Ld| such that

(9.16) densXLd

(
Dd
s0 \

d⋃
`=1

∪Q`,ds0
)
< γ2/8.

Assuming that the above construction has been carried out, let us derive the

contradiction. Let s0 be as in (C8). By Corollary 6.8, Corollary 6.9 and Fact 9.2,

we see that

(9.17) densXLd
(Dd

s0 ∩B
d
s0 ∩A

d
s0) > (δ + γ)densXLd

(Dd
s0 ∩B

d
s0)

and

(9.18) densXLd
(Dd

s0 ∩B
d
s0) > γ.

For every ` ∈ [d] we set C` = ∪Q`,ds0 . By (9.16), the family {C` : ` ∈ [d]} is an

“almost cover” of Dd
s0∩B

d
s0 . Hence, invoking (9.17) and (9.18) and applying Lemma

2.6 for “ε = γ/4”, we may find `0 ∈ [d] such that

(9.19) densC`0 (Dd
s0 ∩B

d
s0 ∩A

d
s0) > (δ + 3γ/4)densC`0 (Dd

s0 ∩B
d
s0)
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and

(9.20) densC`0 (Dd
s0 ∩B

d
s0) > γ2/16.

Next observe that, by conditions (C2) and (C4), the family Q`0,ds0 is a partition of

C`0 into sets of equal size. Taking into account this observation and the estimates in

(9.19) and (9.20), by a second application of Lemma 2.6 for “ε = γ/4”, we conclude

that

(9.21)
|G`0,ds0 |
|Q`0,ds0 |

>
γ3

256
.

This contradicts (9.15), as desired.

The rest of the proof is devoted to the description of the recursive construction.

For “p = 0” we set L0 = L and V0 = V . Let p ∈ {0, . . . , p0} and assume that the

construction has been carried out up to p so that conditions (C1)–(C8) are satisfied.

We distinguish the following cases.

Case 1: p = p0. Notice first that, by (C1), the set Lp is a singleton. Therefore, the

set [k+ 1]<|Lp| is the singleton {∅}. We set s0 = ∅ and d = p0. With these choices,

the recursive construction will be completed once we show that the estimate in

(9.16) is satisfied. This is, however, an immediate consequence of conditions (C3)

and (C6) and the choice of α and p0 in (9.6).

Case 2: we have that p > 1 and there exists s0 ∈ [k + 1]<|Lp| such that

(9.22) densXLp

(
Dp
s0 \

p⋃
`=1

∪Q`,ps0
)
< γ2/8.

In this case we set d = p and we terminate the construction.

Case 3: we have that p < p0 and either p = 0, or p > 1 and

(9.23) densXLp

(
Dp
s \

p⋃
`=1

∪Q`,ps
)
> γ2/8

for every s ∈ [k + 1]<|Lp|. If p > 1, then for every s ∈ [k + 1]<|Lp| we set

(9.24) Γs = Dp
s \

p⋃
`=1

∪Q`,ps .

Otherwise, let Γs = D0
s . The following fact follows by (9.23), condition (a) in the

statement of the lemma and condition (C7) if p > 1, and by Fact 9.2 if p = 0.

Fact 9.3. For every s ∈ [k + 1]<|Lp| we have densXLp
(Γs) > γ2/8. Moreover, if

s, s′ ∈ [k + 1]<|Lp| are (r, k + 1)-equivalent, then Dp
s = Dp

s′ and Γs = Γs′ .

By Fact 9.3, condition (C1), the choice of the sequence (Np) in (9.7) and the

choice of α in (9.6), we may apply Corollary 7.11 to obtain a Carlson–Simpson
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subtree S of [k + 1]<|Lp| with dim(S) = n2
p0−p such that for every m̄-dimensional

Carlson–Simpson subtree U of S, setting

(9.25) ΓU =
⋂
s∈U

Γs,

we have densXLp
(ΓU ) > α.

For every i ∈ {0, . . . , m̄} and every Carlson–Simpson subtree U of S of dimension

m̄ let Gi,U be the set of all x ∈ ΓU satisfying

(P1) densU(i)×{x}(D
p ∩Bp ∩Ap) > (δ + γ/2)densU(i)×{x}(D

p ∩Bp) and

(P2) densU(i)×{x}(D
p ∩Bp) > γ3/256.

Our assumption that the lemma is not satisfied reduces to the following property

of the sets Gi,U .

Claim 9.4. For every m̄-dimensional Carlson–Simpson subtree U of S there exists

i ∈ {0, . . . , m̄} such that densΓU (Gi,U ) < γ3/256.

Proof. We will argue by contradiction. So, assume that there exists a Carlson–

Simpson subtree U of S of dimension m̄ such that for every i ∈ {0, . . . , m̄} we have

densΓU (Gi,U ) > γ3/256. For every x ∈ ΓU let

(9.26) Ix = {i ∈ {0, . . . , m̄} : x ∈ Gi,U}.

By Lemma 2.5, setting G = {x ∈ ΓU : |Ix| > (m̄ + 1)γ3/512}, we have that

densΓU (G) > γ3/512. This implies, in particular, that the set G is nonempty. We

select x ∈ G. By the choice of m̄ in (9.4) we have that |Ix| > m. We define

W = {cLp,Vp
(s,x) : s ∈ U}. By Lemma 6.4, W is a Carlson–Simpson subtree of V

of dimension m̄. Applying Lemma 6.5 twice for the sets Dr ∩ B ∩ A and Dr ∩ B,

for every i ∈ {0, . . . , m̄} we have

(9.27) densW (i)(Dr ∩B ∩A) = densU(i)×{x}(D
p ∩Bp ∩Ap)

and

(9.28) densW (i)(Dr ∩B) = densU(i)×{x}(D
p ∩Bp).

The above equalities and the fact that x ∈ Gi,U for every i ∈ Ix yield that

(9.29) densW (i)(Dr ∩B ∩A) > (δ + γ/2)densW (i)(Dr ∩B)

and

(9.30) densW (i)(Dr ∩B) >
γ3

256

for every i ∈ Ix. Finally, observe that W is a subset of Dr since x ∈ ΓU . It is then

clear that W and Ix satisfy the conclusion of the lemma in contradiction with our

assumption. �
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We are now in the position to start the process of selecting the new objects of

the recursive construction.

Step 1: selection of Vp+1 and Lp+1. Firstly, we will use a coloring argument to con-

trol the integer i obtained by Claim 9.4. Specifically, by the choice of the sequence

(n2
p) in (9.7) and Claim 9.4, we may apply Theorem 4.1 to obtain i0 ∈ {0, . . . , m̄}

and a Carlson–Simpson subtree T of S of dimension n1
p0−p such that for every

m̄-dimensional Carlson–Simpson subtree U of T we have densΓU (Gi0,U ) < γ3/256.

We define

(9.31) Vp+1 = T and Lp+1 =
{
i0 + j(i0 + 1) : j ∈ {0, . . . , Np0−(p+1)}

}
.

Notice that the pair
(
(Ln)p+1

n=0, (Vn)p+1
n=0

)
is (k + 1)-compatible. This follows by our

inductive assumptions and the choice of the sequence (n1
p) in (9.7). Moreover, the

cardinality of the set Lp+1 is Np0−(p+1) + 1. Hence, with these choices, condition

(C1) is satisfied. For notational simplicity, in what follows by qp+1 we shall denote

the quotient map associated with the pair (Lp+1,Vp+1) defined in (6.5).

Step 2: selection of the families Qp+1,p+1
t . This is the most important part of

the recursive selection. The members of the families Qp+1,p+1
t are, essentially,

the sets ΓU where U ranges over all m̄-dimensional Carlson–Simpson subtrees of

Vp+1. However, in order to carry out the construction, we have to group them in a

canonical way. We proceed to the details.

Consider the canonical isomorphism IVp+1
: [k + 1]<dim(Vp+1)+1 → Vp+1 defined

in §2.5; for convenience it will be denoted by I. For every j ∈ {0, . . . , |Lp+1| − 1}
and every t ∈ [k + 1]j we set

(9.32) Ωt =
{

cLp+1,Vp+1(t, x) : x ∈ XLp+1

}
⊆ Vp+1

(
i0 + j(i0 + 1)

)
.

If j > 1, then let t∗ be the unique initial segment of t of length j − 1 and set

(9.33) Kt =
{

I−1(w)at(j − 1) : w ∈ Ωt∗
}
⊆ [k + 1]j(i0+1);

otherwise, let K∅ = {∅}. Notice that Kt = {cLp+1(t∗, x)at(j − 1) : x ∈ XLp+1}.
Finally for every s ∈ Kt let Cs = sa[k + 1]<m̄+1 and set

(9.34) Pt =
{

I(Cs) : s ∈ Kt

}
.

Before we analyze the above definitions, let us give a specific example. For con-

creteness take k = 3 and assume, for notational simplicity, that Vp+1 is of the form

[4]<n where n is large enough compared to i0 (hence, the map I is the identity).

Consider the sequence t = (1, 2, 1) and observe that t∗ = (1, 2). Notice that Ωt is

the subset of [4]4i0+3 consisting of all finite sequences x such that x(i0) = t(0) = 1,

x(2i0 + 1) = t(1) = 2 and x(3i0 + 2) = t(2) = 1. On the other hand, the set Kt

is the subset of [4]3i0+3 consisting of all sequences x such that x(i0) = t(0) = 1,

x(2i0 + 1) = t(1) = 2 and x(3i0 + 2) = t(2) = 1. It is then easy to see that in this

specific case the family {U(i0) : U ∈ Pt} forms a partition of the set Ωt. This is,

actually, a general property as is shown in the following fact.
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Fact 9.5. Let t ∈ [k+1]<|Lp+1| be arbitrary. Then the family Pt consists of pairwise

disjoint m̄-dimensional Carlson–Simpson subtrees of Vp+1. Moreover,

(9.35) Ωt =
⋃
U∈Pt

U(i0).

Proof. It is clear that the family Pt consists of pairwise disjoint Carlson–Simpson

trees. Moreover, by the choice of Lp+1 in (9.31), we have

I−1(Ωt) =
{
say : s ∈ Kt and y ∈ [k + 1]i0

}
(9.36)

=
⋃
s∈Kt

Cs(i0) =
⋃
U∈Pt

I−1(U)(i0)

and the proof is completed. �

We record, for future use, another property of the family Pt.

Fact 9.6. Let t, t′ ∈ [k + 1]<|Lp+1| with the same length. Then for every U ∈ Pt
and every U ′ ∈ Pt′ we have densΩt

(
U(i0)

)
= densΩt′

(
U ′(i0)

)
.

Proof. By Fact 9.5, we have U(i0) ⊆ Ωt and U ′(i0) ⊆ Ωt′ while, by Fact 5.2, we

have |Ωt| = |Ωt′ |. Noticing that |U(i0)| = |U ′(i0)| = (k+1)i0 the result follows. �

We are ready to define the families Qp+1,p+1
t . Specifically, fix t ∈ [k + 1]<|Lp+1|.

For every U ∈ Pt and every x ∈ ΓU let

(9.37) Qx,U
t = {x} × {x ∈ XLp+1

: cLp+1,Vp+1
(t, x) ∈ U(i0)} ⊆ XLp+1

.

By Fact 9.5, the set U(i0) is contained in Ωt. Hence,

(9.38) {t} ×Qx,U
t = q−1

p+1

(
U(i0)× {x}

)
.

We define

(9.39) Qp+1,p+1
t = {Qx,U

t : U ∈ Pt and x ∈ ΓU}.

This completes the second step of the recursive selection.

Step 3: selection of the families Q`,p+1
t for every ` ∈ [p]. In this step we will

not introduce something new but rather “copy” in the space XLp+1
what we have

constructed so far. In particular, this step is meaningful only if p > 1.

Specifically, let p > 1 and fix t ∈ [k+ 1]<|Lp+1| and ` ∈ [p]. For every s ∈ Ωt and

every Q ∈ Q`,ps let

(9.40) Cs,`,Qt = Q× {x ∈ XLp+1
: cLp+1,Vp+1

(t, x) = s} ⊆ XLp+1
.

Notice that

(9.41) {t} × Cs,`,Qt = q−1
p+1

(
{s} ×Q

)
.

We define

(9.42) Q`,p+1
t = {Cs,`,Qt : s ∈ Ωt and Q ∈ Q`,ps }.

This completes the third, and final, step of the recursive selection.
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Step 4: verification of the inductive assumptions. Recall that condition (C1) has

already been verified in Step 1. Also observe that condition (C8) is meaningless in

this case. Conditions (C2) up to (C7) will be verified in the following claims.

Claim 9.7. For every ` ∈ [p + 1] and every t ∈ [k + 1]<|Lp+1| the family Q`,p+1
t

consists of pairwise disjoint subsets of Dp+1
t . That is, condition (C2) is satisfied.

Proof. Fix t ∈ [k + 1]<|Lp+1|. First assume that ` ∈ [p]. Invoking (9.40), (9.42)

and our inductive assumptions, we see that the family Q`,p+1
t consists of pairwise

disjoint sets. Fix Cs,`,Qt ∈ Q`,p+1
t for some s ∈ Ωt andQ ∈ Q`,ps . Using our inductive

assumptions once again, we see that Q ⊆ Dp
s or equivalently {s}×Q ⊆ Dp. Hence,

by (9.41) and Fact 6.3,

(9.43) {t} × Cs,`,Qt ⊆ q−1
p+1(Dp) = Dp+1.

Now we treat the case “` = p + 1”. Let U,U ′ ∈ Pt, x ∈ ΓU and x′ ∈ ΓU ′ . We

will show that the sets Qx,U
t and Qx′,U ′

t are disjoint provided that (U,x) 6= (U ′,x′).

Indeed, if U = U ′, then necessarily x 6= x′ which implies that the sets Qx,U
t and

Qx′,U ′

t are disjoint. Otherwise, by Fact 9.5, the Carlson–Simpson trees U and U ′

are disjoint. In particular, the sets U(i0) and U ′(i0) are disjoint yielding that

Qx,U
t ∩Qx′,U ′

t = ∅. What remains is to check that Qx,U
t ⊆ Dp+1

t for every U ∈ Pt
and every x ∈ ΓU . So, fix U ∈ Pt and x ∈ ΓU . By (9.38) and Fact 6.3, we conclude

(9.44) {t} ×Qx,U
t ⊆ q−1

p+1(Dp) = Dp+1

and the proof is completed. �

Claim 9.8. For every t ∈ [k + 1]<|Lp+1| the sets ∪Q1,p+1
t , . . . ,∪Qp+1,p+1

t are pair-

wise disjoint. That is, condition (C3) is satisfied.

Proof. Fix t ∈ [k + 1]<|Lp+1| and ` ∈ [p]. Let `′ ∈ [p + 1] with `′ 6= `. We need to

show that the sets ∪Q`,p+1
t and ∪Q`

′,p+1
t are disjoint. If `′ 6 p, then this follows

immediately from (9.40) and our inductive assumptions. So, assume that `′ = p+1

and let U ∈ Pt and x ∈ ΓU . By (9.24) and (9.25), we have that x 6∈ ∪Q`,ps for every

s ∈ U . Using this observation, the result follows from (9.38) and (9.41). �

Claim 9.9. For every ` ∈ [p + 1], every t, t′ ∈ [k + 1]<|Lp+1| with the same length

and every Θ ∈ Q`,p+1
t and Θ′ ∈ Q`,p+1

t′ we have densXLp+1
(Θ) = densXLp+1

(Θ′).

That is, condition (C4) is satisfied.

Proof. If ` ∈ [p], then by (9.41) there exist s ∈ Ωt and s′ ∈ Ωt′ as well as Q ∈ Q`,ps
and Q′ ∈ Q`,ps′ such that {t}×Θ = q−1

p+1

(
{s}×Q

)
and {t′}×Θ′ = q−1

p+1

(
{s′}×Q′

)
.

By Fact 5.2, we have that s and s′ have the same length and |Ωt| = |Ωt′ |. Therefore,
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by our inductive assumptions,

densΩt×XLp

(
{s} ×Q

)
=

1

|Ωt|
dens{s}×XLp

(
{s} ×Q

)
(9.45)

=
1

|Ωt|
densXLp

(Q) =
1

|Ωt′ |
densXLp

(Q′)

=
1

|Ωt′ |
dens{s′}×XLp

(
{s′} ×Q′

)
= densΩt′×XLp

(
{s′} ×Q′

)
.

Applying Lemma 6.6 we conclude that

densXLp+1
(Θ) = dens{t}×XLp+1

(
{t} ×Θ

)
(9.46)

= densΩt×XLp

(
{s} ×Q

)
(9.45)

= densΩt′×XLp

(
{s′} ×Q′

)
= dens{t′}×XLp+1

(
{t′} ×Θ′

)
= densXLp+1

(Θ′).

If ` = p+1, then by (9.38) there exist U ∈ Pt and U ′ ∈ Pt′ as well as x ∈ ΓU and

x′ ∈ ΓU ′ such that {t}×Θ = q−1
p+1

(
U(i0)×{x}

)
and {t′}×Θ = q−1

p+1

(
U ′(i0)×{x′}

)
.

By Fact 9.6, we have

densΩt×XLp

(
U(i0)× {x}

)
=

1

|XLp |
densΩt

(
U(i0)

)
(9.47)

=
1

|XLp |
densΩt′

(
U ′(i0)

)
= densΩt′×XLp

(
U ′(i0)× {x′}

)
.

Using (9.47), Lemma 6.6 and arguing precisely as in the previous case, we see that

densXLp+1
(Θ) = densXLp+1

(Θ′) and the proof is completed. �

Claim 9.10. For every ` ∈ [p+ 1] and every t ∈ [k + 1]<|Lp+1| we have

(9.48)
|G`,p+1
t |
|Q`,p+1

t |
<

γ3

256
.

That is, condition (C5) is satisfied.

Proof. Fix t ∈ [k + 1]<|Lp+1|. Assume first that ` ∈ [p]. For every s ∈ Ωt let

(9.49) Qs =
{
Cs,`,Qt : Q ∈ Q`,ps

}
and Gs = G`,p+1

t ∩Qs.

By (9.42), the family {Qs : s ∈ Ωt} is a partition ofQ`,p+1
t . The family {Gs : s ∈ Ωt}

is the induced partition of G`,p+1
t . Moreover, for every s ∈ Ωt let

(9.50) Bs = {Cs,`,Qt : Q ∈ G`,ps }.

Subclaim 9.11. For every s ∈ Ωt we have Gs = Bs.
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Proof of Subclaim 9.11. Fix s ∈ Ωt and let Θ ∈ Qs be arbitrary. By (9.41), the

map Q`,ps 3 Q 7→ Cs,`,Qt ∈ Qs is a bijection. Hence, there exists a unique Q ∈ Q`,ps
such that Θ = Cs,`,Qt . Using (9.41) once again, we see that {t}×Θ = q−1

p+1

(
{s}×Q

)
.

Since s ∈ Ωt, by Corollary 6.10, we obtain that

densΘ(Dp+1
t ∩Bp+1

t ) = dens{t}×Θ(Dp+1 ∩Bp+1)(9.51)

= densq−1
p+1({s}×Q)

(
q−1
p+1(Dp ∩Bp)

)
= dens{s}×Q(Dp ∩Bp)

= densQ(Dp
s ∩Bps ).

Similarly,

(9.52) densΘ(Dp+1
t ∩Bp+1

t ∩Ap+1
t ) = densQ(Dp

s ∩Bps ∩Aps).

Using (9.51) and (9.52) and invoking the definition of a good set described in

condition (C5), we conclude that Θ ∈ Gs if and only if Q ∈ G`,ps . This is equivalent

to saying that Gs = Bs. �

We are ready to complete the proof for the case “` ∈ [p]”. Indeed, we have already

pointed out that the map Q`,ps 3 Q 7→ Cs,`,Qt ∈ Qs is a bijection. Therefore, using

our inductive assumptions, we see that

|G`,p+1
t |
|Q`,p+1

t |
=

∑
s∈Ωt

|Gs|
|Qs|

· |Qs|
|Q`,p+1

t |
=
∑
s∈Ωt

|Bs|
|Qs|

· |Qs|
|Q`,p+1

t |
(9.53)

=
∑
s∈Ωt

|G`,ps |
|Q`,ps |

· |Qs|
|Q`,p+1

t |
<

γ3

256

( ∑
s∈Ωt

|Qs|
|Q`,p+1

t |

)
=

γ3

256
.

Now we treat the case ` = p+ 1. The argument is similar. Specifically, for every

U ∈ Pt let

(9.54) QU =
{
Qx,U
t : x ∈ ΓU} and GU = G`,p+1

t ∩QU .

By (9.39), the family {QU : U ∈ Pt} is a partition of Q`,p+1
t and the family

{GU : U ∈ Pt} is the induced partition of G`,p+1
t . Also, for every U ∈ Pt let

(9.55) BU = {Qx,U
t : x ∈ Gi0,U}.

Recall that Gi0,U is the set of all x ∈ ΓU satisfying properties (P1) and (P2).

Moreover, by the choice of i0 in Step 1, we have that densΓU (Gi0,U ) < γ3/256. We

have the following analogue of Subclaim 9.11.

Subclaim 9.12. For every U ∈ Pt we have GU = BU .

Proof of Subclaim 9.12. Fix U ∈ Pt and let Θ ∈ QU be arbitrary. By (9.38), the

map ΓU 3 x 7→ Qx,U
t ∈ QU is a bijection. Hence, there exists a unique x ∈ ΓU

such that Qx,U
t = Θ. Invoking (9.38) once again, {t} × Qx,U

t = q−1
p+1(U(i0) ×

{x}). Moreover, by Fact 9.5, we have U(i0) ⊆ Ωt. By the previous remarks and
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Corollary 6.10, and arguing precisely as in the proof of Subclaim 9.11, we see that

Θ ∈ GU if and only if x ∈ Gi0,U . �

With Subclaim 9.12 at our disposal, we are ready complete the proof for the case

“` = p+ 1”. We have already pointed out that the map ΓU 3 x 7→ Qx,U
t ∈ QU is a

bijection. Therefore, using our inductive assumptions, we conclude

|Gp+1,p+1
t |
|Qp+1,p+1

t |
=

∑
U∈Pt

|GU |
|QU |

· |QU |
|Qp+1,p+1

t |
=
∑
U∈Pt

|BU |
|QU |

· |QU |
|Qp+1,p+1

t |
(9.56)

=
∑
U∈Pt

|Gi0,U |
|ΓU |

· |QU |
|Qp+1,p+1

t |

<
γ3

256

( ∑
U∈Pt

|QU |
|Qp+1,p+1

t |

)
=

γ3

256
.

The proof of Claim 9.10 is completed. �

Claim 9.13. For every ` ∈ [p + 1] and every t ∈ [k + 1]<|Lp+1| we have that

densXLp+1
(∪Q`,p+1

t ) > α. That is, condition (C6) is satisfied.

Proof. Let t ∈ [k + 1]<|Lp+1| be arbitrary. Assume, first, that ` ∈ [p]. By the

inductive assumptions, we have

(9.57) densΩt×XLp

( ⋃
s∈Ωt

{s} × ∪Q`,ps
)
> α.

On the other hand,

q−1
p+1

( ⋃
s∈Ωt

{s} × ∪Q`,ps
)

= q−1
p+1

( ⋃
s∈Ωt

⋃
Q∈Q`,ps

{s} ×Q
)

(9.58)

=
⋃
s∈Ωt

⋃
Q∈Q`,ps

q−1
p+1

(
{s} ×Q

)
(9.41)

=
⋃
s∈Ωt

⋃
Q∈Q`,ps

{t} × Cs,`,Qt

(9.42)
= {t} × ∪Q`,p+1

t .

By (9.57), (9.58) and Lemma 6.6, we conclude that

(9.59) densXLp+1
(∪Q`,p+1

t ) = dens{t}×XLp+1

(
{t} × ∪Q`,p+1

t

)
> α.

Next assume that ` = p + 1. By Fact 9.5, the family {U(i0) : U ∈ Pt} forms

a partition of the set Ωt. Moreover, as we have already pointed out immediately

after (9.25), we have densXLp
(ΓU ) > α. Hence,

(9.60) densΩt×XLp

( ⋃
U∈Pt

U(i0)× ΓU

)
> α.
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Notice that

q−1
p+1

( ⋃
U∈Pt

U(i0)× ΓU

)
= q−1

p+1

( ⋃
U∈Pt

⋃
x∈ΓU

U(i0)× {x}
)

(9.61)

=
⋃
U∈Pt

⋃
x∈ΓU

q−1
p+1

(
U(i0)× {x}

)
(9.38)

=
⋃
U∈Pt

⋃
x∈ΓU

{t} ×Qx,U
t

(9.39)
= {t} × ∪Qp+1,p+1

t .

Combining (9.60), (9.61) and applying Lemma 6.6 we obtain

(9.62) densXLp+1
(∪Qp+1,p+1

t ) = dens{t}×XLp+1

(
{t} × ∪Qp+1,p+1

t

)
> α

and the proof is completed. �

Claim 9.14. For every ` ∈ [p + 1] and every t, t′ ∈ [k + 1]<|Lp+1| if t and t′ are

(r, k + 1)-equivalent, then Q`,p+1
t = Q`,p+1

t′ . That is, condition (C7) is satisfied.

Proof. We fix t, t′ ∈ [k+ 1]<|Lp+1| which are (r, k+ 1)-equivalent. For every s ∈ Ωt

let Y ts = {x ∈ XLp+1
: cLp+1,Vp+1

(t, x) = s}. Respectively, for every s′ ∈ Ωt′ let

Y t
′

s′ = {x ∈ XLp+1
: cLp+1,Vp+1

(t′, x) = s′}. Let gt,t′ : Ωt → Ωt′ be the bijection

obtained by Fact 5.4 and recall that for every s ∈ Ωt we have

(9.63) Y ts = Y t
′

gt,t′ (s)
.

Since t and t′ are (r, k+ 1)-equivalent, by Fact 5.4 again, we see that s and gt,t′(s)

are also (r, k + 1)-equivalent for every s ∈ Ωt.

After this preliminary discussion, we are ready for the main argument. First

assume that ` ∈ [p]. For every s ∈ Ωt and every s′ ∈ Ωt′ let

(9.64) Qts = {Cs,`,Qt : Q ∈ Q`,ps } and Qt
′

s′ = {Cs
′,`,Q′

t′ : Q′ ∈ Q`,ps′ }.

By (9.42), the families {Qts : s ∈ Ωt} and {Qt′s′ : s′ ∈ Ωt′} form partitions of Q`,p+1
t

and Q`,p+1
t′ respectively. By (9.40), for every s ∈ Ωt and every Q ∈ Q`,ps we have

(9.65) Cs,`,Qt = Q× Y ts .

Of course, we have the same equality for t′, that is, for every s′ ∈ Ωt′ and every

Q′ ∈ Q`,ps′ it holds that

(9.66) Cs
′,`,Q′

t′ = Q′ × Y t
′

s′ .

Moreover, invoking our inductive assumptions, for every s ∈ Ωt we have

(9.67) Q`,ps = Q`,pgt,t′ (s).
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Hence,

Qts = {Cs,`,Qt : Q ∈ Q`,ps }
(9.65)

= {Q× Y ts : Q ∈ Q`,ps }(9.68)

(9.63)
= {Q× Y t

′

gt,t′ (s)
: Q ∈ Q`,ps }

(9.67)
= {Q× Y t

′

gt,t′ (s)
: Q ∈ Q`,pgt,t′ (s)}

(9.66)
= Qt

′

gt,t′ (s)
.

Since gt,t′ is a bijection we conclude that Q`,p+1
t = Q`,p+1

t′ .

Before we proceed we need, first, to introduce some terminology. Specifically, let

U and U ′ be two Carlson–Simpson trees of [k + 1]<N of the same dimension and

consider the canonical isomorphism IU,U ′ associated with the pair U,U ′ described

in §2.5. We say that U and U ′ are (r, k + 1)-equivalent if for every s ∈ U we have

that s and IU,U ′(s) are (r, k + 1)-equivalent.

Now assume that ` = p+ 1 and let Kt and Kt′ be as in (9.33). Our first goal is

to define a map h : Kt → Kt′ with the following properties.

(a) The map h is a bijection.

(b) The map h preserves the lexicographical order.

(c) For every s ∈ Kt we have that s and h(s) are (r, k + 1)-equivalent.

If t = ∅, then h is the identity. Assume that |t| = |t′| = j for some j > 1 and recall

that t∗ and t′∗ are the initial segments of t and t′ respectively of length j − 1. Let

gt∗,t′∗ : Ωt∗ → Ωt′∗ be the map obtained by Fact 5.4. We define

(9.69) h
(
I−1(w)at(j − 1)

)
= I−1(gt∗,t′∗(w))at′(j − 1)

for every w ∈ Ωt∗ . With this choice the aforementioned properties of h follow

readily from the properties of gt∗,t′∗ .

The map h induces a function f : Pt → Pt′ defined by the rule

(9.70) f
(
I(Cs)

)
= I(Ch(s)).

We isolate, for future use, the following properties of f . Their verification is

straightforward.

(d) The function f is a bijection.

(e) For every U,U ′ ∈ Pt if U(0) <lex U
′(0), then f(U)(0) <lex f(U ′)(0).

(f) For every U ∈ Pt we have that U and f(U) are (r, k + 1)-equivalent.

Also observe that for every U ∈ Pt we have

(9.71) ΓU = Γf(U).

This follows by Fact 9.3 and property (f) above. More important, however, is the

relation of the function f with the map gt,t′ . Specifically, for every U ∈ Pt we have

(9.72) {gt,t′(s) : s ∈ U(i0)} = f(U)(i0).

To see this notice, first, that for every s ∈ Kt the set Cs(i0) is an interval, in the

lexicographical order, of [k+ 1]l for some l ∈ {0, . . . ,dim(Vp+1)} depending only on

the length of t (precisely, l = i0 +(i0 +1)|t|). Hence, by (9.34), for every U ∈ Pt the
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set U(i0) is an interval of Vp+1(l) for the same l. Therefore, equality (9.71) follows

by Fact 9.5 and property (e) isolated above.

For every U ∈ Pt and every U ′ ∈ Pt′ we set

(9.73) QtU = {Qx,U
t : x ∈ ΓU} and Qt

′

U ′ = {Qx′,U ′

t′ : x′ ∈ ΓU ′}.

By (9.39), the families {QtU : U ∈ Pt} and {Qt′U ′ : U ′ ∈ Pt′} form partitions of

Qp+1,p+1
t and Qp+1,p+1

t′ respectively. By (9.37), for every U ∈ Pt and U ′ ∈ Pt′ and

every x ∈ ΓU and x′ ∈ ΓU ′ we have

(9.74) Qx,U
t = {x} ×

⋃
s∈U(i0)

Y ts and Qx′,U ′

t′ = {x′} ×
⋃

s′∈U ′(i0)

Y t
′

s′ .

Thus, for every U ∈ Pt,

QtU
(9.73)

= {Qx,U
t : x ∈ ΓU}

(9.74)
=

{
{x} ×

⋃
s∈U(i0)

Y ts : x ∈ ΓU

}
(9.75)

(9.71)
=

{
{x′} ×

⋃
s∈U(i0)

Y ts : x′ ∈ Γf(U)

}
(9.63)

=
{
{x′} ×

⋃
s∈U(i0)

Y t
′

gt,t′ (s)
: x′ ∈ Γf(U)

}
(9.72)

=
{
{x′} ×

⋃
s′∈f(U)(i0)

Y t
′

s′ : x′ ∈ Γf(U)

}
= Qt

′

f(U).

Since f is a bijection we conclude that Qp+1,p+1
t = Qp+1,p+1

t′ . The proof of Claim

9.14 is thus completed. �

By Claims 9.7 up to 9.14, the pair (Vp+1, Lp+1) and the families Q`,p+1
t con-

structed in Steps 1, 2 and 3, satisfy all required conditions. This completes the

recursive selection, and as we have already indicated, the proof of Lemma 9.1 is

also completed.

9.4. Consequences. In this subsection we will isolate what we obtain by iterating

Lemma 9.1. The resulting statement together with Corollary 8.6 form the basis of

the proof of Theorem B. We proceed to the details.

Let k ∈ N with k > 2 and assume that for every integer l > 1 and every

0 < β 6 1 the number DCS(k, l, β) has been defined. We define H : N× (0, 1]→ N
by H(0, γ) = 0 and

(9.76) H(m, γ) = Reg(k + 1, Np0 + 1, 2, γ2/2)

if m > 1, where p0 and Np0 are defined in (9.6) and (9.7) respectively for the

parameters m and γ. Next for every n ∈ {0, . . . , k} we define H(n) : N× (0, 1]→ N
recursively by the rule H(0)(m, γ) = m and

(9.77) H(n+1)(m, γ) = H
(
H(n)(m, γ), γ

)
.
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Finally, for every 0 < γ 6 1 let

(9.78) ξ = ξ(γ) =
γ3k(

21/2 · 32
)3k−1

.

We have the following corollary. It is an immediate consequence of Lemma 9.1.

Corollary 9.15. Let k ∈ N with k > 2 and assume that for every integer l > 1

and every 0 < β 6 1 the number DCS(k, l, β) has been defined.

Let 0 < γ, δ 6 1. Also let V be a Carlson–Simpson tree of [k + 1]<N and let

I be a nonempty subset of {0, . . . ,dim(V )}. Assume that we are given subsets

A,D1, . . . , Dk of [k + 1]<N with the following properties.

(a) For every r ∈ [k] the set Dr is (r, k + 1)-insensitive in V .

(b) We have densV (i)(D1 ∩ · · · ∩Dk ∩A) > (δ+ γ)densV (i)(D1 ∩ · · · ∩Dk) and

densV (i)(D1 ∩ · · · ∩Dk) > γ for every i ∈ I.

Finally, let m ∈ N with m > 1 and suppose that

(9.79) |I| > H(k)(m, ξ)

where H(k) and ξ are defined in (9.77) and (9.78) respectively for the parameters

m and γ. Then there exist a Carlson–Simpson subtree W of V and a subset I ′ of

{0, . . . ,dim(W )} of cardinality m such that

(9.80) densW (i)(A) > δ + ξ

for every i ∈ I ′.

10. Proof of Theorem B

In this section we will complete the proof of Theorem B following the inductive

scheme outlined in §8.1. Notice first that the numbers DCS(2, 1, δ) are estimated

in Proposition 7.1. It is then easy to see that, by induction on m and Corollary

7.6, we may also estimate the numbers DCS(2,m, δ).

Now we argue for the general inductive step. So let k ∈ N with k > 2 and assume

that for every integer l > 1 and every 0 < β 6 1 the number DCS(k, l, β) has been

defined. We fix 0 < δ 6 1. Let η1 be as in (8.33). Recall that

(10.1) η1 =
δ2

120k · |Subtr1

(
[k]<Λ

)
|

where Λ = d8δ−1DCS(k, 1, δ/8)e. We set

(10.2) % = ξ(η2
1/2)

(9.78)
=

(η2
1/2)3k(

21/2 · 32
)3k−1

and we define Fδ : N→ N by the rule

(10.3) Fδ(m) = G1

(⌈
η−4

1 (k + 1)k ·H(k)(m, %)
⌉
, η2

1/2
)
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where G1 and H(k)(m, %) are as in (8.34) and (9.77) respectively. The following

proposition is the heart of the density increment strategy. It follows immediately

by Corollaries 8.6 and 9.15.

Proposition 10.1. Let k ∈ N with k > 2 and assume that for every integer l > 1

and every 0 < β 6 1 the number DCS(k, l, β) has been defined.

Let 0 < δ 6 1 and let L be a nonempty finite subset of N. Also let A ⊆ [k+ 1]<N

such that |A ∩ [k + 1]l| > δ(k + 1)l for every l ∈ L and assume that A contains no

Carlson–Simpson line of [k + 1]<N. Finally, let m ∈ N with m > 1 and suppose

that |L| > Fδ(m) where Fδ is as in (10.3). Then there exist a Carlson–Simpson

tree W of [k + 1]<N and a subset I of {0, . . . ,dim(W )} of cardinality m such that

densW (i)(A) > δ + % for every i ∈ I where % is as in (10.2).

Using Proposition 10.1 the numbers DCS(k+1, 1, δ) can, of course, be estimated

easily. In particular, we have the following corollary.

Corollary 10.2. Let k ∈ N with k > 2 and assume that for every integer l > 1

and every 0 < β 6 1 the number DCS(k, l, β) has been defined. Then for every

0 < δ 6 1 we have

(10.4) DCS(k + 1, 1, δ) 6 F (d%−1e)
δ (1).

Finally, just as in the case “k = 2”, the numbers DCS(k + 1,m, δ) can be

estimated using Corollary 10.2 and Corollary 7.6. This completes the proof of

the general inductive step, and so, the entire proof of Theorem B is completed.

11. Consequences

Our goal in this section is to prove several consequences of Theorem B. These

include Theorem A and Theorem C stated in the introduction, as well as, an ap-

propriate finite version of Theorem C. To state this finite version we need, first, to

introduce some terminology.

Recall that, given two sequences (pn) and (wn) of variable words over k, we

say that (wn) is of pattern (pn) if pn is an initial segment of wn for every n ∈ N.

This notion can, of course, be extended to finite sequences of the same length.

Specifically, given two finite sequences (pn)m−1
n=0 and (wn)m−1

n=0 of variable words

over k, we say that (wn)m−1
n=0 is of pattern (pn)m−1

n=0 if pn is an initial segment of

wn for every n ∈ {0, . . . ,m − 1}. In particular, if p and w are variable words over

k, then w is of pattern p if p is an initial segment of w. We have the following

theorem.

Theorem 11.1. For every integer k > 2, every nonempty finite sequence (τn)m−1
n=0

of positive integers and every 0 < δ 6 1 there exists an integer N with the following

property. If (pn)m−1
n=0 is a finite sequence of variable words over k such that the length

of pn is τn for every n ∈ {0, . . . ,m− 1}, L is a finite subset of N of cardinality at
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least N and A is a subset of [k]<N satisfying dens[k]`(A) > δ for every ` ∈ L, then

there exist a word c over k and a finite sequence (wn)m−1
n=0 of variable words over k

of pattern (pn)m−1
n=0 such that the set

(11.1) {c} ∪
{
caw0(a0)a . . .a wn(an) : n ∈ {0, . . . ,m− 1} and a0, . . . , an ∈ [k]

}
is contained in A. The least integer N with the above property will be denoted by

DP(k, (τn)m−1
n=0 , δ).

The proof of Theorem 11.1 will be given in §11.4. All necessary tools (beside, of

course, Theorem B) are developed in the previous subsections. The corresponding

infinite versions—that is, Theorem A and Theorem C—will be proved in §11.5.

Finally, in §11.6 we discuss how one can derive the density Hales–Jewett theorem

and the density Halpern–Läuchli theorem from Theorems B and A respectively.

11.1. Sparse sets and regularity. We begin with the following definition.

Definition 11.2. Let τ ∈ N with τ > 1 and let L be a nonempty subset of N. We

say that L is τ -sparse if for every l, l′ ∈ L with l 6= l′ we have |l′ − l| > τ . If L is a

τ -sparse subset of N, then we define the τ -extension of L to be the set

(11.2) (L)τ = L+ {0, . . . , τ − 1} = {l + n : l ∈ L and 0 6 n 6 τ − 1}.

Every nonempty subset of N is 1-sparse and coincides with its 1-extension. Also

notice that every subset of N of cardinality at least τ(m−1)+1 contains a τ -sparse

subset of cardinality m. Finally, observe that the notion of τ -sparseness is heredi-

tary, that is, every nonempty subset of a τ -sparse set is τ -sparse.

Much of our interest in sparse sets is related to the following generalized version

of Definition 3.1.

Definition 11.3. Let k ∈ N with k > 2 and let F be a family of subsets of [k]<N.

Also let 0 < ε 6 1, τ ∈ N with τ > 1 and let L be a τ -sparse finite subset of N. The

family F will be called (ε, τ, L)-regular if for every n ∈ L, every I ⊆ {l ∈ L : l < n}
and every y ∈ [k](I)τ we have

(11.3) |dens
(
{z ∈ [k]{m∈N:m<n}\(I)τ : (y, z) ∈ A}

)
− dens(A ∩ [k]n)| 6 ε.

We have the following analogue of Lemma 3.2. It is the main result in this

subsection.

Lemma 11.4. Let 0 < ε 6 1 and k, `, q, τ ∈ N with k > 2 and `, q, τ > 1. Then

there exists an integer n with the following property. If N is a finite τ -sparse subset

of N with |N | > n and F is a family of subsets of [k]<N with |F| = q, then there

exists a subset L of N with |L| = ` such that F is (ε, τ, L)-regular. The least integer

n with this property will be denoted by Regτ (k, `, q, ε).

The proof of Lemma 11.4 is similar to the proof of Lemma 3.2 and is based on

the following consequence of Sublemma 3.7.



A DENSITY VERSION OF THE CARLSON–SIMPSON THEOREM 63

Corollary 11.5. Let k,m, τ, q ∈ N with k > 2 and τ, q > 1. Let 0 < ε < k−τ(m+1)

and let N be a finite τ -sparse subset of N with

(11.4) |N | > (qb16ε−4c+ 1)(m+ 1) + 1.

Finally, let F be a family of subsets of [k]max(N) with |F| = q. Then there exists a

subinterval M of N \ {max(N)} with |M | = m such that for every A ∈ F , every

subset I of (M)τ and every y ∈ [k]I we have |dens(Ay)− dens(A)| 6 ε.

Proof. We set N ′ = N \ {max(N)}. Observe that

(11.5) |(N ′)τ ∪ {max(N)}| = τ(N − 1) + 1 > τ(m+ 1)(qb16ε−4c+ 1) + 1.

By Sublemma 3.7, there exists a subinterval M ′ of (N ′)τ with |M ′| = τ(m + 1)

such that for every A ∈ F , every subset I of M ′ and every y ∈ [k]I we have

(11.6) |dens(Ay)− dens(A)| 6 ε.

Since M ′ is subinterval of (N ′)τ of cardinality τ(m + 1), it is possible to select

a subinterval M of N ′ of cardinality m such that (M)τ ⊆ M ′. Clearly M is as

desired. �

We are ready to proceed to the proof of Lemma 11.4.

Proof of Lemma 11.4. We set % = min{ε, k−τ(`+1)/2} and we define F̃ : N→ N by

(11.7) F̃ (m) = (qb16%−4c+ 1)(m+ 1) + 1.

Arguing precisely as in the proof of Lemma 3.2 and using Corollary 11.5 instead of

Sublemma 3.7, we see that

(11.8) Regτ (k, `, q, ε) 6 F̃ (`)(0)

and the proof is completed. �

11.2. The (p, L)-restriction of [k]<N. We are about to introduce a family of

subsets of [k]<N which are the analogues of Carlson–Simpson trees in the context

of variable words of a fixed pattern p.

Definition 11.6. Let k, τ ∈ N with k > 2 and τ > 1. Let p be a variable word over

k of length τ and L = {l0 < · · · < l|L|−1} a τ -sparse finite subset of N. Recursively,

for every i ∈ {0, . . . , |L| − 1} we define a subset Rp,L(i) of [k]li as follows. We set

Rp,L(0) = [k]l0 . Assume that Rp,L(i) has been defined for some i ∈ {0, . . . , |L|−2}.
Then we set

(11.9) Rp,L(i+ 1) =
{
xap(a)ay : x ∈ Rp,L(i), a ∈ [k] and y ∈ [k]li+1−li−τ

}
.

We define the (p, L)-restriction of [k]<N to be the set

(11.10) Rp,L =

|L|−1⋃
i=0

Rp,L(i).
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Notice that the (p, L)-restriction Rp,L is a rather “thin” subset of [k]<N. So, if

we are given a subset A of [k]<N it is likely that the density of A inside Rp,L will be

negligible. This phenomenon, however, does not occur as long as A is sufficiently

regular. In particular, we have the following lemma. Its proof is a straightforward

consequence of the relevant definitions.

Lemma 11.7. Let k, τ ∈ N with k > 2 and τ > 1. Let p be a variable word over k

of length τ and L = {l0 < · · · < l|L|−1} a τ -sparse finite subset of N. Let 0 < ε 6 1

and let F be a family of subsets of [k]<N which is (ε, τ, L)-regular. Then

(11.11) |densRp,L(i)(A)− dens[k]li (A)| 6 ε

for every i ∈ {0, . . . , |L| − 1} and every A ∈ F .

We will need to parameterize the (p, L)-restriction Rp,L of [k]<N in a “canonical”

way. This is, essentially, the content of the following definition.

Definition 11.8. Let k, τ ∈ N with k > 2 and τ > 1. Let p be a variable word over

k of length τ and L = {l0 < · · · < l|L|−1} a τ -sparse finite subset of N. For every

i ∈ {0, . . . , |L| − 1} we set l′i = li − iτ + i and we define

(11.12) L(τ) =
{
l′i : i = 0, . . . , |L| − 1

}
.

Recursively we define a bijection

(11.13) Φp,L :
⋃

l∈L(τ)

[k]l → Rp,L

as follows. For every x ∈ [k]l
′
0 = [k]l0 we set Φp,L(x) = x. Let i ∈ {0, . . . , |L| − 2}

and assume that Φp,L(y) has been defined for every y ∈ [k]l
′
i . Then for every

x ∈ [k]l
′
i+1 we define

(11.14) Φp,L(x) = Φp,L(x1)ap(ax)ax2

where x1 =
(
x(0), . . . , x(l′i − 1)

)
, ax = x(l′i) and x2 =

(
x(l′i + 1), . . . , x(l′i+1 − 1)

)
.

We isolate, for future use, some elementary properties of the map Φp,L.

Lemma 11.9. Let k, τ ∈ N with k > 2 and τ > 1. Let p be a variable word

over k of length τ and L = {l0 < · · · < l|L|−1} a τ -sparse finite subset of N. Let

L(r) = {l′i : i = 0, . . . , |L| − 1} be as in (11.12). Then the following are satisfied.

(i) For every i ∈ {0, . . . , |L| − 1} we have Φp,L
(
[k]l

′
i

)
= Rp,L(i).

(ii) For every Carlson–Simpson line W of [k]<N with L(W ) ⊆ L(τ) its image

Φp,L(W ) under the map Φp,L is of the form {c} ∪ {caw(a) : a ∈ [k]} where

c is a word over k and w is a variable word over k of pattern p.

(iii) If F is a family of subsets of [k]<N which is F is (ε, τ, L)-regular for some

0 < ε 6 1, then for every i ∈ {0, . . . , |L| − 1} and every A ∈ F we have

(11.15) |dens
[k]l
′
i

(
Φ−1
p,L(A)

)
− dens[k]li (A)| 6 ε.
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Parts (i) and (ii) of Lemma 11.9 are immediate consequences of Definition 11.8.

Part (iii) follows easily by Lemma 11.7. We leave the details to the reader.

11.3. Preliminary lemmas. As in (7.15) and (7.16) for every k ∈ N with k > 2

and every 0 < δ 6 1 we set

(11.16) Λ(k, 1, δ) = dδ−1DCS(k, 1, δ)e

and

(11.17) Θ(k, 1, δ) =
2δ

|Subtr1

(
[k]<Λ(k,1,δ)

)
|
.

We have the following analogue of Lemma 7.9.

Lemma 11.10. Let k ∈ N with k > 2 and 0 < ρ, γ 6 1. Also let τ ∈ N with τ > 1

and let M be a finite subset of N with

(11.18) |M | > τ · Regτ
(
k,Λ(k, 1, ργ/8), 1, ρ/2

)
where Λ(k, 1, ργ/8) is as in (11.16). Finally let B ⊆ [k]<N with dens[k]n(B) > ρ

for every n ∈ M . If {At : t ∈ B} is a family of measurable events in a probability

space (Ω,Σ, µ) satisfying µ(At) > γ for every t ∈ B, then for every variable word

p over k of length τ there exist a word c over k and a variable word w over k of

pattern p such that, setting V = {c} ∪ {caw(a) : a ∈ [k]}, we have V ⊆ B and

(11.19) µ
( ⋂
t∈V

At

)
> Θ(k, 1, ργ/8)

where Θ(k, 1, ργ/8) is as in (11.17).

Proof. By (11.18), we may select a τ -sparse subset N of M with

(11.20) |N | > Regτ
(
k,Λ(k, 1, ργ/8), 1, ρ/2

)
.

By Lemma 11.4, there exists a subset L of N with |L| = Λ(k, 1, ργ/8) such that

the family F := {B} is (ρ/2, τ, L)-regular.

Fix a variable word p over k of length τ . Let L(τ) and Φp,L be as in Definition

11.8. We set B′ = Φ−1
p,L(B). Since the singleton {B} is (ρ/2, τ, L)-regular and

dens[k]l(B) > ρ for every l ∈ L, by part (iii) of Lemma 11.9, we obtain that

dens[k]l′ (B
′) > ρ/2 for every l′ ∈ L(τ). Next for every t′ ∈ B′ let Ct′ = AΦp,L(t′).

By our assumptions we have µ(At) > γ for every t ∈ B, and so, µ(Ct′) > γ for

every t′ ∈ B′. Finally notice that |L(τ)| = |L| = Λ(k, 1, ργ/8). By the previous

discussion, we may apply Lemma 7.9 and we obtain a Carlson–Simpson line V ′ ⊆ B′

with L(V ′) ⊆ L(τ) and such that

(11.21) µ
( ⋂
t′∈V ′

Ct′
)
> Θ(k, 1, ργ/8).

We set V = Φp,L(V ′). By part (ii) of Lemma 11.9 and (11.21), we see that V is as

desired. The proof is completed. �
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To state the next result we need to introduce some numerical invariants. Specif-

ically, for every k, τ ∈ N with k > 2 and τ > 1 and every 0 < δ 6 1 we set

(11.22) ΛP = ΛP (k, δ) = Λ(k, 1, δ2/32) and ΘP = ΘP (k, δ) = Θ(k, 1, δ2/32)

and we define hτ,δ : N→ N by the rule

(11.23) hτ,δ(n) = τ · Regτ (k,ΛP , 1, δ/4) + d2Θ−1
P · ne.

The following proposition corresponds to Proposition 7.5.

Proposition 11.11. Let k ∈ N with k > 2 and 0 < δ 6 1 and define ΛP and ΘP

as in (11.22). Also let τ ∈ N with τ > 1, let L be a nonempty finite subset of N
and let A be a subset of [k]<N such that dens[k]l(A) > δ for every l ∈ L. Finally, let

n ∈ N with n > 1 and assume that |L| > hτ,δ(n) where hτ,δ is as in (11.23). Then,

setting L0 to be the set of the first ΛP elements of L, we have that either

(i) there exist a subset L′ of L \ L0 with |L′| > n and a word t0 ∈ [k]`0 for

some `0 ∈ L0 such that

(11.24) dens[k]`−`0

(
{s ∈ [k]<N : ta0 s ∈ A}

)
> δ + δ2/8

for every ` ∈ L′, or

(ii) for every variable word p over k of length τ there exist a word c over k, a

variable word w over k of pattern p and a subset L′′ of L\L0 with |L′′| > n
such that the following are satisfied.

(a) The set V = {c} ∪ {caw(a) : a ∈ [k]} is contained in
⋃
`∈L0

A ∩ [k]`.

(b) Setting V (1) = {caw(a) : a ∈ [k]} and `1 the unique integer with

V (1) ⊆ [k]`1 , for every ` ∈ L′′ we have

(11.25) dens[k]`−`1

(
{s ∈ [k]<N : tas ∈ A for every t ∈ V (1)}

)
> ΘP /2.

The proof of Proposition 11.11 is identical to the proof of Proposition 7.5 using

Lemma 11.10 instead of Lemma 7.9. The details are left to the reader.

We close this subsection with the following consequence of Proposition 11.11. It

is the main tool for the proof of Theorem C.

Corollary 11.12. Let k ∈ N with k > 2 and 0 < δ 6 1. Also let L be an infinite

subset of N and let A be a subset of [k]<N such that dens[k]l(A) > δ for every l ∈ L.

Then for every variable word p over k there exist a word c over k, a variable word

w over k of pattern p and an infinite subset L′ of L with the following properties.

(i) The set V = {c} ∪ {caw(a) : a ∈ [k]} is contained in
⋃
`∈L0

A ∩ [k]` where

L0 = {` ∈ L : ` < min(L′)}.
(ii) Setting V (1) = {caw(a) : a ∈ [k]} and `1 the unique integer such that

V (1) ⊆ [k]`1 , for every ` ∈ L′ we have

(11.26) dens[k]`−`1

(
{s ∈ [k]<N : tas ∈ A for every t ∈ V (1)}

)
> 2−1ΘP (k, δ/2)

where ΘP (k, δ/2) is as in (11.22).
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Proof. For every t ∈ [k]<N set At = {s ∈ [k]<N : tas ∈ A} and define

(11.27) δt = lim sup
`∈L

dens[k]`−|t|(At).

We set δ∗ = supt∈[k]<N δt and we notice that δ 6 δ∗ 6 1. Hence, we may select

0 < δ0 6 1, t0 ∈ [k]<N and an infinite subset M of L with min(M) > |t0| such that

(11.28) δ/2 < δ0 < δ∗ < δ0 + δ2
0/8

and

(11.29) δ0 < dens[k]`−|t0|(At0)

for every ` ∈M .

Fix a variable word p over k and denote by τ its length. Let M0 be the initial

segment of M of cardinality

(11.30) |M0| = τ · Regτ (k,ΛP (k, δ0), 1, δ/4).

By the definition of δ∗ and (11.28), there exists q ∈ M \M0 such that for every

s ∈
⋃
`∈M0

[k]`−|t0| and every ` ∈M with ` > q we have

(11.31) dens
[k]`−|t

a
0 s|

(Ata0 s
) < δ0 + δ2

0/8.

We set d = d2ΘP (k, δ0)−1e and we select a sequence (En) of pairwise disjoint

subsets of {m ∈M : m > q} such that |En| = d for every n ∈ N.

Let n ∈ N be arbitrary. We set Fn = M0 ∪ En and we observe that

(11.32) |Fn| = |M0|+ |En|
(11.30)

= τ · Regτ (k,ΛP (k, δ0), 1, δ/4) + d
(11.23)

= hτ,δ0(1).

By (11.32), we may apply Proposition 11.11. Notice that the first alternative of

Proposition 11.11 contradicts (11.31). Hence, there exist a word cn over k, a variable

word wn over k of pattern p and mn ∈ En such that

(11.33) Vn = {cn} ∪ {canwn(a) : a ∈ [k]} ⊆
⋃
`∈M0

At0 ∩ [k]`−|t0|

and, setting Qn = {s ∈ [k]<N : tas ∈ At0 for every t ∈ Vn(1)},

(11.34) dens[k]mn−`n−|t0|(Qn) > 2−1ΘP (k, δ0)
(11.28)

> 2−1ΘP (k, δ/2)

where Vn(1) = {canwn(a) : a ∈ [k]} and `n is the unique integer with Vn(1) ⊆ [k]`n .

By the classical pigeonhole principle, there exists an infinite subset N of N, a

word c′ over k and a variable word w over k of pattern p such that cn = c′ and

wn = w for every n ∈ N . We set L′ = {mn : n ∈ N} and c = ta0 c
′. Using (11.33)

and (11.34) it is easy to see that L′, c and w are as desired. �

11.4. Proof of Theorem 11.1. The proof proceeds by induction on m. For

“m = 1” we notice that

(11.35) DP(k, τ, δ) 6 τ · Regτ (τ,Λ(k, 1, δ/8), 1, δ/2)
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for every 0 < δ 6 1 and every k, τ ∈ N with k > 2 and τ > 1. Indeed, let M be a

finite subset of N with |M | > τ ·Regτ (k,Λ(k, 1, δ/8), 1, δ/2), and let A be a subset

of [k]<N such that dens[k]n(A) > δ for every n ∈ M . Let (Ω,Σ, µ) be an arbitrary

probability space and set At = Ω for every t ∈ A. By Lemma 11.10 applied for

“ρ = δ”, “γ = 1” and “B = A”, we see that (11.35) is satisfied.

Let m ∈ N with m > 1 and assume that for every integer k > 2, every

0 < β 6 1 and every finite sequence (σn)m−1
n=0 of positive integers the number

DP(k, (σn)m−1
n=0 , β) has been defined. Let k > 2, 0 < δ 6 1 and τ0, . . . , τm ∈ N with

τ0, . . . , τm > 1 be arbitrary. We set τ ′n = τn+1 for every n ∈ {0, . . . ,m− 1} and

(11.36) N0 = DP(k, (τ ′n)m−1
n=0 ,ΘP /2).

We claim that

(11.37) DP(k, (τn)mn=0, δ) 6 h
(d8δ−2e)
τ0,δ

(N0).

Clearly this will finish the proof. To see that (11.37) is satisfied let L be a finite sub-

set of N with |L| > h(d8δ−2e)
τ0,δ

(N0), and let A be a subset of [k]<N with dens[k]l(A) > δ

for every l ∈ L. Also fix a finite sequence (pn)mn=0 of variable words over k with

|pn| = τn for every n ∈ {0, . . . ,m}. By our assumptions on the cardinality of the

set L and repeated applications of Proposition 11.11 for “τ = τ0” and “p = p0”, we

see that there exist a word c over k, a variable word w over k of pattern p0 and a

subset L′′ of L with

(11.38) |L′′| > N0
(11.36)

= DP(k, (τ ′n)m−1
n=0 ,ΘP /2)

such that the following properties are satisfied.

(a) The set V = {c} ∪ {caw(a) : a ∈ [k]} is contained in A. Moreover, setting

V (1) = {caw(a) : a ∈ [k]} and `1 the unique integer with V (1) ⊆ [k]`1 , we

have `1 < min(L′′).

(b) For every ` ∈ L′′ we have

(11.39) dens[k]`−`1 (∆) > ΘP /2

where ∆ = {s ∈ [k]<N : tas ∈ A for every t ∈ V (1)}.

For every n ∈ {0, . . . ,m− 1} we set p′n = pn+1 and we notice that the length of p′n
is τ ′n. Therefore, by (11.38) and (11.39) and our inductive assumptions, there exist

a word c′ over k and a finite sequence (w′n)m−1
n=0 of variable words over k of pattern

(p′n)m−1
n=0 such that the set

(11.40) {c′} ∪
{
caw′0(a0)a . . .a w′n(an) : n ∈ {0, . . . ,m− 1} and a0, . . . , an ∈ [k]

}
is contained in ∆. We set w0 = wac′ and wn = w′n−1 for every n ∈ [m]. It is easily

verified that the set

(11.41) {c} ∪
{
caw0(a0)a . . .a wn(an) : n ∈ {0, . . . ,m} and a0, . . . , an ∈ [k]

}
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is contained in A. This shows that (11.37) is satisfied and so the proof of Theorem

11.1 is completed.

11.5. Proofs of Theorem A and Theorem C. As we indicated in the introduc-

tion, Theorem A is a special case of Theorem C. Indeed, let k ∈ N with k > 2 and

set qn = (v) for every n ∈ N. Notice that a sequence (wn) of variable words over k

consists of left variable words if and only if it is of pattern (qn). Thus, Theorem A

follows from Theorem C applied to the sequence (qn).

So, we only need to prove Theorem C. To this end, fix an integer k > 2 and a

sequence (pn) of variable words over k. Let 0 < δ 6 1 and A ⊆ [k]<N such that

(11.42) lim sup
n→∞

|A ∩ [k]n|
kn

> δ.

We fix an infinite subset L of N such that dens[k]`(A) > δ for every ` ∈ L. Recur-

sively, we define a sequence (δn) in (0, 1] by the rule

(11.43) δ0 = δ and δn+1 = 2−1ΘP (k, δn/2).

Using Corollary 11.12 we may select

(i) a sequence (cn) of words over k,

(ii) a sequence (vn) of variable words over k of pattern (pn),

(iii) a sequence (An) of subsets of [k]<N with A0 = A and

(iv) two sequences (Ln) and (L′n) of infinite subsets of N
such that for every n ∈ N the following conditions are satisfied.

(C1) The set L′n is contained in Ln; moreover, L0 = L.

(C2) The set Vn = {cn} ∪ {can vn(a) : a ∈ [k]} is contained in
⋃
`∈L0

n
An ∩ [k]`

where L0
n = {` ∈ Ln : ` < min(L′n)}.

(C3) Let Vn(1) = {can vn(a) : a ∈ [k]} and let `n be the unique integer such that

Vn(1) ⊆ [k]`n . Then

(11.44) An+1 = {s ∈ [k]<N : tas ∈ An for every t ∈ Vn(1)}

and

(11.45) Ln+1 = L′n − `n = {`− `n : ` ∈ L′n}.

(C4) For every ` ∈ Ln we have dens[k]`
(
An
)
> δn.

The recursive selection is fairly standard and the details are left to the reader.

We set c = c0 and wn = van cn+1 for every n ∈ N. By (ii) above, the sequence

(wn) is of pattern (pn). Moreover, using conditions (C2) and (C3), it is easily

verified that the set

(11.46) {c} ∪
{
caw0(a0)a . . .a wn(an) : n ∈ N and a0, . . . , an ∈ [k]

}
is contained in A. The proof of Theorem C is completed.

11.6. Further implications. In this subsection we will discuss the relation of

Theorem B and Theorem A with the density Hales–Jewett Theorem and the density
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Halpern–Läuchli Theorem respectively. Notice, first, that the density Hales–Jewett

Theorem follows from Theorem A via a standard compactness argument. In fact,

we have the following finer quantitative information.

Proposition 11.13. For every integer k > 2 and every 0 < δ 6 1 we have

(11.47) DHJ(k, δ) 6 DCS(k, 1, δ).

Proof. Let n > DCS(k, 1, δ) and fix a subset A of [k]n with |A| > δkn. For every

` ∈ [n] and every y ∈ [k]n−` let Ay = {x ∈ [k]` : yax ∈ A} and observe that

(11.48) Ey∈[k]n−`dens(Ay) = dens(A) > δ.

Hence, for every ` ∈ [n] we may select y` ∈ [k]n−` such that dens(Ay`) > δ. We set

(11.49) B =
⋃
`∈[n]

Ay`

and we notice that dens[k]`(B) > δ for every ` ∈ [n]. Since n > DCS(k, 1, δ), there

exists a Carlson–Simpson line R of [k]<N which is contained in B. Let (c, w) be

the generating sequence of R. Also let `R ∈ [n] be the unique integer such that the

1-level R(1) of R is contained in [k]`R . Then, setting

(11.50) V = {ya`Rc
aw(a) : a ∈ [k]},

we see that V is a combinatorial line of [k]n and V ⊆ A. This shows that (11.47)

is satisfied, as desired. �

We proceed to discuss how one can deduce the density Halpern–Läuchli theo-

rem from Theorem A. The argument is well-known (see, e.g., [6, 29]) but we will

comment on it for the benefit of the reader.

Recall that a tree is a partially ordered set (T,<) such that the set {s ∈ T : s < t}
is finite and linearly ordered under < for every t ∈ T . A tree T is said to be

homogeneous if it is uniquely rooted and there exists an integer b > 2, called the

branching number of T , such that every t ∈ T has exactly b immediate successors.

A typical example of a homogeneous tree with branching number b > 2 is the

set consisting of all finite sequence having values in a set A of cardinality b and

equipped with the partial order of end-extension; it is denoted by A<N and can, of

course, be identified with [b]<N. Part of the interest in homogeneous trees of this

form is based on the fact that they can be used to “code” the level product

(11.51) ⊗(T1, . . . , Td) :=
⋃
n∈N

T1(n)× · · · × Td(n)

of a finite sequence (T1, . . . , Td) of homogeneous trees. Specifically, we have the

following lemma.

Lemma 11.14. Let d ∈ N with d > 1. Also let b = (b1, . . . , bd) ∈ Nd with bi > 2

for every i ∈ [d] and set Ab = [b1] × · · · × [bd]. Finally let (T1, . . . , Td) be a finite
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sequence of homogeneous trees such that the branching number of Ti is bi for every

i ∈ [d]. Then there exists a bijection

(11.52) Φb : A<N
b → ⊗(T1, . . . , Td)

with the following properties.

(i) For every n ∈ N we have Φb(Anb) = T1(n)× · · · × Td(n).

(ii) For every c ∈ A<N
b and every sequence (wn) of left variable words over

Ab there exist strong subtrees (S1, . . . , Sd) of (T1, . . . , Td) having a common

level set such that, setting

(11.53) S = {c} ∪
{
caw0(a0)a . . .a wn(an) : n ∈ N and a0, . . . , an ∈ Ab

}
,

we have Φb(S) = ⊗(S1, . . . , Sd).

Proof. Let i ∈ [d] be arbitrary, and let πi : Ab → [bi] denote the natural projection.

Clearly we may assume that the tree Ti coincides with [bi]
<N and so we may consider

the “extension” π̄i : A<N
b → Ti of πi defined by π̄i(∅) = ∅ and

(11.54) π̄i
(
(a0, . . . , an−1)

)
=
(
πi(a0), . . . , πi(an−1)

)
for every integer n > 1 and every (a0, . . . , an−1) ∈ Anb. The map Φb is then defined

by the rule

(11.55) Φb(s) =
(
π̄1(s), . . . , π̄d(s)

)
.

It is easily verified that Φb is a bijection and satisfies all desired properties. �

With Lemma 11.14 at our disposal, let us see how Theorem A yields the den-

sity Halpern–Läuchli theorem. To this end, fix a finite sequence (T1, . . . , Td) of

homogeneous trees and a subset A of the level product of (T1, . . . , Td) such that

(11.56) lim sup
n→∞

|A ∩
(
T1(n)× · · · × Td(n)

)
|

|T1(n)× · · · × Td(n)|
> 0.

Let b = (b1, . . . , bd) where bi is the branching number of the tree Ti for every i ∈ [d]

and consider the bijection Φb obtained by Lemma 11.14. We set B = Φ−1
b (A). By

part (i) of Lemma 11.14 and (11.56), we see that

(11.57) lim sup
n→∞

|B ∩ Anb|
|Ab|n

> 0.

Hence, by Theorem A, there exist c ∈ A<N
b and a sequence (wn) of left variable

words over Ab such that the set

(11.58) {c} ∪
{
caw0(a0)a . . .a wn(an) : n ∈ N and a0, . . . , an ∈ Ab

}
is contained in B. Invoking the definition of the set B and part (ii) of Lemma 11.14,

we conclude that there exist strong subtrees (S1, . . . , Sd) of (T1, . . . , Td) having a

common level set such that the level product of (S1, . . . , Sd) is contained in A.
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