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Abstract. We prove a “uniform” version of the finite density Halpern–Läuchli

theorem. Specifically, we say that a tree T is homogeneous if it is uniquely

rooted and there is an integer b > 2, called the branching number of T , such

that every t ∈ T has exactly b immediate successors. We show the following.

For every integer d > 1, every b1, . . . , bd ∈ N with bi > 2 for all i ∈ {1, . . . , d},
every integer k > 1 and every real 0 < ε 6 1 there exists an integer N with

the following property. If (T1, . . . , Td) are homogeneous trees such that the

branching number of Ti is bi for all i ∈ {1, . . . , d}, L is a finite subset of N
of cardinality at least N and D is a subset of the level product of (T1, . . . , Td)

satisfying

|D ∩
(
T1(n)× · · · × Td(n)

)
| > ε|T1(n)× · · · × Td(n)|

for every n ∈ L, then there exist strong subtrees (S1, . . . , Sd) of (T1, . . . , Td) of

height k and with a common level set such that the level product of (S1, . . . , Sd)

is contained in D. The least integer N with this property will be denoted by

UDHL(b1, . . . , bd|k, ε).

The main point is that the result is independent of the position of the finite

set L. The proof is based on a density increment strategy and gives explicit

upper bounds for the numbers UDHL(b1, . . . , bd|k, ε).

1. Introduction

1.1. Statement of the problem and the main result. It is well-known that

several results in Ramsey theory have an infinite and a finite version. While the

proofs of the infinite versions are usually conceptually “cleaner” and yield formally

stronger results (see, e.g., [22]), an analysis of the corresponding finite versions

gives explicit and non-trivial estimates for certain numerical invariants commonly

known as Ramsey numbers. These invariants are of fundamental importance and

are central for the development of Ramsey theory (see [13]).

The main goal of the present paper is to give an effective proof of a “uniform”

version of the finite density Halpern–Läuchli theorem and to obtain quantitative

information on the corresponding “density Halpern–Läuchli” numbers. To proceed

with our discussion it is useful at this point to recall the Halpern–Läuchli theo-

rem [15]. It is a rather deep pigeonhole principle for trees. It has several equivalent

2000 Mathematics Subject Classification: 05D10, 05C05.

Key words: homogeneous trees, vector trees, strong subtrees, level product, density.

The first named author was supported by NSF grant DMS-0903558.

1



2 PANDELIS DODOS, VASSILIS KANELLOPOULOS AND KONSTANTINOS TYROS

forms which are discussed in great detail in [33, §3.1]. We will state the “strong

subtree version” which is the most important one from a combinatorial perspective.

Theorem 1. For every integer d > 1, every tuple (T1, . . . , Td) of uniquely rooted

and finitely branching trees without maximal nodes and every finite coloring of the

level product ⋃
n∈N

T1(n)× · · · × Td(n)

of (T1, . . . , Td) there exist strong subtrees (S1, . . . , Sd) of (T1, . . . , Td) of infinite

height and with a common level set such that the level product of (S1, . . . , Sd) is

monochromatic.

We recall that a subtree S of a tree (T,<) is said to be strong if: (a) S is uniquely

rooted and balanced (that is, all maximal chains of S have the same cardinality),

(b) every level of S is a subset of some level of T , and (c) for every non-maximal node

s ∈ S and every immediate successor t of s in T there exists a unique immediate

successor s′ of s in S with t 6 s′. The level set of a strong subtree S of a tree T is

the set of levels of T containing a node of S.

Although the notion of a strong subtree was isolated in the 1960s, it was high-

lighted with the work of Milliken in [19, 20] who used Theorem 1 to show that the

family of strong subtrees of a uniquely rooted and finitely branching tree is partition

regular. The Halpern–Läuchli theorem and Milliken’s theorem can be considered

as the starting point of Ramsey theory for trees, a rich area of combinatorics with

significant applications, most notably in the geometry of Banach spaces (see, for

instance, [3, 4, 5, 11, 16, 17, 18, 33] and [1, 6, 30, 32] for applications).

Theorem 1 has a density version that was conjectured by Laver in the late 1960s

and obtained, recently, in [7]. To state it let us recall that a tree T is said to be

homogeneous if it is uniquely rooted and there exists an integer b > 2, called the

branching number of T , such that every t ∈ T has exactly b immediate successors.

Theorem 2. For every integer d > 1, every tuple (T1, . . . , Td) of homogeneous

trees and every subset D of the level product of (T1, . . . , Td) satisfying

lim sup
n→∞

|D ∩
(
T1(n)× · · · × Td(n)

)
|

|T1(n)× · · · × Td(n)|
> 0

there exist strong subtrees (S1, . . . , Sd) of (T1, . . . , Td) of infinite height and with a

common level set such that the level product of (S1, . . . , Sd) is contained in D.

We should point out that the assumption in Theorem 2 that the trees (T1, . . . , Td)

are homogeneous is not redundant. On the contrary, various examples given in [2]

show that it is essentially optimal.

While Theorem 2 is infinite-dimensional, it has a finite counterpart which is

obtained via a standard compactness argument. Precisely, it follows by Theorem 2

that for every integer d > 1, every b1, . . . , bd ∈ N with bi > 2 for all i ∈ {1, . . . , d},
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every integer k > 1, every real 0 < ε 6 1 and every M = {m0 < m1 < · · · } infinite

subset of N, there exists an integer N with the following property. If (T1, . . . , Td)

is a tuple of homogeneous trees such that the branching number of Ti is bi for all

i ∈ {1, . . . , d} and D is a subset of the level product of (T1, . . . , Td) satisfying

|D ∩
(
T1(mn)× · · · × Td(mn)

)
| > ε|T1(mn)× · · · × Td(mn)|

for every n 6 N , then there exist strong subtrees (S1, . . . , Sd) of (T1, . . . , Td) of

height k and with a common level set such that the level product of (S1, . . . , Sd)

is contained in D. We shall denote the least integer N with this property by

DHL(b1, . . . , bd|k, ε,M). We emphasize that the compactness argument yields that

the integer DHL(b1, . . . , bd|k, ε,M) depends on the choice of the infinite set M .

There are two basic problems left open by the previous approach. The first

one is to provide explicit upper bounds for the numbers DHL(b1, . . . , bd|k, ε,M).

This is, of course, related to the ineffectiveness of the compactness method. The

second problem lies deeper and concerns the uniform boundedness of the numbers

DHL(b1, . . . , bd|k, ε,M) with respect to the last parameter. Precisely, if the pa-

rameters b1, . . . , bd, k and ε are fixed, then does there exist an integer j such that

DHL(b1, . . . , bd|k, ε,M) 6 j for every infinite subset M of N? In other words, is it

true that a finite subset of the level product of a fixed tuple of homogeneous trees

will necessarily contain a “substructure” as long as it is dense in sufficiently many

levels? This information is needed in various applications ([8]) and constitutes the

proper finite analog of Theorem 2.

Our main result answers the above questions. Precisely, we show the following

theorem.

Theorem 3. For every integer d > 1, every b1, . . . , bd ∈ N with bi > 2 for all

i ∈ {1, . . . , d}, every integer k > 1 and every real 0 < ε 6 1 there exists an

integer N with the following property. If (T1, . . . , Td) are homogeneous trees such

that the branching number of Ti is bi for all i ∈ {1, . . . , d}, L is a finite subset of

N of cardinality at least N and D is a subset of the level product of (T1, . . . , Td)

satisfying

|D ∩
(
T1(n)× · · · × Td(n)

)
| > ε|T1(n)× · · · × Td(n)|

for every n ∈ L, then there exist strong subtrees (S1, . . . , Sd) of (T1, . . . , Td) of

height k and with a common level set such that the level product of (S1, . . . , Sd)

is contained in D. The least integer N with this property will be denoted by

UDHL(b1, . . . , bd|k, ε).

As we have already mentioned, the proof of Theorem 3 is effective and gives

explicit upper bounds for the numbers UDHL(b1, . . . , bd|k, ε). These upper bounds

are admittedly rather weak; they have an Ackermann-type dependence with respect

to the “dimension” d. However, they are in line with several other bounds obtained

recently in the area; see [12, 23, 25].
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1.2. Related work. There are several results in the literature closely related to

the one-dimensional case of Theorem 3, namely when we deal with a single homo-

geneous tree. The earliest reference we are aware of is the paper [2] by Bicker and

Voigt, though related problems have been circulated among experts much earlier.

The first significant progress, however, was made by Furstenberg and Weiss in [10]

who obtained a “parameterized” version of Szémerdi’s theorem on arithmetic pro-

gressions [31]. Specifically, it was shown in [10] that for every integer b > 2, every

integer k > 1 and every real 0 < ε 6 1 there exists an integer N with the following

property. If T is a finite homogeneous tree with branching number b and of height

at least N , L is a subset of {0, . . . , h(T )− 1} of cardinality at least εh(T ) and D is

a subset of T satisfying

|D ∩ T (n)| > ε|T (n)|

for every n ∈ L, then D contains a strong subtree of T of height k whose level

set is an arithmetic progression. We shall denote by FW(b|k, ε) the least integer

N with this property. The method in [10] was qualitative in nature, and as such,

could not provide explicit estimates for the numbers FW(b|k, ε). The work of

Furstenberg and Weiss was revisited, recently, in [21] by Pach, Solymosi and Tardos

who effectively reduced the aforementioned result to Szémeredi’s theorem with an

elegant combinatorial argument. It follows, in particular, from the analysis in [21]

that UDHL(b|k, ε) = Ob,ε(k), an upper bound which is essentially optimal.

The proof, however, of the higher-dimensional case of Theorem 3 follows quite

different arguments and is closer in spirit to Polymath’s proof [23] of the density

Hales–Jewett theorem [9]. It proceeds by induction on the “dimension” d and is

based on a density increment strategy, a powerful and fruitful method pioneered

by Roth [27].

1.3. Organization of the paper. The paper is organized as follows. In §2 we

gather some background material. In §3 we introduce the concept of a level selec-

tion. It is a natural notion permitting us to reduce the proof of our main result to

the study of certain dense subsets with special properties. In §4 we give a detailed

outline of the proof of Theorem 3 emphasizing, in particular, its main features. In

the next three sections, §5-§7, we prove several preparatory results. We notice that

these sections are largely independent of each other and can be read separately.

This material is used in §8 which contains the last step of the argument. Finally,

the proof of Theorem 3 is given in §9.

To facilitate the interested reader we have also included, in an appendix, a

sketch of the proof of the multidimensional version of Milliken’s theorem [20]. This

result and the corresponding bounds are needed for the proof of Theorem 3. The

arguments are essentially borrowed from [29] and are included for completeness.
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2. Background material

By N = {0, 1, 2, . . . } we shall denote the natural numbers. The cardinality of

a set X will be denoted by |X| while its powerset will be denoted by P(X). If

X is a nonempty finite set, then by Ex∈X we shall denote the average 1
|X|
∑
x∈X .

If it is clear from the context which set X we are referring to, then this average

will be denoted simply by Ex. For every function f : N → N and every k ∈ N by

f (k) : N→ N we shall denote the k-th iteration of f defined recursively by the rule

f (0)(n) = n and f (k+1)(n) = f
(
f (k)(n)

)
for every n ∈ N.

2.1. Trees. By the term tree we mean a nonempty partially ordered set (T,<) such

that the set {s ∈ T : s < t} is finite and linearly ordered under < for every t ∈ T .

The cardinality of this set is defined to be the length of t in T and will be denoted

by `T (t). For every n ∈ N the n-level of T , denoted by T (n), is defined to be the

set {t ∈ T : `T (t) = n}. The height of T , denoted by h(T ), is defined as follows. If

there exists k ∈ N with T (k) = ∅, then we set h(T ) = max{n ∈ N : T (n) 6= ∅}+ 1;

otherwise, we set h(T ) =∞.

For every node t of a tree T the set of successors of t in T is defined by

(1) SuccT (t) = {s ∈ T : t 6 s}.

The set of immediate successors of t in T is the subset of SuccT (t) defined by

ImmSuccT (t) = {s ∈ T : t 6 s and `T (s) = `T (t) + 1}. A node t ∈ T is said to be

maximal if the set ImmSuccT (t) is empty.

Let n ∈ N with n < h(T ) and F ⊆ T (n). The density of F is defined by

(2) dens(F ) :=
|F |
|T (n)|

.

More generally, for every m ∈ N with m 6 n and every t ∈ T (m) the density of F

relative to the node t is defined by

(3) dens(F | t) :=
|F ∩ SuccT (t)|
|T (n) ∩ SuccT (t)|

.

A subtree S of a tree (T,<) is a subset of T viewed as a tree equipped with the

induced partial ordering. For every n ∈ N with n < h(T ) we set

(4) T � n = T (0) ∪ · · · ∪ T (n).

Notice that h(T � n) = n+ 1. An initial subtree of T is a subtree of T of the form

T � n for some n ∈ N.

A tree T is said to be balanced if all maximal chains of T have the same cardi-

nality. It is said to be uniquely rooted if |T (0)| = 1; the root of a uniquely rooted

tree T is defined to be the node T (0).
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2.2. Vector trees. A vector tree T is a nonempty finite sequence of trees having

a common height; this common height is defined to be the height of T and will

be denoted by h(T). We notice that, throughout the paper, we will start the

enumeration of vector trees with 1 instead of 0.

For every vector tree T = (T1, . . . , Td) and every n ∈ N with n < h(T) we set

(5) T � n = (T1 � n, . . . , Td � n).

A vector tree of this form is called a vector initial subtree of T. Also let

(6) T(n) =
(
T1(n), . . . , Td(n)

)
and

(7) ⊗T(n) = T1(n)× · · · × Td(n).

The level product of T, denoted by ⊗T, is defined to be the set

(8)
⋃

n<h(T)

⊗T(n).

For every t = (t1, . . . , td) ∈ ⊗T we set

(9) SuccT(t) =
(
SuccT1

(t1), . . . ,SuccTd(td)
)
.

Finally, we say that a vector tree T = (T1, . . . , Td) is uniquely rooted if for every

i ∈ {1, . . . , d} the tree Ti is uniquely rooted. Notice that if T is uniquely rooted,

then T(0) = ⊗T(0); the element T(0) will be called the root of T.

2.3. Strong subtrees and vector strong subtrees. A subtree S of a uniquely

rooted tree T is said to be strong provided that: (a) S is uniquely rooted and

balanced, (b) every level of S is a subset of some level of T , and (c) for every

non-maximal node s ∈ S and every t ∈ ImmSuccT (s) there exists a unique node

s′ ∈ ImmSuccS(s) such that t 6 s′. The level set of a strong subtree S of T is

defined to be the set

(10) LT (S) = {m ∈ N : exists n < h(S) with S(n) ⊆ T (m)}.

The concept of a strong subtree is naturally extended to vector trees. Specifically,

a vector strong subtree of a uniquely rooted vector tree T = (T1, . . . , Td) is a vector

tree S = (S1, . . . , Sd) such that Si is a strong subtree of Ti for every i ∈ {1, . . . , d}
and LT1

(S1) = · · · = LTd(Sd).

2.4. Homogeneous trees and vector homogeneous trees. Let b ∈ N with

b > 2. By b<N we shall denote the set of all finite sequences having values in

{0, . . . , b − 1}. The empty sequence is denoted by ∅ and is included in b<N. We

view b<N as a tree equipped with the (strict) partial order @ of end-extension.

Notice that b<N is a homogeneous tree with branching number b. If n > 1, then

b<n stands for the initial subtree of b<N of height n. For every t, s ∈ b<N by tas

we shall denote the concatenation of t and s.



DENSE SUBSETS OF PRODUCTS OF FINITE TREES 7

For technical reasons we will not work with abstract homogeneous trees but with

a concrete subclass. Observe that all homogeneous trees with the same branching

number are pairwise isomorphic, and so, such a restriction will have no effect in the

generality of our results.

Convention. In the rest of this paper by the term “homogeneous tree” (respectively,

“finite homogeneous tree”) we will always mean a strong subtree of b<N of infinite

(respectively, finite) height for some integer b > 2. For every, possibly finite, ho-

mogeneous tree T by bT we shall denote the branching number of T . We follow the

same conventions for vector trees. In particular, by the term “vector homogeneous

tree” (respectively, “finite vector homogeneous tree”) we will always mean a vector

strong subtree of (b<N
1 , . . . , b<N

d ) of infinite (respectively, finite) height for some in-

tegers b1, . . . , bd with bi > 2 for all i ∈ {1, . . . , d}. For every, possibly finite, vector

homogeneous tree T = (T1, . . . , Td) we set bT = (bT1
, . . . , bTd).

The above convention enables us to effectively enumerate the set of immediate

successors of a given non-maximal node of a, possibly finite, homogeneous tree T .

Specifically, for every non-maximal t ∈ T and every p ∈ {0, . . . , bT − 1} let

(11) taTp = ImmSuccT (t) ∩ Succb<N
T

(tap)

and notice that

(12) ImmSuccT (t) =
{
taTp : p ∈ {0, . . . , bT − 1}

}
.

2.5. Canonical isomorphisms and vector canonical isomorphisms. Let T

and S be two, possibly finite, homogeneous trees with the same branching number

and the same height. The canonical isomorphism between T and S is defined to be

the unique bijection I : T → S satisfying: (a) `T (t) = `S
(
I(t)
)

for every t ∈ T , and

(b) I(taTp) = I(t)aSp for every non-maximal t ∈ T and every p ∈ {0, . . . , bT − 1}.
Observe that if R is a strong subtree of T , then the image I(R) of R under the

canonical isomorphism is a strong subtree of S and satisfies LT (R) = LS
(
I(R)

)
.

Respectively, let T = (T1, . . . , Td) and S = (S1, . . . , Sd) be two, possibly finite,

vector homogeneous trees with bT = bS and h(T) = h(S). For every i ∈ {1, . . . , d}
let Ii be the canonical isomorphism between Ti and Si. The vector canonical iso-

morphism between ⊗T and ⊗S is the map I : ⊗T→ ⊗S defined by the rule

(13) I
(
(t1, . . . , td)

)
=
(
I1(t1), . . . , Id(td)

)
.

Notice that the vector canonical isomorphism I is a bijection.

2.6. Milliken’s theorem. For every finite vector homogeneous tree T and every

integer 1 6 k 6 h(T) by Strk(T) we shall denote the set of all vector strong subtrees

of T of height k. We will need the following elementary fact.
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Fact 4. Let d ∈ N with d > 1 and b1, . . . , bd ∈ N with bi > 2 for all i ∈ {1, . . . , d}.
Also let m ∈ N and define

(14) q(b1, . . . , bd,m) =

(∏d
i=1 b

bi
i

)m+1 −
(∏d

i=1 bi
)m+1∏d

i=1 b
bi
i −

∏d
i=1 bi

.

If T is a finite vector homogeneous tree with bT = (b1, . . . , bd) and of height at least

m+ 2, then the cardinality of the set

(15) Str2(T,m+ 1) =
{
F ∈ Str2(T) : ⊗F(1) ⊆ ⊗T(m+ 1)

}
is q(b1, . . . , bd,m).

The following partition result is due to Milliken (see [20, Theorem 2.1]).

Theorem 5. For every integer d > 1, every b1, . . . , bd ∈ N with bi > 2 for all

i ∈ {1, . . . , d}, every pair of integers m > k > 1 and every integer r > 2 there exists

an integer M with the following property. For every finite vector homogeneous tree

T with bT = (b1, . . . , bd) and of height at least M and every r-coloring of the set

Strk(T) there exists S ∈ Strm(T) such that the set Strk(S) is monochromatic. The

least integer M with this property will be denoted by Mil(b1, . . . , bd|m, k, r).

The original proof of Theorem 5 was ineffective, and as such, could not provide

quantitative information on the numbers Mil(b1, . . . , bd|m, k, r). An analysis of the

finite version of Milliken’s theorem has been carried out recently by Sokić in [29]

yielding explicit and reasonable upper bounds. In particular, we have the following

refinement of Theorem 5.

Theorem 6. For every integer k > 1 there exists a primitive recursive function

φk : N3 → N belonging to the class E5+k of Grzegorczyk’s hierarchy such that for

every integer d > 1, every b1, . . . , bd ∈ N with bi > 2 for all i ∈ {1, . . . , d}, every

integer m > k and every integer r > 2 we have

(16) Mil(b1, . . . , bd|m, k, r) 6 φk
( d∏
i=1

bbii ,m, r
)
.

Theorem 6 was not explicitly isolated in [29]. For the convenience of the reader

and for completeness, we will sketch the proof in the appendix.

We will also need a certain consequence of Theorem 5. To state it we need, first,

to introduce some notation. Specifically, for every finite vector homogeneous tree

T and every integer 1 6 k 6 h(T) we set

(17) Str0
k(T) =

{
S ∈ Strk(T) : S(0) = T(0)

}
.

Corollary 7. Let d ∈ N with d > 1 and b1, . . . , bd ∈ N with bi > 2 for every

i ∈ {1, . . . , d}. Also let m, k, r ∈ N with m > k > 1 and r > 2. If T is finite vector

homogeneous tree with bT = (b1, . . . , bd) and

(18) h(T) > Mil
(
b1, . . . , b1︸ ︷︷ ︸
b1−times

, . . . , bd, . . . , bd︸ ︷︷ ︸
bd−times

|m, k, r
)

+ 1
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then for every r-coloring of Str0
k+1(T) there exists R ∈ Str0

m+1(T) such that the

set Str0
k+1(R) is monochromatic.

The reduction of Corollary 7 to Theorem 5 is standard; see, e.g., [19, 20, 33].

2.7. The signature of a subset of a finite homogeneous tree. Let T be a

finite homogeneous tree and let D be a subset of T . Following [21], we define the

signature of D in T to be the set

(19) ST (D) =
{
LT (S) : S is a strong subtree of T with S ⊆ D

}
.

Also let

(20) wT (D) =
∑

n<h(T )

dens
(
D ∩ T (n)

)
.

The following result is due to Pach, Solymosi and Tardos and relates the above

defined quantities (see [21, Lemma 3′]).

Lemma 8. Let T be a finite homogeneous tree. Then for every D ⊆ T we have

(21) |ST (D)| >
( bT
bT − 1

)wT (D)

.

Notice that, by Lemma 8, we have

(22) UDHL(b|k, ε) = Ob,ε(k)

for every integer b > 2, every integer k > 1 and every real 0 < ε 6 1. The implied

constant in (22) can, of course, be estimated efficiently using Chernoff’s bound.

2.8. Two Markov-type inequalities. Throughout the paper we will use two

elementary variants of Markov’s inequality. We isolate them, below, for the conve-

nience of the reader.

Fact 9. Let 0 < ε 6 1, N ∈ N with N > 1 and a1, . . . , aN in [0, 1]. Assume

that Eiai > ε. Then for every 0 < ε′ < ε we have |
{
i ∈ {1, . . . , N} : ai > ε′

}
| >

(ε− ε′)N .

Fact 10. Let 0 < ε 6 1, N ∈ N with N > 1 and a1, . . . , aN in [0, 1] such that

Eiai > ε. Also let δ > 0 and assume that |
{
i ∈ {1, . . . , N} : ai > ε + δ2

}
| 6 δ3N .

Then |
{
i ∈ {1, . . . , N} : ai > ε− δ

}
| > (1− δ)N .

3. Level selections

We start with the following definition.

Definition 11. Let T be a finite vector homogeneous tree and W a homogeneous

tree. We say that a map D : ⊗ T → P(W ) is a level selection if there exists a

subset L(D) = {l0 < · · · < lh(T)−1} of N, called the level set of D, such that for

every integer n < h(T) and every t ∈ ⊗T(n) we have that D(t) ⊆W (ln).
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For every level selection D : ⊗T→ P(W ) the height h(D) of D is defined to be

the height h(T) of the finite vector homogeneous tree T. The density δ(D) of D is

the quantity defined by

(23) δ(D) = min
{

dens
(
D(t)

)
: t ∈ ⊗T

}
.

Finally, if S is a vector strong subtree of T, then by D � S we shall denote the

restriction of the level selection D on ⊗S.

We are ready to state our main result concerning the structure of level selections.

Theorem 12. For every integer d > 1, every b1, . . . , bd, bd+1 ∈ N with bi > 2 for

all i ∈ {1, . . . , d + 1}, every integer k > 1 and every real 0 < ε 6 1 there exists

an integer N with the following property. If T = (T1, . . . , Td) is a finite vector

homogeneous tree with bT = (b1, . . . , bd), W is a homogeneous tree with bW = bd+1

and D : ⊗T → P(W ) is a level selection with δ(D) > ε and of height at least N ,

then there exist a vector strong subtree S of T and a strong subtree R of W with

h(S) = h(R) = k and such that for every n ∈ {0, . . . , k − 1} we have

(24) R(n) ⊆
⋂

s∈⊗S(n)

D(s).

The least integer N with this property will be denoted by LS(b1, . . . , bd+1|k, ε).

Theorem 12 is the main ingredient of the proof of Theorem 3. Its proof will

occupy the bulk of this paper and will be given in §9. Let us mention, however, at

this point the following simple fact which provides the link between the “uniform

density Halpern–Läuchli” numbers and the “level selection” numbers.

Fact 13. For every integer d > 1, every b1, . . . , bd, bd+1 ∈ N with bi > 2 for all

i ∈ {1, . . . , d+ 1}, every integer k > 1 and every real 0 < ε 6 1 we have

(25) UDHL(b1, . . . , bd+1|k, ε) 6 UDHL
(
b1, . . . , bd|LS(b1, . . . , bd+1|k, ε/2), ε/2

)
.

Proof. For notational convenience we set m = LS(b1, . . . , bd+1|k, ε/2). We fix a

vector homogeneous tree (T1, . . . , Td,W ) with bTi = bi for all i ∈ {1, . . . , d} and

bW = bd+1, and we set T = (T1, . . . , Td). Also let L be a finite subset of N with

(26) |L| > UDHL(b1, . . . , bd|m, ε/2)

and let D be a subset of the level product of (T1, . . . , Td,W ) such that

(27) |D ∩
(
T1(n)× · · · × Td(n)×W (n)

)
| > ε|T1(n)× · · · × Td(n)×W (n)|

for every n ∈ L. We need to find a vector strong subtree of (T1, . . . , Td,W ) of

height k whose level product is contained in D.

To this end we argue as follows. For every n ∈ L we define a subset Cn of ⊗T(n)

by the rule

(28) t ∈ Cn ⇔ dens
(
{w ∈W (n) : (t, w) ∈ D}

)
> ε/2
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and we observe that

(29) |Cn| > (ε/2) |⊗T(n)|.

By (26) and (29), there exists a vector strong subtree Z of T with h(Z) = m and

such that ⊗Z ⊆
⋃
n∈L Cn. Therefore, the “section map” D : ⊗Z→ P(W ), defined

by D(z) = {w ∈ W : (z, w) ∈ D} for every z ∈ ⊗Z, is a level selection of height

m and with δ(D) > ε/2. By the choice of m, it is possible to find a vector strong

subtree S = (S1, . . . , Sd) of Z and a strong subtree R of W with h(S) = h(R) = k

and satisfying the inclusion in (24) for every n ∈ {0, . . . , k − 1}. It follows that

(S1, . . . , Sd, R) is a vector strong subtree of (T1, . . . , Td,W ) of height k whose level

product is contained in D. Thus, the proof is completed. �

4. Outline of the argument

In this section we will give a detailed outline of the proof of Theorem 3. The first

step is given in Fact 13. Indeed, by Fact 13, the task of estimating the “uniform

density Halpern–Läuchli” numbers reduces to that of estimating the “level selec-

tion” numbers. To achieve this goal, we will follow an inductive procedure which

can be schematically described as follows:

(30)
UDHL(b1, . . . , bd|`, η) for every ` and η

LS(b1, . . . , bd+1|k, η) for every η

}
⇒ LS(b1, . . . , bd+1|k + 1, ε).

Precisely, in order to estimate the number LS(b1, . . . , bd+1|k + 1, ε) we need to

have at our disposal the numbers UDHL(b1, . . . , bd|`, η) as well as the numbers

LS(b1, . . . , bd+1|k, η) for every integer ` 6 `0 and every η ∈ [θ0, 1] where `0 is a

large enough integer and θ0 is an appropriately chosen positive constant which is

very small compared with the given density ε.

Before we proceed to discuss the main arguments of the proof we need to make

some important observations. Specifically, let T be a finite vector homogeneous

tree and suppose that we are given a subset A of the level product ⊗T of T. We

need an effective way to measure the size of the set A where the word “effective”

should be interpreted as “taking into account how the set A is distributed along

the products of different levels of T”. Notice that the uniform probability measure

on ⊗T is rather ineffective in this regard since it is highly concentrated on the

products of very few of the last levels of T. There is, however, a very natural way

to overcome this problem, discovered by Furstenberg and Weiss in [10]. Specifically,

let

(31) µT(A) = En<h(T)
|A ∩ ⊗T(n)|
|⊗T(n)|

.

Actually, Furstenberg and Weiss considered finite homogeneous trees instead of

level products of finite vector homogeneous trees. It is completely straightforward,

however, to extend their definition to the higher-dimensional case. The reader

should have in mind that, in what follows, when we say that a certain property
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holds for “many” or for “almost every” t ∈ ⊗T, then we will refer to the probability

measure µT.

After this preliminary discussion we are ready to comment on the proof of the

basic step of the inductive scheme described in (30). So assume that the parameters

b1, . . . , bd+1, k and ε are fixed and that we are given: (i) a finite vector homogeneous

tree T with bT = (b1, . . . , bd), (ii) a homogeneous tree W with bW = bd+1, and (iii) a

level selectionD : ⊗T→ P(W ) with δ(D) > ε and of sufficiently large height. What

we need to find is a vector strong subtree S of T and a strong subtree R of W with

h(S) = h(R) = k + 1 and such that

(32) R(n) ⊆
⋂

s∈⊗S(n)

D(s)

for every n ∈ {0, . . . , k}.
Let r be a small enough parameter depending on our data b1, . . . , bd+1, k and

ε. The first observation we make is quite standard in proofs of this sort: we can

assume that for every w ∈ W we cannot increase the density of the level selection

D to ε+ r by restricting its values to the subtree SuccW (w). Indeed, suppose that

there exists a node w ∈W such that for “many” t ∈ ⊗T the density of the set D(t)

relative to the node w is at least ε+ r. Then we can find a new level selection D′

whose graph is contained in D and such that δ(D′) > ε+ r. The number of times

this can happen is, of course, bounded by d1/re until the density reaches 1 and we

can finish the proof in a particularly simple way.

Thus, in what follows we can assume that we have “lack of density increment”,

or equivalently, that the following concentration hypothesis holds true.

(H) If Z is a vector strong subtree of T of sufficiently large height, then for

“almost every” w ∈ W and for “almost every” z ∈ ⊗Z the density of the

set D(z) relative to the node w is roughly ε.

With this information at hand, we devise an algorithm in order to find the desired

trees S and R. The number of times we need to iterate this algorithm is at most

K0 = UDHL
(
b1, . . . , bd|2, ε/(4bd+1)

)
, and so, it is a priori controlled. Each time

we perform the following three basic steps.

Step 1. Suppose that we are at stage n + 1. From the previous iteration we

will have as an input a vector strong subtree Zn of T, a node wn ∈ W and

pn ∈ {0, . . . , bd+1 − 1} satisfying certain properties. These properties are used

to define a subset An+1 of SuccW (waW
n pn) with dens(An |waW

n pn) > ε/8. We view

the set An+1 as an “admissible” subset of W . Next, we find a vector strong subtree

V of Zn with V � n+ 1 = Zn � n+ 1 and of sufficiently large height, as well as, a

node w ∈ An+1 such that for every integer m > n + 1 and every v ∈ ⊗V(m) the

density of the set D(v) relative to every immediate successor w′ of w is almost ε.

This is achieved using hypothesis (H).
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Step 2. We perform coloring arguments, using Milliken’s theorem, in order to find

the desired trees S and R. If we do not succeed, then we will be able to select a

vector strong subtree B of V with B � n + 1 = V � n + 1 and of sufficiently large

height, a subset Γn+1 of ⊗V(n + 1) of cardinality at least (ε/4bd+1)|⊗V(n + 1)|
and p ∈ {0, . . . , bd+1 − 1} with the following property. For every v ∈ Γn+1 and

every S ∈ Strk+1(B) with S(0) = v the set

(33)

k⋃
n=1

( ⋂
s∈⊗S(n)

D(s) ∩ SuccW (waWp)
)

does not contain a strong subtree of W of height k.

Step 3. We use the aforementioned property to show that the level selection D

is rather “thin” when restricted to SuccW (waWp). Specifically, let Γ0, . . . ,Γn+1 be

the sets obtained by Step 2 from all previous iterations. We find a vector strong

subtree Z′ of B with Z′ � n + 1 = B � n + 1 and of sufficiently large height and

satisfying the following. For every F ∈ Str2(Z′) with F(0) ∈ Γ0 ∪ · · · ∪ Γn+1 and

⊗F(1) ⊆ ⊗Z′(n+ 2) the density of the set

(34)
⋂

t∈⊗F(1)

D(t)

relative to the node waWp is essentially negligible. We set Zn+1 = Z′, wn+1 = w

and pn+1 = p and we go back to Step 1.

If after K0 iterations the desired trees S and R have not been found, then using

the sets {Γ0, . . . ,ΓK0−1} obtained by Step 2 we can easily derive a contradiction.

Having shown that the above algorithm does locate the trees S and R, we can

analyze each step separately and estimate the number LS(b1, . . . , bd+1|k+1, ε). And

as we have already pointed out, this is enough to complete the proof of Theorem 3.

5. Step 1: obtaining strong denseness

We start with the following definition. It is a crucial conceptual step towards

the proof of Theorem 3.

Definition 14. Let T be a finite vector homogeneous tree, W a homogeneous tree

and D : ⊗T→ P(W ) a level selection. Also let S be a vector strong subtree of T,

w ∈W and 0 < ε 6 1.

(1) We say that D is (w,S, ε)-dense provided that `W (w) 6 minL(D � S) and

dens(D(s) |w) > ε for every s ∈ ⊗S.

(2) We say that D is (w,S, ε)-strongly dense if D is (w′,S, ε)-dense for every

w′ ∈ ImmSuccW (w).
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5.1. Lack of density increment implies strong denseness. For every 0 < α 6

β 6 1 and every 0 < % 6 1 we set

(35) γ0 = γ0(α, β, %) = (β + %2 − α)1/2,

(36) γ1 = γ1(α, β, %) = (γ0 + γ2
0)1/2

and

(37) γ2 = γ2(α, β, %) = (γ1 + γ2
1)1/2.

The following lemma corresponds to the first step of the proof of Theorem 3. It

is based on the phenomenon we described in §4, namely that “lack of density

increment” implies a strong concentration hypothesis.

Lemma 15. Let d ∈ N with d > 1 and b1, . . . , bd ∈ N with bi > 2 for every

i ∈ {1, . . . , d} and assume that for every integer n > 1 and every 0 < η 6 1 the

number UDHL(b1, . . . , bd|n, η) has been defined.

Also let 0 < α 6 β 6 1, 0 < % 6 1 and b, q ∈ N with b > 2 and q > 1 such that

(38) γ0 6
( α

4qb

)4

.

Assume that we are given

(a) a finite vector homogeneous tree U with bU = (b1, . . . , bd),

(b) a homogeneous tree W with bW = b,

(c) a node w0 ∈W and ` ∈ N with `W (w0) 6 `,

(d) a subset A of SuccW (w0) ∩W (`) with dens(A |w0) > β/8,

(e) a subset L of N with |L| = h(U) and ` < minL, and

(f) for every j ∈ {1, . . . , q} a level selection Dj : ⊗U→ P(W ) with L(Dj) = L

and which is (w0,U, α)-dense.

Finally, let N ∈ N with N > 1 and suppose that

(39) h(U) >
1

%3
UDHL(b1, . . . , bd|N, %3).

Then, either

(i) there exist a vector strong subtree U′ of U with h(U′) = N , j0 ∈ {1, . . . , q}
and a node w′0 ∈ SuccW (w0)∩W (`+ 1) such that the level selection Dj0 is

(w′0,U
′, β + %2/2)-dense, or

(ii) there exist a vector strong subtree U′′ of U with h(U′′) = N and a node

w′′0 ∈ A such that Dj is (w′′0 ,U
′′, α− γ0 − γ1 − γ2)-strongly dense for every

j ∈ {1, . . . , q}.
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5.2. Proof of Lemma 15. We will consider four cases. The first three cases imply

that alternative (i) holds true while the last one yields alternative (ii). Before we

proceed to the details, we isolate for future use the following elementary facts.

(P1) α+ γ2
0 = α− γ0 + γ2

1 = α− γ0 − γ1 + γ2
2 = β + %2.

(P2) 0 < % 6 γ0 < β/(8bq) < 1/8.

(P3) γ1 6 2γ
1/2
0 and γ2 6 2γ

1/4
0 .

The above properties are straightforward consequences of (35), (36), (37) and (38).

Also for every j ∈ {1, . . . , q} and every w ∈ SuccW (w0) ∩W (`+ 1) we set

(40) ∆j,w =
{
u ∈ ⊗U : dens(Dj(u) |w) > β + %2/2

}
,

(41) Ij,w =
{
n < h(U) : Eu∈⊗U(n)dens(Dj(u) |w) > β + %2

}
and

(42) Kj,w =
{
n < h(U) : |∆j,w ∩ ⊗U(n)| > %3|⊗U(n)|

}
.

After this preliminary discussion, we are ready to distinguish cases.

Case 1: there exist j0 ∈ {1, . . . , q} and a node w′0 ∈ SuccW (w0)∩W (`+1) such that

En<h(U)Eu∈⊗U(n) dens(Dj0(u) |w′0) > β + %2. Using our hypotheses and applying

Fact 9 twice, we see that there exists Λ ⊆ {0, . . . , h(U)− 1} with |Λ| > (%2/4)h(U)

and such that |∆j0,w′0
∩ ⊗U(n)| > (%2/4)|⊗U(n)| for every n ∈ Λ. Notice that

(43) |Λ| > %2

4
h(U)

(39)

>
1

4%
UDHL(b1, . . . , bd|N, %3)

(P2)

> UDHL(b1, . . . , bd|N, %2/4).

Therefore, there exists a vector strong subtree U′ of U with h(U′) = N and such

that ⊗U′ ⊆ ∆j0,w′0
. Hence the level selection Dj0 is (w′0,U

′, β + %2/2)-dense, and

so this case implies part (i) of the lemma.

Case 2: there exist j0 ∈ {1, . . . , q} and a node w′0 ∈ SuccW (w0) ∩W (` + 1) such

that |Ij0,w′0 | > %
3h(U). By Fact 9, we have |∆j0,w′0

∩ ⊗U(n)| > (%2/2)|⊗U(n)| for

every n ∈ Ij0,w′0 . Moreover,

(44)

|Ij0,w′0 | > %
3h(U)

(39)

> UDHL(b1, . . . , bd|N, %3)
(P2)

> UDHL(b1, . . . , bd|N, %2/2).

Arguing as above, we see that this case also implies part (i) of the lemma.

Case 3: there exist j0 ∈ {1, . . . , q} and a node w′0 ∈ SuccW (w0)∩W (`+1) such that

|Kj0,w′0
| > %3h(U). By (39), we have |Kj0,w′0

| > UDHL(b1, . . . , bd|N, %3). Moreover,

by the definition of the set Kj0,w′0
in (42), we see that |∆j0,w′0

∩⊗U(n)| > %3|⊗U(n)|
for every n ∈ Kj0,w′0

. Thus, this case also implies part (i) of the lemma.

Case 4: none of the above cases holds true. In this case we will show that the

second alternative of the lemma is satisfied. It is useful at this point to isolate

which hypotheses we have at our disposal. In particular, notice that for every

j ∈ {1, . . . , q} and every w ∈ SuccW (w0) ∩W (`+ 1) we have
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(H1) En<h(U)Eu∈⊗U(n) dens(Dj(u) |w) < β + %2,

(H2) |Ij,w| < %3h(U) and

(H3) |Kj,w| < %3h(U).

We set

(45) α0 = α− γ0

and we define B ⊆ SuccW (w0) ∩W (`+ 1) by the rule

(46) w ∈ B ⇔ En<h(U)Eu∈⊗U(n) dens(Dj(u) |w) > α0 for every j ∈ {1, . . . , q}.

Claim 16. We have |B| > (1− qγ0)|SuccW (w0) ∩W (`+ 1)|.

Proof of Claim 16. For every j ∈ {1, . . . , q} and every w ∈ SuccW (w0) ∩W (`+ 1)

we set εj,w = En<h(U)Eu∈⊗U(n) dens(Dj(u) |w). Also let

(47) Bj = {w ∈ SuccW (w0) ∩W (`+ 1) : εj,w > α0}.

Clearly, it is enough to show that |Bj | > (1− γ0)|SuccW (w0) ∩W (`+ 1)| for every

j ∈ {1, . . . , q}. To this end let j ∈ {1, . . . , q} be arbitrary. By (H1), for every node

w ∈ SuccW (w0) ∩W (`+ 1) we have

(48) εj,w < β + %2 (P1)
= α+ γ2

0 .

On the other hand, the level selection Dj : ⊗U→ P(W ) is (w0,U, α)-dense. Since

the tree W is homogeneous, this yields that

(49) Ew∈SuccW (w0)∩W (`+1)εj,w = En<h(U)Eu∈⊗U(n) dens(Dj(u) |w0) > α.

Combining (48) and (49) and using Fact 10, the result follows. �

Claim 17. There exists w′′0 ∈ A such that ImmSuccW (w′′0 ) ⊆ B.

Proof of Claim 17. We set F = {w ∈ SuccW (w0) ∩W (`) : ImmSuccW (w) * B}.
By Claim 16 and using the fact that the branching number of the homogeneous

tree W is b, we see that the cardinality of F is at most bqγ0|SuccW (w0) ∩W (`)|.
On the other hand, we have |A| > (β/8)|SuccW (w0) ∩W (`)|. Invoking property

(P2), the result follows. �

Now we set

(50) α1 = α0 − γ1
(45)
= α− γ0 − γ1

and we define N ⊆ {0, . . . , h(U)− 1} by the rule

n ∈ N ⇔ Eu∈⊗U(n) dens(Dj(u) |w) > α1 for every j ∈ {1, . . . , q}(51)

and every w ∈ ImmSuccW (w′′0 ).

Claim 18. We have |N | > (1− bqγ1)h(U).
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Proof of Claim 18. We will argue as in the proof of Claim 16. Specifically, for

every j ∈ {1, . . . , q}, every w ∈ ImmSuccW (w′′0 ) and every integer n < h(U) we

set εj,w,n = Eu∈⊗U(n) dens(Dj(u) |w) and Nj,w = {n < h(U) : εj,w,n > α1}. Since

the branching number of the homogeneous tree W is b, it is enough to show that

|Nj,w| > (1− γ1)h(U) for every j ∈ {1, . . . , q} and every w ∈ ImmSuccW (w′′0 ). So

fix j ∈ {1, . . . , q} and w ∈ ImmSuccW (w′′0 ). By (H2), we see that

(52) |{n < h(U) : εj,w,n > β + %2}| < %3h(U)
(P2),(36)

6 γ3
1h(U).

By Claim 17, we have w ∈ ImmSuccW (w′′0 ) ⊆ B. Therefore, invoking the definition

of the set B given in (46), we obtain that

(53) En<h(U)εj,w,n > α0.

Finally, by (P1) and (45), we have β+%2 = α0 +γ2
1 . Thus, combining the estimates

in (52) and (53) and using Fact 10, the result follows. �

Next we set

(54) α2 = α1 − γ2
(50)
= α− γ0 − γ1 − γ2

and

(55) N ∗ = N \
( q⋃
j=1

⋃
w∈ImmSuccW (w′′0 )

Kj,w

)
.

Notice that if n ∈ N ∗, then for every j ∈ {1, . . . , q} and every w ∈ ImmSuccW (w′′0 )

we have that n /∈ Kj,w and so

|{u ∈ ⊗U(n) : dens(Dj(u) |w) > β + %2}|
(40)

6 |∆j,w ∩ ⊗U(n)|(56)

(42)

6 %3|⊗U(n)|
(P2),(37)

6 γ3
2 |⊗U(n)|.

Claim 19. The following hold.

(i) We have |N ∗| > (1− bqγ1 − bq%3)h(U).

(ii) For every n ∈ N ∗, every j ∈ {1, . . . , q} and every w ∈ ImmSuccW (w′′0 ) we

have that |{u ∈ ⊗U(n) : dens(Dj(u) |w) > α2}| > (1− γ2)|⊗U(n)|.

Proof of Claim 19. By Claim 17 and our assumptions for the set A, we see that

ImmSuccW (w′′0 ) ⊆ SuccW (w0) ∩W (`+ 1). Thus, part (i) follows by Claim 18 and

hypothesis (H3). On the other hand, by property (P1) and (50), we have that

β + %2 = α1 + γ2
2 . Therefore, part (ii) follows by (54), (56) and Fact 10. �

We are ready for the final step of the argument. Let ∆∗ be the subset of ⊗U

defined by the rule

u ∈ ∆∗ ⇔ dens(Dj(u) |w) > α2 for every w ∈ ImmSuccW (w′′0 )(57)

and every j ∈ {1, . . . , q}.
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By part (ii) of Claim 19, we obtain that |∆∗ ∩ ⊗U(n)| > (1 − bqγ2)|⊗U(n)| for

every n ∈ N ∗. Moreover,

(58) 1− bqγ2

(P3)

> 1− 2bqγ
1/4
0

(38)

> 1− 2bq
α

4bq
>

1

2

(P2)

> %3

and, by part (i) of Claim 19,

|N ∗| > (1− bqγ1 − bq%3)h(U)
(P2),(36)

> (1− 2bqγ1)h(U)(59)

(P3)

> (1− 4bqγ
1/2
0 )h(U)

(38)

>
(

1− 4bq
( α

4bq

)2)
h(U)

>
1

2
h(U)

(P2)

> %3h(U)
(39)

> UDHL(b1, . . . , bd|N, %3).

Therefore, there exists a vector strong subtree U′′ of U with h(U′′) = N and such

that ⊗U′′ ⊆ ∆∗. Invoking the definition of ∆∗ and (54), we conclude that for every

j ∈ {1, . . . , q} the level selection Dj is (w′′0 ,U
′′, α − γ0 − γ1 − γ2)-strongly dense.

Thus, the proof of Lemma 15 is completed.

5.3. Consequences. Lemma 15 will be used, later on, in a rather special form.

We isolate, below, the exact statement that we need.

Corollary 20. Let d ∈ N with d > 1 and b1, . . . , bd ∈ N with bi > 2 for every

i ∈ {1, . . . , d} and assume that for every integer n > 1 and every 0 < η 6 1 the

number UDHL(b1, . . . , bd|n, η) has been defined.

Let 0 < α 6 β 6 1 and 0 < % 6 1 and define γ0, γ1 and γ2 as in (35), (36) and

(37) respectively. Also let b,m ∈ N with b > 2 and such that

(60) γ0 6
( α

4(
∏d
i=1 bi)

m+1b

)4

.

Assume that we are given

(a) a finite vector homogeneous tree Z with bZ = (b1, . . . , bd) and h(Z) > m+2,

(b) a homogeneous tree W with bW = b,

(c) a node w̃ ∈W and ` ∈ N with `W (w̃) 6 `,

(d) a subset A of SuccW (w̃) ∩W (`) with dens(A | w̃) > β/8,

(e) a subset L = {l0 < · · · < lh(Z)−1} of N such that lm = `, and

(f) a level selection D : ⊗Z→ P(W ) which is (w̃,SuccZ(z), α)-dense for every

z ∈ ⊗Z(m+ 1) and with L(D) = L.

Finally, let N ∈ N with N > 1 and suppose that

(61) h(Z) > (m+ 1) +
1

%3
UDHL(b1, . . . , bd|N, %3).

Then, either

(i) there exist a vector strong subtree V of Z with h(V) = N and a node

w′ ∈ SuccW (w̃) ∩W (`+ 1) such that D is (w′,V, β + %2/2)-dense, or
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(ii) there exist a vector strong subtree Z′ of Z with Z′ � m = Z � m and

h(Z′) = (m+ 1) +N and a node w′′ ∈ A such that the level selection D is

(w′′,SuccZ′(z), α− γ0 − γ1 − γ2)-strongly dense for every z ∈ ⊗Z′(m+ 1).

Proof. Let λ = h(Z)−(m+1) and q = (
∏d
i=1 bi)

m+1. Notice that |⊗Z(m+1)| = q.

Also we write Z = (Z1, . . . , Zd) and we set B = (b<λ1 , . . . , b<λd ).

Let z ∈ ⊗Z(m + 1) be arbitrary and write SuccZ(z) = (Zz
1 , . . . , Z

z
d). For every

i ∈ {1, . . . , d} the finite homogeneous trees b<λi and Zz
i have the same branching

number and the same height. Therefore, as we described in §2.5, we may consider

the canonical isomorphism Izi : b<λi → Zz
i . The same remarks, of course, apply to

the finite vector homogeneous trees B and SuccZ(z). Thus we may also consider

the vector canonical isomorphism Iz : ⊗ B → ⊗SuccZ(z) given by the family of

maps
{

Izi : i ∈ {1, . . . , d}
}

via formula (13). Notice that for every z, t ∈ ⊗Z(m+ 1)

and every i ∈ {1, . . . , d} if Zz
i = Zt

i (that is, if the finite sequences z and t agree

on the i-th coordinate), then the maps Izi and Iti are identical.

For every z ∈ ⊗Z(m+ 1) we define a level selection Dz : ⊗B→ P(W ) by

(62) Dz(u) = D
(
Iz(u)

)
.

It is then clear that we may apply Lemma 15 to the family {Dz : z ∈ ⊗Z(m+ 1)}.
If the first alternative of the lemma holds true, then we obtain a vector strong

subtree U′ of B of height N , z0 ∈ ⊗Z(m+1) and a node w′ ∈ SuccW (w̃)∩W (`+1)

such that the level selection Dz0
is (w′,U′, β + %2/2)-dense. We set V = Iz0

(U′)

and we observe that with this choice part (i) of the corollary is satisfied.

Otherwise, we obtain a vector strong subtree U′′ = (U1, . . . , Ud) of B of height

N and a node w′′ ∈ A such that Dz is (w′′,U′′, α− γ0− γ1− γ2)-strongly dense for

every z ∈ ⊗Z(m+ 1). In this case, for every i ∈ {1, . . . , d} let

(63) Z ′i = (Zi � m) ∪
{

Izi (Ui) : z ∈ ⊗Z(m+ 1)
}

and set Z′ = (Z ′1, . . . , Z
′
d). It is easy to check that with this choice part (ii) of the

corollary is satisfied. The proof is completed. �

6. Step 2: obtaining the set Γ and fixing the “direction”

Our goal in this section is to analyze the second step of the proof of Theorem 3.

This is, essentially, the content of the following lemma.

Lemma 21. Let d ∈ N with d > 1 and b1, . . . , bd ∈ N with bi > 2 for every

i ∈ {1, . . . , d}. Also let b, q, k ∈ N with b > 2 and q, k > 1.

Assume that we are given

(a) a finite vector homogeneous tree U with bU = (b1, . . . , bd),

(b) a homogeneous tree W with bW = b,

(c) a node w0 ∈W ,

(d) a subset L of N with |L| = h(U), and
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(e) for every j ∈ {1, . . . , q} a level selection Dj : ⊗U→ P(W ) with L(Dj) = L

and such that w0 ∈ Dj

(
U(0)

)
.

Finally, let N ∈ N with N > k and suppose that

(64) h(U) > Mil
(
b1, . . . , b1︸ ︷︷ ︸
b1−times

, . . . , bd, . . . , bd︸ ︷︷ ︸
bd−times

|N, k, bq
)

+ 1.

Then, either

(i) there exist j0 ∈ {1, . . . , q}, a vector strong subtree Q of U and a strong

subtree P of W with Q(0) = U(0), P (0) = w0, h(Q) = h(P ) = k + 1 and

such that

(65) P (n) ⊆
⋂

u∈⊗Q(n)

Dj0(u)

for every n ∈ {0, . . . , k}, or

(ii) there exist a vector strong subtree U′ of U with U′(0) = U(0) and of height

N + 1, p0 ∈ {0, . . . , b − 1} and J ⊆ {1, . . . , q} with |J | > q/b satisfying

the following. For j ∈ J and every vector strong subtree R of U′ of height

k + 1 and with R(0) = U′(0) the set

(66)

k⋃
n=1

( ⋂
r∈⊗R(n)

Dj(r)
)

does not contain a strong subtree of SuccW (waW
0 p0) of height k.

6.1. Proof of Lemma 21. Assume that part (i) is not satisfied. This has, in

particular, the following consequence.

(H): for every R ∈ Str0
k+1(U) and every j ∈ {1, . . . , q} there exists p ∈ {0, . . . , b−1}

(depending, possibly, on the choice of R and j) such that the set

(67)

k⋃
n=1

( ⋂
r∈⊗R(n)

Dj(r)
)

does not contain a strong subtree of SuccW (waW
0 p) of height k.

This assumption permits us to define a coloring C : Str0
k+1(U)→ {0, . . . , b− 1}q by

C(R) = (pj)
q
j=1 ⇔ pj = min{p : (H) is satisfied for R, j and p}(68)

for every j ∈ {1, . . . , q}.

By Corollary 7 and (64), there exist U′ ∈ Str0
N+1(U) and a finite sequence (pj)

q
j=1

in {0, . . . , b − 1} such that C(R) = (pj)
q
j=1 for every R ∈ Str0

k+1(U′). By the

classical pigeonhole principle, there exist p0 ∈ {0, . . . , b − 1} and a subset J of

{1, . . . , q} of cardinality at least q/b such that pj = p0 for every j ∈ J . Thus,

with these choices, the second alternative holds true. The proof of Lemma 21 is

completed.
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6.2. Consequences. We will need the following consequence of Lemma 21.

Corollary 22. Let d ∈ N with d > 1 and b1, . . . , bd ∈ N with bi > 2 for every

i ∈ {1, . . . , d}. Also let b, k,m ∈ N with b > 2 and k > 1.

Assume that we are given

(a) a finite vector homogeneous tree Z with bZ = (b1, . . . , bd) and h(Z) > m+1,

(b) a homogeneous tree W with bW = b,

(c) a node w ∈W ,

(d) a nonempty subset ∆ of ⊗Z(m), and

(e) a level selection D : ⊗ Z→ P(W ) such that w ∈ D(z) for every z ∈ ∆.

Finally, let N ∈ N with N > k and suppose that

(69) h(Z) > m+ Mil
(
b1, . . . , b1︸ ︷︷ ︸
b1−times

, . . . , bd, . . . , bd︸ ︷︷ ︸
bd−times

|N, k, b(
∏d
i=1 bi)

m
)

+ 1.

Then, either

(i) there exist a vector strong subtree S of Z and a strong subtree R of W with

S(0) ∈ ∆, R(0) = w, h(S) = h(R) = k + 1 and such that

(70) R(n) ⊆
⋂

s∈⊗S(n)

D(s)

for every n ∈ {0, . . . , k}, or

(ii) there exist a vector strong subtree Z′ of Z with Z′ � m = Z � m and of height

(m+ 1) +N , p0 ∈ {0, . . . , b− 1} and Γ ⊆ ∆ with |Γ| > (1/b)|∆| satisfying

the following. If R′ is a vector strong subtree of Z′ with R′(0) ∈ Γ and of

height k + 1, then the set

(71)

k⋃
n=1

( ⋂
r∈⊗R′(n)

D(r)
)

does not contain a strong subtree of SuccW (waWp0) of height k.

Proof. We will argue as in the proof of Corollary 20. Specifically, let λ = h(Z)−m.

We write Z = (Z1, . . . , Zd) and we set B = (b<λ1 , . . . , b<λd ). For every z ∈ ⊗Z(m)

let SuccZ(z) = (Zz
1 , . . . , Z

z
d) and notice that h(B) = h

(
SuccZ(z)

)
= λ. Thus, as in

the proof of Corollary 20, for every i ∈ {1, . . . , d} we may consider the canonical

isomorphism Izi between b<λi and Zz
i . The vector canonical isomorphism between

⊗B and ⊗SuccZ(z) will be denoted by Iz.

For every z ∈ ∆ we define the level selection Dz : ⊗B → P(W ) exactly as we

did in (62). By (69) and the estimate

(72) |∆| 6 |⊗ Z(m)| =
( d∏
i=1

bi
)m
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we obtain that

(73) h(B) > Mil
(
b1, . . . , b1︸ ︷︷ ︸
b1−times

, . . . , bd, . . . , bd︸ ︷︷ ︸
bd−times

|N, k, b|∆|
)

+ 1.

Hence, we may apply Lemma 21 to the family {Dz : z ∈ ∆}. If the first alternative

of the lemma holds true, then it is easily seen that part (i) is satisfied.

Otherwise, we obtain U′ ∈ Str0
N+1(B), p0 ∈ {0, . . . , b − 1} and Γ ⊆ ∆ of car-

dinality at least (1/b)|∆| such that for every z ∈ Γ and every R ∈ Str0
k+1(U′) the

set

(74)

k⋃
n=1

( ⋂
r∈⊗R(n)

Dz(r)
)

does not contain a strong subtree of SuccW (waWp0) of height k. We have already

pointed out in the proof of Corollary 20 that for every i ∈ {1, . . . , d} the family

{Izi : z ∈ ⊗Z(m)} has the following coherence property: for every z, t ∈ ⊗Z(m) if

the finite sequences z and t agree on the i-th coordinate, then the maps Izi and Iti
are identical. Therefore, it is possible to select a vector strong subtree Z′ of Z of

height m + (N + 1) with Z′ � m = Z � m and such that for every z ∈ Γ we have

Iz(U′) = SuccZ′(z). It is then easy to check that part (ii) is satisfied for Z′, p0 and

Γ. The proof is completed. �

7. Step 3: small correlation

This section is devoted to the proof of the following result and its consequences.

Lemma 23. Let d ∈ N with d > 1 and b1, . . . , bd, bd+1 ∈ N with bi > 2 for all

i ∈ {1, . . . , d+ 1}. Also let k ∈ N with k > 1 and assume that for every 0 < η 6 1

the number LS(b1, . . . , bd+1|k, η) has been defined.

Let q ∈ N with q > 1 and 0 < η0 6 1. Assume that we are given

(a) a finite vector homogeneous tree U with bU = (b1, . . . , bd),

(b) a homogeneous tree W with bW = bd+1,

(c) a node w0 ∈W ,

(d) a subset L of N with |L| = h(U) and `W (w0) 6 minL, and

(e) for every j ∈ {1, . . . , q} a level selection Dj : ⊗U→ P(W ) with L(Dj) = L.

Finally, let N ∈ N with N > 1 and suppose that

(75) h(U) > N + Mil
(
b1, . . . , bd|LS(b1, . . . , bd+1|k, η0), 1, q

)
− 1.

Then, either

(i) there exist j0 ∈ {1, . . . , q}, a vector strong subtree Q of U and a strong

subtree P of SuccW (w0) with h(Q) = h(P ) = k and such that

(76) P (n) ⊆
⋂

u∈⊗Q(n)

Dj0(u)

for every n ∈ {0, . . . , k − 1}, or
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(ii) there exists a vector strong subtree U′ of U with h(U′) = N and such that

dens
(
Dj

(
U′(0)

)
|w0

)
< η0 for every j ∈ {1, . . . , q}.

Lemma 23 corresponds to the third step of the proof of Theorem 3. It will be

used, however, in a more convenient form which is stated and proved in §7.2.

7.1. Proof of Lemma 23. We set

(77) N0 = LS(b1, . . . , bd+1|k, η0)

and

(78) M0 = Mil(b1, . . . , bd|N0, 1, q).

Also let

(79) V = U � (M0 − 1).

We consider the following cases.

Case 1: for every v ∈ ⊗V there exists j ∈ {1, . . . , q} with dens(Dj(v) |w0) > η0.

In this case we will show that the first alternative of the lemma holds true. Specif-

ically, we define a coloring C : ⊗V→ {1, . . . , q} by the rule

(80) C(v) = min
{
j ∈ {1, . . . , q} : dens(Dj(v) |w0) > η0

}
.

Since h(V) = M0, by the choice of M0 in (78), there exist j0 ∈ {1, . . . , q} and a

vector strong subtree V′ of V with h(V′) = N0 such that C(v) = j0 for every v ∈
⊗V′. We define Dw0

j0
: ⊗V′ → P

(
SuccW (w0)

)
by Dw0

j0
(v) = Dj0(v) ∩ SuccW (w0).

It follows that Dw0
j0

is a level selection with density at least η0 and of height N0.

Therefore, by the choice of N0 in (77), we conclude that part (i) of the lemma is

satisfied.

Case 2: there is v0 ∈ ⊗V such that dens(Dj(v0) |w0) < η0 for every j ∈ {1, . . . , q}.
By (75) and (79), we have h

(
SuccU(v0)

)
> N . Thus, part (ii) is satisfied for

“U′ = SuccU(v0) � (N − 1)”. The proof of Lemma 23 is completed.

7.2. Consequences. We have the following corollary.

Corollary 24. Let d ∈ N with d > 1 and b1, . . . , bd, bd+1 ∈ N with bi > 2 for all

i ∈ {1, . . . , d+ 1}. Also let k ∈ N with k > 1 and assume that for every 0 < η 6 1

the number LS(b1, . . . , bd+1|k, η) has been defined.

Let 0 < η0 6 1 and m ∈ N and define q = q(b1, . . . , bd,m) as in (14). Assume

that we are given

(a) a finite vector homogeneous tree Z with bZ = (b1, . . . , bd) and h(Z) > m+2,

(b) a homogeneous tree W with bW = bd+1,

(c) a node w̃ ∈W ,

(d) a subset L = {l0 < · · · < lh(Z)−1} of N with `W (w̃) 6 lm+1,

(e) for every n ∈ {0, . . . ,m} a nonempty subset Γn of ⊗Z(n), and

(f) a level selection D : ⊗ Z→ P(W ) with L(D) = L.
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Finally, let N ∈ N with N > 1 and suppose that

(81) h(Z) > (m+ 1) +N + Mil
(
b1, . . . , bd|LS(b1, . . . , bd+1|k, η0), 1, q

)
− 1.

Then, either

(i) there exist a vector strong subtree S of Z with S(0) ∈ Γ0 ∪ · · · ∪ Γm and

h(S) = k+ 1 and a strong subtree R of SuccW (w̃) with h(R) = k such that

(82) R(n) ⊆
⋂

s∈⊗S(n+1)

D(s)

for every n ∈ {0, . . . , k − 1}, or

(ii) there exists a vector strong subtree Z′ of Z of height (m+ 1) +N and with

Z′ � m = Z � m and satisfying the following. For every F′ ∈ Str2(Z′) with

F′(0) ∈ Γ0 ∪ · · · ∪ Γm and ⊗F′(1) ⊆ ⊗Z′(m+ 1) we have

(83) dens
( ⋂

z∈⊗F′(1)

D(z)
∣∣∣ w̃) < η0.

Proof. We will reduce the proof to Lemma 23 using the notion of vector canonical

isomorphism exactly as we did in the proofs of Corollary 20 and Corollary 22. The

reduction in this case is slightly more involved but the overall strategy is identical.

Specifically, let λ = h(Z) − (m + 1). We write Z = (Z1, . . . , Zd) and we set

B = (b<λ1 , . . . , b<λd ). Also, for every z ∈ ⊗Z(m+1) we set SuccZ(z) = (Zz
1 , . . . , Z

z
d).

As in the proof of Corollary 20, for every i ∈ {1, . . . , d} by Izi we shall denote the

canonical isomorphism between b<λi and Zz
i . The vector canonical isomorphism

between ⊗B and ⊗SuccZ(z) will be denoted by Iz. We define

(84) F =
{
F ∈ Str2(Z) : F(0) ∈ Γ0 ∪ · · · ∪ Γm and ⊗ F(1) ⊆ ⊗Z(m+ 1)

}
.

By Fact 4 and the choice of q, we have the estimate

(85) |F| 6 q.

For every F ∈ F we define DF : ⊗B→ P(W ) by the rule

(86) DF(u) =
⋂

z∈⊗F(1)

D
(
Iz(u)

)
.

Notice that DF is a level selection with L(DF) = {lm+1 < · · · < lh(Z)−1}. Moreover,

h(B)
(81)

> N + Mil
(
b1, . . . , bd|LS(b1, . . . , bd+1|k, η0), 1, q

)
− 1(87)

(85)

> N + Mil
(
b1, . . . , bd|LS(b1, . . . , bd+1|k, η0), 1, |F|

)
− 1.

Therefore, by Lemma 23 applied to the family {DF : F ∈ F}, we obtain that one

of the following cases is satisfied.
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Case 1: there exist G ∈ F , a vector strong subtree Q of B and a strong subtree R

of SuccW (w̃) with h(Q) = h(R) = k and such that

(88) R(n) ⊆
⋂

u∈⊗Q(n)

DG(u)

for every n ∈ {0, . . . , k−1}. In this case, we will show that the first alternative of the

corollary holds true. Specifically, write G = (G1, . . . , Gd) and Q = (Q1, . . . , Qd).

Since G ∈ F there exists m0 ∈ {0, . . . ,m} such that G(0) ∈ Γm0 . For every

i ∈ {1, . . . , d} we set

(89) Si = Gi(0) ∪
⋃

z∈⊗G(1)

Izi (Qi)

and we define

(90) S = (S1, . . . , Sd).

It is easy to see that S is a vector strong subtree of Z with h(S) = k + 1 and such

that S(0) = G(0) ∈ Γm0
. Moreover, we have the following fact.

Fact 25. We have ⊗S(n + 1) = {Iz(u) : u ∈ ⊗Q(n) and z ∈ ⊗G(1)} for every

n ∈ {0, . . . , k − 1}.

Fact 25 is a rather straightforward consequence of the relevant definitions. Now

let n ∈ {0, . . . , k − 1} be arbitrary. By (88), (86) and Fact 25, we have

(91) R(n) ⊆
⋂

u∈⊗Q(n)

⋂
z∈⊗G(1)

D
(
Iz(u)

)
=

⋂
s∈⊗S(n+1)

D(s).

Thus, in this case part (i) of the corollary is satisfied.

Case 2: there exists a vector strong subtree U′ of B with h(U′) = N and such that

(92) dens
(
DF

(
U′(0)

)
| w̃
)
< η0

for every F ∈ F . As the reader might have already guessed, we will show that the

second alternative of the corollary holds true. To this end write U′ = (U ′1, . . . , U
′
d).

For every i ∈ {1, . . . , d} we set

(93) Z ′i = (Zi � m) ∪
⋃

z∈⊗Z(m+1)

Izi (U
′
i)

and we define

(94) Z′ = (Z ′1, . . . , Z
′
d).

It is easy to check that Z′ is a vector strong subtree of Z of height (m + 1) + N

and such that Z′ � m = Z � m. Also notice that there exists a natural bijection φ

between ⊗Z(m+ 1) and ⊗Z′(m+ 1). It is defined by the rule

(95) φ(z) = Iz
(
U′(0)

)
.

Observe that the map φ has the following coherence property: if F′ ∈ Str2(Z′)

with ⊗F′(1) ⊆ ⊗Z′(m + 1), then there exists F ∈ Str2(Z) with F′(0) = F(0),
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⊗F(1) ⊆ ⊗Z(m+ 1) and such that φ
(
⊗ F(1)

)
= ⊗F′(1). These remarks yield the

following fact.

Fact 26. Let F′ ∈ Str2(Z′) with F′(0) ∈ Γ0 ∪ · · · ∪ Γm and ⊗F′(1) ⊆ ⊗Z′(m+ 1).

Then there exists F ∈ F such that ⊗F′(1) =
{
Iz
(
U′(0)

)
: z ∈ ⊗F(1)

}
.

The vector strong subtree Z′ of Z satisfies all requirements of part (ii). Indeed,

we have already pointed out that h(Z′) = (m+ 1) +N and Z′ � m = Z � m. Now

let F′ ∈ Str2(Z′) with F′(0) ∈ Γ0∪· · ·∪Γm and ⊗F′(1) ⊆ ⊗Z′(m+1) be arbitrary.

By Fact 25, there exists F ∈ F such that ⊗F′(1) =
{
Iz
(
U′(0)

)
: z ∈ ⊗F(1)

}
. It

follows that

dens
( ⋂

z∈⊗F′(1)

D(z)
∣∣∣ w̃) = dens

( ⋂
z∈⊗F(1)

D
(
Iz
(
U′(0)

)) ∣∣∣ w̃)(96)

(86)
= dens

(
DF

(
U′(0)

)
| w̃
) (92)
< η0.

The proof of Corollary 24 is completed. �

8. Performing the algorithm

Our goal in this section is to perform the algorithm outlined in §4 using the

analysis of the three basic steps given in §5, §6 and §7. We recall that this algorithm

is part of the inductive scheme described in (30). In particular, we make the

following assumptions which will be repeatedly used throughout this section.

Assumptions. We fix d ∈ N with d > 1, b1, . . . , bd, bd+1 ∈ N with bi > 2 for all

i ∈ {1, . . . , d + 1}, k ∈ N with k > 1 and 0 < ε 6 1. We will assume that for

every integer ` > 1 and every real 0 < η 6 1 the numbers UDHL(b1, . . . , bd|`, η)

and LS(b1, . . . , bd+1|k, η) have been defined.

8.1. Initializing various numerical parameters. First we set

(97) K0 = UDHL
(
b1, . . . , bd|2, ε/(4bd+1)

)
.

The number K0 is the number of iterations of the algorithm. Next we set

(98) r =
( ε

16(
∏d
i=1 bi)

K0bd+1

)23K0−1

.

The quantity r will be used to control the density increment. Finally let

(99) Q0 =

(∏d
i=1 b

bi
i

)K0 −
(∏d

i=1 bi
)K0∏d

i=1 b
bi
i −

∏d
i=1 bi

and set

(100) θ0 =
ε

8Q0
.

The quantity θ0 will be used to quantify what “negligible” means in the third step

of each iteration.
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8.2. Functions that control the height. Each time we perform a basic step of

the algorithm we refine the finite vector homogeneous tree that we have as an input

to achieve further properties. The height of the resulting vector strong subtree will

be controlled by three functions f1, f2 and f3 corresponding to the first, second and

third step respectively.

Specifically, we define f1 : N→ N by f1(0) = 0 and

(101) f1(n) = d1/r3eUDHL(b1, . . . , bd|n, r3)

for every integer n > 1. Next let f2 : N→ N be defined by f2(n) = 0 if n < k and

(102) f2(n) = Mil
(
b1, . . . , b1︸ ︷︷ ︸
b1−times

, . . . , bd, . . . , bd︸ ︷︷ ︸
bd−times

|n, k, b(
∏d
i=1 bi)

K0−1

d+1

)
for every integer n > k. Also we define f3 : N→ N by

(103) f3(n) = Mil
(
b1, . . . , bd|LS(b1, . . . , bd+1|k, θ0), 1, Q0

)
+ n− 1.

Finally, let g : N→ N be defined by the rule

(104) g(n) = (f1 ◦ f2 ◦ f3)(n) + 1.

It is, of course, clear that the function g will be used to control the height of the

resulting vector strong subtree after all steps have been performed.

8.3. Control of loss of density. Recall that, by Lemma 15, if we have “lack of

density increment” then it is always possible to have strong denseness loosing just

a small amount of density. This basic fact will be repeatedly used while performing

the algorithm and is appropriately quantified as follows.

We define (δn)3K0−1
n=0 and (εn)K0

n=0 recursively by the rule

(105)

{
δ0 = r,

δn+1 = (δn + δ2
n)1/2

and

{
ε0 = ε,

εn+1 = εn − (δ3n + δ3n+1 + δ3n+2).

The sequence (δn)3K0−1
n=0 will be used to control the loss of density at each step of

the iteration while the sequence (εn)K0
n=0 stands for the density left at our disposal.

We will need the following properties satisfied by these sequences.

(P1) For every n ∈ {0, . . . , 3K0 − 1} we have δn 6 2r2−n .

(P2) For every n ∈ {0, . . . , 3K0 − 2} we have
∑n
i=0 δi = δ2

n+1 − r2.

(P3) We have
∑3K0−1
n=0 δn 6 ε/2.

(P4) For every n ∈ {0, . . . ,K0 − 1} we have εn+1 = ε−
∑3n+2
i=0 δi.

(P5) For every n ∈ {0, . . . ,K0} we have ε/2 6 εn 6 ε.

(P6) For every n ∈ {0, . . . ,K0 − 1} we have

(106) δ3n 6 δ3K0−3 6
( ε/2

4(
∏d
i=1 bi)

K0bd+1

)4

6
( ε/2

4(
∏d
i=1 bi)

n+1bd+1

)4

.

The verification of these properties is fairly elementary and is left to the reader.

We simply notice that properties (P3) and (P6) follow by the choice of r in (98).
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8.4. The main dichotomy. We are now ready to state the main result in this

section which is the last step towards the proof of Theorem 3.

Lemma 27. Let T be a finite vector homogeneous tree with bT = (b1, . . . , bd), W

a homogeneous tree with bW = bd+1 and D : ⊗ T → P(W ) a level selection with

δ(D) > ε. Also let M ∈ N with M > k and assume that

(107) h(T) > g(K0)(M).

Then, either

(i) there exist a vector strong subtree T′ of T with h(T′) = M and w′ ∈ W
such that D is (w′,T′, ε+ r2/2)-dense, or

(ii) there exist a vector strong subtree S of T and a strong subtree R of W with

h(S) = h(R) = k + 1 and such that for every n ∈ {0, . . . , k} we have

(108) R(n) ⊆
⋂

s∈⊗S(n)

D(s).

8.5. Proof of Lemma 27. Assuming that neither (i) nor (ii) are satisfied we will

derive a contradiction. In particular, recursively we will construct

(a) a finite sequence (Zn)K0−1
n=0 of vector strong subtrees of T,

(b) a finite sequence (An)K0−1
n=0 of subsets of W ,

(c) two finite sequences (wn)K0−1
n=0 and (w̃n)K0−1

n=0 of nodes of W ,

(d) two finite sequences (∆n)K0−1
n=0 and (Γn)K0−1

n=0 of subsets of ⊗T, and

(e) a strictly increasing finite sequence (`n)K0−1
n=0 in N

such that, setting

(109) Fn =
{
F ∈ Str2(Zn) : F(0) ∈ Γ0 ∪ · · · ∪ Γn and ⊗ F(1) ⊆ ⊗Zn(n+ 1)

}
,

for every n ∈ {0, . . . ,K0 − 1} the following conditions are satisfied.

(C1) We have `0 = minL(D), A0 = D
(
T(0)

)
and ∆0 = Γ0 = T(0).

(C2) We have h(Zn) = n + 1 + g(K0−n−1)(M) and Zn(0) = T(0). Moreover, if

n > 1, then Zn � n = Zn−1 � n.

(C3) For every z ∈ ⊗Zn(n) we have D(z) ⊆W (`n).

(C4) The level selection D is (w̃n,SuccZn(z), εn+1)-dense for all z ∈ ⊗Zn(n+1).

(C5) If n > 1, then An ⊆ SuccW (w̃n−1) ∩W (`n) and dens(An | w̃n−1) > ε/8.

(C6) If n > 1, then ∆n is a subset of ⊗Zn−1(n) of cardinality (ε/4)|⊗Zn−1(n)|.
(C7) We have Γn ⊆ ∆n with |Γn| > (1/bd+1)|∆n|.
(C8) We have

(110) dens
( ⋃

F∈Fn

⋂
z∈⊗F(1)

D(z)
∣∣∣ w̃n) 6 ε/8.

(C9) If n > 1, then

(111) An ∩
( ⋃

F∈Fn−1

⋂
z∈⊗F(1)

D(z)
)

= ∅.
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(C10) We have

(112) wn ∈ An ∩
⋂

z∈∆n

D(z).

(C11) We have w̃n ∈ ImmSuccW (wn).

(C12) For every R ∈ Strk+1(Zn) with R(0) ∈ Γ0 ∪ · · · ∪ Γn the set

(113)

k⋃
j=1

⋂
z∈⊗R(j)

D(z)

does not contain a strong subtree of SuccW (w̃n) of height k.

As the first step is identical to the general one, let n ∈ {0, . . . ,K0 − 2} and assume

that the construction has been carried out up to n so that the above conditions are

satisfied.

Step 1: selection of `n+1, An+1, wn+1 and ∆n+1. Let `n+1 be the unique element

of the level set L(D) of D such that

(114) D(z) ⊆W (`n+1)

for every z ∈ ⊗Zn(n+ 1). For every w ∈W (`n+1) we set

(115) ∆w =
{
z ∈ ⊗Zn(n+ 1) : w ∈ D(z)

}
and we define

(116) Bn+1 =
{
w ∈ SuccW (w̃n) ∩W (`n+1) : |∆w| > (εn+1/2)|⊗ Zn(n+ 1)|

}
.

By condition (C4), the level selection D is (w̃n,SuccZn(z), εn+1)-dense for every

z ∈ ⊗Zn(n+ 1). Therefore,

(117) dens(Bn+1 | w̃n) > εn+1/2
(P5)

> ε/4.

Next we set

(118) An+1 = Bn+1 \
( ⋃

F∈Fn

⋂
z∈⊗F(1)

D(z)
)
.

Using estimates (110) and (117), we see that with these choices conditions (C5)

and (C9) are satisfied.

We proceed to select the node wn+1 and the set ∆n+1. This will be done with

an appropriate application of Corollary 20. Specifically, we set

(119) M2 = (f2 ◦ f3)
(
g(K0−n−2)(M)

)
.
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Notice that M2 >M > k > 1. Moreover,

h(Zn)
(C2)
= (n+ 1) + g(K0−n−1)(M)(120)

(104)
= (n+ 2) + (f1 ◦ f2 ◦ f3)

(
g(K0−n−2)(M)

)
(119)
= (n+ 2) + f1(M2)

(101)

> (n+ 2) +
1

r3
UDHL(b1, . . . , bd|M2, r

3).

Also,

γ0(εn+1, ε, r)
(36)
= (ε+ r2 − εn+1)1/2(121)

(P4)
=

( 3n+2∑
i=0

δi + r2
)1/2 (P2)

= δ3(n+1).

By (37), (38), (105) and the above identity, we see that

(122) γ1(εn+1, ε, r) = δ3(n+1)+1 and γ2(εn+1, ε, r) = δ3(n+1)+2.

Finally, by properties (P5) and (P6), we obtain that

(123) δ3(n+1) 6
( εn+1

4(
∏d
i=1 bi)

n+2bd+1

)4

.

It follows by condition (C4) and the above discussion that we may apply Corol-

lary 20 for “α = εn+1”, “β = ε”, “% = r”, “γi = δ3(n+1)+i” for i ∈ {0, 1, 2},
“b = bd+1”, “m = n + 1”, “Z = Zn”, “w̃ = w̃n”, “` = `n+1”, “A = An+1”,

“D = D � Zn” and “N = M2”. (For the first step of the recursive selection we

set “Z = T”, “w̃ = W (0)” and “m = 1”; the rest of the parameters are chosen

mutatis mutandis taking into account the choices we made in condition (C1) of the

recursive construction.) We have already pointed out that M2 >M . Since we have

assumed that part (i) of the lemma is not satisfied, we see that the second alterna-

tive of Corollary 20 holds true. Therefore, there exist a vector strong subtree V1

of Zn and a node w ∈ An+1 such that

(1a) h(V1) = (n+ 2) +M2,

(1b) V1 � (n+ 1) = Zn � (n+ 1) and

(1c) D is (w,SuccV1(z), εn+2)-strongly dense for every z ∈ ⊗V1(n+ 2).

We set

(124) wn+1 = w and ∆n+1 = ∆w

and we observe that with these choices condition (C6) and (C10) are satisfied. The

first step of the recursive selection is completed and, so far, conditions (C5), (C6),

(C9) and (C10) are satisfied.
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Step 2: selection of Γn+1 and w̃n+1. In this step we will rely on Corollary 22.

Precisely, we set

(125) M1 = f3

(
g(K0−n−2)(M)

)
and we observe that M1 >M > k. Moreover,

(126) h(V1)
(1a)
= (n+ 2) +M2

(119)
= (n+ 2) + (f2 ◦ f3)

(
g(K0−n−2)(M)

) (125)
= (n+ 2) + f2(M1)

(102)

> (n+ 1) + Mil
(
b1, . . . , b1︸ ︷︷ ︸
b1−times

, . . . , bd, . . . , bd︸ ︷︷ ︸
bd−times

|M1, k, b
(
∏d
i=1 bi)

n+1

d+1

)
+ 1.

Using this estimate and the fact that condition (C10) has already been verified

for n + 1, we may apply Corollary 22 for “b = bd+1”, “m = n + 1”, “Z = V1”,

“w = wn+1”, “∆ = ∆n+1”, “D = D � V1” and “N = M1”. Recall that, by

our assumptions, part (ii) of the lemma is not satisfied. It follows that the second

alternative of Corollary 22 holds true. Therefore, there exist a vector strong subtree

V2 of V1, p0 ∈ {0, . . . , bd+1 − 1} and a subset Γ of ∆n+1 such that

(2a) h(V2) = (n+ 2) +M1,

(2b) V2 � (n+ 1) = V1 � (n+ 1),

(2c) |Γ| > (1/bd+1)|∆n+1| and

(2d) for every R ∈ Strk+1(V2) with R(0) ∈ Γ the set

(127)

k⋃
j=1

⋂
z∈⊗R(j)

D(z)

does not contain a strong subtree of SuccW (waW
n+1p0) of height k.

We set

(128) w̃n+1 = waW
n+1p0 and Γn+1 = Γ.

and we observe that with these choices conditions (C7) and (C11) are satisfied. The

second step of the recursive selection is completed.

Step 3: selection of Zn+1. As the reader might have already guessed, the selection

of Zn+1 will be achieved with the help of Corollary 24. To apply Corollary 24,

however, we need to do some preparatory work.

Firstly, we will use our inductive hypotheses to strengthen property (2d) above.

Specifically, by (1b) and (2b), we have that V2 is a vector strong subtree of Zn

with V2 � (n+ 1) = Zn � (n+ 1). Moreover, w̃n+1 ∈ ImmSuccW (wn+1) and

(129) wn+1 ∈ An+1

(118)

⊆ Bn+1

(116)

⊆ SuccW (w̃n).

Taking into account these remarks and using condition (C12) for Zn, we arrive at

the following property.
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(2e) For every R ∈ Strk+1(V2) with R(0) ∈ Γ0 ∪ · · · ∪ Γn+1 the set

(130)

k⋃
j=1

⋂
z∈⊗R(j)

D(z)

does not contain a strong subtree of SuccW (w̃n+1) of height k.

Next we set

(131) qn = q(b1, . . . , bd, n+ 1)
(14)
=

(∏d
i=1 b

bi
i

)n+2 −
(∏d

i=1 bi
)n+2∏d

i=1 b
bi
i −

∏d
i=1 bi

and we notice that

(132) qn
(99)

6 Q0.

Finally, let

(133) M0 = g(K0−n−2)(M)

and observe that

(134) h(V2)
(2a)
= (n+ 2) +M1

(125)
= (n+ 2) + f3

(
g(K0−n−2)(M)

) (133)
= (n+ 2) + f3(M0)

(103)
= (n+ 2) +M0 + Mil

(
b1, . . . , bd|LS(b1, . . . , bd+1|k, θ0), 1, Q0

)
− 1

(132)

> (n+ 2) +M0 + Mil
(
b1, . . . , bd|LS(b1, . . . , bd+1|k, θ0), 1, qn

)
− 1.

Therefore, we may apply Corollary 24 for “η0 = θ0”, “m = n + 1”, “Z = V2”,

“w̃ = w̃n+1”, the family “{Γ0, . . . ,Γn+1}”, “D = D � V2” and “N = M0”. The

first alternative of Corollary 24 contradicts (2e) isolated above. Thus, there exists

a vector strong subtree V3 of V2 such that

(3a) h(V3) = (n+ 2) +M0
(133)
= (n+ 2) + g(K0−n−2)(M),

(3b) V3 � (n+ 1) = V2 � (n+ 1) and

(3c) for every F ∈ Str2(V3) with F(0) ∈ Γ0∪· · ·∪Γn+1 and ⊗F(1) ⊆ ⊗V3(n+2)

we have

(135) dens
( ⋂

z∈⊗F(1)

D(z)
∣∣∣ w̃n+1

)
< θ0.

We set

(136) Zn+1 = V3

and we claim that with this choice all conditions are satisfied. Recall that conditions

(C5), (C6), (C7), (C9), (C10) and (C11) have already been verified and so we only

have to argue for the rest. Condition (C1) is just an initial assumption. Conditions

(C2) and (C3) follow by (114), (1b), (2b), (3a) and (3b). Condition (C4) follows by
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(1c) and the fact that Zn+1 is a vector strong subtree of V1. To see that condition

(C8) is satisfied notice that, by Fact 4, we have

(137) |Fn+1|
(14)

6 q(b1, . . . , bd, n+ 1)
(99)

6 Q0.

Hence,

(138) dens
( ⋃

F∈Fn+1

⋂
z∈⊗F(1)

D(z)
∣∣∣ w̃n+1

) (135),(137)

6 θ0Q0

(100)

6 ε/8.

Finally, condition (C12) follows by (2e) and the fact that Zn+1 is a vector strong

subtree of V2. The recursive selection is completed.

Obtaining the contradiction. We are now in a position to derive the contradiction.

By condition (C2), we have h(ZK0−1) > K0. We set B = ZK0−1 � (K0 − 1).

By conditions (C1), (C2), (C6) and (C7), we see that Γn is a subset of ⊗B(n) of

cardinality at least (ε/4bd+1)| ⊗B(n)| for every n ∈ {0, . . . ,K0 − 1}. Next observe

that bB = (b1, . . . , bd). Hence, by the choice of K0 in (97), there exist G ∈ Str2(B)

and 0 6 n0 < n1 < K0 such that G(0) ∈ Γn0
and ⊗G(1) ⊆ Γn1

.

By condition (C2) and the choice of B, we have that B � n1 = Zn1−1 � n1.

Therefore, by (109) and the properties of G, we see that G ∈ Fn1−1. Moreover, by

condition (C10), we have wn1
∈ An1

. Thus, invoking condition (C9), we conclude

(139) wn1
/∈

⋂
z∈⊗G(1)

D(z).

On the other hand, however, invoking condition (C10) we obtain that

(140) wn1
∈

⋂
z∈∆n1

D(z)
(C7)

⊆
⋂

z∈Γn1

D(z) ⊆
⋂

z∈⊗G(1)

D(z).

This is clearly a contradiction. The proof of Lemma 27 is thus completed.

9. Proof of the main results

This section is devoted to the proofs of Theorem 3 and Theorem 12. We will give

the proof simultaneously for both results following the inductive scheme outlined

in §4. As we have already mentioned in §2.7, the numbers UDHL(b|k, ε) are defined

by Lemma 8. In fact, we have UDHL(b|k, ε) = Ob,ε(k).

So let d ∈ N with d > 1 and b1, . . . , bd ∈ N with bi > 2 for all i ∈ {1, . . . , d} and

assume that the numbers UDHL(b1, . . . , bd|`, η) have been defined for every integer

` > 1 and every real 0 < η 6 1. Let bd+1 ∈ N with bd+1 > 2 be arbitrary. We will

define, recursively, the numbers LS(b1, . . . , bd, bd+1|k, ε) for every integer k > 1 and

every 0 < ε 6 1.

To this end notice that LS(b1, . . . , bd, bd+1|1, ε) = 1. Let k ∈ N with k > 1

and assume that the numbers LS(b1, . . . , bd, bd+1|k, η) have been defined for every

0 < η 6 1. Also let 0 < ε 6 1 be arbitrary. From our data b1, . . . , bd, bd+1, k and ε

and the inductive assumptions, we may define the integer K0, the positive constant
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r and the function g : N → N as in (97), (98) and (104) respectively. By Lemma

27, setting

(141) K1 = K0 d2/r2e,

we see that

(142) LS(b1, . . . , bd, bd+1|k + 1, ε) 6 g(K1)(k + 1).

Having define the numbers LS(b1, . . . , bd, bd+1|k + 1, ε) for every 0 < ε 6 1, the

corresponding numbers UDHL(b1, . . . , bd, bd+1|k+1, ε) can then be estimated easily

using Fact 13. The proofs of Theorem 3 and Theorem 12 are completed.

10. Appendix: proof of Theorem 6

The family of functions {φk : k > 1} will be defined recursively. Notice that

the case “k = 1” is just the finite version of the Halpern–Läuchli theorem for

vector homogeneous trees. The existence of the corresponding function φ1 : N3 → N
follows by [29, Theorem 5]. An essential ingredient for obtaining this bound is the

work of Shelah [28] on the “Hales–Jewett” numbers [14]. The relation between

the Halpern–Läuchli theorem for vector homogeneous trees and the Hales–Jewett

theorem is well understood (see, e.g., [24, 33]) and can be traced in the works of

Carlson and Simpson [5], and Carlson [4].

Now let k ∈ N with k > 1 and assume that the function φk has been defined.

To define the function φk+1 we need, first, to briefly outline the general inductive

step of the proof of Milliken’s theorem emphasizing, in particular, the bounds we

get from the argument. The details are fairly standard (see, e.g., [33]) and are left

to the reader.

So assume that the numbers Mil(b′1, . . . , b
′
d′ |`, k, r′) have been defined for every

integer d′ > 1, every b′1, . . . , b
′
d′ ∈ N with b′i > 2 for all i ∈ {1, . . . , d′}, every integer

` > k and every integer r′ > 1.

We fix d ∈ N with d > 1 and b1, . . . , bd ∈ N with bi > 2 for all i ∈ {1, . . . , d}.
Also let r ∈ N with r > 1 be arbitrary. It is convenient to introduce some notation.

Specifically, for every finite vector homogeneous tree T with h(T) > k+1 and every

integer n 6 h(T)− (k + 1) we set

(143) Strnk+1(T) =
{
S ∈ Strk+1(T) : S(0) ∈ ⊗T(n)

}
.

We have the following.

Lemma 28. Let n,N ∈ N with N > k. Also let T be a finite vector homogeneous

tree with bT = (b1, . . . , bd) and such that

(144) h(T) > (n+ 1) + Mil
(
b1, . . . , b1︸ ︷︷ ︸
b1−times

, . . . , bd, . . . , bd︸ ︷︷ ︸
bd−times

|N, k, r(
∏d
i=1 bi)

n
)
.
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Then for every r-coloring of Strnk+1(T) there exists a vector strong subtree S of T

with S � n = T � n, h(S) = (n+ 1) +N and such that for every R,R′ ∈ Strnk+1(S)

if R(0) = R′(0), then R and R′ have the same color.

Now let m ∈ N with m > k + 1 be arbitrary and set

(145) M1(m) = Mil(b1, . . . , bb|m, 1, r).

Also let g : N→ N be defined by g(n) = 0 if n < k and

(146) g(n) = Mil
(
b1, . . . , b1︸ ︷︷ ︸
b1−times

, . . . , bd, . . . , bd︸ ︷︷ ︸
bd−times

|n, k, r(
∏d
i=1 bi)

M1(m)−2
)

+ 1

for every n > k. The following result is based on Lemma 28 and completes the

outline of the general inductive step of the proof of Milliken’s theorem.

Lemma 29. We have

(147) Mil(b1, . . . , bd|m, k + 1, r) 6 g(M1(m))(k).

We are now ready to define the function φk+1. First we define ζ : N3 → N by

(148) ζ(b,m, r) = φ1(b,m, r).

Also let ω : N3 → N be defined by

(149) ω(b,m, r) = rb
ζ(b,m,r)

.

Using the fact that the function φ1 belongs to the class E6 and elementary properties

of primitive recursive functions (see, e.g., [26]), it is easy to check that ζ and ω

belong to the class E6. Next we define f : N3 → N by

(150) f(b,m, r) = φk
(
b,m, ω(b,m, r)

)
+ 1.

By our inductive assumptions, the function φk belongs to the class E5+k. Hence,

so does f . Finally, define ψ : N4 → N recursively by the rule

(151)

{
ψ(0, b,m, r) = m,

ψ(i+ 1, b,m, r) = f
(
b, ψ(i, b,m, r), r

)
.

and set

(152) φk+1(b,m, r) = ψ
(
ζ(b,m, r), b, k, r

)
.

The function φk+1 is the desired one. Indeed, notice that φk+1 belongs to the class

E5+k+1. Moreover, using Lemma 29, it is easily checked that

(153) Mil(b1, . . . , bd|m, k + 1, r) 6 φk+1

( d∏
i=1

bbii ,m, r
)
.

The proof of Theorem 6 is completed.
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[25] V. Rödl, B. Nagle, J. Skokan, M. Schacht and Y. Kohayakawa, The hypergraph regularity

method and its applications, Proc. Nat. Acad. Sci. USA 102 (2005), 8109–8113.

[26] H. E. Rose, Subrecursion: functions and hierarchies, Oxford Logic Guide 9, Oxford Univ.

Press, Oxford, 1984.

[27] K. F. Roth, On certain sets of integers, J. London Math. Soc. 28 (1953), 104–109.



DENSE SUBSETS OF PRODUCTS OF FINITE TREES 37

[28] S. Shelah, Primitive recursive bounds for van der Waerden numbers, J. Amer. Math. Soc. 1

(1988), 683–697.
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