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Abstract. We characterize those classes C of separable Banach spaces for

which there exists a separable Banach space Y not containing `1 and such

that every space in the class C is a quotient of Y .

1. Introduction

There are two classical universality results in Banach space theory. The first

one, known to Banach [5], asserts that the space C(2N), where 2N stands for the

Cantor set, is isometrically universal for all separable Banach spaces; that is, every

separable Banach space is isometric to a subspace of C(2N). The second result, also

known to Banach, is “dual” to the previous one and asserts that every separable

Banach space is isometric to a quotient of `1.

By now, it is well understood that there are natural classes of separable Banach

spaces for which one cannot obtain something better from what it is quoted above

(see [1, 8, 16, 31]). For instance, if a separable Banach space Y is universal for

the separable reflexive Banach spaces, then Y must contain an isomorphic copy of

C(2N), and so, it is universal for all separable Banach spaces. However, there are

non-trivial classes of separable Banach spaces which do admit “smaller” universal

spaces (see [2, 11, 12, 13, 15, 23, 24, 27]).

Recently, in [11], a characterization was obtained of those classes of separable

Banach spaces admitting a universal space which is not universal for all separa-

ble Banach spaces. One of the goals of the present paper is to obtain the corre-

sponding characterization for the “dual” problem concerning quotients instead of

embeddings. To proceed with our discussion it is useful to introduce the following

definition.

Definition 1. We say that a Banach space Y is a surjectively universal space for

a class C of Banach spaces if every space in the class C is a quotient1 of Y .

We can now state the main problem addressed in this paper.
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1If X and Y are Banach spaces, then we say that X is a quotient of Y if there exists a bounded,

linear and onto operator Q : Y → X.
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(P) Let C be a class of separable Banach space. When can we find a separable

Banach space Y which is surjectively universal for the class C and does not

contain a copy of `1?

We notice that if a separable Banach space Y does not contain a copy of `1, then `1

is not a quotient of Y (see [21, Proposition 2.f.7]) and therefore Y is not surjectively

universal for all separable Banach spaces.

To state our results we recall the following (more or less standard) notation

and terminology. By SB we denote the standard Borel space of separable Banach

spaces defined by Bossard [7], by NC`1 we denote the subset of SB consisting of all

X ∈ SB not containing an isomorphic copy of `1 and, finally, by φNC`1
we denote

Bourgain’s `1 index [8] (these concepts are properly defined in §2). We show the

following theorem.

Theorem 2. Let C ⊆ SB. Then the following are equivalent.

(i) There exists a separable Banach space Y which is surjectively universal for

the class C and does not contain a copy of `1.

(ii) We have sup{φNC`1
(X) : X ∈ C} < ω1.

(iii) There exists an analytic subset A of NC`1 with C ⊆ A.

We notice that stronger versions of Theorem 2 are valid provided that all spaces

in the class C have some additional property (see §5).

A basic ingredient of the proof of Theorem 2 (an ingredient which is probably

of independent interest) is the construction for every separable Banach space X

of a Banach space EX with special properties. Specifically we show the following

theorem.

Theorem 3. Let X be a separable Banach space. Then there exists a separable

Banach space EX such that the following are satisfied.

(i) (Existence of a Schauder basis) The space EX has a normalized monotone

Schauder basis (eXn ).

(ii) (Existence of a quotient map) There exists a norm-one linear and onto

operator QX : EX → X.

(iii) (Subspace structure) If Y is an infinite-dimensional subspace of EX and

the operator QX : Y → X is strictly singular, then Y contains a copy of c0.

(iv) (Representability of X) For every normalized basic sequence (wk) in X

there exists a subsequence (eXnk
) of (eXn ) such that (eXnk

) is equivalent to

(wk).

(v) (Uniformity) The set E ⊆ SB× SB defined by

(X,Y ) ∈ E ⇔ Y is isometric to EX

is analytic.

(vi) (Preservation of separability of the dual) E∗X is separable if and only if X∗

is separable.
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We notice that there exists a large number of related results found in the litera-

ture; see, for instance, [9, 14, 15, 19, 23, 24, 32]. The novelty in Theorem 3 is that,

beside functional analytic tools, its proof is enriched with descriptive set theory

and the combinatorial machinery developed in [3] and [4].

The paper is organized as follows. In §2 we gather some background material.

In §3 we define the space EX and we give the proof of Theorem 3. The proof of

Theorem 2 (actually of a more detailed version of it) is given in §4. Finally, in §5
we present some related results and we discuss open problems.

2. Background material

Our general notation and terminology is standard as can be found, for instance,

in [21] and [20]. By N = {0, 1, 2, . . . } we denote the natural numbers.

We will frequently need to compute the descriptive set-theoretic complexity of

various sets and relations. To this end, we will use the “Kuratowski–Tarski algo-

rithm”. We will assume that the reader is familiar with this classical method. For

more details we refer to [20, page 353].

2.1. Trees. Let Λ be a nonempty set. By Λ<N we denote the set of all finite

sequences in Λ while by ΛN we denote the set of all infinite sequences in Λ (the

empty sequence is denoted by ∅ and is included in Λ<N). We view Λ<N as a tree

equipped with the (strict) partial order @ of extension. Two nodes s, t ∈ Λ<N are

said to be comparable if either s v t or t v s. Otherwise, s and t are said to be

incomparable. A subset of Λ<N consisting of pairwise comparable nodes is said to

be a chain, while a subset of Λ<N consisting of pairwise incomparable nodes is said

to be an antichain.

A tree T on Λ is a subset of Λ<N which is closed under initial segments. By

Tr(Λ) we denote the set of all trees on Λ. Hence,

T ∈ Tr(Λ)⇔ ∀s, t ∈ Λ<N (s v t and t ∈ T ⇒ s ∈ T ).

The body of a tree T on Λ is defined to be the set {σ ∈ ΛN : σ|n ∈ T ∀n ∈ N}
and is denoted by [T ]. A tree T is said to be well-founded if [T ] = ∅. By WF(Λ)

we denote the set of all well-founded trees on Λ. For every T ∈ WF(Λ) we set

T ′ := {s ∈ T : ∃t ∈ T with s @ t} ∈ WF(Λ). By transfinite recursion, we define

the iterated derivatives T ξ (ξ < κ+) of T , where κ stands for the cardinality of Λ.

The order o(T ) of T is defined to be the least ordinal ξ such that T ξ = ∅.
Let S and T be trees on two nonempty sets Λ1 and Λ2 respectively. A map

ψ : S → T is said to be monotone if for every s0, s1 ∈ S with s0 @ s1 we have

ψ(s0) @ ψ(s1). We notice that if there exists a monotone map ψ : S → T and T is

well-founded, then S is well-founded and o(S) 6 o(T ).

2.2. Dyadic subtrees and related combinatorics. Let 2<N be the Cantor tree;

that is, 2<N is the set of all finite sequences of 0’s and 1’s. For every s, t ∈ 2<N we
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let s ∧ t be the @-maximal node w of 2<N with w v s and w v t. If s, t ∈ 2<N are

incomparable with respect to v, then we write s ≺ t provided that (s ∧ t)a0 v s

and (s ∧ t)a1 v t. We say that a subset D of 2<N is a dyadic subtree of 2<N if D

can be written in the form {dt : t ∈ 2<N} so that for every t0, t1 ∈ 2<N we have

t0 @ t1 (respectively, t0 ≺ t1) if and only if dt0 @ dt1 (respectively, dt0 ≺ dt1). It

is easy to see that such a representation of D as {dt : t ∈ 2<N} is unique. In the

sequel when we write D = {dt : t ∈ 2<N}, where D is a dyadic subtree, we will

assume that this is the canonical representation of D described above.

For every dyadic subtree D of 2<N by [D]chains we denote the set of all infinite

chains of D. Notice that [D]chains is a Gδ, hence Polish, subspace of 22<N
. We will

need the following partition theorem due to Stern (see [30]).

Theorem 4. Let D be a dyadic subtree of 2<N and let X be an analytic subset of

[D]chains. Then there exists a dyadic subtree S of 2<N with S ⊆ D and such that

either [S]chains ⊆ X or [S]chains ∩ X = ∅.

2.3. Separable Banach spaces with non-separable dual. We will need a

structural result concerning separable Banach spaces with non-separable dual. To

state this result and to facilitate future references to it, it is convenient to introduce

the following definition.

Definition 5. Let X be a Banach space and let (xt)t∈2<N be a sequence in X

indexed by the Cantor tree. We say that (xt)t∈2<N is topologically equivalent to the

basis of James tree if the following are satisfied.

(1) The sequence (xt)t∈2<N is semi-normalized.

(2) For every infinite antichain A of 2<N the sequence (xt)t∈A is weakly null.

(3) For every σ ∈ 2N the sequence (xσ|n) is weak* convergent to an element

x∗∗σ ∈ X∗∗ \X. Moreover, if σ, τ ∈ 2N with σ 6= τ , then x∗∗σ 6= x∗∗τ .

The archetypical example of such a sequence is the standard Schauder basis of

the space JT (see [17]). There are also classical Banach spaces having a natural

Schauder basis which is topologically equivalent to the basis of James tree; the

space C(2N) is an example. We isolate, for future use, the following fact.

Fact 6. Let X be a Banach space and let (xt)t∈2<N be a sequence in X which is

topologically equivalent to the basis of James tree. Then for every dyadic subtree

D = {dt : t ∈ 2<N} of 2<N the sequence (xdt)t∈2<N is topologically equivalent to the

basis of James tree.

We notice that if a Banach space X contains a sequence (xt)t∈2<N which is topo-

logically equivalent to the basis of James tree, then X∗ is not separable. The fol-

lowing theorem establishes the converse for separable Banach spaces not containing

a copy of `1 (see [3, Theorem 40] or [4, Theorem 17]).
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Theorem 7. Let X be a separable Banach space not containing a copy of `1 and

with non-separable dual. Then X contains a sequence (xt)t∈2<N which is topologi-

cally equivalent to the basis of James tree.

2.4. Co-analytic ranks. Let (X,Σ) be a standard Borel space; that is, X is a set,

Σ is a σ-algebra on X and the measurable space (X,Σ) is Borel isomorphic to the

reals. A subset A of X is said to be analytic if there exists a Borel map f : NN → X

with f(NN) = A. A subset of X is said to be co-analytic if its complement is

analytic. Now let B be a co-analytic subset of X. A map φ : B → ω1 is said to

be a co-analytic rank on B if there exist relations 6Σ and 6Π in X ×X which are

analytic and co-analytic respectively and are such that for every y ∈ B we have

x ∈ B and φ(x) 6 φ(y)⇔ x 6Σ y ⇔ x 6Π y.

For our purposes, the most important property of co-analytic ranks is that they

satisfy boundedness. This means that if φ : B → ω1 is a co-analytic rank on a co-

analytic set B and A ⊆ B is analytic, then sup{φ(x) : x ∈ A} < ω1. For a proof as

well as for a thorough presentation of rank theory we refer to [20, §34].

2.5. The standard Borel space of separable Banach spaces. Let F
(
C(2N)

)
denote the set of all closed subsets of C(2N) and let Σ be the Effors–Borel structure

on F
(
C(2N)

)
; that is, Σ is the σ-algebra generated by the sets{

F ∈ F
(
C(2N)

)
: F ∩ U 6= ∅

}
where U ranges over all open subsets of C(2N). Consider the set

SB :=
{
X ∈ F

(
C(2N)

)
: X is a linear subspace

}
.

It is easy to see that the set SB equipped with the relative Effors–Borel structure

is a standard Borel space (see [7] for more details). The space SB is referred in the

literature as the standard Borel space of separable Banach spaces. We will need the

following consequence of the Kuratowski–Ryll-Nardzewski selection theorem (see

[20, Theorem 12.13]).

Proposition 8. There exists a sequence Sn : SB → C(2N) (n ∈ N) of Borel maps

such that for every X ∈ SB with X 6= {0} we have Sn(X) ∈ SX and the sequence

(Sn(X)) is norm dense in SX where SX stands for the unit sphere of X.

2.6. The class NCZ and Bourgain’s indices. Let Z be a Banach space with

a Schauder basis2. We fix a normalized Schauder basis (zn) of Z. If Z is one of

the classical sequence spaces c0 and `p (1 6 p < +∞), then by (zn) we denote the

standard unit vector basis. We consider the set

NCZ := {X ∈ SB : X does not contain an isomorphic copy of Z}.

2Throughout the paper when we say that a Banach space X has a Schauder basis or the

bounded approximation property, then we implicitly assume that X is infinite-dimensional.
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Let δ > 1 and let Y be an arbitrary separable Banach space. Following Bourgain

[8], we introduce a tree T(Y, Z, (zn), δ) on Y defined by the rule

(yn)kn=0 ∈ T(Y,Z, (zn), δ) ⇔ (yn)kn=0 is δ-equivalent to (zn)kn=0.

In particular, if Z is the space `1, then for every δ > 1 and every finite se-

quence (yn)kn=0 in Y we have (yn)kn=0 ∈ T(Y, `1, (zn), δ) if and only if for every

a0, . . . , ak ∈ R it holds that

1

δ

k∑
n=0

|an| 6
∥∥ k∑
n=0

anyn
∥∥ 6 δ k∑

n=0

|an|.

We notice that Y ∈ NCZ if and only if for every δ > 1 the tree T(Y, Z, (zn), δ) is

well-founded. We set φNCZ
(Y ) = ω1 if Y /∈ NCZ , while if Y ∈ NCZ we define

(1) φNCZ
(Y ) = sup

{
o
(
T(Y,Z, (zn), δ)

)
: δ > 1

}
.

In [8], Bourgain proved that for every Banach space Z with a Schauder basis and

every Y ∈ SB we have Y ∈ NCZ if and only if φNCZ
(Y ) < ω1. We need the

following refinement of this result (see [7, Theorem 4.4]).

Theorem 9. Let Z be a Banach space with a Schauder basis. Then the set NCZ

is co-analytic and the map φNCZ
: NCZ → ω1 is a co-analytic rank on NCZ .

We will also need the following quantitative strengthening of the classical fact

that `1 has the lifting property.

Lemma 10. Let X and Y be separable Banach spaces and assume that X is a

quotient of Y . Then φNC`1
(X) 6 φNC`1

(Y ).

Proof. Clearly we may assume that Y does not contain a copy of `1. We fix a

quotient map Q : Y → X. There exists a constant C > 1 such that

(a) ‖Q‖ 6 C, and

(b) for every x ∈ X there exists y ∈ Y with Q(y) = x and ‖y‖ 6 C‖x‖.
For every x ∈ X we select yx ∈ Y such that Q(yx) = x and ‖yx‖ 6 C‖x‖. We define

a map ψ : X<N → Y <N as follows. We set ψ(∅) = ∅. If s = (xn)kn=0 ∈ X<N \ {∅},
then we set

ψ(s) = (yxn)kn=0.

We notice that the map ψ is monotone. Denote by (zn) the standard unit vector

basis of `1.

Claim 11. For every δ > 1 if s ∈ T(X, `1, (zn), δ), then ψ(s) ∈ T(Y, `1, (zn), Cδ).

Granting Claim 11, the proof of the lemma is completed. Indeed, by Claim

11, we have that for every δ > 1 the map ψ is a monotone map from the tree

T(X, `1, (zn), δ) into the tree T(Y, `1, (zn), Cδ). Therefore,

o
(
T(X, `1, (zn), δ)

)
6 o
(
T(Y, `1, (zn), Cδ)

)
.
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The above estimate clearly implies that φNC`1
(X) 6 φNC`1

(Y ).

It remains to prove Claim 11. To this end let s = (xn)kn=0 ∈ T(X, `1, (zn), δ).

Also let a0, . . . , ak ∈ R be arbitrary. Notice that

Q(a0yx0
+ · · ·+ akyxk

) = a0x0 + · · ·+ akxk.

Hence, by (a), we obtain that

(2)
1

δ

k∑
n=0

|an| 6
∥∥ k∑
n=0

anxn
∥∥ =

∥∥Q( k∑
n=0

anyxn

)∥∥ 6 C∥∥ k∑
n=0

anyxn

∥∥.
Observe that ‖xn‖ 6 δ for every n ∈ {0, . . . , k}. Therefore,

(3)
∥∥ k∑
n=0

anyxn

∥∥ 6 k∑
n=0

|an| · ‖yxn‖ =

k∑
n=0

|an| · ‖Q(xn)‖ 6 Cδ
k∑

n=0

|an|.

Since the coefficients a0, . . . , ak ∈ R were arbitrary, inequalities (2) and (3) imply

that ψ(s) = (yxn
)kn=0 ∈ T(Y, `1, (zn), Cδ). This completes the proof of Claim 11,

and as we have indicated above, the proof of the lemma is also completed. �

2.7. Separable spaces with the B. A. P. and Lusky’s theorem. By the

results in [18] and [26], a separable Banach space X has the bounded approximation

property (in short B. A. P.) if and only if X is isomorphic to a complemented

subspace of a Banach space Y with a Schauder basis. Lusky found an effective way

to produce the space Y . To state his result we need, first, to recall the definition of

the space C0 due to Johnson. Let (Fn) be a sequence of finite-dimensional spaces

dense in the Banach–Mazur distance in the class of all finite-dimensional spaces.

We set

(4) C0 :=
(∑
n∈N
⊕Fn

)
c0

and we notice that C0 is hereditarily c0 (that is, every infinite-dimensional subspace

of C0 contains a copy of c0). We can now state Lusky’s theorem (see [22]).

Theorem 12. Let X be a separable Banach space with the bounded approximation

property. Then X ⊕ C0 has a Schauder basis.

Theorem 12 will be used in the following parameterized form.

Lemma 13. Let Z be a minimal3 Banach space not containing a copy of c0. Let A
be an analytic subset of NCZ ∩ NC`1 . Then there exists a (possibly empty) subset

D of NCZ ∩NC`1 with the following properties.

(i) The set D is analytic.

(ii) Every Y ∈ D has a Schauder basis.

3We recall that an infinite-dimensional Banach space Z is said to be minimal if every infinite-

dimensional subspace of Z contains an isomorphic copy of Z; e.g., the classical sequence spaces

c0 and `p (1 6 p < +∞) are minimal spaces.
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(iii) For every X ∈ A with the bounded approximation property there exists

Y ∈ D such that X is isomorphic to a complemented subspace of Y .

Proof. The result is essentially known, and so, we will be rather sketchy. First we

consider the set B ⊆ SB defined by

X ∈ B ⇔ X has the bounded approximation property.

Using the characterization of B. A. P. mentioned above, it is easy to check that the

set B is analytic. Next, consider the set C ⊆ SB× SB defined by

(X,Y ) ∈ C ⇔ Y is isomorphic to X ⊕ C0.

It is also easy to see that C is analytic (see [2] for more details). Define D ⊆ SB by

the rule

Y ∈ D ⇔ ∃X [X ∈ A ∩ B and (X,Y ) ∈ C]

and notice that D is analytic. By Theorem 12, the set D is as desired. �

2.8. Amalgamated spaces. A recurrent theme in the proof of various universality

results found in the literature (a theme that goes back to the classical results of

Pe lczyński [25]) is the use at a certain point of a “gluing” procedure. A number of

different “gluing” procedures have been proposed by several authors. We will need

the following result (see [2, Theorem 71]).

Theorem 14. Let 1 < p < +∞ and let C be an analytic subset of SB such that

every Y ∈ C has a Schauder basis. Then there exists a Banach space V with a

Schauder basis that contains a complemented copy of every space in the class C.

Moreover, if W is an infinite-dimensional subspace of V , then either

(i) W contains a copy of `p, or

(ii) there exists a finite sequence Y0, . . . , Yn in C such that W is isomorphic to

a subspace of Y0 ⊕ · · · ⊕ Yn.

The space V obtained above is called in [2] as the p-amalgamation space of the

class C. The reader can find in [2, §8] an extensive study of its properties.

3. Quotients of Banach spaces

3.1. Definitions. We start with the following definition.

Definition 15. Let X be a separable Banach space and let (xn) be a sequence (with

possible repetitions) in the unit sphere of X which is norm dense in SX . By EX

we shall denote the completion of c00(N) under the norm

(5) ‖z‖EX
:= sup

{∥∥ m∑
n=0

z(n)xn
∥∥
X

: m ∈ N
}
.

By (eXn ) we shall denote the standard Hamel basis of c00(N) regarded as a sequence

in EX . If X = {0}, then by convention we set EX = c0.



QUOTIENTS OF BANACH SPACES AND SURJECTIVELY UNIVERSAL SPACES 9

The construction of the space EX is somehow “classical” and the motivation

for the above definition can be traced in the proof of the fact that every separable

Banach space is a quotient of `1 (see [21, page 108]). A similar construction was

presented by Schechtman in [29] for different, though related, purposes.

We isolate two elementary properties of the space EX . First, we observe that

the sequence (eXn ) defines a normalized monotone Schauder basis of EX . It is also

easy to see that the map EX 3 eXn 7→ xn ∈ X is extended to a norm-one linear

operator. This operator will be denoted as follows.

Definition 16. By QX : EX → X we shall denote the (unique) bounded linear

operator satisfying QX(eXn ) = xn for every n ∈ N.

Let us make at this point two comments about the above definitions. Let (yn)

be a basic sequence in a Banach space Y and assume that the map

span{yn : n ∈ N} 3 yn 7→ xn ∈ X

is extended to a bounded linear operator. Then it is easy to see that there exists

a constant C > 1 such that the sequence (eXn ) is C-dominated4 by the sequence

(yn). In other words, among all basic sequences (yn) with the property that the

map span{yn : n ∈ N} 3 yn 7→ xn ∈ X is extended to a bounded linear operator,

the sequence (eXn ) is the minimal one with respect to domination.

Also notice that the space EX depends on the choice of the sequence (xn). For

our purposes, however, the dependence is not important as can be seen from the

simple following observation. Let (dn) be another sequence in the unit sphere of X

which is norm dense in SX and let E′X be the completion of c00(N) under the norm

‖z‖E′
X

= sup
{∥∥ m∑

n=0

z(n)dn
∥∥
X

: m ∈ N
}
.

Then it is easy to check that EX embeds isomorphically into E′X and vice versa.

Actually, it is possible to modify the construction to obtain a different space sharing

most of the properties of the space EX and not depending on the choice of the dense

sequence. We could not find, however, any application of this construction and since

it is involved and conceptually less natural to grasp we prefer not to bother the

reader with it.

The rest of the section is organized as follows. In §3.2 we present some prelimi-

nary tools needed for the proof of Theorem 3. The proof of Theorem 3 is given in

§3.3 while in §3.4 we present some its consequences. Finally, in §3.5 we make some

comments.

4We recall that if (vn) and (yn) are two basic sequences in two Banach spaces V and Y

respectively, then (vn) is said to be C-dominated by (yn) if for every k ∈ N and every a0, . . . , ak ∈ R
we have ‖

∑k
n=0 anvn‖V 6 C‖

∑k
n=0 anyn‖Y .
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3.2. Preliminary tools. We start by introducing some pieces of notation that will

be used only in this section. Let F and G be two nonempty finite subsets of N. We

write F < G if max(F ) < min(G). Let (en) be a basic sequence in a Banach space

E and let v be a vector in span{en : n ∈ N}. There exists a (unique) sequence (an)

of reals such that v =
∑
n∈N anen. The support of the vector v, denoted by supp(v),

is defined to be the set {n ∈ N : an 6= 0}. The range of the vector v, denoted by

range(v), is defined to be the minimal interval of N that contains supp(v).

In what follows X will be a separable Banach space and (xn) will be the sequence

in X which is used to define the space EX . The following propositions will be basic

tools for the analysis of the space EX .

Proposition 17. Let (vk) be a semi-normalized block sequence of (eXn ) and assume

that ‖QX(vk)‖X 6 2−k for every k ∈ N. Then the sequence (vk) is equivalent to

the standard unit vector basis of c0.

Proof. We select a constant C > 0 such that ‖vk‖EX
6 C for every k ∈ N. Let

F = {k0 < · · · < kj} be a finite subset of N. We will show that

∥∥ j∑
i=0

vki
∥∥
EX
6 2 + C.

This will finish the proof. To this end we argue as follows. First we set

(a) Gi := supp(vki) and mi := min(Gi) for every i ∈ {0, . . . , j}.

Let (an) be the unique sequence of reals such that

(b) an = 0 if n /∈ G0 ∪ · · · ∪Gj , and

(c) vki =
∑
n∈Gi

ane
X
n for every i ∈ {0, . . . , j}.

Notice that for every l ∈ {0, . . . , j} and every m ∈ N with m ∈ range(vkl) we have

(6) ‖
m∑

n=ml

anxn‖X 6 ‖vkl‖EX
6 C.

We select p ∈ N such that

∥∥ j∑
i=0

vki
∥∥
EX

=
∥∥ p∑
n=0

anxn
∥∥
X

and we distinguish the following cases.

Case 1: p ∈ range(vk0). Using (6), we see that

∥∥ j∑
i=0

vki
∥∥
EX

=
∥∥ p∑
n=m0

anxn
∥∥
X
6 C.
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Case 2: there exists l ∈ {1, . . . , j} such that p ∈ range(vkl). Using our hypotheses

on the sequence (vk) and inequality (6), we obtain that

∥∥ j∑
i=0

vki
∥∥
EX

=
∥∥ l−1∑
i=0

∑
n∈Gi

anxn +

p∑
n=ml

anxn
∥∥
X

6
l−1∑
i=0

∥∥ ∑
n∈Gi

anxn
∥∥
X

+
∥∥ p∑
n=ml

anxn
∥∥
X

=

l−1∑
i=0

‖QX(vki)‖X +
∥∥ p∑
n=ml

anxn
∥∥
X
6 2 + C.

Case 3: for every i ∈ {0, . . . , j} we have that p /∈ range(vki). In this case we notice

that there exists l ∈ {0, . . . , j} such that range(vki) < {p} for every i ∈ {0, . . . , l}
while {p} < range(vki) otherwise. Using this observation we see that

∥∥ j∑
i=0

vki
∥∥
EX

=
∥∥ l∑
i=0

∑
n∈Gi

anxn
∥∥
X
6

l∑
i=0

‖QX(vki)‖X 6 2.

The above cases are exhaustive, and so, the proof is completed. �

Proposition 18. Let (vk) be a bounded block sequence of (eXn ). If (QX(vk)) is

weakly null, then (vk) is also weakly null.

For the proof of Proposition 18 we will need the following “unconditional” version

of Mazur’s theorem.

Lemma 19. Let (vk) be a weakly null sequence in a Banach space V . Then for

every ε > 0 there exist k0 < · · · < kj in N and λ0, . . . , λj ∈ R+ with
∑j
i=0 λi = 1

and such that

max{λi : 0 6 i 6 j} 6 ε

and

max
{∥∥∑

i∈F
λivki

∥∥ : F ⊆ {0, . . . , j}
}
6 ε.

Proof. Clearly we may assume that V = span{vk : k ∈ N}, and so, we may also

assume that V is a subspace of C(2N). Therefore, each vk is a continuous function

on 2N and the norm of V is the usual ‖ · ‖∞ norm. By Lebesgue’s dominated

convergence theorem, a sequence (fk) in C(2N) is weakly null if and only if (fk) is

bounded and pointwise convergent to 0. Hence, setting yk := |vk| for every k ∈ N,

we see that the sequence (yk) is weakly null. Therefore, using Mazur’s theorem, it

is possible to find k0 < · · · < kj in N and λ0, . . . , λj ∈ R+ with
∑j
i=0 λi = 1 and

such that

max{λi : 0 6 i 6 j} 6 ε
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and ‖
∑j
i=0 λiyki‖∞ 6 ε. Noticing that

max
{∥∥∑

i∈F
λivki

∥∥
∞ : F ⊆ {0, . . . , j}

}
6
∥∥ j∑
i=0

λiyki
∥∥
∞ 6 ε

the proof is completed. �

We proceed to the proof of Proposition 18.

Proof of Proposition 18. We will argue by contradiction. So, assume that the se-

quence (QX(vk)) is weakly null while the sequence (vk) is not. We select C > 1

such that ‖vk‖EX
6 C for every k ∈ N. By passing to a subsequence of (vk) if

necessary, we find e∗ ∈ E∗X and δ > 0 such that e∗(vk) > δ for every k ∈ N. This

property implies that

(a) for every vector z ∈ conv{vk : k ∈ N} we have ‖z‖EX
> δ.

We apply Lemma 19 to the weakly null sequence (QX(vk)) and ε = δ · (4C)−1 and

we find k0 < · · · < kj in N and λ0, . . . , λj ∈ R+ with
∑j
i=0 λi = 1 and such that

(7) max{λi : 0 6 i 6 j} 6 δ

4C

and

(8) max
{∥∥∑

i∈F
λiQX(vki)

∥∥
X

: F ⊆ {0, . . . , j}
}
6

δ

4C
.

Since ‖vk‖EX
6 C for every k ∈ N, inequality (7) implies that

(b) ‖λivki‖EX
6 δ/4 for every i ∈ {0, . . . , j}.

We define

w =

j∑
i=0

λivki ∈ conv{vk : k ∈ N}.

We will show that ‖w‖EX
6 δ/2. This estimate contradicts property (a) above.

To this end we will argue as in the proof of Proposition 17. First set

(c) Gi := supp(vki) and mi := min(Gi) for every i ∈ {0, . . . , j}
and let (an) be the unique sequence of reals such that

(d) an = 0 if n /∈ G0 ∪ · · · ∪Gj , and

(e) λivki =
∑
n∈Gi

ane
X
n for every i ∈ {0, . . . , j}.

Using (b), we see that if l ∈ {0, . . . , j} and m ∈ N with m ∈ range(vkl), then

(9)
∥∥ m∑
n=ml

anxn
∥∥
X
6 ‖λlvkl‖EX

6
δ

4
.

We select p ∈ N such that

‖w‖EX
=
∥∥ p∑
n=0

anxn
∥∥
X

and, as in the proof of Proposition 17, we consider the following three cases.
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Case 1: p ∈ range(vk0). Using (9), we see that

‖w‖EX
=
∥∥ p∑
n=m0

anxn
∥∥
X
6
δ

4
.

Case 2: there exists l ∈ {1, . . . , j} such that p ∈ range(vkl). In this case the

desired estimate will be obtained combining inequalities (8) and (9). Specifically,

let F = {0, . . . , l − 1} and notice that

‖w‖EX
=

∥∥ l−1∑
i=0

∑
n∈Gi

anxn +

p∑
n=ml

anxn
∥∥
X

6
∥∥∑
i∈F

∑
n∈Gi

anxn
∥∥
X

+
∥∥ p∑
n=ml

anxn
∥∥
X

=
∥∥∑
i∈F

λiQX(vki)
∥∥
X

+
∥∥ p∑
n=ml

anxn
∥∥
X

(8)

6
δ

4C
+
∥∥ p∑
n=ml

anxn
∥∥
X

(9)

6
δ

4C
+
δ

4
6
δ

2
.

Case 3: for every i ∈ {0, . . . , j} we have that p /∈ range(vki). In this case we will use

only inequality (8). Indeed, there exists l ∈ {0, . . . , j} such that range(vki) < {p}
if i ∈ {0, . . . , l} while {p} < range(vki) otherwise. Setting H := {0, . . . , l}, we see

that

‖w‖EX
=
∥∥ l∑
i=0

∑
n∈Gi

anxn
∥∥
X

=
∥∥∑
i∈H

λiQX(vki)
∥∥
X

(8)

6
δ

4C
6
δ

4
.

The above cases are exhaustive, and so, ‖w‖EX
6 δ/2. As we have already pointed

out, this estimate yields a contradiction. The proof is completed. �

3.3. Proof of Theorem 3. Let X be a separable Banach space. In what follows

(xn) will be the sequence in X which is used to define the space EX .

(i) It is straightforward.

(ii) We have already noticed that ‖QX || = 1. To see that QX is onto, observe that

the image of the closed unit ball of EX under the operator QX contains the set

{xn : n ∈ N} and therefore it is dense in the closed unit ball of X.

(iii) Let Y be an infinite-dimensional subspace of EX and assume that the operator

QX : Y → X is strictly singular. Using a standard sliding hump argument we find

a block subspace V of EX and a subspace Y ′ of Y with V isomorphic to Y ′ and

such that the operator QX : V → X is strictly singular. Hence, we may select a

normalized block sequence (vk) of (eXn ) with vk ∈ V and ‖QX(vk)‖X 6 2−k for

every k ∈ N. By Proposition 17, the sequence (vk) is equivalent to the standard

unit vector basis of c0 and the result follows.
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(iv) This part was essentially observed in [29]. We reproduce the argument for

completeness. So, let (wk) be a normalized basic sequence in X. The sequence (xn)

is dense in the unit sphere of X. Therefore it is possible to select an infinite subset

N = {n0 < n1 < · · · } of N such that the subsequence (xnk
) of (xn) determined by

N is basic and equivalent to (wk) (see [21]). Let K > 1 be the basis constant of

(xnk
). Also let (eXnk

) be the subsequence of (eXn ) determined by N . Let j ∈ N and

let a0, . . . , aj ∈ R be arbitrary, and notice that

∥∥ j∑
k=0

akxnk

∥∥
X
6
∥∥ j∑
k=0

ake
X
nk

∥∥
EX

= max
06i6j

∥∥ i∑
k=0

akxnk

∥∥
X
6 K

∥∥ j∑
k=0

akxnk

∥∥
X
.

Therefore, the sequence (xnk
) is K-equivalent to the sequence (eXnk

) and the result

follows.

(v) First we consider the relation S ⊆ C(2N)N × SB defined by(
(yn), Y

)
∈ S ⇔ (∀n yn ∈ Y ) and span{yn : n ∈ N} = Y.

The relation S is analytic (see [7, Lemma 2.6]). Next, we apply Proposition 8 and

we obtain a sequence Sn : SB → C(2N) (n ∈ N) of Borel maps such that for every

X ∈ SB with X 6= {0} the sequence (Sn(X)) is norm dense in the unit sphere of

X. Now notice that

(X,Y ) ∈ E ⇔ ∃(yn) ∈ C(2N)N with
(
(yn), Y

)
∈ S and either(

X = {0} and ∀k ∈ N ∀a0, . . . , ak ∈ Q we have

∥∥ k∑
n=0

anyn
∥∥
∞ = max

06n6k
|an|

)
or(

X 6= {0} and ∀k ∈ N ∀a0, . . . , ak ∈ Q we have

∥∥ k∑
n=0

anyn
∥∥
∞ = max

06m6k

∥∥ m∑
n=0

anSn(X)
∥∥
∞

)
.

The above formula implies that the set E is analytic.

(vi) By part (ii), the space X is a quotient of EX . Therefore, if E∗X is separable,

then X∗ is also separable. For the converse implication we argue by contradiction.

So, assume that there exists a Banach space X with separable dual such that E∗X is

non-separable. Our strategy is to show that there exists a sequence (wt)t∈2<N in EX

which is topologically equivalent to the basis of James tree (see Definition 5) and

is such that its image under the operator QX has the same property; that is, the

sequence (QX(wt))t∈2<N will also be topologically equivalent to the basis of James

tree. As we have already indicated in §2.3, this implies that X∗ is non-separable

and yields a contradiction.

To this end we argue as follows. First we notice that the space X does not

contain a copy of `1. Therefore, by part (iii), the space EX does not contain a copy
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of `1 either. Hence, we may apply Theorem 7 to the space EX and we obtain a

sequence (et)t∈2<N in EX which is topologically equivalent to the basis of James

tree. We need to replace the sequence (et)t∈2<N with another sequence having an

additional property. Specifically, let us say that a sequence (vt)t∈2<N in EX is a

tree-block if for every σ ∈ 2N the sequence (vσ|n) is a block sequence of (eXn ). Notice

that the notion of a tree-block is hereditary with respect to dyadic subtrees; that

is, if (vt)t∈2<N is a tree-block and D = {dt : t ∈ 2<N} is a dyadic subtree of 2<N,

then the sequence (vdt)t∈2<N is also a tree-block.

Claim 20. There exists a sequence (vt)t∈2<N in EX which is topologically equivalent

to the basis of James tree and a tree-block.

Proof of Claim 20. We select C > 1 such that C−1 6 ‖et‖EX
6 C for all t ∈ 2<N.

Let s ∈ 2<N be arbitrary. There exists an infinite antichain A of 2<N such that

s @ t for every t ∈ A. The sequence (et)t∈2<N is topologically equivalent to the basis

of James tree, and so, the sequence (et)t∈A is weakly null. Using this observation,

we may recursively construct a dyadic subtree R = {rt : t ∈ 2<N} of 2<N and a

tree-block sequence (vt)t∈2<N in EX such that ‖ert − vt‖EX
6 (2C)−|t|+1 for every

t ∈ 2<N. Clearly the sequence (vt)t∈2<N is as desired. �

Claim 21. There exist a dyadic subtree S0 of 2<N and a constant Θ > 1 such that

Θ−1 6 ‖QX(vt)‖X 6 Θ for every t ∈ S0.

Proof of Claim 21. Let K > 1 be such that ‖vt‖EX
6 K for every t ∈ 2<N. We

will show that there exist s0 ∈ 2<N and θ > 0 such that for every t ∈ 2<N with

s0 v t we have ‖QX(vt)‖X > θ. In such a case, set S0 := {sa0 t : t ∈ 2<N} and

Θ := max{θ−1,K} and notice that S0 and Θ satisfy the requirements of the claim.

To find the node s0 and the constant θ we will argue by contradiction. So,

assume that for every s ∈ 2<N and every θ > 0 there exists t ∈ 2<N with s v t and

such that ‖QX(vt)‖X 6 θ. Hence, we may select a sequence (tk) in 2<N such that

for every k ∈ N we have

(a) tk @ tk+1, and

(b) ‖QX(vtk)‖X 6 2−k.

By (a) above, the set {tk : k ∈ N} is a chain while, by Claim 20, the sequence

(vt)t∈2<N is semi-normalized and a tree block. Therefore, the sequence (vtk) is a

semi-normalized block sequence of (eXn ). By Proposition 17 and (b) above, we see

that the sequence (vtk) is equivalent to the standard unit vector basis of c0, and

so, it is weakly null. By Claim 20, however, the sequence (vt)t∈2<N is topologically

equivalent to the basis of James tree. Since the set {tk : k ∈ N} is a chain, the

sequence (vtk) must be non-trivial weak* Cauchy. This yields a contradiction. �

Claim 22. There exists a dyadic subtree S1 of 2<N with S1 ⊆ S0 and such that for

every infinite chain {t0 @ t1 @ · · · } of S1 the sequence (QX(vtn)) is basic.
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Proof of Claim 22. By Claims 20 and 21, we see that for every s ∈ S0 there ex-

ists an infinite antichain A of S0 with s @ t for every t ∈ A and such that the

sequence (QX(vt))t∈A is semi-normalized and weakly null. Using this observation

and the classical procedure of Mazur for selecting basic sequences (see [21]), the

claim follows. �

Claim 23. There exists a dyadic subtree S2 of 2<N with S2 ⊆ S1 and such that for

every infinite chain {t0 @ t1 @ · · · } of S2 the sequence (QX(vtn)) is weak* Cauchy.

Proof of Claim 23. Set

X :=
{
c ∈ [S1]chains : the sequence (QX(vt))t∈c is weak* Cauchy

}
.

The set X is co-analytic (see [30] for more details). Therefore, by Theorem 4,

there exists a dyadic subtree S2 of 2<N with S2 ⊆ S1 and such that [S2]chains is

monochromatic. It is enough to show that [S2]chains ∩X 6= ∅. Recall that the space

X does not contain a copy of `1. Therefore, by Rosenthal’s dichotomy [28], we may

find an infinite chain c of S2 such that the sequence (QX(vt))t∈c is weak* Cauchy

and the result follows. �

Let S2 be the dyadic subtree of 2<N obtained by Claim 23 and let {st : t ∈ 2<N}
be the canonical representation of S2. We are in the position to define the sequence

(wt)t∈2<N we mentioned in the beginning of the proof. Specifically, set

wt := vst

for every t ∈ 2<N. By Claim 20 and Fact 6, the sequence (wt)t∈2<N is topologically

equivalent to the basis of James tree and a tree block. The final claim is the

following.

Claim 24. The sequence (QX(wt))t∈2<N is topologically equivalent to the basis of

James tree.

Proof of Claim 24. By Claim 21, the sequence (QX(wt))t∈2<N is semi-normalized.

Notice also that for every infinite antichain A of 2<N the sequence (QX(wt))t∈A is

weakly null.

Let σ ∈ 2N. By Claim 23, the sequence (QX(wσ|n)) is weak* convergent to an

element x∗∗σ ∈ X∗∗. First we notice that x∗∗σ 6= 0. Indeed, the sequence (wσ|n) is a

semi-normalized block sequence of (eXn ) which is weak* convergent to an element

w∗∗σ ∈ E∗∗X \ EX . If x∗∗σ = 0, then by Proposition 18 we would have that (wσ|n)

is weakly null. Hence x∗∗σ 6= 0. Next we observe that x∗∗σ ∈ X∗∗ \ X. Indeed, by

Claim 22, the sequence (QX(wσ|n)) is basic. Therefore, if the sequence (QX(wσ|n))

was weakly convergent to an element x ∈ X, then necessarily we would have that

x = 0. This possibility, however, is ruled out by the previous reasoning, and so,

x∗∗σ ∈ X∗∗ \X.
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Finally suppose, towards a contradiction, that there exist σ, τ ∈ 2N with σ 6= τ

and such that x∗∗σ = x∗∗τ . In such a case it is possible to select two sequences (sn)

and (tn) in 2<N such that the following are satisfied.

(a) sn @ sn+1 @ σ for every n ∈ N.

(b) tn @ tn+1 @ τ for every n ∈ N.

(c) Setting zn := wsn −wtn for every n ∈ N, we have that the sequence (zn) is

a semi-normalized block sequence of (eXn ).

Our assumption that x∗∗σ = x∗∗τ reduces to the fact that the sequence (QX(zn))

is weakly null. By (c) above, we may apply Proposition 18 to infer that the se-

quence (zn) is also weakly null. Therefore, the sequences (wσ|n) and (wτ |n) are

weak* convergent to the same element of E∗∗X . This contradicts the fact that the

sequence (wt)t∈2<N is topologically equivalent to the basis of James tree. The proof

is completed. �

As we have already indicated, Claim 24 yields a contradiction. This completes

the proof of part (vi) of Theorem 3, and so, the entire proof is completed.

3.4. Consequences. We isolate below three corollaries of Theorem 3. The second

one will be of particular importance in the next section.

Corollary 25. Let Z be a minimal Banach space not containing a copy of c0. If X

is a separable Banach space not containing a copy of Z, then EX does not contain

a copy of Z either.

Proof. Follows immediately by part (iii) of Theorem 3. �

Corollary 26. Let Z be a minimal Banach space not containing a copy of c0

and let A be an analytic subset of NCZ ∩ NC`1 . Then there exists a subset B of

NCZ ∩NC`1 with the following properties.

(i) The set B is analytic.

(ii) Every Y ∈ B has a Schauder basis.

(iii) For every X ∈ A there exists Y ∈ B such that X is a quotient of Y .

Proof. Let E be the set defined in part (v) of Theorem 3. We define B ⊆ SB by the

rule

Y ∈ B ⇔ ∃X [X ∈ A and (X,Y ) ∈ E ].

The set B is clearly analytic. Invoking parts (i) and (ii) of Theorem 3 and Corol-

lary 25, we see that B is as desired. �

Corollary 27. There exists a map f : ω1 → ω1 such that for every countable ordinal

ξ and every separable Banach space X with φNC`1
(X) 6 ξ the space X is a quotient

of a Banach space Y with a Schauder basis satisfying φNC`1
(Y ) 6 f(ξ).
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Proof. We define the map f : ω1 → ω1 as follows. Fix a countable ordinal ξ and

consider the set

Aξ := {X ∈ SB : φNC`1
(X) 6 ξ}.

By Theorem 9, the map φNC`1
: NC`1 → ω1 is a co-analytic rank on NC`1 . Hence,

the set Aξ is analytic (in fact Borel—see [20]). We apply Corollary 26 to the space

Z = `1 and the analytic set Aξ and we obtain an analytic subset B of NC`1 such

that for every X ∈ Aξ there exists Y ∈ B with a Schauder basis and having X as

quotient. By boundedness, there exists a countable ordinal ζ such that

sup{φNC`1
(Y ) : Y ∈ B} = ζ.

We define f(ξ) = ζ. Clearly the map f is as desired. �

3.5. Comments. By a well-known result due to Davis, Fiegel, Johnson and

Pe lczyński [9], if X is a Banach space with separable dual, then X is a quotient

of a Banach space VX with a shrinking Schauder basis. By Theorem 3, the space

EX has a Schauder basis, separable dual and admits X as quotient. We point out,

however, that the natural Schauder basis (eXn ) of EX is not shrinking. On the

other hand, the subspace structure of EX is very well understood. The space VX

mentioned above is defined using the interpolation techniques developed in [9] and

it is not clear which are the isomorphic types of its subspaces.

We would also like to make some comments about the proof of the separability

of the dual of EX . As we have already indicated, our strategy was to construct a

sequence (wt)t∈2<N in EX which is topologically equivalent to the basis of James

tree and is such that its image under the operator QX has the same property;

in other words, the operator QX fixes a copy of this basic object. This kind of

reasoning can be applied to a more general framework. Specifically, let Y and Z be

separable Banach spaces and let T : Y → Z be a bounded linear operator. There

are a number of problems in Functional Analysis which boil down to understand

when the dual operator T ∗ of T has non-separable range. Using the combinatorial

tools developed in [3] and an analysis similar to the one in the present paper, it

can be shown that if Y does not contain a copy of `1, then the operator T ∗ has

non-separable range if and only if T fixes a copy of a sequence which is topologically

equivalent to the basis of James tree.

4. Proof of the main result

In this section we will give the proof of Theorem 2 stated in the introduction.

The proof will be based on the following, more detailed, result.

Theorem 28. Let Z be a minimal Banach space not containing a copy of c0 and

let A be an analytic subset of NCZ ∩ NC`1 . Then there exists a Banach space

V ∈ NCZ ∩ NC`1 with a Schauder basis which is surjectively universal for the



QUOTIENTS OF BANACH SPACES AND SURJECTIVELY UNIVERSAL SPACES 19

class A. Moreover, if X ∈ A has the bounded approximation property, then X is

isomorphic to a complemented subspace of V .

Let us point out that the assumption on the complexity of the set A in Theorem

28 is optimal. Notice also that if E is any Banach space with a Schauder basis,

then the set of all X ∈ A which are isomorphic to a complemented subspace of E

is contained in the set of all X ∈ A having the bounded approximation property.

Therefore, the “moreover” part of the above result is optimal too.

Proof of Theorem 28. Since Z is minimal, there exists 1 < p < +∞ such that Z

does not contain a copy of `p. We fix such a p. We apply Lemma 13 to the space

Z and the analytic set A and we obtain a subset D of NCZ ∩ NC`1 such that the

following are satisfied.

(a) The set D is analytic.

(b) Every Y ∈ D has a Schauder basis.

(c) For every X ∈ A with the bounded approximation property there exists

Y ∈ D such that X is isomorphic to a complemented subspace of Y .

Next, we apply Corollary 26 to the space Z and the analytic set A and we obtain

a subset B of NCZ ∩NC`1 with the following properties.

(d) The set B is analytic.

(e) Every Y ∈ B has a Schauder basis.

(f) For every X ∈ A there exists Y ∈ B such that X is a quotient of Y .

We set C := B∪D and we notice that C ⊆ NCZ ∩NC`1 . By (a) and (d), the set C is

analytic while, by (b) and (e), every Y ∈ C has a Schauder basis. The desired space

V is the p-amalgamation space of the class C obtained by Theorem 14. It remain

to check that V has the desired properties. Notice, first, that V has a Schauder

basis.

Claim 29. The space V is surjectively universal for the class A.

Proof of Claim 29. Let X ∈ A arbitrary. By (f), there exists a space Y ∈ B such

that X is a quotient of Y . We fix a quotient map Q : Y → X. Next we observe

that the space V contains a complemented copy of Y . Therefore, it is possible to

find a subspace E of V , a projection P : V → E and an isomorphism T : E → Y .

Let Q′ : V → X be the operator defined by Q′ = Q ◦ T ◦ P and notice that Q′ is

onto. Hence, X is a quotient of V and the result follows. �

Claim 30. We have V ∈ NCZ ∩NC`1 .

Proof of Claim 30. We will show that V does not contain a copy of Z (the proof

of the fact that V does not contain a copy of `1 is identical). We will argue by

contradiction. So, assume that there exists a subspace W of V which is isomorphic

to Z. By the choice of p, we see that W does not contain a copy of `p. Therefore, by

Theorem 14, there exists a finite sequence Y0, . . . , Yn in C such that W is isomorphic



20 PANDELIS DODOS

to a subspace of Y0 ⊕ · · · ⊕ Yn. There exist an infinite-dimensional subspace W ′ of

W and i0 ∈ {0, . . . , n} such that W ′ is isomorphic to a subspace of Yi0 . Since Z is

minimal, we obtain that Yi0 must contain a copy of Z. This contradicts the fact

that C ⊆ NCZ , and so, the claim is proved. �

Finally, we notice that if X ∈ A has the bounded approximation property,

then, by (c) above and Theorem 14, the space X is isomorphic to a complemented

subspace of V . This shows that the space V has the desired properties. The proof

of Theorem 28 is completed. �

We proceed to the proof of Theorem 2.

Proof of Theorem 2. Let C ⊆ SB.

(i)⇒(ii) Assume that there exists a separable Banach space Y not containing a

copy of `1 which is surjectively universal for the class C. The space Y does not

contain a copy of `1, and so, φNC`1
(Y ) < ω1. Moreover, every space in the class C

is a quotient of Y . Therefore, by Lemma 10, we obtain that

sup{φNC`1
(X) : X ∈ C} 6 φNC`1

(Y ) < ω1.

(ii)⇒(iii) Let ξ be a countable ordinal such that sup{φNC`1
(X) : X ∈ C} = ξ. By

Theorem 9, the map φNC`1
: NC`1 → ω1 is a co-analytic rank on the set NC`1 . It

follows that the set

A := {V ∈ SB : φNC`1
(V ) 6 ξ}

is a Borel subset of NC`1 (see [20]) and clearly C ⊆ A.

(iii)⇒(i) Assume that there exists an analytic subset A of NC`1 with C ⊆ A. We

apply Theorem 28 for Z = `1 and the class A and we obtain a Banach space V with

a Schauder basis which does not contain a copy of `1 and is surjectively universal

for the class A. A fortiori, the space V is surjectively universal for the class C and

the result follows. �

5. A related result and open problems

Let us recall the following notion (see [2, Definition 90]).

Definition 31. A class C ⊆ SB is said to be strongly bounded if for every analytic

subset A of C there exists Y ∈ C which is universal for the class A.

This is a quite strong structural property. It turned out, however, that many

natural classes of separable Banach spaces are strongly bounded.

Part of the research in this paper grew out from our attempt to find natural

instances of the “dual” phenomenon. The “dual” phenomenon is described in ab-

stract form in the following definition.
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Definition 32. A class C ⊆ SB is said to be surjectively strongly bounded if for

every analytic subset A of C there exists Y ∈ C which is surjectively universal for

the class A.

So, according to Definition 32, Theorem 28 has the following consequence.

Corollary 33. Let Z be a minimal Banach space not containing a copy of c0. Then

the class NC`1 ∩NCZ is surjectively strongly bounded.

The following proposition provides two more natural examples.

Proposition 34. The class REFL of separable reflexive Banach spaces and the

class SD of Banach spaces with separable dual are surjectively strongly bounded.

Proposition 34 follows combining a number of results already existing in the

literature, and so instead of giving a formal proof we will only give a guideline.

To see that the class REFL is surjectively strongly bounded, let A be an analytic

subset of REFL and consider the dual class A∗ of A defined by

Y ∈ A∗ ⇔ ∃X ∈ A with Y isomorphic to X∗.

The set A∗ is analytic (see [10]) and A∗ ⊆ REFL. Since the class REFL is strongly

bounded (see [12]), there exists a separable reflexive Banach space Z which is

universal for the class A∗. Therefore, every space X in A is a quotient of Z∗. The

referee suggested that, alternatively, one can use the universality results obtained

in [24].

The argument for the class SD is somewhat different and uses the parameterized

version of the Davis–Fiegel–Johnson-Pe lczyński construction due to Bossard, as

well as, an idea already employed in the proof of Theorem 28. Specifically, let A
be an analytic subset of SD. By the results in [9] and [6], there exists an analytic

subset B of Banach spaces with a shrinking Schauder basis such that for every

X ∈ A there exists Y ∈ B having X as quotient. It is then possible to apply the

machinery developed in [2] to obtain a Banach space E with a shrinking Schauder

basis that contains a complemented copy of every space in the class B. By the

choice of B, we see that the space E is surjectively universal for the class A.

Although, by Theorem 2, we know that the class NC`1 is surjectively strongly

bounded, we should point out that it is not known whether the class NC`1 is strongly

bounded. We close this section by mentioning the following related problems.

Problem 1. Is it true that every separable Banach space X not containing a copy

of `1 embeds into a space Y with a Schauder basis and not containing a copy of `1?

Problem 2. Does there exist a map g : ω1 → ω1 such that for every countable

ordinal ξ and every separable Banach space X with φNC`1
(X) 6 ξ the space X

embeds into a Banach space Y with a Schauder basis satisfying φNC`1
(Y ) 6 g(ξ)?

Problem 3. Is the class NC`1 strongly bounded?
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We notice that an affirmative answer to Problem 2 can be used to provide an

affirmative answer to Problem 3 (to see this combine Theorem 9 and Theorem 14

stated in §2).

It seems reasonable to conjecture that the above problems have an affirmative

answer. Our optimism is based on the following facts. Firstly, Problem 3 is known

to be true within the category of Banach spaces with a Schauder basis (see [2]).

Secondly, it is known that for every minimal Banach space Z not containing a copy

`1 the class NCZ is strongly bounded (see [11]).
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