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Abstract. We study the problem of the existence of unconditional basic se-

quences in Banach spaces of high density. We show in particular the relative

consistency of the statement that every Banach space of density ℵω contains

an unconditional basic sequence.

1. Introduction

In this paper we study particular instances of the general unconditional basic

sequence problem asking under which conditions a given Banach space must contain

an infinite unconditional basic sequence (see [LT, page 27]). We chose to study

instances of the problem for Banach spaces of large densities exposing thus its

connections with large-cardinal axioms of set theory. The first paper on this line

of research is a well-known paper of Ketonen [Ke] which shows that if a density of

a given Banach space E is greater than or equal to the ω-Erdős cardinal (usually

denoted as κ(ω), see Section 2.2), then E contains an infinite unconditional basic

sequence. More precisely, let nc be the minimal cardinal λ such that every Banach

space of density at least λ contains an infinite unconditional basic sequence. Then

Ketonen’s result can be restated as follows.

Theorem 1 ([Ke]). κ(ω) > nc.

Since κ(ω) is a considerably large cardinal (strongly inaccessible and more) one

would like to determine is nc really a large cardinal or not, and, of course at some

point one would also like to determine the exact value of this cardinal. Unfor-

tunately, there are not too many results in the literature that would point out

towards lower bounds for this cardinal. In fact, the largest known lower bound for

nc is given by Argyros and Tolias [AT] who showed that nc > 2ℵ0 . So in particular

the following problem is widely open.

Question 1. Is expω(ℵ0), any of the finite-tower exponents expn(ℵ0), or any of

their ω-successors expn(ℵ0)+ω an upper bound of nc? In particular, does the in-

equality (2ℵ0)+ω > nc hold?
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The cardinals expn(ℵ0) are listed here because of their strong Ramsey-theoretic

properties. In fact our results here show that their supremum expω(ℵ0) is not such

a bad candidate for an upper bound of nc. We prove this using a variation of a

partition property originally appearing in the problem lists of Erdős and Hajnal

[EH1], [EH2, Problem 29] (see also [Sh2]). Let κ be a cardinal and d ∈ ω with

d > 1. By Pld(κ) we denote the combinatorial principle asserting that for every

coloring

c :
[

[κ]d
]<ω → ω

there exists a sequence (xn) of infinite disjoint subsets of κ such that for every

m ∈ ω the restriction

c �
m∏
n=0

[xn]d

is constant. Clearly property Pld(κ) implies property Pld′(κ) for any cardinal κ and

any pair d, d′ ∈ ω with d > d′ > 1. From known results one can easily deduce that

the principle Pld(expd−1(ℵ0)+n) is false for every n ∈ ω and every integer d > 1 (see,

for instance, [EHMR, CDPM, DT]). Thus, the minimal cardinal κ for which Pld(κ)

could possibly be true is expd−1(ℵ0)+ω. Indeed, Di Prisco and Todorcevic [DT]

have established the consistency of Pl1(ℵω) relative to the consistency of a single

measurable cardinal, an assumption that also happens to be optimal. On the other

hand, Shelah [Sh2] was able to establish that GCH and principles Pld(ℵω) (d > 1)

are jointly consistent, relative to the consistency of GCH and the existence of an

infinite sequence of strongly compact cardinals. In a previous version of our paper

we have presented an improvement of this result to the effect that the partition

relations Pld(ℵω) were replaced by natural conditions on ideals of subsets of ℵk’s.

While we find these improvements easy to use and therefore of potential interested

to experts not familiar with consistency results in set theory, the referee and the

editor of this journal were of the opinion that this part of our paper should be

published in a separate form (see [DLT]).

Theorem 2. Let κ be a cardinal for which the partition property Pl2(κ) holds.

Then every Banach space E not containing a copy of `1 and of density κ contains

an 1-unconditional basic sequence1.

In particular, if E is any Banach space of some density κ for which Pl2(κ) holds,

then for every ε > 0 the space E contains an (1 + ε)-unconditional basic sequence.

Recall that the separable Hilbert space `2 = `2(ω) is arbitrarily distortable, that

is, for every λ > 1 there is an equivalent norm | · | on `2 with the property that

for every infinite-dimensional subspace E of `2 there exist x, y ∈ E such that

‖x‖2 = ‖y‖2 = 1 and |x| > λ · |y| (see [OS]). The referee remarks that Theorem 2

1Recall that a sequence (xn) in a Banach space E is said to be C-unconditional, where C > 1,

if for every pair F and G of nonempty finite subsets of ω with F ⊆ G and every choice (an)n∈G

of scalars we have ‖
∑
n∈F anxn‖ 6 C · ‖

∑
n∈G anxn‖.
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might imply that large Hilbert spaces are not even distortable. We don’t know how

to verify this nor whether this kind of result was known before.

A well-known consequence of a result due to Hagler and Johnson [HJ] asserts that

if E is a Banach space such that E∗ has an unconditional basic sequence, then E has

a separable quotient with an unconditional basis (see also [ADK, Proposition 16]).

Noticing that the density of the dual E∗ of a Banach space E is at least as big as

the density of E, we obtain the following consequence of Theorem 2.

Corollary 3. If a cardinal κ satisfies Pl2(κ), then every Banach space of density

at least κ has a separable quotient with an unconditional basis.

Since Pl2(ℵω) is a consistent statement, we have the following corollary.

Corollary 4. It is consistent that every Banach space of density at least ℵω has a

separable quotient with an unconditional basis.

Recall that under an appropriate Baire category assumption every Banach space

E of density ℵ1 has a separable quotient (see [To1]). In fact one can combine the

work of [To1] with the consistency proof from [DLT] (which was originally a part

of the present paper) and show that for every positive integer k there is a generic

extension of the universe of sets in which every Banach space E of density at most

ℵk or at least ℵω has a separable quotient.

Theorem 2 together with the fact that Pl2(ℵω) is a consistent statement shows

that the inequality ℵω > nc is consistent with the usual axioms of set theory. A

close examination of this consistency proof and some known results from Banach

space theory suggest that by restricting the class of Banach spaces to, say, reflexive,

or more generally weakly compactly generated Banach spaces, one might obtain

different answers about the size of the corresponding cardinal numbers ncrfl and

ncwcg respectively. To describe this difference it is convenient to introduce yet

another natural cardinal characteristic ncseq, the minimal cardinal θ such that every

normalized weakly null2 sequence (xα : α < κ) in some Banach space E has a

subsequence which is unconditional. Clearly ncrfl 6 ncwcg while, by the Amir–

Lindenstrauss theorem [AL], we see that ncwcg 6 ncseq. The first known lower

bound on these cardinal is due to Maurey and Rosenthal [MR] who showed that

ncseq > ℵ0, though considerably deeper is the lower bound of Gowers and Maurey

[GM] who showed that in fact ncrfl > ℵ0. The largest known lower bound on these

cardinals is given in [ALT] who showed that ncrfl > ℵ1. This suggests the following

question.

Question 2. Is ℵω or any of the finite successors ℵn (n > 2) an upper bound on

any of the three cardinals ncseq, ncrfl or ncwcg?

2Recall that (xα : α < λ) is weakly null in E if for every f ∈ E∗ and every ε > 0 the set

{α < κ : |f(xα)| > ε} is finite.
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That ℵω is not such a bad choice for an upper bound of ncseq may be seen from

our second result and the fact that Pl1(ℵω) is a consistent statement.

Theorem 5. If a cardinal κ has the property Pl1(κ) then every weakly null normal-

ized sequence (xα : α < κ) in some Banach space E has an infinite 1-unconditional

subsequence (xαn
: n < ω).

It turns out that the consistency proof that Pl1(ℵω) uses a considerably weaker

assumption than the consistency proof of Pl2(ℵω). It relies on two Ramsey-theoretic

principles, one established by Koepke [Ko] and the other by Di Prisco and Todorce-

vic [DT]. It also gives the joint consistency of the GCH and the cardinal inequality

ℵω > ncseq relative to the consistency of a single measurable cardinal.

The rest of the paper is organized as follows. In Section 2 we present some pre-

liminaries. In Subection 3.1 we give the proof of Theorem 2, while in Subsection 3.2

we present its “sequential” version. Two proofs of this version are given, each of

which is based on a different combinatorial principle.

2. Preliminaries

Our Banach space theoretic and set theoretic terminology and notation are stan-

dard and follow [LT] and [Ku] respectively. We will consider only real Banach spaces

though, using essentially the same arguments, one notices that all our results are

valid for complex Banach spaces as well.

2.1. Banach space cardinals. Since in this note we are concerned with the prob-

lem of the existence of unconditional basic sequences in Banach spaces of high

density, let us introduce the following cardinal invariants related to the version of

the unconditional basic sequence problem that we study here.

Definition 6. Let nc, ncwcg, ncrfl and ncseq be defined as follows.

(1) nc is the minimal cardinal λ such that every Banach space of density λ

contains an unconditional basic sequence.

(2) ncwcg (respectively, ncrfl) is the minimal cardinal λ such that every weakly

compactly generated (respectively, reflexive) Banach space of density λ con-

tains an unconditional basic sequence.

(3) ncseq is the minimal cardinal λ such that every normalized weakly null se-

quence (xα : α < λ) in a Banach space E has a subsequence (xαn : n < ω)

which is unconditional.

Let us now recall some standard set theoretic notions.

2.2. Large Cardinals. Let θ be a cardinal.

(a) θ is said to be inaccessible if it is regular and strong limit; that is, 2λ < θ

for every λ < θ.
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(b) θ is said to be 0-Mahlo if it is inaccessible. In general, for an ordinal α, θ

is said to be α-Mahlo if for every β < α and every closed and unbounded

subset C of θ there is a β-Mahlo cardinal λ in C.

(c) An α-Erdős cardinal, usually denoted by κ(α) if exists, is the minimal

cardinal λ such that λ → (α)<ω2 ; that is, λ is the least cardinal with the

property that for every coloring c : [λ]<ω → 2 there is H ⊆ λ of order-type

α such that c is constant on [H]n for every n < ω. A cardinal λ that

is λ-Erdős (in other words, a cardinal λ which has the partition property

λ→ (λ)<ω2 ) is called a Ramsey cardinal.

(d) θ is said to be measurable if there exists a θ-complete normal ultrafilter U
on θ. Looking at the ultrapower of the universe using U one can observe

that the set {λ < θ : λ is inaccessible} belongs to U . Similarly, one shows

that sets {λ < θ : λ is λ-Mahlo} and {λ < θ : λ is Ramsey} belong to U .

(e) θ is said to be strongly compact if every θ-complete filter can be extended

to a θ-complete ultrafilter.

Finally, for every cardinal κ and every n ∈ ω we define recursively the cardinal

expn(κ) by exp0(κ) = κ and expn+1(κ) = 2expn(κ). For more details see [Ka].

3. Banach space implications of polarized partition relations

Recall that a sequence (xn) in a Banach space E is said to be C-unconditional,

where C > 1, if for every pair F and G of nonempty finite subsets of ω with F ⊆ G
and every choice (an)n∈G of scalars we have∥∥∑

n∈F
anxn

∥∥ 6 C · ∥∥∑
n∈G

anxn
∥∥.

Also recall the following partition property, a variation of a partition property orig-

inally appearing in the problem lists of Erdős and Hajnal [EH1], [EH2, Problem 29]

(see also [Sh2]).

Definition 7. Let κ be a cardinal and d ∈ ω with d > 1. By Pld(κ) we shall denote

the combinatorial principle asserting that for every coloring c :
[

[κ]d
]<ω → ω there

exists a sequence (xn) of infinite disjoint subsets of κ such that for every m ∈ ω
the restriction c �

∏m
n=0[xn]d is constant.

The main result in this section is the following theorem.

Theorem 8. Let κ be a cardinal and assume that property Pl2(κ) holds. Then every

Banach space E not containing `1 and of density κ contains an 1-unconditional basic

sequence.

In particular, if E is any Banach space of density κ, then for every ε > 0 the

space E contains an (1 + ε)-unconditional basic sequence.
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3.1. Proof of Theorem 8. We start with the following lemma, which is essentially

a multi-dimensional version of Odell’s Schreier unconditionality theorem [O2].

Lemma 9. Let E be a Banach space, m ∈ ω with m > 1 and ε > 0. For every

i ∈ {0, . . . ,m} let (xin) be a normalized weakly null sequence in the space E. Then,

there exists an infinite subset L of ω such that for every {n0 < · · · < nm} ⊆ L the

sequence (xini
)mi=0 is (1 + ε)-unconditional.

Proof. The first step towards the proof of the lemma is included in the following

claim. It shows that, by passing to an infinite subset of ω, we may assume that for

every {n0 < · · · < nm} ∈ [N]m+1 the finite sequence (xini
)mi=0 is a particularly well

behaved basic sequence.

Claim 10. For every ε > 0 there exists an infinite subset M of ω such that for

every {n0 < · · · < nm} ⊆M the sequence (xini
)mi=0 is an (1 + ε)-basic sequence.

Proof of Claim 10. First, we define a coloring B : [N]m+1 → 2 as follows. Let

s = {n0 < · · · < nm} ∈ [N]m+1 be arbitrary. We set B(s) = 0 if (xini
)mi=0 is

an (1 + ε)-basic sequence; otherwise, we set B(s) = 1. By Ramsey’s theorem, there

exist an infinite subset M of ω and c ∈ {0, 1} such that B � [M ]m+1 is constantly

equal to c. Next, using Mazur’s classical procedure for selecting basic sequences

(see [LT, Lemma 1.a.6]), we may select t = {k0 < · · · < km} ∈ [M ]m+1 such that

the sequence (xiki)
m
i=0 is basic with basis constant (1 + ε). Therefore, B(t) = 0 and

so, by homogeneity, B � [M ]m+1 = 0. The claim is proved. �

Applying Claim 10 for ε = 1, we obtain an infinite subset M of ω as described

above. Observe that for every {n0 < · · · < nm} ∈ [M ]m+1 and every choice (ai)
m
i=0

of scalars we have

(1) ‖
m∑
i=0

aix
i
ni
‖ > 1

4
max{|ai| : i = 0, . . . ,m}.

The desired subset L of ω will be an infinite subset of M obtained by another

application of Ramsey’s theorem. Specifically, consider the coloring U : [M ]m+1 → 2

defined as follows. Let s = {n0 < · · · < nm} ∈ [M ]m+1 and assume that the

sequence (xini
)mi=0 is (1+ε)-unconditional. In such a case, we set U(s) = 0; otherwise

we set U(s) = 1. Let L be an infinite subset of M such that U is constant on [L]m+1.

It is enough to find some s ∈ [L]m+1 such that U(s) = 0.

To this end, fix δ > 0 such that (1 + δ) · (1 − δ)−1 6 (1 + ε). Notice that there

exists a finite family D of normalized basic sequences of length m+ 1 such that any

normalized basic sequence (yi)
m
i=0 in some Banach space Y , is

√
1 + δ-equivalent to

some sequence in the family D. Hence, by another application of Ramsey’s theorem

and by passing to an infinite subset of L if necessary, we may assume that

(∗) for every {n0 < · · · < nm}, {k0 < · · · < km} ∈ [L]m+1 the sequences

(xini
)mi=0 and (xiki)

m
i=0 are (1 + δ)-equivalent.
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Now, for every i ∈ {0, . . . ,m} and every ρ > 0 set

Ki(ρ) :=
{
{n ∈ ω : |x∗(xin)| > ρ} : x∗ ∈ BE∗

}
.

Every sequence (xin) is weakly null, and so, each Ki(ρ) is a pre-compact3 family of

finite subsets of ω. Hence, we may select a sequence (Fi)
m
i=0 of finite subsets of L

such that

(a) max(Fi) < min(Fi+1) for every i ∈ {0, . . . ,m− 1}, and

(b) Fi /∈ Ki(δ · 8−1 · (m+ 1)−1) for every i ∈ {0, . . . ,m}.

We set n := min(Fi) for every i ∈ {0, . . . ,m}. Property (a) above implies that

n0 < · · · < nm. We claim that the sequence (xini
)mi=0 is (1 + ε)-unconditional.

Indeed, let F ⊆ {0, . . . ,m} and let (ai)
m
i=0 be a choice of scalars. We need to prove

that ∥∥∑
i∈F

aix
i
ni

∥∥ 6 (1 + ε)
∥∥ m∑
i=0

aix
i
ni

∥∥.
Clearly we may assume that ‖

∑
i∈F aix

i
ni
‖ = 1. If ‖

∑
i/∈F aix

i
ni
‖ > 2, then

∥∥ m∑
i=0

aix
i
ni

∥∥ > ∥∥∑
i/∈F

aix
i
ni

∥∥− ∥∥∑
i∈F

aix
i
ni

∥∥ > 1 =
∥∥∑
i∈F

aix
i
ni

∥∥.
So, suppose that ‖

∑
i/∈F aix

i
ni
‖ 6 2. By (1), we see that

(2) max{|ai| : i /∈ F} 6 8.

We select x∗0 ∈ SE∗ such that x∗0
(∑

i∈F aix
i
ni

)
= ‖

∑
i∈F aix

i
ni
‖. We define a

sequence (ki)
m
i=0 in L as follows. If i /∈ F , then let ki be any member of Fi satisfying

|x∗0(xiki)| < δ · 8−1 · (m+ 1)−1 (such a selection is possible by (b) above); if i ∈ F ,

then we set ki := ni. By (a), we have k0 < · · · < km. Moreover,

∥∥ m∑
i=0

aix
i
ki

∥∥ > x∗0
( m∑
i=0

aix
i
ki

)
= x∗0

(∑
i∈F

aix
i
ki

)
+ x∗0

(∑
i/∈F

aix
i
ki

)
> x∗0

(∑
i∈F

aix
i
ki

)
−
∑
i/∈F

|ai| · |x∗0(xiki)| > 1− δ.

Invoking (∗), we conclude that

∥∥ m∑
i=0

aix
i
ni

∥∥ > 1

1 + δ

∥∥ m∑
i=0

aix
i
ki

∥∥ > 1− δ
1 + δ

>
1

1 + ε

∥∥∑
i∈F

aix
i
ni

∥∥.
The proof is completed. �

We are ready to proceed to the proof of Theorem 8.

3Recall that a family F of finite subsets of ω is said to be pre-compact if, identifying F with

a subset of the Cantor set 2ω , the closure F of F in 2ω consists only of finite sets.
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Proof of Theorem 8. Let κ be a cardinal such that Pl2(κ) holds. By a classical

result of James (see [LT, Proposition 2.e.3]), it is enough to show that if E is a

Banach space of density κ not containing an isomorphic copy of `1, then E has an

1-unconditional basic sequence. So, let E be one. By Rosenthal’s `1 theorem [Ro]

and our assumptions on the space E, we see that every bounded sequence in E has

a weakly Cauchy subsequence. Let (xα : α < κ) be a normalized sequence such

that ‖xα − xβ‖ > 1 for every α < β < κ. We define a coloring cun :
[

[κ]2
]<ω → ω

as follows. Let s = ({α0 < β0}, . . . , {αm < βm}) ∈
[

[κ]2
]<ω

be arbitrary. Assume

that there exists l ∈ ω with l > 0 and such that the sequence (xβi − xαi)
m
i=0 is

not (1 + 1/l)-unconditional. In such a case, setting ls to be the least l ∈ ω with

the above property, we define cun(s) = ls. If such an l does not exist, then we set

cun(s) = 0. By Pl2(κ), there exist a sequence (xi) of infinite subsets of κ and a

sequence (lm) in ω such that for every m ∈ ω the restriction cun �
∏m
i=0[xi]

2 of the

coloring cun on the product
∏m
i=0[xi]

2 is constant with value lm.

Claim 11. For every m ∈ ω we have lm = 0.

Granting the claim, the proof of the theorem is completed. Indeed, observe that

for every infinite sequence of pairs
(
{αi < βi}

)
∈
∏
i∈ω[xi]

2 the sequence (xβi
−xαi

)

is a semi-normalized 1-unconditional basic sequence in the Banach space E.

It only remains to prove Claim 11. To this end we argue by contradiction. So,

assume that there exists m ∈ ω such that lm > 0. Our definition of the coloring

cun implies that m > 1. For every i ∈ {0, . . . ,m} we may select an infinite subset

{αi0 < αi1 < · · · } of xi such that the sequence (xαi
) is weakly Cauchy. We set

yin :=
xαi

2n
− xαi

2n+1

‖xαi
2n
− xαi

2n+1
‖

for every i ∈ {0, . . . ,m} and every n ∈ ω. Then each (yin) is a normalized weakly

null sequence in E. Moreover, for every {n0 < · · · < nm} ⊆ [N]m+1 the sequence

(yini
)mi=0 is not (1 + 1/lm)-unconditional. This clearly contradicts Lemma 9. The

proof is completed. �

3.2. Unconditional subsequences of weakly null sequences. This subsection

is devoted to the proof of the following “sequential” version of Theorem 8.

Theorem 12. Let κ be a cardinal and assume that property Pl1(κ) holds. Then

ncseq 6 κ. In fact, every normalized weakly null sequence (xα : α < κ) has an

infinite 1-unconditional subsequence (xαn : n < ω).

Proof. It is similar to the proof of Theorem 8. Indeed, consider the coloring

cun : [κ]<ω → ω defined as follows. Let s = (α0 < · · · < αm) ∈ [κ]<ω be arbi-

trary and assume that there exists l ∈ ω with l > 0 such that the sequence (xαi
)mi=0

is not (1 + 1/l)-unconditional. In such a case, let cun(s) be the least l with this

property. Otherwise, we set cun(s) = 0. Using Pl1(κ) and Lemma 9, the result

follows. �
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It follows that is consistent relative to the existence of just a single measur-

able cardinal that every normalized weakly null sequence (xα : α < ℵω) has an

1-unconditional subsequence. Moreover, this statement is consistent with GCH.

There is another well-known combinatorial property of a cardinal κ which is

implied by Pl1(κ) and which is in turn sufficient for the estimate ncseq 6 κ. This

property is in the literature called the free set property of κ (see [Sh1, Ko, DT] and

the references therein).

Definition 13. By the term structure on a cardinal κ we mean a first order struc-

ture M = (κ, (fi)i∈ω) where ni ∈ ω and fi : κ
ni → κ for every i ∈ ω. The

free set property of κ, denoted by Frω(κ, ω), is the assertion that every structure

M = (κ, (fi)i∈ω) has a free infinite set, that is, there exists an infinite set L ⊆ κ

such that every x ∈ L does not belong to the substructure ofM generated by L\{x}.

We need the following fact (its proof is left to the interested reader).

Fact 14. Let κ be a cardinal. Then the following are equivalent.

(a) We have that Frω(κ, ω) holds true.

(b) For every structure M = (κ, (fi)i∈ω) there exists an infinite subset L of κ

such that for every x ∈ L we have that

x /∈
{
fi(s) : s ∈ (L \ {x})ni and i ∈ ω

}
.

(c) Every extended structure N = (κ, (gi)i∈ω), where gi : κ
<ω → [κ]6ω for

every i ∈ ω, has an infinite free subset. That is, there exists an infinite

subset L of κ such that for every x ∈ L we have

x /∈
⋃
i∈ω

⋃
s∈(L\{x})<ω

gi(s).

As we have already indicated above, one can use the property Frω(κ, ω) to derive

the conclusion of Theorem 12. More precisely, we have the following theorem.

Theorem 15. Let κ be a cardinal and assume that Frω(κ, ω) holds. Then every

normalized weakly null sequence (xα : α < κ) has an 1-unconditional subsequence.

Proof. Let (xα : α < κ) be a normalized weakly null sequence in a Banach space E.

For every s ∈ [κ]<ω we select a subset Fs of SE∗ which is countable and 1-norming

for the finite-dimensional subspace Es := span{xα : α ∈ s} of E. That is, for every

x ∈ Es we have

(3) ‖x‖ = sup{x∗(x) : x ∈ Fs}.

Define g : [κ]<ω → [κ]6ω by

(4) g(s) = {α < κ : there is some x∗ ∈ Fs such that x∗(xα) 6= 0}.

Since (xα : α < κ) is weakly null and Fs is countable, we see that g(s) is also

countable; that is, g is well-defined. Consider the extended structure N = (κ, g).
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Since Frω(κ, ω) holds, there exists an infinite free subset L of κ. We claim that the

sequence (xα : α ∈ L) is 1-unconditional.

Indeed, let s and t be finite subsets of L with s ⊆ t. Fix a sequence (aα : α ∈ t)
of scalars and let ε > 0 be arbitrary. By equality (3) above, we may select y∗ ∈ Fs
such that

(5)
∥∥∑
α∈s

aαxα
∥∥ 6 (1 + ε) · y∗

(∑
α∈s

aαxα
)
.

The set L is free, and so, for every α ∈ t \ s we have α /∈ g(s). This implies, in

particular, that y∗(xα) = 0 for every α ∈ t \ s. Hence,∥∥∑
α∈s

aαxα
∥∥ 6 (1 + ε) · y∗

(∑
α∈s

aαxα
)

= (1 + ε) · y∗
(∑
α∈t

aαxα
)

6 (1 + ε) ·
∥∥∑
α∈t

aαxα
∥∥.

Since ε > 0 was arbitrary, the result follows. �

4. Concluding remarks

In this section we would like to discuss the possible refinements of our results

presented above. First of all we notice that Ketonen’s arguments actually give that

if the density of a given Banach space E is greater than or equal to the ω-Erdős

cardinal, then E contains a normalized basic sequence which is equivalent to all of

its subsequences, that is, a basic sequence which is in the literature usually called

a sub-symmetric basic sequence. Note that this is stronger than saying that the

space E contains an unconditional basic sequence which can be easily seen using

Rosenthal’s `1 theorem [Ro].

On the other hand, we notice that our proof of the existence of an unconditional

basic sequence in every Banach space of density expω(ℵ0) does not guarantee the

existence of a sub-symmetric basic sequence. This is mainly due to the fact that the

principle Pl2(κ) is a rectangular Ramsey property while all attempts that we have

in mind for getting sub-symmetric basic sequences seem to require more classical

Ramsey-type principles such as these given, for example, by the ω-Erdős cardinal.

Since ω-Erdős is a large-cardinal property one might expect that there are Banach

spaces of large density not containing a sub-symmetric basic sequence. So let us

discuss some difficulties one encounters when trying to build such spaces.

The first example of an infinite dimensional Banach space not containing a sub-

symmetric basic sequence is Tsirelson’s space [Ts]. Tsirelson’s space is separable;

however, there do exist non-separable Banach spaces with the same property. The

first such example is due to Odell [O1]. Odell’s space is the dual of a separable

one, and so, it has density 2ℵ0 . There even exist non-separable reflexive spaces not

containing a sub-symmetric basic sequence. For example, one such a space is the

space constructed in [ALT] which has density ℵ1. We note that both spaces in [O1]
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and [ALT] are connected in some way to Tsirelson’s space. So one is led to explore

generalizations of the Tsirelson construction to larger densities.

Let us comment on difficulties encountered when trying to generalize Tsirelson’s

construction to densities bigger than the continuum, keeping in mind that we would

like to get a space not containing a sub-symmetric basic sequence. The first natural

move is to provide, for a given cardinal κ, a compact hereditary family F of finite

subsets of κ which is sufficiently rich in the sense that for every infinite subset M

of κ the restriction F � M of the family on M has infinite rank. Notice that such

a family cannot exist if κ is greater than or equal to the ω-Erdős cardinal. On the

other hand, using a characterization of n-Mahlo cardinals due to Schmerl (see [Sch]

or [To2, Theorem 6.1.8]), we were able to show that if κ is smaller that the first

ω-Mahlo cardinal, then κ carries such a family F .

Given a compact hereditary family F as above, the next step is to construct the

Tsirelson-like space T (F) on c00(κ) in the natural way. Such a space always fails to

contain c0 and `p for any 1 < p <∞. However, there are examples of such families

for which the corresponding space contains a copy of `1. The reason is that the

family F cannot be spreading relative the natural well-ordering of ordinals if κ is

uncountable. Recall that spreading is a crucial property of the Schreier family on

ω used in the original Tsirelson construction for preventing isomorphic copies of `1.

So we finish this section with the following natural question.

Question 3. Does there exists a compact hereditary family F of finite subsets of

some uncountable cardinal κ such that the corresponding Tsirelson-like space T (F)

fails to contain a copy of c0 and `p for any 1 6 p <∞?
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