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Abstract. We show that for every separable Banach space X either SPw(X)

(the set of all spreading models of X generated by weakly-null sequences in

X, modulo equivalence) is countable, or SPw(X) contains an antichain of the

size of the continuum. This answers a question of Dilworth, Odell and Sari.

1. Introduction

Let X be a separable Banach space and let SPw(X) denote the set of all spread-

ing models of X generated by weakly-null sequences in X, modulo equivalence. By

6 we denote the usual relation on SPw(X) of domination. The study of the struc-

ture (SPw(X),6) was initiated by Androulakis, Odell, Schlumprecht and Tomczak-

Jaegermann [AOST]. They showed, for instance, that (SPw(X),6) is a semi-lattice,

that is, any two elements of SPw(X) admit a least upper bound. The question of

determining which countable lattices can be realized as (SPw(X),6), for some sep-

arable Banach space X, was answered by Dilworth, Odell and Sari [DOS].

This note is motivated by the following problem posed by the authors of [DOS]

(see [DOS, Problem 1.13]).

Problem 1. If SPw(X) is uncountable must there exist {(xξn) : ξ < ω1} in SPw(X)

which is either strictly increasing with respect to ξ, or strictly decreasing, or consists

of mutually incomparable elements?

To state our first result, let us say that a seminormalized basic sequence (xn)

in a Banach space X is C-Schreier spreading for some C > 1 (or simply Schreier

spreading, if C is understood) if for every k ∈ N, every k 6 n0 < · · · < nk and

every k 6 m0 < · · · < mk we have that (xni)
k
i=0 is C-equivalent to (xmi)

k
i=0.

Observe that if (xn) is Schreier spreading, then there exists a unique spreading

model (up to equivalence) generated by subsequences of (xn). Also let 2<N denote

the Cantor tree and let ϕ : 2<N → N be the unique bijection satisfying ϕ(s) < ϕ(t)

if either |s| < |t|, or |s| = |t| = n and s <lex t. (Here, <lex stands for the usual

lexicographical order on 2n.)

We show the following theorem.
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Theorem 1. Let X be a separable Banach space such that SPw(X) is uncountable.

Then there exist a family (xt)t∈2<N in X and C > 1 such that the following hold.

(1) If (tn) is the enumeration of 2<N according to ϕ, then the sequence (xtn)

is a seminormalized basic sequence.

(2) For every σ ∈ 2N the sequence (xσ|n) is weakly-null and C-Schreier

spreading.

(3) For every σ, τ ∈ 2N with σ 6= τ if (yσn) and (yτn) are spreading models

generated by subsequences of (xσ|n) and (xτ |n) respectively, then (yσn) and

(yτn) are incomparable with respect to domination.

Theorem 1 yields the following corollary.

Corollary 2. Let X be a separable Banach space such that SPw(X) is uncountable.

Then SPw(X) contains an antichain of the size of the continuum.

We notice that, independently, Ferenczi and Rosendal have proved Corollary 2

under the additional assumption that X has separable dual ([FR]).

In [AOST] (see also [DOS]), it was shown that SPw(X) can contain a strictly

decreasing infinite sequence, yet no strictly increasing infinite sequence can be found

in SPw(X). This is not, however, the case of the uncountable.

Theorem 3. Let X be a separable Banach space.

(a) If SPw(X) contains a strictly decreasing sequence of length ω1, then

SPw(X) contains a strictly increasing sequence of length ω1.

On the other hand,

(b) if SPw(X) does not contain a strictly increasing infinite sequence, then

there exists a countable ordinal ξX such that SPw(X) does not contain

strictly decreasing sequences of order type greater than ξX .

It was shown in [DOS, Theorem 3.7] that for every countable ordinal ξ there

exists a separable Banach space Xξ such that (SPw(Xξ),6) does not contain a

strictly increasing infinite sequence, yet SPw(Xξ) contains a strictly decreasing

sequence of order type ξ. Thus, the ordinal ξX obtained by part (b) of Theorem 3

is not uniformly bounded within the class of separable Banach spaces for which

SPw(X) does not contain a strictly increasing infinite sequence.

In the proofs of Theorem 1 and part (a) of Theorem 3 we use the structural

result obtained by Sari in [Sa]. The central argument, however, in the proof of

Theorem 1 is essentially based on the work of Leo Harrington and Saharon Shelah

on Borel orders. Deep as it is, the theory developed by Harrington and Shelah

is highly sophisticated. In particular, all known proofs of their results use either

effective descriptive set theory or forcing. However, for the proof of Theorem 1 we

need only some instances of the theory and merely for Fσ orders. Thus, we have

included “elementary” proofs of all the results that we need, making the paper
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essentially self-contained and accessible to anyone with basic knowledge of classical

descriptive set theory. None of these proofs should be considered as a contribution

to the field of Borel orders.

The paper is organized as follows. In Section 2 we state and prove all results

on Borel orders that are needed for the proof of Theorem 1. In Section 3 we show

that for every separable Banach space X the structure (SPw(X),6) can be realized

as an Fσ order. In Section 4 we give the proof of Theorem 1 while the proof of

Theorem 3 is given in Section 5.

Notation. By N = {0, 1, 2, . . . } we denote the natural numbers, and by [N]∞ we

denote the set of all infinite subsets of N (which is clearly a Polish subspace of 2N).

By 2<N we denote the set of all finite sequences of 0’s and 1’s (the empty sequence

is included). We view 2<N as a tree equipped with the (strict) partial order @ of

extension. For every t ∈ 2<N by |t| we denote the length of t, that is, the cardinality

of the set {s ∈ 2<N : s @ t}. For every n ∈ N set 2n := {t ∈ 2<N : |t| = n}. If

s, t ∈ 2<N, then by sat we denote their concatenation. For every σ ∈ 2N and every

n > 1 let σ|n =
(
σ(0), . . . , σ(n− 1)

)
, while σ|0 = ∅.

If (xn) and (yn) are basic sequences in a Banach space X and C > 1, then we

say that (xn) is C-dominated by (yn) (or simply dominated, if C is understood) if

for every k ∈ N and every a0, . . . , ak ∈ R we have

∥∥ k∑
n=0

anxn
∥∥ 6 C∥∥ k∑

n=0

anyn
∥∥.

We write (xn) 6 (yn) to denote the fact that (xn) is dominated by (yn). All the

other pieces of notation we use are standard (see, e.g., [Ke, LT, AOST]).

2. Quasi-orders and Borel orders

A quasi-order is a set X with a binary relation 6 on X which is reflexive and

transitive. Given x, y ∈ X we set

(a) x ≡ y ⇔ (x 6 y) and (y 6 x),

(b) x < y ⇔ (x 6 y) and (y 
 x),

(c) x ⊥ y ⇔ (x 
 y) and (y 
 x).

If x, y ∈ X are as in case (c) above, then we say that x and y are incomparable.

An antichain is a subset of X consisting of pairwise incomparable elements. An

ω1-chain in X is a sequence (xξ)ξ<ω1
in X such that either xξ < xζ for every

ξ < ζ < ω1, or xξ < xζ for every ζ < ξ < ω1.

A Borel order is a quasi-order (X,6) where X is Polish and 6 is Borel in X2. A

Borel order is called thin ifX does not contain a perfect set of pairwise incomparable

elements. We will need the following lemma concerning the structure of Fσ thin

orders.
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Lemma 4. Let X be a Polish space and let 6 be an Fσ thin order on X. Then

(X,6) does not contain ω1-chains.

Lemma 4 is a very special case of a deep result due to Harrington and Shelah

(see [HS, HMS]) asserting that any Borel thin order does not contain ω1-chains.

We notice that, prior to [HS], Friedman had shown ([F]) that any Borel linear order

does not contain ω1-chains.

Proof of Lemma 4. Let (Fn) be an increasing sequence of closed subsets of X2 with

6=
⋃
n Fn. By symmetry, it is enough to show that if (X,6) contains a strictly

increasing sequence (xξ)ξ<ω1
, then there exists a perfect subset P of X such that

x ⊥ y for every x, y ∈ P with x 6= y. Set Γ := {xξ : ξ < ω1}. Refining if necessary,

we may assume that for every ξ < ω1 the point xξ is a condensation point of Γ. Let

ρ be a compatible complete metric for X. By recursion on the length of sequences

in 2<N, we shall construct a family (Ut)t∈2<N of open subsets of X such that the

following are satisfied.

(a) For every t ∈ 2<N we have U ta0, U ta1 ⊆ Ut and U ta0 ∩ U ta1 = ∅.
(b) For every t ∈ 2<N with |t| > 1 we have ρ− diam(Ut) 6 1

|t| .

(c) For every n > 1 and every t, s ∈ 2n with t 6= s we have (Ut × Us) ∩ Fn = ∅
and (Us × Ut) ∩ Fn = ∅.

(d) For every t ∈ 2<N we have Ut ∩ Γ 6= ∅.
Assuming that the construction has been carried out, we set

P :=
⋃
σ∈2N

⋂
n∈N

Uσ|n.

By (a) and (b) above, we see that P is a perfect subset of X. Moreover, using (c),

it is easy to check that P is in addition an antichain.

We proceed to the construction. For n = 0 set U∅ := X. Let ξ < ζ < ω1. Then

xξ < xζ , and so, xζ 
 xξ. In particular, we have that (xζ , xξ) /∈ F1. Hence, there

exist V 0,W 0 open subsets of X such that xζ ∈ V 0, xξ ∈W 0 and (V 0×W 0)∩F1 = ∅.
Notice that both V 0∩Γ and W 0∩Γ are uncountable. So, we may select η < θ < ω1

such that xη ∈ V 0 and xθ ∈W 0. Since xθ 
 xη, we find V 1,W 1 open subsets of V 0

and W 0 respectively such that xθ ∈W 1, xη ∈ V 1 and (W 1 × V 1)∩F1 = ∅. Notice

that conditions (c) and (d) above are satisfied for V 1 and W 1 except, possibly,

(a) and (b). Thus, refining, we find U(0) and U(1) open subsets of V 1 and W 1

respectively such that conditions (a)–(d) are satisfied. For the general step we

proceed similarly. The proof is completed. �

For more information on the structure of Borel thin orders we refer to the work

of Louveau [L], and Louveau and Saint Raymond [LStR]. For applications of the

theory of Borel orders to Banach space theory we refer to the work of Rosendal [Ros].

We will also need the following special case of the theorem of Silver [Si] on the

number of equivalence classes of co-analytic equivalence relations. The proof given
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below is an adaptation of Louveau’s approach on Silver’s theorem (via the, so called,

Gandy–Harrington topology—see [MK]) in an easier setting.

Lemma 5. Let X be a Polish space and let ∼ be an Fσ equivalence relation on X.

Then, either the equivalence classes of ∼ are countable, or there exists a Cantor set

P ⊆ X consisting of pairwise inequivalent elements.

Proof. Let B = (Un) be a countable basis of X. For every closed subset F of X set

D(F ) := F \
⋃
{Un ∈ B : ∃x ∈ F with Un ∩ F ⊆ [x]}

where [x] = {y ∈ X : x ∼ y}. That is, D(F ) results by removing from F all

basic relatively open subsets of F which are contained in a single equivalence class.

Clearly D(F ) is closed and D(F ) ⊆ F . By transfinite recursion, we define a de-

creasing sequence (Xξ)ξ<ω1
of closed subsets of X as follows. We set X0 = X,

Xξ+1 = D(Xξ) and Xλ =
⋂
ξ<λXξ if λ is limit. There exists ξ0 < ω1 such that

Xξ0 = Xξ0+1. We consider the following cases.

Case 1: Xξ0 = ∅. Notice that for every ξ < ξ0 the set Xξ \Xξ+1 is contained in at

most countable many equivalence classes. Since Xξ0 = ∅, we see that

X =
⋃
ξ<ξ0

Xξ \Xξ+1.

Hence, this case implies that the equivalence classes of ∼ are countable.

Case 2: Xξ0 6= ∅. We set Y = Xξ0 and ∼′=∼ ∩Y 2. Clearly ∼′ is Fσ in Y 2.

We claim that ∼′ is meager in Y 2. Indeed, by the Kuratowski–Ulam theorem

(see, e.g., [Ke, Theorem 8.41]), it is enough to show that for every x ∈ Y the set

[x]′ = {y ∈ Y : x ∼′ y} = {y ∈ Y : x ∼ y} is meager. Notice that [x]′ is Fσ

in Y . Therefore, if [x]′ was not meager, then there would existed Un ∈ B such

that Un ∩ Y ⊆ [x]′. This implies that D(Xξ0)  Xξ0 , a contradiction. Thus, ∼′ is

meager in Y 2, as claimed. It follows, by a classical result of Mycielski (see, e.g.,

[Ke, Theorem 19.1]), that there exists a Cantor set P ⊆ Y such that x �′ y for

every x, y ∈ P with x 6= y. This clearly implies that x � y for every x, y ∈ P

with x 6= y. The proof is completed. �

3. Coding (SPw(X),6) as an Fσ order

Let X be a separable Banach space. Our aim is to show that the quasi-order

(SPw(X),6) can be realized as an Fσ order. This is done in a rather standard and

natural way.

Let U be the universal space of Pelczynski for unconditional basic sequences

(see [P]). That is, the space U has an unconditional Schauder basis (un) and for

any other unconditional basic sequence (yn) in some Banach space Y there exists

L = {l0 < l1 < · · · } ∈ [N]∞ such that (yn) is equivalent to (uln). In what follows,
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for every L = {l0 < l1 < · · · } ∈ [N]∞ by (un)n∈L we denote the subsequence (uln)

of (un) determined by L. Define 6 in [N]∞ × [N]∞ by the rule

L 6M ⇔ (un)n∈L is dominated by (un)n∈M .

Clearly 6 is a quasi-order. Let ∼ be the associated equivalence relation (that is,

L ∼ M if and only if L 6 M and M 6 L) and let < be the strict part of 6 (that

is, L < M if and only if L 6Mand M 
 L). Notice that L ∼M if and only if the

sequences (un)n∈L and (un)n∈M are equivalent as basic sequences. We have the

following easy fact whose proof is sketched for completeness.

Fact 6. Both 6 and ∼ are Fσ.

Proof. It is enough to show that 6 is Fσ. For every K ∈ N with K > 1 let 6K be

the relation on [N]∞ × [N]∞ defined by setting

L 6K M ⇔ (un)n∈L is K-dominated by (un)n∈M .

It is easy to see that 6K is closed in [N]∞× [N]∞. Since 6 is the union of 6K over

all K > 1, the result follows. �

Our coding of (SPw(X),6) as an Fσ order will be done via the following lemma.

Lemma 7. Let X be a separable Banach space. Then there exists AX ⊆ [N]∞

analytic such that the following are satisfied.

(1) For every (yn) ∈ SPw(X) there exists L ∈ AX such that (yn) is equivalent

to (un)n∈L.

(2) For every L ∈ AX there exists (yn) ∈ SPw(X) such that (un)n∈L is equiv-

alent to (yn).

Proof. Recall that a sequence (xn) in X is said to be Cesaro summable if

lim
x0 + · · ·+ xn−1

n
= 0.

Let SPC be the subset of XN defined by

(xn) ∈ SPC ⇔ (xn) is seminormalized, basic, Cesaro summable

and C-Schreier spreading for some C > 1.

It is easy to check that SPC is a Borel subset of XN (actually, it is Fσδ). Consider

the subset A of [N]∞ defined by

L ∈ A ⇔ if L = {l0 < l1 < · · · }, then ∃(xn) ∈ XN ∃θ > 1 with
[
(xn) ∈ SPC

and
(
∀k ∀k 6 n0 < · · · < nk we have (xni)

k
i=0

θ∼ (uli)
k
i=0

)]
.

As SPC is Borel in XN, it is easy to see that the set A is analytic. Denote by (en)

the standard basis of `1. Let us isolate the following property of the set A.
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(P) If L ∈ A, then the sequence (un)n∈L is not equivalent to (en). This fol-

lows from the fact that every sequence (xn) belonging to SPC is a Cesaro

summable Schauder basic sequence.

The proof of the lemma will be finished once we show the following claim.

Claim. Let (yn) ∈ SPw(X) which is not equivalent to (en). Then there exists L ∈ A
such that (yn) is equivalent to (un)n∈L. Conversely, for every L ∈ A there exists

(yn) ∈ SPw(X) which is not equivalent to (en) and such that (un)n∈L is equivalent

to (yn).

Proof of the claim. Let (yn) ∈ SPw(X) not equivalent to (en) and let (xn) be a

seminormalized weakly-null sequence in X that generates it. By passing to a sub-

sequence, we may assume that (xn) is a seminormalized, C-Schreier spreading (for

some C > 1) basic sequence. Since (yn) is not equivalent to (en), by a result of

Rosenthal, we see that (xn) has a subsequence (xnk) which is additionally Cesaro

summable (see [AT, Theorem II.9.8]). Therefore, (xnk) ∈ SPC. Since (xnk) still

generates (yn) as spreading model, we conclude that there exists L ∈ A such that

(un)n∈L is equivalent to (yn).

Conversely, let L ∈ A. We select (xn) ∈ SPC witnessing that L ∈ A. By

property (P) above, we see that (un)n∈L is not equivalent to (en). We claim that

(xn) is weakly-null. Assume not. Then there exist M = {m0 < m1 < · · · } ∈ [N]∞,

x∗ ∈ X∗ and ε > 0 such that x∗(xmn) > ε for every n ∈ N (also notice that

mn > n). Let K > 1 be the basis constant of (xn). Also let C > 1 be such that

(xn) is C-Schreier spreading. Observe that for every n ∈ N we have∥∥x0 + · · ·+ x2n−1
2n

∥∥ >
1

2(K + 1)

∥∥xn + · · ·+ x2n−1
n

∥∥
>

1

2C(K + 1)

∥∥xmn + · · ·+ xm2n−1

n

∥∥ > ε

2C(K + 1)

which implies that (xn) is not Cesaro summable, a contradiction. Thus, (xn) is

weakly-null. Let (yn) be a spreading model generated by a subsequence of (xn).

Then (yn) ∈ SPw(X). Invoking the definition of the set A again, we see that (yn) is

equivalent to (un)n∈L. This yields additionally that (yn) is not equivalent to (en).

The proof of the claim is completed. �

If (en) /∈ SPw(X), then we set AX := A. If (en) ∈ SPw(X), then we set

AX := A ∪ {L ∈ [N]∞ : (un)n∈L ∼ (en)}.

Clearly AX is analytic and, by the above claim, AX is as desired. �

4. Proof of Theorem 1

Let X be a separable Banach space such that SPw(X) is uncountable. Let AX

be the analytic subset of [N]∞ obtained by Lemma 7. We fix a continuous map
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Φ: NN → [N]∞ with Φ(NN) = AX . We define - on NN by the rule

α - β ⇔ Φ(α) 6 Φ(β).

By Fact 6 and the continuity of Φ, we see that - is an Fσ quasi-order on the Baire

space NN. We have the following lemma.

Lemma 8. Let X be a separable Banach space such that SPw(X) is uncountable,

and consider the Fσ quasi-order (NN,-). Then, either

(a) (NN,-) is not thin, or

(b) (NN,-) contains a strictly increasing sequence of length ω1.

Proof. Let ∼= be the equivalence relation associated with - (that is, α ∼= β if α - β

and β - α). Notice that

α ∼= β ⇔ Φ(α) ∼ Φ(β)

for every α, β ∈ NN. Also observe that ∼= is an Fσ equivalence relation. Since

SPw(X) is uncountable, we see that ∼= has uncountable many equivalence classes.

Thus, by Lemma 5, there exists a Cantor set P ⊆ NN such that α � β for every

α, β ∈ P with α 6= β. Fix a homeomorphism h : 2N → P . Let <lex be the (strict)

lexicographical ordering on 2N. For every Q ⊆ 2N denote by [Q]2 the set of un-

ordered pairs of elements of Q. Consider the following subsets I and D of [2N]2

defined by

{σ, τ} ∈ I ⇔ if σ <lex τ then h(σ) - h(τ),

{σ, τ} ∈ D ⇔ if σ <lex τ then h(τ) - h(σ).

It is easy to check that both I and D are Borel in [2N]2, in the sense that the sets

I∗ =
{

(σ, τ) ∈ 2N × 2N : {σ, τ} ∈ I
}

and D∗ =
{

(σ, τ) ∈ 2N × 2N : {σ, τ} ∈ D
}

are both Borel subsets of 2N × 2N. By result of Galvin (see [Ke, Theorem 19.7]),

there exists a perfect set Q ⊆ 2N such that one of the following cases holds true.

Case 1: [Q]2 ⊆ I. We fix a sequence (σn) in Q which is increasing with respect

to <lex. Then h(σn) - h(σm) for every n < m. Since h(Q) ⊆ P and P consists of

inequivalent elements with respect to ∼=, we see that the sequence
(
h(σn)

)
is strictly

increasing. This yields that (SPw(X),6) contains a strictly increasing sequence.

By a result of Sari [Sa], we conclude that SPw(X) must contain a strictly increas-

ing sequence of length ω1. This clearly implies that (NN,-) contains a strictly

increasing sequence of length ω1, that is, part (b) of the lemma is valid.

Case 2: [Q]2 ⊆ D. Let (τn) be a sequence in Q which is decreasing with respect

to <lex. Arguing as in Case 1 above, we see that the sequence
(
h(τn)

)
is strictly

increasing. So, this case also implies part (b) of the lemma.

Case 3: [Q]2∩ (I ∪D) = ∅. We set R := h(Q). Clearly R is a perfect subset of NN.

It is easy to check that if α, β ∈ R with α 6= β, then α and β are incomparable with



ON ANTICHAINS OF SPREADING MODELS OF BANACH SPACES 9

respect to -. Hence, R is a perfect antichain of (NN,-), that is, (NN,-) is not

thin. Thus, this case implies part (a) of the lemma. The proof is completed. �

Lemma 9. Let X be a separable Banach space such that SPw(X) is uncountable.

Then there exists a Cantor set P ⊆ AX consisting of pairwise incomparable elements

with respect to domination.

Proof. Assume, towards a contradiction, that such a Cantor set P does not exist.

This easily implies that (NN,-) is a thin quasi-order. By Lemma 8, we see that

(NN,-) is an Fσ thin order that contains an ω1-chain. But this possibility is

ruled out by Lemma 4. Having arrived to the desired contradiction, the lemma is

proved. �

Remark 1. We notice that Lemmas 7 and 9 immediately yield that if X is a sep-

arable Banach space such that SPw(X) is uncountable, then SPw(X) must contain

an antichain of the size of the continuum.

We are ready to proceed to the proof of Theorem 1.

Proof of Theorem 1. Let P ⊆ AX be the Cantor set obtained by Lemma 9. By

passing to a perfect subset of P if necessary, we may assume that

(A) for every L ∈ P the sequence (un)n∈L is not equivalent to the standard

basis of `1.

We will construct the family (xt)t∈2<N by “pulling back” inside X the spreading

models coded by P . To this end let (dm) be a countable dense subset of X. Let

SPC be the Borel subset of XN defined in the proof of Lemma 7. Consider the

following subset G of P × [N]∞ defined by the rule

(L,M) ∈ G ⇔ if L = {l0 < l1 < · · · } and M = {m0 < m1 < · · · }, then[
L ∈ P and (dmn) ∈ SPC and

(
∃θ > 1

∀k ∀k 6 n0 < · · · < nk we have (dmni )
k
i=0

θ∼ (uli)
k
i=0

)]
.

We gather, below, some properties of the set G.

(P1) The set G is Borel.

(P2) For every (L,M) ∈ G and every N infinite subset of M if (yn) is a spreading

model generated by a subsequence of (dm)m∈N , then (yn) is equivalent to

(un)n∈L.

(P3) For every L ∈ P there exists M ∈ [N]∞ such that (L,M) ∈ G.

(P4) For every (L,M) ∈ G the sequence (dm)m∈M is weakly-null.

Properties (P1) and (P2) are rather straightforward consequences of the definition

of the set G. Property (P3) follows by assumption (A) above, the fact that P is

a subset of AX and a standard perturbation argument. Property (P4) has already

been verified in the proof of Lemma 7.
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Since G is a Borel subset of P × [N]∞, by (P3) above and the Yankov–von

Neumann uniformization theorem (see, e.g., [Ke, Theorem 18.1]), there exists a

map f : P → [N]∞ which is measurable with respect to the σ-algebra generated by

the analytic sets and such that
(
L, f(L)

)
∈ G for every L ∈ P . Notice that the

map f must be one-to-one. Invoking the classical fact that analytic sets have the

Baire property, by [Ke, Theorem 8.38] and by passing to a perfect subset of P ,

we may assume that f is actually continuous. Moreover, by passing to a further

perfect subset of P if necessary, we may also assume that there exist j0, k0 ∈ N
such that for every L ∈ P , the sequence (dm)m∈f(L) is j0-Schreier spreading and

satisfies 1
k0
6 ‖dm‖ 6 k0 for every m ∈ f(L).

The function f is one-to-one and continuous. Hence, identifying every element

of [N]∞ with its characteristic function (that is, an element of 2N), we see that

the set f(P ) is a perfect subset of 2N. Recall that by ϕ : 2<N → N we denote the

canonical bijection described in the introduction. By recursion on the length of

finite sequences in 2<N, we may select a family (ms)s∈2<N in N with the following

properties.

(P5) For every s1, s2 ∈ 2<N we have ϕ(s1) < ϕ(s2) if and only if ms1 < ms2 .

(P6) For every σ ∈ 2N, setting Mσ := {mσ|n : n ∈ N} ∈ [N]∞, there exist a

unique Lσ ∈ P such that Mσ ⊆ f(Lσ).

We set xs := dms for every s ∈ 2<N. Observe that 1
k0
6 ‖xs‖ 6 k0 for every s ∈ 2<N.

Also notice that for every σ ∈ 2N the sequence (xσ|n) is j0-Schreier spreading.

Now let s ∈ 2<N with |s| = k and σ ∈ 2N with σ|k = s. By properties (P4)

and (P6), we see that the sequence (xσ|n)n>k is weakly-null. Using this observation

and the classical procedure of Mazur for constructing basic sequences (see [LT]), we

may select a family (st)t∈2<N in 2<N such that, setting xt := xst for every t ∈ 2<N,

the following are satisfied.

(P7) For every t1, t2 ∈ 2<N we have st1 @ st2 if and only if t1 @ t2. Moreover,

|st1 | < |st2 | if and only if ϕ(s1) < ϕ(s2).

(P8) If (tn) is the enumeration of 2<N according to the bijection ϕ, then the

sequence (xtn) is basic.

It is easy to verify that the family (xt)t∈2<N has all properties stated in Theorem 1.

The proof is completed. �

Remark 2. We would like to comment on the richness of the structure (SPw(X),6)

when SPw(X) is uncountable. Let X be a separable Banach space and assume that

there exist C > 1 and a family {(yξn) : ξ < ω1} of mutually inequivalent spreading

models generated by weakly-null sequences in X such that for every ξ < ζ < ω1

either the sequence (yξn) is C-dominated by (yζn) or vice versa. By Lemma 7, there

exist K > 1 and an uncountable subset U of AX such that the following hold.

For every L,M ∈ U either (un)n∈L is K-dominated by (un)n∈M or vice versa, and

moreover, for every L ∈ U there exists a unique ordinal ξL < ω1 such that (un)n∈L
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is equivalent to (yξLn ). Let U be the closure of U in [N]∞ and set F := U ∩ AX .

Then F is an uncountable analytic set. Consider the following symmetric relation

≈K in [N]∞ × [N]∞ defined by

L ≈K M ⇔ either (un)n∈L is K-dominated by (un)n∈M or vice versa.

It is easy to see that ≈K is closed in [N]∞ × [N]∞. By the choice of U , we have

L ≈K M for every L,M ∈ U . Since ≈K is closed, we see that L ≈K M for every

L,M ∈ U . In particular, L ≈K M for every L,M ∈ F . Notice that U ⊆ F , and

so, the relation ∼ of equivalence restricted on F has uncountable many equivalence

classes. By Lemma 5, there exists a perfect subset P of F such that for every

L,M ∈ P the sequences (un)n∈L and (un)n∈M are not equivalent2. Thus, we have

shown the following proposition.

Proposition 10. Let X be a separable Banach space and assume that there exist

C > 1 and a family {(yξn) : ξ < ω1} of mutually inequivalent spreading models

generated by weakly-null sequences in X such that for every ξ < ζ < ω1 either the

sequence (yξn) is C-dominated by (yζn) or vice versa. Then (SPw(X),6) contains a

linearly ordered subset of the size of the continuum.

Related to Proposition 10, the following question is open to us. Let X be a sep-

arable Banach space and assume that SPw(X) is uncountable. Does (SPw(X),6)

contain a linearly ordered subset of the size of the continuum, or at least uncount-

able?

5. Proof of Theorem 3

(a) First we need to recall some standard facts (see [Ke, page 351]). Let S be a

set and let ≺ be a strict, well-founded (binary) relation on S. This is equivalent

to asserting that there is no infinite decreasing chain · · · ≺ s1 ≺ s0. By recursion

on ≺, we define the rank function ρ≺ : S → Ord of ≺ by the rule

ρ≺(s) = sup{ρ≺(x) + 1 : x ≺ s}.

In particular, ρ≺(s) = 0 if and only if s is minimal. The rank ρ(≺) of ≺ is defined

by ρ(≺) = sup{ρ≺(s) + 1 : s ∈ S}.
We are ready to proceed to the proof. So, let X be a separable Banach space

such that SPw(X) contains a strictly decreasing sequence of length ω1. Let AX be

the analytic subset of [N]∞ obtained by Lemma 7. Consider the following relation

≺ on [N]∞ defined by

L ≺M ⇔ (L ∈ AX) and (M ∈ AX) and (M < L).

That is, ≺ is the relation > (the reverse of <) restricted on AX ×AX . Clearly ≺ is

analytic (as a subset of [N]∞ × [N]∞). Let {(yξn) : ξ < ω1} be a strictly decreasing

2This does not follow directly by Lemma 5 since F is not Polish. One has to observe that F

is the continuous surjective image of NN and use an argument as in the beginning of Section 4.
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sequence in SPw(X). By Lemma 7, for every ξ < ω1 we may select Lξ ∈ AX such

that (un)n∈Lξ is equivalent to (yξn). It follows that Lξ < Lζ if and only if ζ < ξ.

Assume, towards a contradiction, that SPw(X) does not contain a strictly in-

creasing sequence of length ω1. Then, by the result of Sari [Sa] already quoted in

the proof of Theorem 1, SPw(X) does not contain a strictly increasing sequence of

length ω. It follows that ≺ is a well-founded relation on [N]∞ which is in addition

analytic. By the Kunen–Martin theorem (see [Ke, Theorem 31.5]), we see that

ρ(≺) is a countable ordinal, say ξ0. For every η < ξ0 set

AηX := {L ∈ AX : ρ≺(L) = η}.

Since ρ≺(L) < ξ0 for every L ∈ AX , we see that AX =
⋃
η<ξ0

AηX . Moreover,

for every L,M ∈ AηX we have that either L ∼ M or L ⊥ M . That is, we have

partitioned the quotient AX/ ∼ into countable many antichains. As the family

{Lξ : ξ < ω1} is uncountable, we see that there exist ξ, ζ < ω1 with ξ 6= ζ and

η < ξ0 such that Lξ, Lζ ∈ AηX . But this is clearly impossible. Having arrived to

the desired contradiction the proof of part (a) is completed.

(b) Again we need to discuss some standard facts. Let R be a binary relation on

N, that is, R ⊆ N × N. By identifying R with its characteristic function, we view

every binary relation on N as an element of 2N×N. Let LO be the subset of 2N×N

consisting of all (strict) linear orderings on N. It is easy to see that LO is a closed

subset of 2N×N (see also [Ke, page 212]).

For every α ∈ LO and every n,m ∈ N we write

n <α m⇔ α(n,m) = 1.

Let WO be the subset of LO consisting of all well-orderings on N. For every α ∈WO

let |α| denote the unique ordinal which is isomorphic to (N, <α). We will need the

following boundedness principle for WO (see [Ke, page 240]): if B is an analytic

subset of WO, then sup{|α| : α ∈ B} < ω1.

We proceed to the proof of part (b). Let X be a separable Banach space. Let

AX be the analytic subset of [N]∞ obtained by Lemma 7. Consider the following

subset OX of LO defined by the rule

α ∈ OX ⇔ ∃(Ln) ∈
(
[N]∞

)N
with

[
(∀n Ln ∈ AX) and[

∀n,m (n <α m⇔ Ln > Lm)
]]
.

Since AX is analytic, it easy to check that OX is an analytic subset of LO.

Claim. The set SPw(X) does not contain a strictly increasing sequence if and only

if OX ⊆WO.

Proof of the claim. First assume that there exists α ∈ OX with α /∈ WO. By

definition, there exists a sequence (Ln) in AX such that for every n,m ∈ N we have

n <α m⇔ Ln > Lm.
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Since α /∈ WO, there exists a sequence (ni) in N such that ni+1 <α ni for every

i ∈ N. It follows that (Lni) is a strictly increasing sequence, which clearly implies

that SPw(X) contains a strictly increasing sequence.

Conversely, assume that SPw(X) contains a strictly increasing sequence. Hence,

we may find a sequence (Ln) in AX such that Ln < Lm if and only if n < m. Let

α ∈ LO be defined by

n <α m⇔ n > m (⇔ Ln > Lm).

Then α ∈ OX and α /∈WO. The claim is proved. �

Now let X be a separable Banach space that does not contain a strictly increasing

sequence. By the previous claim, we see that the set OX is an analytic subset of

WO. Hence, by boundedness, we see that

sup{|α| : α ∈ OX} = ξX < ω1.

We claim that ξX is the desired ordinal. Indeed, let ξ be a countable ordinal and

let {(yζn) : ζ < ξ} be a strictly decreasing sequence in SPw(X). By Lemma 7, there

exists (Lζ)ζ<ξ in AX which is strictly decreasing. Fix a bijection e : N→ {ζ : ζ < ξ}
and define α ∈WO by setting

n <α m⇔ e(n) < e(m) (⇔ Le(n) > Le(m)).

It follows that α ∈ OX , and so, ξ = |α| 6 ξX . The proof is completed.

Remark 3. Denote by SB the standard Borel space of all separable Banach spaces

as it is discussed in [AD, B, Ke]. Consider the subset NCI of SB defined by

X ∈ NCI⇔ SPw(X) does not contain a strictly increasing infinite sequence.

It can be shown, using some results from [DOS], that the set NCI is co-analytic

non-Borel in SB. Moreover, there exists a co-analytic rank φ : NCI → ω1 on NCI

such that for every X ∈ NCI we have

sup{|α| : α ∈ OX} 6 φ(X)

where OX is as in the proof of part (b) of Theorem 3 (for the definition of co-

analytic ranks we refer to [Ke], and for applications of rank theory to Banach space

theory we refer to [AD]).
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