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Abstract. We characterize those classes C of separable Banach spaces admit-

ting a separable universal space Y (that is, a space Y containing, up to isomor-

phism all members of C) which is not universal for all separable Banach spaces.

The characterization is a byproduct of the fact, proved in the paper, that the

class NU of non-universal separable Banach spaces is strongly bounded. This

settles in the affirmative the main conjecture form [AD]. Our approach is

based, among others, on a construction of L∞-spaces due to Bourgain and

Pisier. As a consequence we show that there exists a family {Yξ : ξ < ω1}
of separable, non-universal, L∞-spaces which uniformly exhausts all separable

Banach spaces. A number of other natural classes of separable Banach spaces

are shown to be strongly bounded as well.

1. Introduction

(A) Universality problems are being posed in Banach space theory from its early

beginnings. A typical one can be stated as follows.

(P1) Let C be a class of separable Banach spaces. When can we find a space

Y that belongs in the class C and contains an isomorphic copy of every

member of C?
A space Y containing an isomorphic copy of every member of C is called a universal

space of the class. As it turns out, the requirement that the universal space of C lies

also in C, is quite restrictive. Consider, for instance, the class UC of all separable

uniformly convex Banach spaces. It is easy to see that if Y is any separable space

universal for the class UC, then Y cannot be uniformly convex. However, as it

was shown by Odell and Schlumprecht [OS], there exists a separable reflexive space

R containing an isomorphic copy of every separable uniformly convex space (see

also [DF]). Keeping in mind this example, we see that in order to have non-trivial

answers to problem (P1), we should relax the demand that the universal space Y

of the class C is in addition a member of C. Instead, we should look for “small”

universal spaces. The most natural requirement, at this level of generality, is to

ensure that the universal space of C is not universal for all separable Banach spaces.

So, one is led to face the following problem.
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(P2) Let C be a class of separable Banach spaces. When can we find a separable

space Y which is universal for the class C but not universal for all separable

Banach spaces?

(B) A first necessary condition a class C must satisfy in order to admit a “small”

universal space (“small” in the sense of (P2) above), can be traced in the work of

Bourgain [Bou1] in the early 1980s. To describe it, let us consider the space C(2N),

where 2N stands for the Cantor set, and let us fix a normalized Schauder basis (en)

of C(2N). Bourgain associated to every separable Banach space X an ordinal, which

we shall denote by φNU(X), measuring how well the initial segments of the basis

(en) are placed inside the space X (the precise definition of φNU(X) is given in §2).

This ordinal index φNU satisfies two basic properties. The first property is that it

characterizes separable non-universal1 spaces, in the sense that a separable Banach

space X is non-universal if and only if φNU(X) < ω1. The second one is that it

is monotone with respect to subspaces. That is, if X is isomorphic to a subspace

of Y , then φNU(X) 6 φNU(Y ). Combining these two properties, we arrive at the

following necessary condition for an affirmative answer to problem (P2).

(C1) Let C be a class of separable Banach spaces admitting a universal space Y

which is not universal for all separable Banach spaces. Then the index φNU

is uniformly bounded on C, since sup{φNU(X) : X ∈ C} 6 φNU(Y ) < ω1.

(C) A second necessary condition for an affirmative answer to problem (P2) can be

found in the work of Bossard [Bos1] in the 1990s. Before we state it, let us briefly

recall the general framework of Bossard’s work. Let F
(
C(2N)

)
denote the set of all

closed subsets of C(2N) and consider the set

SB :=
{
X ∈ F

(
C(2N)

)
: X is a linear subspace

}
.

Endowing the set SB with the relative Effros–Borel structure, the space SB becomes

a standard Borel space. As C(2N) is isometrically universal for all separable Banach

spaces, we may identify any class of separable Banach spaces with a subset of SB.

Under this point of view, we denote by NU the subset of SB consisting of all X ∈ SB

which are non-universal.

It is relatively easy to see that for every Y ∈ SB the set S(Y ) := {X ∈ SB :

X is isomorphic to a subspace of Y } is analytic. This observation leads to a second

necessary condition for an affirmative answer to problem (P2).

(C2) Let C be a class of separable Banach spaces admitting a universal space Y

which is not universal for all separable Banach spaces. Then there exists

an analytic subset A of NU with C ⊆ A; simply take A = S(Y ).

1A Banach space is non-universal if it is not universal for all separable Banach spaces.
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(D) One of the main goals of the present paper is to show that conditions (C1)

and (C2) stated above are not only necessary for an affirmative answer to problem

(P2) but they are also sufficient. Precisely, the following theorem is proved.

Theorem 1. Let C be a subset of SB. Then the following are equivalent.

(i) The class C admits a separable universal space Y which is not universal for

all separable Banach spaces.

(ii) We have sup
{
φNU(X) : X ∈ C} < ω1.

(iii) There exists an analytic subset A of NU with C ⊆ A.

Theorem 1 is actually a consequence of a structural property of the class NU

of all non-universal separable Banach spaces. To state it, we recall the following

notion introduced in [AD].

Definition 2. A class C is said to be strongly bounded if for every analytic subset

A of C there exists Y ∈ C that contains an isomorphic copy of every X ∈ A.

The main result of the paper is the following theorem.

Theorem 3. The class NU is strongly bounded.

The problem whether the class NU is strongly bounded had been asked by Alekos

Kechris in the 1980s.

(E) Another consequence of Theorem 3 is related to the following notions.

Definition 4 ([AD]). Let C be an isomorphic invariant class of separable Banach

spaces such that every X ∈ C is not universal.

(1) We say that the class C is Bourgain generic if every separable Banach space

Y which is universal for the class C, must be universal for all separable

Banach spaces.

(2) We say that the class C is Bossard generic if every analytic set A that

contains all members of C up to isomorphism, must contain a Y ∈ A which

is universal for all separable Banach spaces.

It is easy to see that if a class C of separable Banach spaces is Bossard generic,

then it is also Bourgain generic. In [AD] it was conjectured that the above notions

coincide. Theorem 3 settles this in the affirmative.

Corollary 5. Bourgain genericity coincides with Bossard genericity.

(F) The proof of Theorem 3 relies, in part, on some of the results proved in [AD],

in particular on the fact that the class of all non-universal spaces with a Schauder

basis is strongly bounded (this material is recalled in §5). The new component is

the use of a construction of L∞-spaces due to Jean Bourgain and Gilles Pisier [BP].

The Bourgain–Pisier construction was the outcome of the combination of two ma-

jor achievements of Banach space theory during the 1980s. The first one is the
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Bourgain–Delbaen space [BD], the first example of a L∞-space not containing an

isomorphic copy of c0. The second one is Pisier’s scheme [Pi] for producing coun-

terexamples to a conjecture of Grothendieck. A striking similarity between the

two methods, which is reflected in the Bourgain–Pisier construction, is that they

both produce infinite-dimensional spaces essentially by developing techniques for

extending finite-dimensional ones.

The following consequence of Theorem 3 provides a more accurate insight of the

reasoning behind the proof of Theorem 3.

Corollary 6. For every λ > 1 there exists a family {Y λξ : ξ < ω1} of separable

Banach spaces with the following properties.

(i) For every ξ < ω1 the space Y λξ is non-universal and L∞,λ+.

(ii) If ξ < ζ < ω1, then Y λξ is contained in Y λζ .

(iii) If X is a separable space with φNU(X) 6 ξ, then X is contained in Y λξ .

Corollary 6 shows that the class of L∞-spaces is “generic”. This result was some-

how surprising to the author as he thought that a typical separable Banach space

“looks like” Tsirelson’s space [Ts]. Recent work, however, of Odell, Schlumprecht

and Zsák [OSZ] shows that a typical separable reflexive space is indeed Tsirelson’s

space.

(G) Although in [AD] a number of natural classes of separable Banach spaces were

shown to be strongly bounded, until recently, the only classes which were known

to be strongly bounded without having to impose on them any restriction on the

existence of a basis, were the class REFL of separable reflexive spaces and the class

SD of spaces with separable dual (see [DF]).

The final result we would like to mention in the introduction is that there exist

continuum many such strongly bounded classes (beside, of course, the classes REFL,

SD and NU). Before we give the precise statement, let us recall that an infinite-

dimensional Banach space X is said to be minimal if X embeds into every infinite-

dimensional subspace of it (e.g., the classical sequence spaces c0 and `p are minimal).

We show the following theorem.

Theorem 7. Let X be a minimal Banach space not containing `1. Then the class

NCX := {Y ∈ SB : Y does not contain an isomorphic copy of X}

is strongly bounded.

2. Background material

Our general notation and terminology is standard as can be found, for instance,

in [LT] and [Ke]. By N = {0, 1, 2, . . . } we denote the natural numbers. By [N]∞

we denote the set of all infinite subsets of N which is clearly a Gδ, hence Polish,

subspace of 2N.
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2.1. Trees and dyadic subtrees. Let Λ be a nonempty set. By Λ<N we shall

denote the set of all finite sequences in Λ. The empty sequence is denoted by

∅ and is included in Λ<N. We view Λ<N as a tree equipped with the (strict)

partial order @ of end-extension. For every s, t ∈ Λ<N by sat we shall denote their

concatenation; by |t| we shall denote the length of t, that is, the cardinality of the

set {s ∈ Λ<N : s @ t}. By ΛN we denote the set of all infinite sequences in Λ.

Equipping Λ with the discrete topology and ΛN with the product topology, we see

that ΛN is a completely metrizable space which is additionally separable if Λ is

countable. For every n, k ∈ N with n 6 k and every t ∈ Λ<N with |t| = k we set

t|n =
(
t(0), . . . , t(n − 1)

)
if n > 1, while t|0 = ∅. Similarly, for every σ ∈ ΛN and

every n ∈ N we set σ|n =
(
σ(0), . . . , σ(n− 1)

)
if n > 1, while σ|0 = ∅.

A tree T on Λ is a downwards closed subset of Λ<N. By Tr(Λ) we shall denote

the set of all trees on Λ. Hence,

T ∈ Tr(Λ)⇔ ∀s, t ∈ Λ<N (s v t and t ∈ T ⇒ s ∈ T ).

Notice that if Λ is countable, then Tr(Λ) is a closed subspace of the compact

metrizable space 2Λ<N
. The body [T ] of a tree T on Λ is defined to be the set

{σ ∈ ΛN : σ|n ∈ T ∀n ∈ N}. A tree T is said to be pruned if for every t ∈ T

there exists s ∈ T with t @ s. It is said to be well-founded if [T ] = ∅. The set of

all well-founded trees on Λ is denoted by WF(Λ). For every T ∈ WF(Λ) we set

T ′ := {s ∈ T : ∃t ∈ T with s @ t} ∈ WF(Λ). By transfinite recursion, we define

the iterated derivatives T (ξ) (ξ < κ+) of T , where κ stands for the cardinality of Λ.

The order o(T ) of T is defined to be the least ordinal ξ such that T (ξ) = ∅.
Let 2<N be the Cantor tree, that is, the tree consisting of all finite sequences of

0’s and 1’s. For every s, t ∈ 2<N let s ∧ t denote the @-maximal node w of 2<N

with w v s and w v t. If s, t ∈ 2<N are incomparable with respect to v, then we

write s ≺ t provided that (s ∧ t)a0 v s and (s ∧ t)a1 v t. We say that a subset

D of 2<N is a dyadic subtree of 2<N if D can be written in the form D = (st)t∈2<N

so that for every t1, t2 ∈ 2<N we have t1 @ t2 (respectively, t1 ≺ t2) if and only

if st1 @ st2 (respectively, st1 ≺ st2). It is easy to see that such a representation

of D as (st)t∈2<N is unique. In the sequel, when we write D = (st)t∈2<N , where D

is a dyadic subtree, we will assume that this is the canonical representation of D

described above.

2.2. Operators fixing copies of C(2N). Let X,Y, Z be Banach spaces and let

T : X → Y be a bounded linear operator. We say that the operator T fixes a copy

of Z if there exists a subspace E of X which is isomorphic to Z and such that T |E
is an isomorphic embedding. In [Ro1], Rosenthal showed that if X is a Banach

space and T : C([0, 1]) → X is an operator such that T ∗ has non-separable range,

then T fixes a copy of C([0, 1]). This result combined with a classical discovery of

Milutin [Mi] yields the following theorem.
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Theorem 8 ([Ro1]). Let K be an uncountable compact metrizable space, X a

Banach space and T : C(K) → X a bounded linear operator. If T fixes a copy of

`1, then T also fixes a copy of C(K).

We refer the reader to [Ga, Ro3] and the references therein for stronger versions

of Theorem 8.

2.3. L∞-spaces. We recall that if X and Y are two isomorphic Banach spaces (not

necessarily infinite-dimensional), then their Banach–Mazur distance is defined by

d(X,Y ) = inf
{
‖T‖ · ‖T−1‖ : T : X → Y is an isomorphism

}
.

Now let λ > 1. An infinite-dimensional Banach space X is said to be a L∞,λ-space

if for every finite-dimensional subspace F of X there exists a finite-dimensional

subspace G of X with F ⊆ G and such that d(G, `n∞) 6 λ where n = dim(G). The

space X is said to be a L∞,λ+-space if X is a L∞,θ-space for any θ > λ. Finally,

the space X is said to be a L∞-space if X is a L∞,λ-space for some λ > 1. The

class of L∞-spaces was introduced by Lindenstrauss and Pe lczyński [LP1].

It follows readily by the above definition that if X is a separable L∞,λ-space,

then there exists an increasing (with respect to inclusion) sequence (Gn) of finite-

dimensional subspaces of X with
⋃
nGn dense in X and such that d(Gn, `

mn
∞ ) 6 λ

where mn = dim(Gn) for every n ∈ N. It is relatively easy to see that this prop-

erty actually characterizes separable L∞-spaces. In particular, if X is a separable

Banach space and there exists an increasing sequence (Fn) of finite-dimensional

subspaces of X with
⋃
n Fn dense in X and such that d(Fn, `

mn
∞ ) 6 λ where

mn = dim(Fn), then X is a L∞,λ+-space.

The book of Bourgain [Bou2] contains a presentation of the theory of L∞-spaces

and a discussion of many remarkable examples. Among the structural properties

of L∞-spaces the following one, due to Johnson, Rosenthal and Zippin, will be of

particular importance for us.

Theorem 9 ([JRZ]). Every separable L∞-space has a Schauder basis.

We refer the reader to [Ro3] for a discussion on further properties of L∞-spaces,

as well as for a presentation of refinements of Theorem 9.

2.4. Descriptive set theoretical preliminaries. A standard Borel space is a

measurable space (X,S) for which there exists a Polish topology τ on X such that

the Borel σ-algebra of (X, τ) coincides with S. A classical result in the theory

of Borel sets in Polish spaces asserts that if (X,S) is a standard Borel space and

B ∈ S, then B equipped with the relative σ-algebra is also a standard Borel space

(see [Ke, Corollary 13.4]).

A basic example of a standard Borel space is the Effros–Borel structure on the

set of closed subsets of a Polish space. Specifically, let X be a Polish space and let
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F (X) denote the set of all closed subsets of X. We endow F (X) with the σ-algebra

Σ generated by the sets

{F ∈ F (X) : F ∩ U 6= ∅}

where U ranges over all open subsets of X. It is well-known (see [Ke, Theorem 12.6])

that the measurable space (F (X),Σ) is standard.

A subset A of a standard Borel space (X,S) is said to be analytic if there exists a

Borel map f : NN → X with f(NN) = A. A subset of (X,S) is said to be co-analytic

if its complement is analytic. We will adopt the modern, logical, notation to denote

these classes. Hence, Σ1
1 stands for the class of analytic sets, while Π1

1 stands for

the class of co-analytic ones.

Let us recall the notion of a Π1
1-rank introduced by Moschovakis. Let X be a

standard Borel space and let B be a co-analytic subset of X. A map ψ : B → ω1 is

said to be a Π1
1-rank on B if there exist relations 6Σ,6Π⊆ X ×X, in Σ1

1 and Π1
1

respectively, such that for every y ∈ B we have

x ∈ B and ψ(x) 6 ψ(y)⇔ x 6Σ y ⇔ x 6Π y.

In the following lemma we collect all the structural properties of Π1
1-ranks that we

need. For a proof, as well as for a thorough presentation of Rank theory, we refer

to [Ke, §34].

Lemma 10. Let X be a standard Borel space, B a co-analytic subset of X and

ψ : B → ω1 a Π1
1-rank on B. Then the following hold.

(i) For every ξ < ω1 the set Bξ := {x ∈ B : ψ(x) 6 ξ} is Borel.

(ii) (Boundedness) If A ⊆ B is analytic, then sup{ψ(x) : x ∈ A} < ω1.

2.5. The standard Borel space of separable Banach spaces. Let X be a

separable Banach space (not necessarily infinite-dimensional) and let (F (X),Σ) be

the Effors–Borel structure on the set of all closed subsets of X. Consider the set

Subs(X) :=
{
Y ∈ F (X) : Y is a linear subspace

}
.

It is easy to see that Subs(X) is a Borel subset of F (X), and so a standard Borel

space on its own. If X = C(2N), then we shall denote the space Subs
(
C(2N)

)
by

SB and we shall refer to the space SB as the standard Borel space of all separable

Banach spaces. We will need the following consequence of the Kuratowski–Ryll-

Nardzewski selection theorem (see [Ke, page 264] for more details).

Proposition 11. Let X be a separable Banach space. Then there exists a sequence

dn : Subs(X) → X (n ∈ N) of Borel maps with dn(Y ) ∈ Y and such that the

sequence
(
dn(Y )

)
is norm-dense in Y for every Y ∈ Subs(X).

Let Z be a Banach space with a Schauder basis (throughout the paper, when we

say that a Banach space Z has a Schauder basis, then we implicitly assume that Z
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is infinite-dimensional). We fix a normalized Schauder basis (en) of Z. Consider

the set

NCZ := {X ∈ SB : X does not contain an isomorphic copy of Z}.

Notice that if Z = C(2N), then the above defined class coincides with the class NU of

all X ∈ SB which are non-universal. Let δ > 0 and let Y be an arbitrary separable

Banach space. Following Bourgain [Bou1], we introduce a tree T(Y,Z, (en), δ) on

Y defined by the rule

(y0, . . . , yk) ∈ T(Y,Z, (en), δ)⇔ (yn)kn=0 is δ-equivalent to (en)kn=0.

It is easy to see that Y ∈ NCZ if and only if for every δ > 0 the tree T(Y, Z, (en), δ)

is well-founded. We set φNCZ (Y ) = ω1 if Y /∈ NCZ , while if Y ∈ NCZ we define

(1) φNCZ (Y ) = sup
{
o
(
T(Y,Z, (en), δ)

)
: δ > 0

}
.

If Z = C(2N), then we shall denote by φNU(Y ) the above quantity. Although the

definition of the ordinal ranking φNCZ depends on the choice of the Schauder basis

(en) of Z, it can be shown that it is actually independent of such a choice in a very

strong sense (see [AD, Theorem 10] for more details).

In [Bou1], Bourgain proved that for every Banach space Z with a Schauder basis

and every Y ∈ SB we have that Y ∈ NCZ if and only if φNCZ (Y ) < ω1. We need

the following refinement of this result.

Theorem 12 ([Bos2]). Let Z be a Banach space with a Schauder basis. Then the

following hold.

(i) The set NU is Π1
1 and the map φNU : NU→ ω1 is a Π1

1-rank on NU.

(ii) The set NCZ is Π1
1 and the map φNCZ : NCZ → ω1 is a Π1

1-rank on NCZ .

3. A result on quotient spaces

Throughout this section by X,Y, Z and E we shall denote infinite-dimensional

Banach spaces. We say that a space X is hereditarily Y if every subspace Z of X

contains an isomorphic copy of Y . A space X is said to have the Schur property

if every weakly convergent sequence in X is automatically norm convergent. It is

an immediate consequence of Rosenthal’s dichotomy [Ro2] that a space with the

Schur property is hereditarily `1. The converse is not valid, as shown by Bourgain.

We will need the following stability result concerning quotient spaces.

Proposition 13. Let E be a minimal Banach space not containing `1. Also let X

be a Banach space and let Y be a subspace of X. Assume that the quotient X/Y

has the Schur property. Then the following hold.

(i) If Y is non-universal, then so is X.

(ii) If Y does not contain an isomorphic copy of E, then neither X does.
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Proof. (i) This part is essentially a consequence of a result due to Lindenstrauss

and Pe lczyński asserting that the property of not containing an isomorphic copy of

C([0, 1]) is a three-space property (see [LP2, Theorem 2.1]). For the convenience

of the reader, however, we shall give a proof for this special case.

To this end we need to introduce some pieces of notation. Set O := {∅} ∪ {ta0 :

t ∈ 2<N}; that is, O is the subset of the Cantor tree consisting of all sequences ending

with 0. If D = (st)t∈2<N is a dyadic subtree of 2<N, then we set OD := {st : t ∈ O}.
Let hD : OD → N be the unique bijection satisfying hD(st1) < hD(st2) if either

|t1| < |t2|, or |t1| = |t2| and t1 ≺ t2. By h : O → N we shall denote the bijection

corresponding to the Cantor tree itself.

For every t ∈ 2<N we set Vt = {σ ∈ 2N : t @ σ}; that is, Vt is the clopen subset of

2N determined by the node t. Also set ft := 1Vt . Clearly, ft ∈ C(2N) and ‖ft‖ = 1.

Let (tn) be the enumeration of the set O according to the bijection h and consider

the corresponding sequence (ftn). The main properties of the sequence (ftn) are

summarized in the following claim.

Claim 14. The following hold.

(i) The sequence (ftn) is a normalized monotone basis of C(2N).

(ii) Let D = (st)t∈2<N be a dyadic subtree of 2<N and let (sn) be the enumeration

of the set OD according to hD. Then the corresponding sequence (fsn) is

1-equivalent to the basis (ftn).

(iii) For every t ∈ 2<N there exists a sequence (wn) in 2<N with t @ wn for every

n ∈ N and such that the sequence (fwn) is weakly-null.

Proof of Claim 14. We will give the proof of part (i) leaving to the reader to supply

the details for parts (ii) and (iii). So, consider the sequence (ftn). First we observe

that ft ∈ span{ftn : n ∈ N} for every t ∈ 2<N. Hence, span{ftn : n ∈ N} = C(2N).

Thus, it is enough to show that (ftn) is a monotone Schauder basic sequence. To

see this, let k,m ∈ N with k < m and a0, . . . , am ∈ R. There exists σ ∈ 2N such

that ∥∥ k∑
n=0

anftn
∥∥ =

∣∣ k∑
n=0

anftn(σ)
∣∣.

We make the following simple (though crucial) observation. Let l, j ∈ N with tl @ tj
(by the properties of h this implies that l < j). Then there exists a node s ∈ 2<N

with tl @ s, |s| = |tj | and such that ftj (x) = 0 for every x ∈ Vs. Using this

observation we see that there exists τ ∈ 2N such that ftn(τ) = ftn(σ) if 0 6 n 6 k

while ftn(τ) = 0 if k < n 6 m. Therefore,

∥∥ k∑
n=0

anftn
∥∥ =

∣∣ k∑
n=0

anftn(σ)
∣∣ =

∣∣ m∑
n=0

anftn(τ)
∣∣ 6 ∥∥ m∑

n=0

anftn
∥∥.

This shows that (ftn) is a monotone basis of C(2N), as desired. �
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After this preliminary discussion we are ready to proceed to the proof of part (i).

Clearly it is enough to show that if the space X contains an isomorphic copy of

C(2N), then so does Y . So, let Z be a subspace of X which is isomorphic to C(2N).

We fix an isomorphism T : C(2N) → Z and we set K = ‖T‖ · ‖T−1‖. Also let

Q : X → X/Y be the natural quotient map. The basic step for constructing a

subspace Y ′ of Y which is isomorphic to C(2N) is given in the following claim.

Claim 15. Let (zn) be a normalized weakly-null sequence in Z and let r > 0 be

arbitrary. Then there exist k ∈ N and a vector y ∈ Y such that ‖zk − y‖ < r.

Proof of Claim 15. Consider the sequence
(
Q(zn)

)
. By our assumptions, it is

weakly-null. The space X/Y has the Schur property. Hence, lim ‖Q(zn)‖ = 0.

Let k ∈ N with ‖Q(zk)‖ < r. By definition, there exists a vector y ∈ Y such that

‖Q(zk)‖ 6 ‖zk − y‖ < r. The claim is proved. �

Using part (iii) of Claim 14 and Claim 15, we may select, recursively, a dyadic

subtree D = (st)t∈2<N of 2<N and a family (yt)t∈2<N in Y such that, setting

zt :=
T (fst )

‖T (fst )‖
for every t ∈ 2<N, we have∑

t∈2<N

‖zt − yt‖ <
1

2K
.

By [LT, Proposition 1.a.9] and part (ii) of Claim 14, we see that if (tn) is the

enumeration of the set O according to h, then the corresponding sequence (ytn)

is equivalent to the sequence (ftn). By part (i) of Claim 14, it follows that the

subspace Y ′ := span{ytn : n ∈ N} of Y is isomorphic to C(2N). The proof of

part (i) is completed.

(ii) We argue by contradiction. So, assume that there exists a subspace Z of X

which is isomorphic to E. As in part (i), let us denote by Q : X → X/Y the

natural quotient map. The fact that the space E does not contain `1 yields that

the operator Q|Z is strictly singular. This, in turn, implies that

dist(SZ′ , SY ) := min
{
‖z − y‖ : z ∈ Z ′, y ∈ Y and ‖z‖ = ‖y‖ = 1

}
= 0

for every infinite-dimensional subspace Z ′ of Z. Hence, there exist a subspace Z ′′

of Z and a subspace Y ′ of Y which are isomorphic. Since E is minimal, we see that

Z ′′ must contain an isomorphic copy of E. Hence so does Y , a contradiction. The

proof is completed. �

4. Parameterizing the Bourgain-Pisier construction

In [BP], Bourgain and Pisier proved the following theorem.

Theorem 16 ([BP], Theorem 2.1). Let λ > 1 and let X be any separable Banach

space. Then there exists a separable L∞,λ+-space, denoted by Lλ[X], which contains

X isometrically and is such that the quotient Lλ[X]/X has the Radon–Nikodym and

the Schur properties.
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This section is devoted to the proof of the following parameterized version of

their result.

Theorem 17. For every λ > 1 the set Lλ ⊆ SB× SB defined by

(X,Y ) ∈ Lλ ⇔ Y is isometric to Lλ[X]

is analytic.

The section is organized as follows. In §4.1 we present some preliminary tools

needed in the proof of Theorem 17 and the Bourgain–Pisier construction. The

construction itself is briefly recalled in §4.2. The proof of Theorem 17 is given in

§4.3 while in §4.4 we isolate some of its consequences.

4.1. Preliminary tools. A system of isometric embeddings is a sequence (Xn, jn)

where (Xn) is a sequence of Banach spaces and jn : Xn → Xn+1 is an isometric

embedding for every n ∈ N. Let us recall the definition of the inductive limit

X of a system (Xn, jn) of isometric embeddings. We consider, first, the vector

subspace of ΠnXn consisting of all sequences (xn) such that jn(xn) = xn+1 for all

n large enough. We equip this subspace with the semi-norm ‖(xn)‖ = lim ‖xn‖.
Let X be the vector space obtained after passing to the quotient by the kernel of

that semi-norm. The space X is then defined to be the completion of X . Notice

that there exists a sequence (Jn) of isometric embeddings Jn : Xn → X such that

Jn+1 ◦ jn = Jn for every n ∈ N and if En = Jn(Xn), then the union
⋃
nEn is dense

in X. Hence, in practice, we may do as if the sequence (Xn) was an increasing (with

respect to inclusion) sequence of subspaces of a bigger space and we may identify

the space X with the closure of the vector space
⋃
nXn.

We also recall the following construction due to Kisliakov [Ki].

Definition 18. Let B,X be Banach spaces and let η 6 1. Also let S be a subspace

of B and let u : S → X be a linear operator with ‖u‖ 6 η. Let B⊕1X be the vector

space B×X equipped with the norm ‖(b, x)‖ = ‖b‖+‖x‖ and consider the subspace

N =
{

(s,−u(s)) : s ∈ S
}

of B ⊕1X. We define X1 = (B ⊕1X)/N . Moreover,

denoting by Q : B ⊕1X → X1 the natural quotient map, we define ũ : B → X1 and

j : X → X1 by setting

ũ(b) = Q
(
(b, 0)

)
and j(x) = Q

(
(0, x)

)
for every b ∈ B and every x ∈ X. We call the family (X1, j, ũ) as the canonical

triple associated with (B,S, u,X, η).

We gather below some basic properties of the canonical triple.

Proposition 19. Let B,S, u,X and η be as in Definition 18, and consider the

canonical triple (X1, j, ũ) associated with (B,S, u,X, η). Then j is an isometric

embedding, ‖ũ‖ 6 1 and ũ(s) = j
(
u(s)

)
for every s ∈ S. Moreover, the spaces B/S

and X1/X are isometric.
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We refer the reader to [Ki, Pi] for a proof of Proposition 19 as well as for refine-

ments of it.

We recall two more properties of the above construction which were isolated

in [BP, Proposition 1.3]. The first property is its minimality. Specifically, let

B,S, u,X and η be as in Definition 18, and consider any commutative diagram:

B
w // Z

S

Id

OO

u
// X

v

OO

where Z is a Banach space, and w : B → Z and v : X → Z are bounded linear

operators. Then there exists a unique bounded linear operator T : X1 → Z such

that w(b) = T
(
ũ(b)

)
for every b ∈ B and v(x) = T

(
j(x)

)
for every x ∈ X.

The second property is its uniqueness. For suppose that (X ′1, j
′, ũ′) is an-

other triple satisfying the conclusion of Proposition 19 and the minimality prop-

erty described above. Then there exists an isometry T : X1 → X ′1 such that

T
(
j(x)

)
= j′(x) for every x ∈ X.

Following [BP], we call a triple (X1, j, ũ) as described above, as a triple asso-

ciated with (B,S, u,X, η) and we say that the corresponding isometric embedding

j : X → X1 is an η-admissible embedding.

The basic tool for establishing the crucial properties of the Bourgain–Pisier con-

struction is given in the following theorem.

Theorem 20 ([BP], Theorem 1.6). Let 0 < η < 1, and let (Fn, jn) be a system of

isometric embeddings where the sequence (Fn) consists of finite-dimensional Banach

spaces and for every n ∈ N the isometric embedding jn : Fn → Fn+1 is η-admissible.

Then the inductive limit of the system (Fn, jn) has the Radon–Nikodym and the

Schur properties.

Remark 1 ([BP], Remark 1.5). Let B,S, u,X and η be as in Definition 18, and

assume that there exists 0 < δ 6 1 such that ‖u(s)‖ > δ‖s‖ for every s ∈ S. Then,

for every triple (X ′1, j
′, ũ′) associated with (B,S, u,X, η) we have ‖ũ′(b)‖ > δ‖b‖

for every b ∈ B. Indeed, notice that it is enough to verify this property only for

the canonical triple (X1, j, ũ). Invoking Definition 18, we see that

‖ũ(b)‖ := inf
{
‖b+ s‖+ ‖−u(s)‖ : s ∈ S

}
> inf

{
δ‖b+ s‖+ δ‖s‖ : s ∈ S

}
= δ‖b‖

for every b ∈ B, as desired.

4.2. The construction of the space Lλ[X]. In this subsection we shall describe

the Bourgain–Pisier construction, following the presentation in [BP]. So, let λ > 1

and let X be a separable Banach space. In the argument below we shall use the

following simple fact.
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Fact 21. Let H be a finite-dimensional space. Also let ε > 0 be arbitrary. Then

there exist m ∈ N, a subspace S of `m∞ and an isomorphism T : S → H satisfying

‖s‖ 6 ‖T (s)‖ 6 (1 + ε)‖s‖ for every s ∈ S.

We fix 0 < η < 1 such that 1
λ < η < 1. We also fix ε > 0 with 1 + ε < λη.

Let (Fn) be an increasing sequence of finite-dimensional subspaces of X such that⋃
n Fn is dense in X (the sequence (Fn) is not necessarily strictly increasing, since

we are not assuming that the space X is infinite-dimensional). By recursion, we

shall construct

(C1) a system (En, jn) of isometric embeddings, and

(C2) a sequence (Gn) of finite-dimensional spaces

such that for every n ∈ N the following are satisfied.

(P1) Gn ⊆ En and G0 = {0}.
(P2) The embedding jn : En → En+1 is η-admissible and E0 = X.

(P3) (jn−1 ◦ · · · ◦ j0)(Fn−1) ∪ jn−1(Gn−1) ⊆ Gn for every n > 1.

(P4) d(Gn, `
mn
∞ ) 6 λ where dim(Gn) = mn > n.

As the first step is identical to the general one, we may assume that for some

k ∈ N with k > 1 the spaces (Gn)kn=0 and (En)kn=0 and the η-admissible isometric

embeddings (jn)k−1
n=0 have been constructed. Let Hk be the subspace of Ek spanned

by (jk−1 ◦ · · · ◦ j0)(Fk) ∪ Gk (if k = 0, then we take H0 = F0). Let mk be the

least integer with mk > k + 1 and for which there exist a subspace Sk of `mk∞
and an isomorphism T : Sk → Hk satisfying ‖s‖ 6 ‖T (s)‖ 6 (1 + ε)‖s‖ for every

s ∈ Sk. By Fact 21, mk is well-defined. Define u : Sk → Ek by u(s) = 1
λT (s)

and notice that u(Sk) = Hk, ‖u‖ 6 η and ‖u−1|Hk‖ 6 λ. Let (Y, j, ũ) be the

canonical triple associated with (`mk∞ , Sk, u, Ek, η). We set Ek+1 := Y , jk+1 := j

and Gk+1 := ũ(`mk∞ ). By Proposition 19 and Remark 1, the spaces Gk+1 and Ek+1,

and the embedding jk+1 satisfy properties (P1)–(P4) above. The construction is

completed.

Now let Z be the inductive limit of the system (En, jn). As we have remarked

in §4.1, the sequence (En) can be identified with an increasing sequence of subspaces

of Z. Under this point of view, we let Lλ[X] be the closure of
⋃
nGn. By property

(P3), we see that Lλ[X] contains an isometric copy of X, while by property (P4) it

follows that the space Lλ[X] is L∞,λ+. Finally, the fact that the quotient Lλ[X]/X

has the Radon–Nikodym and the Schur properties is essentially a consequence of

Theorem 20 (see [BP] for more details).

4.3. Proof of Theorem 17. Let λ > 1 be given, and fix η > 0 and ε > 0 such

that 1
λ < η < 1 and 1 + ε < λη. Below, we will adopt the following notational

conventions. By Ω we shall denote the Borel subset of SB× SB×C(2N)N×C(2N)N
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defined by the rule(
X,Y, (xn), (yn)

)
∈ Ω ⇔ ∀n ∈ N (xn ∈ X and yn ∈ Y ) and

(xn) is dense in X, (yn) is dense in Y,

Y ⊆ X and ∀n ∈ N ∃m ∈ N with yn = xm.

That is, an element
(
X,Y, (xn), (yn)

)
∈ Ω codes a separable Banach space X, a

dense sequence (xn) in X, a subspace Y of X and a subsequence (yn) of (xn) which

is dense in Y . Given ω =
(
X,Y, (xn), (yn)

)
∈ Ω we set p0(ω) := X and p1(ω) := Y .

We will reserve the letter t to denote elements of Ω<N. The letter α shall be used

to denote elements of ΩN. For every t ∈ Ω<N nonempty and every i < |t| we

set Xt
i := p0

(
t(i)
)

and Y ti := p1

(
t(i)
)
. Respectively, for every α ∈ ΩN and every

i ∈ N we set Xα
i := p0

(
α(i)

)
and Y αi := p1

(
α(i)

)
. If X,Y and Z are nonempty

sets and f : X × Y → Z is a map, then for every x ∈ X by fx we shall denote

the function fx : Y → Z defined by fx(y) = f(x, y) for every y ∈ Y . Finally,

by dm : SB → C(2N) (m ∈ N) we denote the sequence of Borel maps obtained by

Proposition 11 applied for X = C(2N).

The proof of Theorem 17 is based on the fact that we can appropriately encode

the Bourgain–Pisier construction so that it can be performed “uniformly” in X. To

this end, we introduce the following terminology.

(A) Let k ∈ N with k > 2. A code of length k is a pair (C, φ) where C is a Borel

subset of Ωk and φ : C × C(2N)→ C(2N) is a Borel map such that for every t ∈ C
the following are satisfied.

(C1) For every i < k the space Y ti is finite-dimensional and Y t0 = {0}.
(C2) The map φt : Xt

k−2 → C(2N) is a linear isometric embedding satisfying

φt(Xt
k−2) ⊆ Xt

k−1 and φt(Y tk−2) ⊆ Y tk−1.

The code of length 1 is the pair (C1, φ1) where C1 ⊆ Ω and φ1 : C1×C(2N)→ C(2N)

are defined by

t =
(
X,Y, (xn), (yn)

)
∈ C1 ⇔ Y = {0}

and φ1(t, x) = x for every t ∈ C1 and every x ∈ C(2N). Clearly C1 is Borel and φ1

is a Borel map. Notice that for every X ∈ SB there exists t ∈ C1 with X = Xt
0.

(B) Let {(Ck, φk) : k > 1} be a sequence such that for every k > 1 the pair (Ck, φk)

is a code of length k. We say that the sequence {(Ck, φk) : k > 1} is a tree-code

if for every k,m ∈ N with 1 6 k 6 m we have Ck =
{
t|k : t ∈ Cm

}
. The body C

of a tree-code {(Ck, φk) : k > 1} is defined by C :=
{
α ∈ ΩN : α|k ∈ Ck ∀k > 1

}
.

Clearly C is a Borel subset of ΩN.

Let {(Ck, φk) : k > 1} be a tree-code and let C be its body. For every k > 1, the

map φk induces a map Φk : C × C(2N) → C(2N) defined by Φk(α, x) = φk(α|k, x)

for every α ∈ C and every x ∈ C(2N). We need to introduce two more maps. First,

for every n,m ∈ N with n < m we define Φn,m : C ×C(2N)→ C(2N) recursively by

the rule Φn,n+1(α, x) = Φn+2(α, x) and Φn,m+1(α, x) = Φm+2

(
α,Φn,m(α, x)

)
. Also
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we set Jn = Φn+2 for every n ∈ N. We isolate, for future use, the following fact

concerning these maps. Its proof is a straightforward consequence of the relevant

definitions and of condition (C2).

Fact 22. Let {(Ck, φk) : k > 1} be a tree-code and let C be its body. Then the

following are satisfied.

(i) For every n, k,m ∈ N with k > 1 and n < m the maps Φk and Φn,m

are Borel. Moreover, for every α ∈ C we have Φαn,m(Xα
n ) ⊆ Xα

m and

Φαn,m(Y αn ) ⊆ Y αm.

(ii) Let α ∈ C. Then for every n ∈ N the map Jαn |Xαn is a linear isometric

embedding satisfying Jαn (Xα
n ) ⊆ Xα

n+1 and Jαn (Y αn ) ⊆ Y αn+1.

(C) Let {(Ck, φk) : k > 1} be a tree-code and let C be its body. Let α ∈ C. Con-

sider the sequence (Xα
0 , Y

α
0 , X

α
1 , Y

α
1 , . . . ) and notice that Y αn is a finite-dimensional

subspace of Xα
n for every n ∈ N. In the coding we are developing, the sequences

(Xα
n ) and (Y αn ) will correspond to the sequences (En) and (Gn) obtained following

the Bourgain–Pisier construction performed to the space X = Xα
0 . This is made

precise using the auxiliary concept of λ-coherence which we are about to introduce.

So, let α ∈ C be arbitrary. For every n ∈ N set Fn(Xα
0 ) := span{di(Xα

0 ) : i 6 n}.
Clearly

(
Fn(Xα

0 )
)

is an increasing sequence of finite-dimensional subspaces of Xα
0

with
⋃
n Fn(Xα

0 ) dense in Xα
0 . Let (Eαn , j

α
n ) be the system of isometric embeddings

and let (Gαn) be the sequence of finite-dimensional spaces obtained by performing

the construction described in §4.2 to the space Xα
0 , the sequence

(
Fn(Xα

0 )
)

and

the numerical parameters λ, η and ε. We say that the tree-code {(Ck, φk) : k > 1}
is λ-coherent if for every α ∈ C there exists a sequence Tαn : Xα

n → Eαn (n > 1)

of isometries such that Gαn = Tαn (Y αn ) for every n > 1 and making the following

diagram commutative:

Eα0
jα0 // Eα1

jα1 // Eα2
jα2 // Eα3

jα3 // · · ·

Xα
0

Id

OO

Jα0 |Xα0

// Xα
1

Tα1

OO

Jα1 |Xα1

// Xα
2

Tα2

OO

Jα2 |Xα2

// Xα
3

Tα3

OO

Jα3 |Xα3

// · · ·

The basic property guaranteed by the above requirements is isolated in the fol-

lowing fact (the proof is straightforward).

Fact 23. Let {(Ck, φk) : k > 1} be a λ-coherent tree-code and let C be its body.

Also let α ∈ C. Then the inductive limit of the system of embeddings (Y αn , J
α
n |Y αn )

is isometric to the space Lλ[Xα
0 ].

We are ready to state the main technical step towards the proof of Theorem 17.

Lemma 24. There exists a λ-coherent tree-code {(Ck, φk) : k > 1}.
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Granting Lemma 24, the proof is completed as follows. Let {(Ck, φk) : k > 1}
be the λ-coherent tree-code obtained above. Denote by C its body. By Fact 23, we

have

(X,Y ) ∈ Lλ ⇔ ∃α ∈ ΩN with α ∈ C, X = Xα
0 and such that Y is isometric

to the inductive limit of the system (Y αn , J
α
n |Y αn ).

Let α ∈ C. There is a canonical dense sequence in the inductive limit Zα of the

system (Y αn , J
α
n |Y αn ). Indeed, by the discussion in §4.1, the sequence of spaces

(Y αn ) can be identified with an increasing sequence of subspaces of Zα. Under this

point of view, the sequence
(
dm(Y αn )

)
(n,m ∈ N) is a dense sequence in Zα. Let

{(ni,mi) : i ∈ N} be an enumeration of the set N × N such that max{ni,mi} 6 i

for every i ∈ N. It follows that

(X,Y ) ∈ Lλ ⇔ ∃(yi) ∈ C(2N)N ∃α ∈ ΩN with α ∈ C, X = Xα
0 and

Y = span{yi : i ∈ N} and ∀l ∈ N ∀b0, . . . , bl ∈ Q∥∥ l∑
i=0

biyi
∥∥ =

∥∥ l∑
i=0

biΦni,l+1

(
α, dmi(Y

α
ni)
)∥∥.

Invoking part (i) of Fact 22, we see that the above formula gives an analytic defi-

nition of the set Lλ, as desired.

So, it remains to prove Lemma 24. To this end, we need the following easy fact

(the proof is left to the interested reader).

Fact 25. Let S be a standard Borel space, let X be a Polish space and let fn : S → X

(n ∈ N) be a sequence of Borel maps. Then the map F : S → F (X), defined by

F (s) = {fn(s) : n ∈ N} for every s ∈ S, is Borel.

We are ready to proceed to the proof of Lemma 24.

Proof of Lemma 24. The λ-coherent tree-code {(Ck, φk) : k > 1} will be con-

structed by recursion. For k = 1 let (C1, φ1) be the code of length 1 defined in

(A) above. Assume that for some k > 1 and every l 6 k we have constructed the

code (Cl, φl) of length l. We will construct the code (Ck+1, φk+1) of length k + 1.

First we define, recursively, a family of Borel functions fl : Ck ×C(2N)→ C(2N)

(1 6 l 6 k) by the rule f1(t, x) = x and fl+1(t, x) = φl+1

(
t|l + 1, fl(t, x)

)
. Notice

that f tk(Xt
0) ⊆ Xt

k−1 for every t ∈ Ck. Also let Fk−1 : SB→ SB and Hk : Ck → SB

be defined by Fk−1(X) = span{di(X) : i 6 k − 1} and

Hk(t) = span
{
Y tk−1 ∪ f tk

(
Fk−1(Xt

0)
)}

respectively. Observe that for every X ∈ SB and every t ∈ Ck the spaces Fk−1(X)

and Hk(t) are finite-dimensional subspaces of X and Xt
k−1 respectively.

Claim 26. The maps Fk−1 and Hk are Borel.
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Proof of Claim 26. For every s ∈ Qk consider the map fs : SB → C(2N) defined

by fs(X) =
∑k−1
i=0 s(i)di(X). Clearly fs is Borel. Notice that Fk−1(X) is equal to

the closure of the set {fs(X) : s ∈ Qk}. Invoking Fact 25, the Borelness of the

map Fk−1 follows. The proof that Hk is also Borel proceeds similarly. The claim

is proved. �

We fix a dense sequence (σi) in 2N. For every d ∈ N with d > k we define an

operator vd : C(2N)→ `d∞ by

vd(f) =
(
f(σ0), . . . , f(σd−1)

)
.

Notice that ‖vd(f)‖ 6 ‖f‖. Moreover, observe that the map C(2N) 3 f 7→ ‖vd(f)‖
is continuous. For every d > k let Bd be the subset of Ck defined by

t ∈ Bd ⇔ ∀f ∈ Hk(t) we have ‖f‖ 6 (1 + ε)‖vd(f)‖

⇔ ∀n ∈ N we have ‖dn(Hk(t))‖ 6 (1 + ε)‖vd
(
dn(Hk(t))

)
‖.

By the above formula, we see that Bd is Borel. Also observe that Ck =
⋃
d>k Bd.

We define, recursively, a partition {Pd : d > k} of Ck by the rule Pk = Bk and

Pd+1 = Bd+1 \ (Pk ∪ · · · ∪ Pd). Notice that Pd is a Borel subset of Bd.

Let d > k be arbitrary. By Z we shall denote the vector space C(2N) × `d∞
equipped with the norm ‖(f, a)‖ = ‖f‖ + ‖a‖ for every f ∈ C(2N) and every

a ∈ `d∞. Consider the map N : Pd → Subs(Z) defined by

N(t) =
{

(−f, λvd(f)) : f ∈ Hk(t)
}
.

Arguing as in the proof of Claim 26, it is easy to see that N is Borel. Next, let

dm : Subs(Z)→ Z (m ∈ N) be the sequence of Borel maps obtained by Proposition

11 applied for X = Z. We recall that by dm : C(2N) → C(2N) (m ∈ N) we denote

the corresponding sequence obtained for X = C(2N). We may, and we will, assume

that d0(X) = 0 and d0(Z ′) = 0 for every X ∈ SB and every Z ′ ∈ Subs(Z). We

also fix a countable dense subset (rm) of `d∞ such that r0 = 0. Let Q : Pd ×Z → R
be the map

Q(t, z) = inf
{
‖z + dm

(
N(t)

)
‖ : m ∈ N

}
.

Clearly Q is Borel. We fix a bijection 〈·, ·〉 : N × N → N. For every n ∈ N by m0
n

and m1
n we shall denote the unique integers satisfying n = 〈m0

n,m
1
n〉. We define

Cd ⊆ Ωk+1 by the rule

t′ ∈ Cd ⇔ t′|k ∈ Pd and if t′(k) =
(
X,Y, (xn), (yn)

)
and t = t′|k,

then ∀i ∈ N ∀b0, . . . , bi ∈ Q we have∥∥ i∑
n=0

bnxn
∥∥ = Q

(
t,

i∑
n=0

bn
(
dm0

n
(Xt

k−1), rm1
n

))
and

∀n ∈ N we have yn = x〈0,n〉.

Clearly the above formula defines a Borel subset of Ωk+1. Also observe that Cd ∩
Cd′ = ∅ if d 6= d′.
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Let us comment on some properties of the set Cd. Fix t′ ∈ Cd and set t = t′|k.

By definition, we have t ∈ Pd ⊆ Bd. It follows that the operator vd : Hk(t) → `d∞
is an isomorphic embedding satisfying ‖vd(x)‖ 6 ‖x‖ 6 (1 + ε)‖vd(x)‖ for every

x ∈ Hk(t). We set St = vd
(
Hk(t)

)
and we define u : St → Xt

k−1 by

u(s) =
1

λ

(
vd|Hk(t)

)−1
(s).

By the choice of ε and λ, we see that ‖u‖ 6 η. Let (Zt, j, ũ) be the canoni-

cal triple associated with (`d∞, St, u,X
t
k−1, η). There is a natural way to select

a dense sequence in Zt. Indeed, as in Definition 18, consider the Banach space

`d∞ ⊕1X
t
k−1 and let Qt : `

d
∞ ⊕1X

t
k−1 → Zt be the natural quotient map. Setting

zn := Qt
(
(rm1

n
, dm0

n
(Xt

k−1))
)

for every n ∈ N, we see that the sequence (zn) is a

dense sequence in Zt. Let t′(k) =
(
Xt′

k , Y
t′

k , (xn), (yn)
)
. By the definition of the

set Cd, it follows that the map

Zt 3 zn 7→ xn ∈ Xt′

k

can be extended to a linear isometry Tt′ : Zt → Xt′

k . In other words, we have the

following commutative diagram:

`d∞
ũ // Zt

Tt′ // Xt′

k

St

Id

OO

u
// Xt

k−1

j

OO

It is clear from what we have said that the map

Xt
k−1 3 dn(Xt

k−1) 7→ x〈n,0〉 ∈ Xt′

k

can also be extended to linear isometric embedding J t
′
: Xt

k−1 → Xt′

k satisfying

J t
′
(Y tk−1) ⊆ Y t

′

k . Moreover, it easy to see that this extension can be done “uni-

formly” in t′. Precisely, there exists a Borel map φd : Cd × C(2N) → C(2N) such

that for every t′ ∈ Cd we have φd(t
′, x) = J t

′
(x) for every x ∈ Xt′|k

k−1 = Xt′

k−1.

We are finally in position to construct the code (Ck+1, φk+1) of length k + 1.

First we set

Ck+1 :=
⋃
d>k

Cd.

As we have already remarked the sets (Cd)d>k are pairwise disjoint. We define

φk+1 : Ck+1 × C(2N) → C(2N) as follows. Let (t′, x) ∈ Ck+1 × C(2N) and let d be

the unique integer with t′ ∈ Cd. We set φk+1(t′, x) = φd(t
′, x). Clearly, the pair

(Ck+1, φk+1) is a code of length k + 1.

This completes the recursive construction of the family {(Ck, φk) : k > 1}.
That the family {(Ck, φk) : k > 1} is a tree-code follows immediately by the

definition of the set Cd above. Moreover, as one can easily realize, the tree-code

{(Ck, φk) : k > 1} is in addition λ-coherent, as desired. �
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As we have already indicated above, having completed the proof of Lemma 24

the proof of Theorem 17 is also completed.

4.4. Consequences. We start with the following corollary.

Corollary 27. Let A be an analytic subset of NU. Then there exists an analytic

subset A′ of NU with the following properties.

(i) Every Y ∈ A′ has a Schauder basis.

(ii) For every X ∈ A there exists Y ∈ A′ containing an isometric copy of X.

Proof. Let L2 be the analytic subset of SB× SB obtained by Theorem 17 applied

for λ = 2. We define A′ by

Y ∈ A′ ⇔ ∃X ∈ SB with X ∈ A and (X,Y ) ∈ L2.

Clearly A′ is analytic. By Theorem 9, part (i) of Proposition 13 and Theorem 16,

the set A′ is as desired. �

Let X be a non-universal separable Banach space and let λ > 1. By Theorem 16

and part (i) of Proposition 13, the space Lλ[X] is also non-universal. We have the

following quantitative refinement of this fact.

Corollary 28. Let λ > 1. Then there exists a map fλ : ω1 → ω1 such that for

every ξ < ω1 and every separable Banach space X with φNU(X) 6 ξ we have

φNU(Lλ[X]) 6 fλ(ξ).

In particular, there exists a map f : ω1 → ω1 such that for every ξ < ω1, every

separable Banach space X with φNU(X) 6 ξ embeds isometrically into a Banach

space Y with a Schauder basis satisfying φNU(Y ) 6 f(ξ).

Proof. By part (i) of Theorem 12, the map φNU is a Π1
1-rank on NU. Let ξ < ω1

be arbitrary and set

Aξ :=
{
X ∈ NU : φNU(X) 6 ξ

}
.

By part (i) of Lemma 10, the set Aξ is analytic (in fact Borel). Let Lλ be the

analytic subset of SB × SB obtained by Theorem 17 applied for the given λ. We

define Bξ by setting

Y ∈ Bξ ⇔ ∃X ∈ SB with X ∈ Aξ and (X,Y ) ∈ Lλ.

As in the proof of Corollary 27, we see that Bξ is an analytic subset of NU. By

part (ii) of Lemma 10, we have that sup{φNU(Y ) : Y ∈ Bξ} < ω1. We set

fλ(ξ) = sup
{
φNU(Y ) : Y ∈ Bξ

}
.

Clearly the map fλ is as desired. �

We close this subsection by presenting the following analogues of Corollaries 27

and 28 for the class NCZ . They are both derived using identical arguments as

above.
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Corollary 29. Let Z be a minimal Banach space not containing `1. Also let A be

an analytic subset of NCZ . Then there exists an analytic subset A′ of NCZ with

the following properties.

(i) Every Y ∈ A′ has a Schauder basis.

(ii) For every X ∈ A there exists Y ∈ A′ containing an isometric copy of X.

Corollary 30. Let Z be a minimal Banach space with a Schauder basis and not

containing `1. Also let λ > 1. Then there exists a map fZλ : ω1 → ω1 such that

for every ξ < ω1 and every separable Banach space X with φNCZ (X) 6 ξ we have

φNCZ (Lλ[X]) 6 fZλ (ξ).

In particular, there exists a map fZ : ω1 → ω1 such that for every ξ < ω1, every

separable Banach space X with φNCZ (X) 6 ξ embeds isometrically into a Banach

space Y with a Schauder basis satisfying φNCZ (Y ) 6 fZ(ξ).

5. The strong boundedness of the class of non-universal spaces with

a Schauder basis

In [AD] it was shown that the class of non-universal spaces with a Schauder basis

is strongly bounded. More precisely, the following theorem was proved.

Theorem 31 ([AD], Proposition 83). Let A be an analytic subset of SB such

that every Y ∈ A is non-universal and has a Schauder basis. Then there exists

a non-universal space Z with a Schauder basis that contains every Y ∈ A as a

complemented subspace.

Our aim in this section is to sketch a proof of Theorem 31 which although

is simpler than the one given in [AD], still it highlights some of the basic ideas

developed in that work.

But before that, we need to introduce some pieces of notation. For technical

reasons (that will become transparent below), we need to work with trees consisting

of nonempty finite sequences. In particular, if Λ is a countable set and T is a tree

on Λ, then we denote by T the set T \{∅}. Namely, T consists of all nonempty finite

sequences of T . We call the set T, for obvious reasons, as the tree of nonempty

sequences of T .

A starting difficulty in the proof of Theorem 31 is how one builds a space out of

a class of spaces. The technical (and conceptual) device is provided in the following

definition.

Definition 32 ([AD], Definition 13). Let X be a Banach space, Λ a countable set

and T a pruned tree on Λ. Also let (xt)t∈T be a normalized sequence in X indexed

by the tree T of nonempty sequences of T . We say that X = (X,Λ, T, (xt)t∈T) is a

Schauder tree basis if the following are satisfied.

(1) We have X = span{xt : t ∈ T}.
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(2) For every σ ∈ [T ] the sequence (xσ|n)n>1 is a normalized bimonotone basic

sequence.

For every Schauder tree basis X = (X,Λ, T, (xt)t∈T) and every σ ∈ [T ] we set

Xσ := span{xσ|n : n > 1}. Notice that in Definition 32 we do not demand that

the subspace Xσ of X is complemented. Also notice that if σ, τ ∈ [T ] with σ 6= τ ,

then this does not necessarily imply that Xσ 6= Xτ . The following lemma reveals

the critical role of Schauder tree bases in the construction of universal spaces. It

is based on a technique in descriptive set theory, introduced by Solovay, known as

“unfolding”.

Lemma 33. Let A be an analytic subset of SB such that every Y ∈ A has a

Schauder basis. Then there exist a separable Banach space X, a pruned tree T on

N×N and a normalized sequence (xt)t∈T in X such that the following are satisfied.

(i) The family X = (X,N× N, T, (xt)t∈T) is a Schauder tree basis.

(ii) For every Y ∈ A there exists σ ∈ [T ] with Y ∼= Xσ.

(iii) For every σ ∈ [T ] there exists Y ∈ A with Xσ
∼= Y .

Proof. Let U be the universal space of Pe lczyński for basic sequences (see [P]). The

space U has a Schauder basis (un) satisfying, among others properties, the following

one. For every semi-normalized basic sequence (xn) in a Banach space X, there

exists L = {l0 < l1 < · · · } ∈ [N]∞ such that (xn) is equivalent to (uln). By passing

to an equivalent norm and normalizing if necessary, we may additionally assume

the basis (un) of U is normalized and bi-monotone. Notice that these properties

are inherited by the subsequences of (un). For every L = {l0 < l1 < · · · } ∈ [N]∞ we

set UL := span{uln : n ∈ N}. By identifying the space U with one of its isometric

copies in C(2N), we see that the map Φ: [N]∞ → SB, defined by Φ(L) = UL, is

Borel.

Now let A be as in the statement of the lemma and set

A∼= := {Z ∈ SB : ∃Y ∈ A such that Z ∼= Y }.

That is, A∼= is the isomorphic saturation of A. It is easy to see that the equivalence

relation ∼= of isomorphism is analytic in SB × SB (see [Bos2] for more details). It

follows that the set A∼= is analytic. Hence, the set

Ã := {L ∈ [N] : ∃Y ∈ A with UL ∼= Y } = Φ−1(A∼=)

is also analytic. The definition of the set Ã, the universality of the basis (un) of

the space U and our starting assumptions on the set A, imply the following.

(P1) For every L ∈ Ã there exists Y ∈ A with UL ∼= Y .

(P2) For every Y ∈ A there exists L ∈ Ã with Y ∼= UL.

The space [N]∞ is naturally identified as a closed subspace of the Baire space NN.

Hence, the set Ã can be seen as an analytic subset of NN. By [Ke, Proposition 25.2],

there exists a pruned tree T on N × N such that Ã = proj[T ]. Notice that every
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nonempty node t of T is just a pair (s, w) of finite sequences in N with |s| = |t|
and where s is a strictly increasing finite sequence. Let T be the tree of nonempty

sequences of T . For every t = (s, w) ∈ T we set nt := max(s) and we define

xt := unt . We also set X := span{xt : t ∈ T}. Using properties (P1) and (P2)

above, it is easy to see that the tree T and the family (xt)t∈T are as desired. The

lemma is proved. �

The second step towards the proof of Theorem 31 is based on a method of con-

structing Banach spaces introduced by James [J] and further developed by several

authors (see, for instance, [Bou1, Bos2]). To describe it, we need to recall some

terminology. Let T be a tree on a set Λ and consider the tree T of nonempty se-

quences of T . A subset s of T is said to be a finite segment if there exist s, t ∈ T

with s v t and such that s = {w ∈ T : s v w v t}. If s = {w ∈ T : s v w v t} is

a finite segment, then we set min(s) = s. Two finite segments s1 and s2 of T are

said to be incomparable if the nodes min(s1) and min(s2) are incomparable with

respect to the partial order v of extension.

Definition 34 ([AD], §4.1). Let X = (X,Λ, T, (xt)t∈T) be a Schauder tree basis.

The `2 Baire sum of X, denoted by TX
2 , is defined to be the completion of c00(T)

equipped with the norm

(2) ‖z‖TX
2

= sup
{( l∑

i=0

∥∥∑
t∈si

z(t)xt
∥∥2

X

)1/2}
where the above supremum is taken over all finite families (si)

l
i=0 of pairwise in-

comparable, finite segments of T.

Let X = (X,Λ, T, (xt)t∈T) be a Schauder tree basis and consider the correspond-

ing `2 Baire sum TX
2 . Let (et)t∈T be the standard Hamel basis of c00(T). We fix

a bijection h : T → N such that for every pair t, s ∈ T we have that h(t) < h(s)

if t @ s. If (etn) is the enumeration of (et)t∈T according to h, then it is easy to

verify that the sequence (etn) defines a normalized bi-monotone Schauder basis of

TX
2 . Next, for every σ ∈ [T ] let Xσ := span{eσ|n : n > 1}. It is also easily seen that

the space Xσ is isometric to Xσ and, moreover, it is 1-complemented in TX
2 via the

natural projection Pσ : TX
2 → Xσ.

Now let Y be a subspace of TX
2 . Assume that there exist σ ∈ [T ] and a further

subspace Y ′ of Y such that the operator Pσ : Y ′ → Xσ is an isomorphic embedding.

In such a case, the subspace Y contains information about the Schauder tree basis

X = (X,Λ, T, (xt)t∈T). On the other hand, there are subspaces of TX
2 which are

“orthogonal” to every Xσ. We give them a special name, as follows.

Definition 35 ([AD], Definition 14). Let X = (X,Λ, T, (xt)t∈T) be a Schauder tree

basis and let Y be a subspace of TX
2 . We say that Y is X-singular if for every

σ ∈ [T ] the operator Pσ : Y → Xσ is strictly singular.
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In [AD], the class of X-singular subspaces of TX
2 was extensively analyzed. What

we need, in order to finish the proof of Theorem 31, is the following structural result

(see [AD, Theorem 24]).

Theorem 36. Let X = (X,Λ, T, (xt)t∈T) be a Schauder tree basis and let Y be an

X-singular subspace of TX
2 . Then Y does not contain an isomorphic copy of `1.

As a matter of fact, stronger properties than the one asserted by Theorem 36

are known (but any extra information is of no use in the argument below). We are

ready to proceed to the proof of Theorem 31.

Proof of Theorem 31. Let A be as in the statement of the theorem. By Lemma 33,

there exists a Schauder tree basis X = (X,Λ, T, (xt)t∈T) such that the following are

satisfied.

(1) For every Y ∈ A there exists σ ∈ [T ] with Y ∼= Xσ.

(2) For every σ ∈ [T ] there exists Y ∈ A with Xσ
∼= Y . In particular, for every

σ ∈ [T ] the space Xσ is non-universal.

Consider the `2 Baire sum TX
2 of this Schauder tree basis X. We claim that the

space TX
2 is the desired one. Indeed, notice that TX

2 has a Schauder basis and, by

property (1) above, it contains every Y ∈ A as a complemented subspace. What

remains is to check that TX
2 is non-universal.

We argue by contradiction. So, assume that there exists a subspace E of TX
2

which is isomorphic to C(2N). Let E′ be a subspace of E which is isomorphic

to `1. By Theorem 36, we see that E′ is not X-singular. It follows that there exist

σ ∈ [T ] and a further subspace E′′ of E′ such that Pσ : E′′ → Xσ is an isomorphic

embedding. Clearly we may additionally assume that E′′ is isomorphic to `1. Now

consider the operator Pσ : E → Xσ. What we have just proved is that the operator

Pσ : E → Xσ fixes a copy of `1. By Theorem 8, we see that Pσ|E must also fix a

copy of C(2N). This implies that the space Xσ is universal, which is a contradiction

by property (2) above. Having arrived to the desired contradiction the proof of

Theorem 31 is completed. �

6. The main results

This section is devoted to the proofs of Theorems 1 and 3, and Corollaries 5

and 6 stated in the introduction. We start with the proof of Theorem 3.

Proof of Theorem 3. Let A be an arbitrary analytic subset of NU. We apply Corol-

lary 27 to the set A and we obtain an analytic subset A′ of NU such that

(1) every Y ∈ A′ has a Schauder basis, and

(2) for every X ∈ A there exists Y ∈ A′ containing an isometric copy of X.

By (1) above, we may apply Theorem 31 to the set A′ and we obtain a non-universal

space Z with a Schauder basis which contains an isomorphic copy of every Y ∈ A′.
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Invoking (2), we see that the space Z is universal also for the class A. The proof is

completed. �

Proof of Theorem 1. As we have already indicated in the introduction, part (i)

implies both (ii) and (iii). To see that (ii)⇒(i), let C be a subset of SB and let

ξ < ω1 be such that

sup{φNU(X) : X ∈ C} 6 ξ.

Next observe that, by part (i) of Theorem 12 and part (i) of Lemma 10, the class

Aξ := {X ∈ NU : φNU(X) 6 ξ} is Borel and clearly C ⊆ Aξ. By Theorem 3, there

exists a non-universal space Y which is universal for the class Aξ. A fortiori, the

space Y is universal for the class C; that is, part (i) is satisfied. For the implication

(iii)⇒(i) we argue similarly. �

Proof of Corollary 5. Let C be an isomorphic invariant class of separable Banach

spaces. As we have already mentioned, if the class C is Bossard generic, then C is

also Bourgain generic. To see the converse, assume that C is not Bossard generic.

Hence, we may find an analytic subset A of NU such that for every X ∈ C there

exists Z ∈ A with X ∼= Z. We apply Theorem 3 and we obtain a non-universal

separable Banach space Y containing an isomorphic copy of every Z ∈ A. Clearly,

the space Y witnesses the fact that the class C is not Bourgain generic. Therefore,

the two notions coincide, as desired. �

Proof of Corollary 6. Fix λ > 1. The family {Y λξ : ξ < ω1} will be constructed

by transfinite recursion on countable ordinals. As the first step is identical to the

general one, we may assume that for some countable ordinal ξ and every ζ < ξ the

space Y λζ has been constructed. We set

C := {X ∈ NU : φNU(X) 6 ξ} ∪ {Y λζ : ζ < ξ}.

By part (i) of Theorem 12 and part (i) of Lemma 10, the set C is an analytic

subset of NU. We apply Theorem 3 and we obtain a separable non-universal space

X which is universal for the class C. We define Y λξ to be the space Lλ[X]. This

completes the recursive construction. Using Theorem 16 and Proposition 13, it is

easily verified that the family {Y λξ : ξ < ω1} is as desired. �

7. Further strongly bounded classes

This section is devoted to the proof of Theorem 7 stated in the introduction. To

this end, we need the following analogue of Theorem 31 for the class NCX .

Theorem 37 ([AD], Theorem 87). Let X be a minimal Banach space. Also let A

be an analytic subset of NCX such that every Y ∈ A has a Schauder basis. Then

there exists a space V ∈ NCX with a Schauder basis that contains every Y ∈ A as

a complemented subspace.

We are ready to proceed to the proof of Theorem 7.
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Proof of Theorem 7. Let X be a minimal Banach space not containing an isomor-

phic copy of `1 and let A be an arbitrary analytic subset of NCX . We apply

Corollary 29 to the set A and we obtain an analytic subset A′ of NCX such that

(1) every Y ∈ A′ has a Schauder basis, and

(2) for every Z ∈ A there exists Y ∈ A′ containing an isometric copy of Z.

Applying Theorem 37 to the set A′ and invoking (1) above, we see that there exists

a space V ∈ NCX with a Schauder basis which is universal for the class A′. By

(2) above, we see that the space V is also universal for the class A. The proof is

completed. �

We close this section by giving the following analogue of Corollary 6. Its proof

is identical to that of Corollary 6.

Corollary 38. Let X be a minimal Banach space with a Schauder basis and not

containing `1. Then for every λ > 1 there exists a family {Y λξ : ξ < ω1} of separable

Banach spaces with the following properties.

(i) For every ξ < ω1 the space Y λξ is L∞,λ+ and does not contain a copy of X.

(ii) If ξ < ζ < ω1, then Y λξ is contained in Y λζ .

(iii) If Z is a separable space with φNCX (Z) 6 ξ, then Z is contained in Y λξ .

References

[AD] S. A. Argyros and P. Dodos, Genericity and amalgamation of classes of Banach spaces,

Adv. Math. 209 (2007), 666–748.
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