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Abstract. We introduce the notion of an M-family of infinite subsets of N
which is implicitly contained in the work of Mathias. We study the structure

of a pair of orthogonal hereditary families A and B, where A is analytic and

B is C-measurable and an M-family.

1. Introduction

Two families A and B of infinite subsets of N are said to be orthogonal if A ∩ B

is finite for every A ∈ A and every B ∈ B. The study of the structure of a pair

(A,B) of orthogonal families is a classical topic ([Hau]) which has found numerous

applications (see, for instance, [DW, To4]). Among all pairs (A,B) of orthogonal

families of particular importance is the study of the definable ones. Here the word

definable refers to the descriptive set theoretic complexity of A and B as subsets of

P(N). A fundamental result in this direction is the “perfect Lusin gap” theorem of

Todorčević [To2] which deals with a pair of analytic and orthogonal families.

In this paper we study the structure of a pair (A,B) of hereditary and orthogonal

families where A is analytic and B is C-measurable1 and “large”. Our notion of

largeness is the following which is implicitly contained in the work of Mathias [Ma].

Definition 1. We say that a hereditary family A of infinite subsets of N is an

M-family if for every sequence (An) in A there exists A ∈ A whose all but finitely

many elements are in
⋃
i>nAi for every n ∈ N.

We should point out that there are several other notions appearing in the litera-

ture, such as P-ideals (see [So, To2]) or semi-selective co-ideals (see [Fa]), involving

the existence of diagonal sequences. We should also point out that the notion of an

M-family is closely related to the weak diagonal sequence property of topological

spaces and, in fact, it can be considered as its combinatorial analogue.

Using Ellentuck’s theorem [El] we show that the class of C-measurable M-families

possesses strong stability properties. It is closed, for instance, under intersection

and “diagonal” products. As a consequence we prove that if (X, τ1) and (Y, τ2) are

two countable analytic spaces with the weak diagonal sequence property, then the

2000 Mathematics Subject Classification: 03E15, 05D10, 28A05, 54H05.
1We recall that a subset of a Polish space is C-measurable if it belongs to the smallest σ-algebra

that contains the open sets and is closed under the Souslin operation.
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product (X × Y, τ1 × τ2) has the weak diagonal sequence property. This answers

Question 5.4 from [TU].

Our first result, concerning the structure of a pair (A,B) as described above, is

the following (see §2 for the relevant definitions).

Theorem I. Let A and B be two hereditary, orthogonal families of infinite subsets

of N. Assume that A is analytic and that B is an M-family and C-measurable.

Then, either

(i) A is countably generated in B⊥, or

(ii) there exists a perfect Lusin gap inside (A,B).

Theorem I shows that the assumption of being an M-family can successfully

replace analyticity in the perfect Lusin gap theorem of [To2]. We should point

out that the phenomenon of replacing analyticity by a structural property and still

getting the same conclusion as in Theorem I has already appeared in the literature

(see [To4, TU]). As a matter of fact Theorem I was motivated by these applications.

Our second result, concerning the structure of a pair (A,B) as in Theorem I,

extends a result of Krawczyk from [Kr]. To state it, it is useful to look at the

second orthogonal B⊥⊥ of B. In a sense the family B⊥⊥ is the “completion” of B,

as an infinite subset L of N belongs to B⊥⊥ if (and only if) every infinite subset of

L contains an element of B. To proceed with our discussion, let C be the family of

all infinite chains of N<N (we recall that a subset of N<N is called a chain if it is

linearly ordered under the order of end-extension). Also let Iwf be the ideal on N<N

generated by the set WF of all downwards closed, well-founded, infinite subtrees of

N<N. The following theorem shows that if A,B are as above and A is not countably

generated in B⊥, then the pair (C, Iwf) “embeds” into the pair (A,B⊥⊥) in a very

canonical way.

Theorem II. Let A and B be two hereditary, orthogonal families of infinite subsets

of N. Assume that A is analytic and that B is an M-family and C-measurable.

Then, either

(i) A is countably generated in B⊥, or

(ii) there exists a one-to-one map ψ : N<N → N such that

C ⊆ {ψ−1(A) : A ∈ A} and Iwf ⊆ {ψ−1(B) : B ∈ B⊥⊥}.

One of the main ingredients of the proofs of Theorems I and II is the infinite

dimensional extension of Hindman’s theorem [Hi] due to Milliken [Mil]. It is used

in a spirit similar as in [ADK].

The paper is organized as follows. In §2 we gather some preliminaries needed

in the rest of the paper. In §3 we study the connection of M-families with other

related notions and we give some examples. In §4 we present some of their structural

properties. The proof of Theorem I is given in §5 while the proof of Theorem II is



ON PAIRS OF DEFINABLE ORTHOGONAL FAMILIES 3

given in §6. Our general notation and terminology is standard, as can be found,

e.g., in [Ke] and [To3].

2. Preliminaries

It is a common fact that once one is willing to present some results about trees,

ideals and related combinatorics, then one has to set up a, rather large, notational

system. Below we gather all the conventions that we need and which are, more or

less, standard. In what follows X will be a countable (infinite) set.

2.1. Ideals. By P∞(X) we denote the set of all infinite subsets of X (which is

clearly a Polish subspace of 2X). A family A ⊆ P∞(X) is hereditary if for every

A ∈ A and every A′ ∈ P∞(A) we have A′ ∈ A. A subfamily B of a family A is

cofinal in A if for every A ∈ A there exists B ∈ P∞(A) with B ∈ B.

Given A,B ∈ P∞(X) we write A ⊆∗ B if the set A \ B is finite, while we write

A ⊥ B if the set A ∩ B is finite. Two families A,B ⊆ P∞(X) are said to be

orthogonal, in symbols A ⊥ B, if A ⊥ B for every A ∈ A and every B ∈ B. For

every A ⊆ P∞(X) we set A⊥ := {B ∈ P∞(X) : B ⊥ A for every A ∈ A} and

A∗ := {X \ A : A ∈ A}. The family A⊥ is called the orthogonal of A. Notice that

A⊥ is an ideal.

Two families A and B are countably separated if there exists a sequence (Cn) in

P∞(X) such that for every A ∈ A and every B ∈ B there exists n ∈ N with A ⊆ Cn
and Cn ⊥ B. A family A is countably generated in a family B, if there exists a

sequence (Bn) in B such that for every A ∈ A there exists n ∈ N with A ⊆∗ Bn.

An ideal I on X is said to be bisequential if for every ultrafilter p on X with I ⊆ p∗

the family I is countably generated in p∗.

Given A ⊆ P∞(X) we set

(1) co(A) := {B ∈ P∞(X) : ∃A ∈ A with B ∩A infinite} = P∞(X) \ A⊥.

Notice that co(A) is a co-ideal. We call co(A) as the co-ideal generated by A.

Observe that if A is hereditary, then co(A) = {B ∈ P∞(X) : ∃A ∈ A with A ⊆ B}.
The following elementary, well-known, fact provides the description of the second

orthogonal A⊥⊥ of a hereditary family A.

Fact 1. Let A ⊆ P∞(X) hereditary. Also let B ∈ P∞(X). Then B ∈ A⊥⊥ if and

only if for every C ∈ P∞(B) there exists A ∈ P∞(C) with A ∈ A.

An ideal I is said to have the Fréchet property if I = I⊥⊥. We notice that if

A is a hereditary family, then both A⊥ and A⊥⊥ have the Fréchet property. The

following fact is also well-known. We sketch its proof for completeness.

Fact 2. A bisequential ideal I on X has the Fréchet property.

Proof. In light of Fact 1, it is enough to show that for every A /∈ I there exists

C ∈ P∞(A) with C ∈ I⊥. So, let A /∈ I. The family {A \ L : L ∈ I} has the finite
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intersection property. Hence, we may find p ∈ βX, non-principal, with I ⊆ p∗ and

A ∈ p. By the bisequentiality of I, there exists a sequence (Bn) in p∗ such that for

every L ∈ I there exists n ∈ N with L ⊆∗ Bn. Clearly, we may assume that the

sequence (Bn) is increasing. Let C be an infinite diagonalization of the decreasing

sequence (A \Bn). Then C ∈ P∞(A) and C ∈ I⊥. The proof is completed. �

2.2. Trees and block sequences. By X<N we shall denote the set of all finite

sequences in X. We view X<N as a tree under the (strict) partial order @ of end-

extension. For every s, t ∈ X<N by sat we denote their concatenation. If T is a

downwards closed subtree of X<N, then by [T ] we shall denote its body, that is,

the set {σ ∈ XN : σ|n ∈ T ∀n ∈ N}. Two nodes s, t ∈ T are said to be comparable

if either t v s or s v t; otherwise they are said to be incomparable. A subset of T

consisting of pairwise comparable nodes is said to be a chain, while a subset of T

consisting of pairwise incomparable nodes is said to be an antichain.

By Σ we shall denote the downwards closed subtree of N<N consisting of all

strictly increasing finite sequences. We view, however, every t ∈ Σ not only as a

finite increasing sequence but also as finite subset of N. Given s, t ∈ Σ \ {∅} we

write s < t if max(s) < min(t). By convention, we have ∅ < t for every t ∈ Σ

with t 6= ∅. If s, t ∈ Σ with s < t, then we will frequently denote by s ∪ t the

concatenation of s and t.

By B we shall denote the closed subset of ΣN (Σ equipped with the discrete

topology) consisting of all sequences (bn) with bn 6= ∅ and bn < bn+1 for every

n ∈ N. We call a sequence b = (bn) ∈ B a block sequence. For every block

sequence b = (bn) we set

(2) 〈b〉 :=
{ ⋃
n∈F

bn : ∅ 6= F ⊆ N finite
}

and [b] :=
{

(cn) ∈ B : cn ∈ 〈b〉 ∀n
}
.

(Notice, in particular, that 〈b〉 ⊆ Σ.) We will need the following consequence of

Milliken’s theorem [Mil].

Theorem 2. Let X be a C-measurable subset of B. Then there exists b ∈ B such

that either [b] ⊆ X or X ∩ [b] = ∅.

We recall that the class of C-measurable sets is strictly bigger than the σ-algebra

generated by the analytic sets (see, for instance, [Ke]).

2.3. Lusin gaps and related results. Let A,B ⊆ P∞(X). A perfect Lusin gap

inside (A,B) is a continuous, one-to-one map 2N 3 x 7→ (Ax, Bx) ∈ A×B such that

the following are satisfied.

(a) For every x ∈ 2N we have Ax ∩Bx = ∅.
(b) For every x, y ∈ 2N with x 6= y we have (Ax ∩By) ∪ (Ay ∩Bx) 6= ∅.

The notion of a perfect Lusin gap was introduced by Todorčević. We notice that

if there exists a perfect Lusin gap inside (A,B), then A and B are not countably
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separated. The following result of Todorčević [To2] shows that this the only case

for a pair of analytic and orthogonal families.

Theorem 3. Let A and B be two analytic, hereditary and orthogonal families of

infinite subsets of N. Then, either

(i) A and B are countably separated, or

(ii) there exists a perfect Lusin gap inside (A,B).

Theorem 3 is a consequence of the open coloring axiom for Σ1
1 sets (see [Fe, To1]).

We should point out that it is the perfectness of the gap which is essential in many

applications. We refer the reader to [To2, To4] for more information.

We will also need the following slight reformulation of [To2, Theorem 3].

Theorem 4. Let A,B ⊆ P∞(N) be two hereditary orthogonal families. Assume that

A is analytic and not countably generated in B⊥. Then there exists a one-to-one

map φ : Σ→ N such that, setting

E := {φ−1(A) : A ∈ A} and H := {φ−1(B) : B ∈ B},

the following are satisfied.

(i) For every σ ∈ [Σ] the set {σ|n : n ∈ N} belongs to E.

(ii) For every t ∈ Σ the set
{
t ∪ {n} : n ∈ N and t < {n}

}
of immediate

successors of t in Σ belongs to H.

Proof. Assume that A is analytic, hereditary and not countably generated in B⊥.

By [To2, Theorem 3], there exists a downwards closed subtree T of Σ such that the

following are satisfied.

(B1) For every σ ∈ [T ] we have {σ(n) : n ∈ N} ∈ A.

(B2) For every t ∈ T the set {n ∈ N : t < {n} and t∪ {n} ∈ T} is infinite and is

included in an element of B.

Recursively and using property (B2) above, we may select a downwards closed

subtree S of T such that the following hold.

(a) For every s ∈ S the set {n ∈ N : s < {n} and s ∪ {n} ∈ S} is infinite.

(b) For every s, w ∈ S \ {∅} with s 6= w we have max(s) 6= max(w).

Fix m ∈ N such that (m) ∈ S and set Sm := {t ∈ Σ : (m)at ∈ S}. By (a) above,

Sm is an infinitely splitting, downwards closed subtree of Σ. Hence, there exists a

bijection h : Σ → Sm such that |t| = |h(t)| for every t ∈ Σ and, moreover, s @ t

if and only if h(s) @ h(t) for all s, t ∈ Σ. Now define φ : Σ → N as follows. We

set φ(∅) = m, and for every t ∈ Σ with t 6= ∅ let φ(t) = max
(
h(t)

)
. Notice that,

by (b), the map φ is one-to-one. It is easy to check that φ is as desired. �
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3. Connections with related notions and examples

In this section we present the relation between M-families and other notions

already studied in the literature. Let us start with the following fact which provides

characterizations of M-families. The proof is left to the interested reader.

Fact 3. Let X be a countable set and let A ⊆ P∞(X) be a hereditary family. Then

the following are equivalent.

(i) The family A is an M-family.

(ii) For every decreasing sequence (Dn) in co(A) there exists A ∈ A with

A ⊆∗ Dn for every n ∈ N.

(iii) For every sequence (An) in A there exists A ∈ A such that A ∩An 6= ∅ for

infinitely many n ∈ N.

The notion of an M-family is closely related to the notion of a selective co-ideal

due to Mathias. We recall that a co-ideal F on N is said to be selective, or a happy

family as it is called in [Ma], if for every decreasing sequence (Dn) in F there exists

D ∈ F such that D \ {0, . . . , n} ⊆ Dn for every n ∈ D. We have the following

characterization of M-families which justifies our terminology.

Proposition 5. Let A be a hereditary family on N. Then A is an M-family if and

only if the co-ideal co(A) generated by A is selective.

Proof. First assume that the co-ideal co(A) is selective. Let (Dn) be a decreasing

sequence in co(A). By the selectivity of co(A), there exists D ∈ co(A) with D \
{0, . . . , n} ⊆ Dn for every n ∈ D. We select A ∈ A with A ⊆ D. Then A ⊆∗ Dn

for every n ∈ N. By part (ii) of Fact 3, we see that A is an M-family.

Conversely, assume that A is an M-family. Let (Dn) be a decreasing sequence

in co(A). By part (ii) of Fact 3, there exists A ∈ A with A ⊆∗ Dn for every n ∈ N.

Recursively, we select a strictly increasing sequence (mn) in N with m0 = min(A)

and mn+1 ∈ A ∩Dmn for every n ∈ N. We set D := {mn : n ∈ N}. Then D ⊆ A

and D \ {0, . . . , n} ⊆ Dn for every n ∈ D. Since A is hereditary, we obtain that

D ∈ A ⊆ co(A). Hence, co(A) is selective and the proof is completed. �

The following proposition shows that the notion of an M-family is, in a sense,

the “dual” notion of bisequentiality.

Proposition 6. Let X be a countable set.

(i) Let A ⊆ P∞(X) be a hereditary family. If A⊥ is bisequential, then A is an

M-family.

(ii) Let I be an ideal on X. If I is bisequential, then I⊥ is an M-family.

Proof. (i) By part (ii) of Fact 3, it is enough to show that for every decreasing

sequence (Dn) in co(A) there exists A ∈ A with A ⊆∗ Dn for every n ∈ N. So,

let (Dn) be one. Since A⊥ is an ideal, the family {Dn \ L : n ∈ N and L ∈ A⊥}
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has the finite intersection property. Hence, we may select p ∈ βX with A⊥ ⊆ p∗

and Dn ∈ p for every n ∈ N. Notice that p is non-principal. By the bisequentiality

of A⊥, there exists a sequence (Cn) in p∗ such that for every B ∈ A⊥ there exists

n ∈ N with B ⊆∗ Cn. We may assume that the sequence (Cn) is increasing. Let

Q ∈ P∞(X) be a diagonalization of the decreasing sequence (Dn \ Cn). Then

Q ⊆∗ Dn and Q ⊥ Cn for every n ∈ N. By the properties of the sequence (Cn), we

see that Q /∈ A⊥. Since A is hereditary, there exists A ⊆ Q with A ∈ A. Hence

A ⊆∗ Dn for every n ∈ N. Thus, A is an M-family.

(ii) By Fact 2, the ideal I has the Fréchet property. Thus, I⊥⊥ is bisequential and

so the result follows by part (i). �

We notice that the converse of part (i) of Proposition 6 is also true, provided that

the orthogonal A⊥ of A is analytic. Indeed, let A be an M-family such that A⊥ is

Σ1
1. By Proposition 5, we see that the co-ideal co(A) generated by A is selective.

It follows that A⊥ is an analytic ideal whose complement, co(A), is selective. By

[To3, Exercise 12.3], we obtain that A⊥ is bisequential.

We proceed our discussion by presenting some examples of M-families.

Example 1. Let Ic be the ideal on N<N generated by the infinite chains of N<N.

That is,

(3) Ic :=
{
C ∈ P∞(N<N) : ∃σ0, . . . , σk ∈ NN with C ⊆

k⋃
i=0

{σi|n : n ∈ N}
}
.

Notice that Ic has the Fréchet property. We set A = I⊥c . Namely, A consists of all

infinite subsets of N<N not containing an infinite chain. Then A is an ideal and it

is easy to see that it is Π1
1-complete. The family A is an M-family. We will give

a simple argument showing this. We will use part (ii) of Fact 3. So, let (Dn) be a

decreasing sequence in co(A). For every n ∈ N there exists an infinite antichain An

of N<N with An ⊆ Dn. Let An = (tnm) be an enumeration of An. By an application

of Ramsey’s theorem, we may assume that |tnm| 6 |tkl | for every n < m < k < l. Let

I :=
{

(n < m < k < l) ∈ [N]4 : tnm is incomparable with tkl
}
.

By Ramsey’s theorem again, there exists L ∈ P∞(N) such that either [L]4 ⊆ I or

[L]4∩I = ∅. Let {l0 < l1 < · · · } be the increasing enumeration of L. We claim that

[L]4 ⊆ I. If not, then tl0l1 is comparable with tl3l4 and since |tl0l1 | 6 |t
l3
l4
|, we obtain

that tl0l1 v tl3l4 . Similarly, we obtain that tl0l2 v tl3l4 . But this implies that the nodes

tl0l1 and tl0l2 are comparable, contradicting the fact that Al0 is an antichain. Thus

[L]4 ⊆ I. Now set A := {tl2nl2n+1
: n ∈ N}. Then A is an infinite antichain, and so,

A ∈ A. Since A ⊆∗ Dn for every n ∈ N, this shows that A is an M-family.

Example 2. We notice that if an ideal I has the Fréchet property, then I⊥ is not

necessarily an M-family. For instance, let Id be the ideal of all dominated subsets
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of N<N, that is,

(4) Id :=
{
D ∈ P∞(N<N) : ∃σ ∈ NN such that ∀t ∈ D ∀i < |t| t(i) < σ(i)

}
.

Also let

(5) Iwf :=
{
W ∈ P∞(N<N) : ∃T ∈WF with W ⊆ T

}
be the ideal on N<N generated by the set WF of all downwards closed, well-founded,

infinite subtrees of N<N. Clearly, Ic ⊆ Id. It is easy to see that I⊥d = Iwf and

I⊥wf = Id. Hence, the ideal Id has the Fréchet property. As in the above example,

we set A = I⊥d = Iwf . Again we see that A is a Π1
1-complete ideal. However, A is

not an M-family. To see this, for every n ∈ N let Dn = {t ∈ N<N : 0n+1 v t}. Then

(Dn) is a decreasing sequence of sets in co(A). It is easy to check that if A is any

infinite subset of N<N with A ⊆∗ Dn for every n ∈ N, then A must belong to Id.

Example 3. Let E be a Polish space and let f = {fn} be a pointwise bounded

sequence of real-valued Baire-1 functions on E. Assume that the closure K of {fn}
in RE is a subset of the set of all Baire-1 functions on E, that is, K is a separable

Rosenthal compact (see [Ro]). Let f ∈ K and set

(6) Lf :=
{
L ∈ P∞(N) : (fn)n∈L converges pointwise to f

}
.

The family Lf is a Π1
1 ideal. Also let

(7) If :=
{
L ∈ P∞(N) : f /∈ {fn}

p

n∈L
}
.

It is easy to see that If is a Σ1
1 ideal. Both Lf and If are well studied in the

literature (see [ADK, Do, Kr, To3, To4]). By a result of Bourgain, Fremlin and

Talagrand [BFT], we obtain that the orthogonal L⊥f of Lf is the family If . An

important fact concerning the structure of If is that it is bisequential. This is due

to Pol [Po] and it can be also derived by the results of Debs in [De]. Hence, by part

(i) of Proposition 6, we see that Lf is an M-family. Moreover, set

(8) Ff :=
{
L ∈ P∞(N) : f ∈ {fn}

p

n∈L
}

= P∞(N) \ If .

The equality L⊥f = If yields that the co-ideal co(Lf ) generated by Lf is the family

Ff . By Proposition 5, it follows that Ff is a selective co-ideal, a fact discovered by

Todorčević [To3].

4. Properties of M-families

This section is devoted to the study of the structural properties of M-families.

We begin by noticing the following fact (the proof is left to the reader).

Fact 4. Let X be a countable set.

(i) If A ⊆ P∞(X) is a hereditary family and B is a hereditary subfamily of A
cofinal in A, then A is an M-family if and only if B is.

(ii) If A,B ⊆ P∞(X) are two M-families, then so is A ∪ B.
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Most of the properties of M-families we will establish, are derived using an

infinite-dimensional Ramsey-type argument. To state it, we need to introduce some

pieces of notation. Let C = (Cn) be a sequence in P∞(N) such that Cn∩Cm = ∅ for

every n 6= m. For every n ∈ N let {xn0 < xn1 < · · · } be the increasing enumeration

of the set Cn. We define ∆C : P∞(N) → P∞(N) as follows. If L ∈ P∞(N) with

L = {l0 < l1 < · · · } its increasing enumeration, we set

(9) ∆C(L) =
{
xl2nl2n+1

: n ∈ N
}
.

Notice that the map ∆C is continuous.

Lemma 7. Let A ⊆ P∞(N) be an M-family and let C = (Cn) be a sequence in A
such that Cn ∩ Cm = ∅ for every n 6= m. Assume that A is C-measurable. Then

for every N ∈ P∞(N) there exists L ∈ P∞(N) such that ∆C(M) ∈ A for every

M ∈ P∞(L).

Proof. Let

CA := {M ∈ P∞(N) : ∆C(M) ∈ A}.
Then CA is C-measurable. By Ellentuck’s theorem [El], there exists L ∈ P∞(N)

such that either P∞(L) ⊆ CA or P∞(L) ∩ CA = ∅. It is enough to show that

P∞(L) ∩ CA 6= ∅. To this end we argue as follows. For every n ∈ L we set

Hn := {xni : i ∈ L and i > n}.

Then Hn ⊆ Cn and so Hn ∈ A for every n ∈ L. By part (iii) of Fact 3, there

exists A ∈ A such that A ∩ Hn 6= ∅ for infinitely many n ∈ L. We may select

M = {m0 < m1 < · · · } ∈ P∞(L) such that xm2n
m2n+1

∈ A ∩Hm2n
for every n ∈ N.

Then ∆C(M) ⊆ A. Since A is hereditary, we see that ∆C(M) ∈ A. Therefore,

P∞(L) ∩ CA 6= ∅ and the proof is completed. �

The following proposition is the first application of Lemma 7.

Proposition 8. Let X be a countable set and let A,B ⊆ P∞(X) be two M-families.

If A and B are C-measurable, then A ∩ B is an M-family.

Proof. Clearly we may assume that X = N. In order to show that A ∩ B is an

M-family we will use part (ii) of Fact 3. So, let (Dn) be a decreasing sequence in

co(A ∩ B). Since the family A ∩ B is hereditary, there exists a sequence C = (Cn)

in A∩B with Cn ⊆ Dn for every n ∈ N. Refining if necessary, we may assume that

Cn ∩ Cm = ∅ for every n 6= m. Applying Lemma 7 successively two times, we find

L ∈ P∞(N) such that ∆C(M) ∈ A and ∆C(M) ∈ B for every M ∈ P∞(L). Finally

observe that ∆C(M) ⊆∗ Dn for every n ∈ N and every M ∈ P∞(L). The proof is

completed. �

Let A,B ∈ P∞(N) with A = {x0 < x1 < · · · } and B = {y0 < y1 < · · · } their

increasing enumerations. We define the diagonal product A⊗B of A and B by

(10) A⊗B := {(xn, yn) : n ∈ N} ∈ P∞(N× N).
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If A,B ⊆ P∞(N) are two hereditary families, then we let

(11) A⊗ B := {A⊗B : A ∈ A and B ∈ B}.

Notice that A⊗ B is a hereditary subfamily of P∞(N× N). We have the following

proposition.

Proposition 9. Let A,B ⊆ P∞(N) be M-families. If A and B are C-measurable,

then A⊗ B is an M-family.

Proof. Let (Dn) be a decreasing sequence in co(A ⊗ B). There exist sequences

A = (An) and B = (Bn) in A and B respectively such that An ⊗ Bn ⊆ Dn

for every n ∈ N. Since the families A and B are hereditary, we may assume

that An ∩ Am = ∅ and Bn ∩ Bm = ∅ for every n 6= m. For every n ∈ N let

{xn0 < xn1 < · · · } and {yn0 < yn1 < · · · } be the increasing enumerations of the

sets An and Bn respectively. Applying Lemma 7 successively two times, we find

L ∈ P∞(N) such that ∆A(M) ∈ A and ∆B(M) ∈ B for every M ∈ P∞(L). We

select I = {i0 < i1 < · · · } ∈ P∞(L) such that xi2ni2n+1
< xi2ki2k+1

and yi2ni2n+1
< yi2ki2k+1

for every n < k. It follows that

∆A(I)⊗∆B(I) =
{

(xi2ni2n+1
, yi2ni2n+1

) : n ∈ N
}
.

Therefore, ∆A(I)⊗∆B(I) ⊆∗ Dn for every n ∈ N and ∆A(I)⊗∆B(I) ∈ A⊗B. By

part (ii) of Fact 3, we see that A⊗B is an M-family and the proof is completed. �

Proposition 9 has some topological implications which we are about to describe.

Let us recall, first, some definitions. Let (Y, τ) be a (Hausdorff) topological space.

A point y ∈ Y is said to have the weak diagonal sequence property if for every

doubly indexed sequence (ynk ) in Y with limk y
n
k = y for every n ∈ N, there exist

L ∈ P∞(N) and a sequence (kn)n∈L in N such that limn∈L y
n
kn

= y. The space

(Y, τ) has the weak diagonal sequence property if every point y ∈ Y has it. Using

part (iii) of Fact 3, it is easy to see that if X is a countable set, τ is a topology

on X and x ∈ X, then the point x has the weak diagonal sequence property in the

space (X, τ) if and only if the family Cx := {A ∈ P∞(X) : A
τ→ x} is an M-family.

The following corollary of Proposition 9 yields a positive answer to Question 5.4

from [TU].

Corollary 10. Let X,Y be two countable sets and τ1, τ2 two analytic topologies on

X and Y respectively. Assume that both (X, τ1) and (Y, τ2) have the weak diagonal

sequence property. Then (X × Y, τ1 × τ2) has the weak diagonal sequence property.

Proof. Clearly we may assume that X = Y = N. Let x, y ∈ N be arbitrary. As we

have already remarked, it is enough to show that the family

C(x,y) := {C ∈ P∞(N× N) : C
τ1×τ2−→ (x, y)}

is an M-family. By our assumptions on τ1 and τ2, we see that the families

Cx := {A ∈ P∞(N) : A
τ1→ x} and Cy := {B ∈ P∞(N) : B

τ2→ y}
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are both co-analytic M-families on N. By Proposition 9, it follows that the family

Cx ⊗ Cy is an M-family. Notice that Cx ⊗ Cy ⊆ C(x,y). We set

Cx(x,y) :=
{
C ∈ C(x,y) : C ⊆ {x} × N

}
and Cy(x,y) :=

{
C ∈ C(x,y) : C ⊆ N× {y}

}
.

Since Cy and Cx are M-families, it is easy to see that so are Cx(x,y) and Cy(x,y). By

part (ii) of Fact 4, it follows that the family

B := Cx(x,y) ∪ C
y
(x,y) ∪ (Cx ⊗ Cy)

is an M-family. Now observe that B is a hereditary subfamily of C(x,y) which is

cofinal in C(x,y). Hence, by part (i) of Fact 4, we conclude that C(x,y) is an M-family

and the proof is completed. �

We notice that, after a first draft of the paper, Todorčević informed us that he

was also aware of the fact that the weak diagonal sequence property is productive

within the class of countable analytic spaces.

We proceed by presenting another application of Lemma 7. To this end, let us

notice that, by Fact 1, if A is a hereditary family, then A is cofinal in A⊥⊥. Hence,

by part (i) of Fact 4, we see that if A is an M-family, then so is A⊥⊥. We have the

following strengthening of part (iii) of Fact 3 for the family A⊥⊥, provided that A
is reasonably definable.

Proposition 11. Let X be a countable set and let A ⊆ P∞(X) be an M-family

and C-measurable. Then, for every sequence (An) in A⊥⊥ there exists A ∈ A⊥⊥

such that A ∩An is infinite for infinitely many n ∈ N.

Proof. Clearly we may assume that X = N. Let (An) be a sequence in A⊥⊥. By

Fact 1, we may select a sequence C = (Cn) in A such that Cn ⊆ An for every n ∈ N
and Cn∩Cm = ∅ for every n 6= m. By Lemma 7, there exists L ∈ P∞(N) such that

∆C(M) ∈ A for every M ∈ P∞(L). For every n ∈ N let {xn0 < xn1 < · · · } be the

increasing enumeration of the set Cn. We set

A :=
⋃
n∈L
{xni : i ∈ L and i > n}.

We claim that A is the desired set. First we notice that A ∩ Cn is infinite for

every n ∈ L, and so, A ∩ An is infinite for infinitely many n ∈ N. What remains

is to show that A ∈ A⊥⊥. To this end, let B ∈ P∞(A) be arbitrary. It is easy

to see that either there exists n ∈ L such that B ∩ Cn is infinite, or there exists

M ∈ P∞(L) such that ∆C(M) ⊆ B. Since A is hereditary and ∆C(M) ∈ A for

every M ∈ P∞(L), we see that B contains an element of A. Hence, by Fact 1, we

conclude that A ∈ A⊥⊥ and the result follows. �

The following corollary is simply a restatement of Proposition 11 in the topolog-

ical setting.
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Corollary 12. Let X be a countable set and τ an analytic topology on X. Assume

that (X, τ) is Fréchet and has the weak diagonal sequence property. Let x ∈ X and

set Cx := {A ∈ P∞(X) : A
τ→ x}. Then for every sequence (An) is Cx there exists

A ∈ Cx such that A ∩An is infinite for infinitely many n ∈ N.

Proof. As we have already seen in Corollary 10, the family Cx is a co-analytic

M-family. Moreover, the assumption that (X, τ) is a Fréchet space simply reduces

to the fact that C⊥⊥x = Cx. So the result follows by Proposition 11. �

We close this section with the following result concerning the effect of the notion

of an M-family in the context of separation of families.

Proposition 13. Let X be a countable set and let A,B ⊆ P∞(X) be two hereditary

families. Assume that B is an M-family. Then the following are equivalent.

(i) A and B are countably separated.

(ii) A is countably generated in B⊥.

Proof. It is clear that (ii) implies (i). So we only have to show the other implication.

Let us fix a sequence (Cn) in P∞(X) which separatesA from B. For every nonempty

finite F ⊆ N we set CF :=
⋂
n∈F Cn.

Claim. For every A ∈ A there exists nonempty finite F ⊆ N such that A ⊆ CF

and CF ∈ B⊥.

Proof of the claim. Assume not. Thus, there exists A0 ∈ A such that for every

nonempty finite F ⊆ N either A0 * CF or CF /∈ B⊥. Set

L := {n ∈ N : A0 ⊆ Cn}

and note that L is nonempty. We claim that L is infinite. Assume not. Then

A0 ⊆ CL and so, by our assumptions, we obtain that CL /∈ B⊥. Hence, there exists

BL ∈ B with BL ⊆ CL. It follows that for every n ∈ N either A0 * Cn (that is,

n /∈ L) or BL ⊆ CL ⊆ Cn. This means that A0 and BL cannot be separated by the

sequence (Cn), a contradiction.

Now let {l0 < l1 < · · · } be the increasing enumeration of L. For every k ∈ N set

Dk := Cl0 ∩ · · · ∩ Clk . Clearly (Dk) is a decreasing sequence. By our assumptions

we see that Dk /∈ B⊥, and so, Dk ∈ co(B) for every k ∈ N. Since B is an M-family,

by part (ii) of Fact 3, we see that there exists B0 ∈ B such that B0 ⊆∗ Dk for every

k ∈ N. It follows that B0 ⊆∗ Cn for every n ∈ L. But then, for every n ∈ N we

have that either A0 * Cn or B0 ⊆∗ Cn. That it, the sets A0 and B0 cannot be

separated by the sequence (Cn), a contradiction again. The claim is proved. �

By the above claim, for every A ∈ A there exists nonempty finite FA ⊆ N with

CFA ∈ B⊥ and A ⊆ CFA . The family {CFA : A ∈ A} is clearly countable, and so,

A is countably generated in B⊥. The proof of Proposition 13 is completed. �



ON PAIRS OF DEFINABLE ORTHOGONAL FAMILIES 13

5. Proof of Theorem I

This section is devoted to the proof of Theorem I stated in the introduction. So,

let A,B ⊆ P∞(N) be a pair of hereditary orthogonal families such that A is Σ1
1 and

B is C-measurable and an M-family. Assume that (i) does not hold true, that is, A
is not countably generated in B⊥. We will find a perfect Lusin gap inside (A,B).

By Theorem 4, there exists a one-to-one map φ : Σ→ N such that, setting

E := {φ−1(A) : A ∈ A} and H := {φ−1(B) : B ∈ B},

properties (i) and (ii) of Theorem 4 are satisfied for E and H. In what follows, we

will work inside the tree Σ and with the families E and H. Denote by C the family

of all infinite chains of Σ. That is,

C :=
{
C ∈ P∞(Σ) : ∃σ ∈ [Σ] with C ⊆ {σ|n : n ∈ N}

}
.

Clearly C is a Π0
2 hereditary family. We notice the following properties of the

families E and H.

(P1) E and H are hereditary and orthogonal.

(P2) E is analytic and C ⊆ E .

(P3) H is C-measurable and an M-family.

(P4) For every t ∈ Σ we have
{
t ∪ {n} : n ∈ N and t < {n}

}
∈ H.

Properties (P1)–(P4) are rather straightforward consequences of the the way the

families E and H are defined and of the fact that the map φ is one-to-one.

We are going to define a class of subsets of Σ which will play a decisive role in

the proof of Theorem I.

Definition 14. Let σ ∈ [Σ] and D ∈ P∞(Σ). We say that D descends to σ,

in symbols D ↓ σ, if for every k ∈ N the set D is almost included in the set

{t ∈ Σ : σ|k v t}. We call such a set D a descender.

We also need to introduce some pieces of notation. Let B be the set of all block

sequences of Σ. For every b = (bn) ∈ B we set

(12) Σb := {t ∈ Σ : ∃b ∈ 〈b〉 with t v b} and σb :=
⋃
n

bn

where the set 〈b〉 was defined in §2.2. Clearly Σb is a downwards closed subtree

of Σ. Notice that σb is just the leftmost branch of the tree Σb. We also observe

the following properties.

(O1) The set [Σb] of all branches of Σb is in one-to-one correspondence with the

subsequences of b = (bn). In particular, for every σ ∈ [Σb] there exists a

unique subsequence (bln) of (bn), which we shall denote by bσ, such that

σ =
⋃
n bln . Moreover, the map [Σb] 3 σ 7→ bσ ∈ [b] is continuous.

(O2) If c ∈ [b], then Σc is a downwards closed subtree of Σb.



14 PANDELIS DODOS AND VASSILIS KANELLOPOULOS

We define ∆: B→ P∞(Σ) by

(13) ∆
(
(bn)

)
=
{
b0 ∪ {min(b2)}, . . . ,

3n⋃
i=0

bi ∪ {min(b3n+2)}, . . .
}
.

We notice the following properties.

(O3) The map ∆ is continuous.

(O4) For every block sequence b = (bn) the set ∆(b) is a subset of the tree

Σb, is a descender and descends to the leftmost branch σb =
⋃
n bn of Σb.

Moreover, the sets {σb|n : n ∈ N} and ∆(b) are disjoint.

The following lemma is a consequence of Theorem 2 and of the fact that H is an

M-family. It can be considered as a parameterized version of Lemma 7. We notice

that the arguments in its proof follow similar lines as in [ADK, Lemma 44].

Lemma 15. There exists b ∈ B such that ∆(c) ∈ H for every c ∈ [b].

Proof. We set

X := {c ∈ B : ∆(c) ∈ H}.
Then X is a C-measurable subset of [B]. By Theorem 2, there exists b = (bn) ∈ B

such that [b] is monochromatic. We claim that [b] ⊆ X . To this end, we argue as

follows. For every n ∈ N we set tn :=
⋃
k6n bk ∈ Σ and

An :=
{
tn ∪ {min(bi)} : i > n+ 1

}
∈ P∞(Σ).

The set An is a subset of the set
{
tn ∪ {m} : m ∈ N and tn < {m}

}
which,

by property (P4) above, belongs to H. Since the family H is hereditary, we see

that An ∈ H for every n ∈ N. Invoking the fact that H is an M-family and

part (iii) of Fact 3, there exists A ∈ H such that A ∩ An 6= ∅ for infinitely many

n ∈ N. We may select L = {l0 < l1 < · · · },M = {i0 < i1 < · · · } ∈ P∞(N) with

ln + 1 < in < ln+1 and such that tln ∪ {min(bin)} ∈ A ∩ Aln for every n ∈ N. We

set sn := tln ∪ {min(bin)} for every n ∈ N. It follows that {sn : n ∈ N} ∈ H since

{sn : n ∈ N} ⊆ A ∈ H and the family H is hereditary.

Now we define c = (cn) ∈ [b] as follows. We set c0 :=
⋃
k6l0

bn (that is, c0 = tl0),

c1 := bl0+1 ∪ · · · ∪ bi0−1 and c2 = bi0 . For every n > 1 let In = [in−1 + 1, ln] and

Jn = [ln + 1, in − 1], and set

c3n :=
⋃
k∈In

bk, c3n+1 :=
⋃
k∈Jn

bk and c3n+2 := bin .

Clearly c ∈ [b] and it is easy to see that ∆(c) = {sn : n ∈ N}. Thus, ∆(c) ∈ H. It

follows that [b] ∩ X 6= ∅. Therefore, [b] ⊆ X and the lemma is proved. �

Let b = (bn) be the block sequence obtained by Lemma 15. We set

(14) F :=
{
A ∈ P∞(Σ) : ∃(bln) subsequence of (bn) with A ⊆ ∆

(
(bln)

)}
.

By property (P1), the family H is hereditary. Hence, using the continuity of the

map ∆ and the fact that ∆(c) ∈ H for every c ∈ [b], we see that
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(P5) F is a hereditary analytic subfamily of H.

Now consider the tree Σb corresponding to b as it was defined in (12) above and

let σ ∈ [Σb] be arbitrary. By (O1), there exists a subsequence bσ = (bln) of (bn)

such that σ =
⋃
n bln . By (O4) and (O2), we obtain that ∆

(
(bln)

)
⊆ Σbσ ⊆ Σb.

Moreover, the set ∆
(
(bln)

)
descends to σ and, by definition, belongs to the family

F . Summarizing, we arrive to the the following property of the family F .

(P6) For every σ ∈ [Σb] there exists D ∈ F with D ⊆ Σb and D ↓ σ.

We have the following lemma which is essentially a consequence of property (P6).

Lemma 16. The families C and F are not countably separated.

Proof. Assume, towards a contradiction, that there exists a sequence (Ck) in P∞(Σ)

such that for every C ∈ C and every B ∈ F there exists k ∈ N with C ⊆ Ck and

Ck ⊥ B. For every k set

Fk :=
{
σ ∈ [Σb] : {σ|n : n ∈ N} ⊆ Ck

}
.

Then each Fk is a closed subset of [Σb]. Moreover [Σb] =
⋃
k Fk.

For every t ∈ Σb and every k ∈ N there exists s ∈ Σb with t @ s and such that

either Vs ∩ Fk = ∅ or Vs ⊆ Fk, where as usual by Vs we denote the clopen subset

{σ ∈ [Σb] : s @ σ} of [Σb]. Let us say that such a node s decides for (t, k). Observe

that if s decides for (t, k) with Vs ⊆ Fk, then the set {w ∈ Σb : s v w} is a subset

of Ck.

Recursively, we select a sequence (sk) in Σb such that s0 decides for (∅, 0) and

sk+1 decides for (sk, k + 1) for every k ∈ N. Notice that sk @ sk+1. Thus, setting

τ =
⋃
k sk, we see that τ ∈ [Σb]. By property (P6) above, there exists B0 ∈ F

with B0 ⊆ Σb and B0 ↓ τ . Now let m ∈ N with {τ |n : n ∈ N} ⊆ Cm. Then

τ ∈ Fm. Since sm @ τ , we see that Vsm ∩ Fm 6= ∅. The node sm decides for

every m ∈ N, and so, Vsm ⊆ Fm. As we have already remarked, this implies that

{w ∈ Σb : sm v w} ⊆ Cm. Since B0 descends to τ , B0 ⊆ Σb and sm @ τ , we

obtain that

B0 ⊆∗ {w ∈ Σb : sm v w} ⊆ Cm.

Therefore, we see that for every m ∈ N either {τ |n : n ∈ N} * Cm or B0 ⊆∗ Cm.

That is, the sequence (Ck) cannot separate the sets {τ |n : n ∈ N} and B0 although

{τ |n : n ∈ N} ∈ C and B0 ∈ F , a contradiction. The lemma is proved. �

The families C and F are hereditary, analytic and orthogonal. Thus, applying

Theorem 3 to the pair (C,F) and invoking Lemma 16, we obtain that there exists

a perfect Lusin gap inside (C,F). Since C ⊆ E and F ⊆ H, we see that there

exists a perfect Lusin gap 2N 3 x 7→ (Ax, Bx) inside (E ,H). Now recall that the

map φ : Σ → N obtained by Theorem 4 is one-to-one. It follows that the map

2N 3 x 7→
(
φ(Ax), φ(Bx)

)
is a perfect Lusin gap inside (A,B). The proof of

Theorem I is completed.
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Remark 1. We would like to point out that one can construct the perfect Lusin

gap inside (E ,H) without invoking Theorem 3. This can be done as follows. Let

b = (bn) be the block sequence obtained by Lemma 15. First we construct, recur-

sively, a family (ts)s∈2<N in Σb such that the following are satisfied.

(C1) For every s, s′ ∈ 2<N we have s @ s′ if and only if ts @ ts′ .

(C2) For every s ∈ 2<N and every σ ∈ [Σb] with tsa0 @ σ we have tsa1 ∈ ∆(bσ)

where, as in (O1) above, by bσ we denote the unique subsequence (bln) of

(bn) such that σ =
⋃
n bln .

The construction proceeds as follows. We set t∅ := ∅. Assume that ts has been

defined for some s ∈ 2<N. We select τ ∈ Σb with ts @ τ . Let bτ = (bln) be the

unique subsequence of b with τ =
⋃
n bln . By (O4) in the proof of Theorem I, the

set ∆(bτ ) descends to τ . Since ts @ τ , there exists tsa1 ∈ ∆(bτ ) with ts @ tsa1.

The map [Σb] 3 σ 7→ ∆(bσ) ∈ P∞(Σ) is continuous. So, we may find a node tsa0

incomparable to tsa1 with ts @ tsa0 @ τ and such that (C2) above is satisfied.

Having completed the construction, for every x ∈ 2N set σx :=
⋃
n tx|n ∈ [Σb]

and define

Ax := {σx|n : n ∈ N} ∈ E and Bx := ∆(bσx) ∈ H.
The perfect Lusin gap inside (E ,H) is the map 2N 3 x 7→ (Ax, Bx). It is easy to

check that it is one-to-one, continuous and Ax ∩ Bx = ∅ for every x ∈ 2N. Finally,

let x, y ∈ 2N with x 6= y. We may assume that x < y where < stands for the

lexicographical ordering of 2N. There exists s ∈ 2<N with sa0 @ x and sa1 @ y.

Then tsa1 ∈ Ay. Moreover, we have tsa0 @ σx. By (C2) above, we see that

tsa1 ∈ ∆(bσx). Thus Ay ∩Bx 6= ∅.

Remark 2. Let A,B ⊆ P∞(N) be two hereditary, orthogonal, analytic families

and assume that B is an M-family. We notice that, in this case, the dichotomy in

Theorem I can be derived directly by Theorem 3. To see this, observe that if A is

not countably generated in B⊥, then, by Proposition 13, the families A and B are

not countably separated. Thus, part (ii) of Theorem 3 yields the existence of the

gap inside (A,B).

Remark 3. As in Example 3, let E be a Polish space and let f = {fn} be a

pointwise bounded sequence of real-valued Baire-1 functions on E such that the

closure K of {fn} in RE is a Rosenthal compact. We set

(15) Lf :=
{
L ∈ P∞(N) : (fn)n∈L is pointwise convergent

}
.

For every f ∈ K let Lf be as in (6). In [To4, Lemmas G.9 and G.10], Todorčević

proved that if f is any point of K, then either

(A1) f is a Gδ point of K, or

(A2) there exists a perfect Lusin gap in (Lf \ Lf ,Lf ).

Let us see how Theorem I yields the above dichotomy. So, fix a point f ∈ K. First

we notice that, as it was explained in [Do, Remark 1(2)], by Debs’ theorem [De]
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there exists a hereditary, Borel and cofinal subfamily F of Lf . We set A = F \Lf .

Then A is an analytic, hereditary and cofinal subfamily of Lf \ Lf . Moreover, as

we mentioned in Example 3, the family Lf is a co-analytic M-family. Noticing that

A and Lf are orthogonal, by Theorem I we obtain that either

(A3) A is countably generated in L⊥f , or

(A4) there exists a perfect Lusin gap in (A,Lf ).

Clearly, we only have to check that (A3) implies (A1). Indeed, let (Lk) be a

sequence in L⊥f that generates A. Set Vk := K \ {fn}
p

n∈Lk and notice that f ∈ Vk
for every k ∈ N. Taking into account that A is cofinal in Lf \ Lf and using the

Bourgain–Fremlin–Talagrand theorem [BFT], we see that {f} =
⋂
k Vk; that is, the

point f is Gδ.

6. Proof of Theorem II

This section is devoted to the proof of Theorem II. Let A,B ⊆ P∞(N) be a pair

of hereditary orthogonal families such that A is analytic and B is C-measurable and

an M-family. Assume that A is not countably generated in B⊥. By Theorem 4,

there exists a one-to-one map φ : Σ→ N such that, setting E := {φ−1(A) : A ∈ A}
and H := {φ−1(B) : B ∈ B}, the following properties are satisfied for E and H.

(P1) E and H are hereditary and orthogonal.

(P2) E is analytic and C ⊆ E .

(P3) H is C-measurable and an M-family.

(P4) For every t ∈ Σ we have
{
t ∪ {n} : n ∈ N and t < {n}

}
∈ H.

As in the proof of Theorem I, we shall work inside the tree Σ and with the families

E and H.

We introduce the following class of subsets of Σ. It will be used in a similar

spirit as the class of descenders was used in the proof of Theorem I.

Definition 17. An infinite subset F of Σ will be called a fan if F can be enumerated

as {tn : n ∈ N} and there exist s ∈ Σ and a strictly increasing sequence (mn) in N
with s < {m0} and such that s ∪ {mn} v tn for all n ∈ N.

The following fact is essentially well-known. We sketch a proof for completeness.

Fact 5. Let A ∈ P∞(Σ). Then either A is dominated, or A contains a fan. In

particular, if T is a downwards closed, well-founded, infinite subtree of Σ, then

every infinite subset A of T contains a fan.

Proof. Fix A ∈ P∞(Σ) and let Â = {t ∈ Σ : ∃s ∈ A with t v s} be the downwards

closure of A. It is easy to see that if Â is finitely splitting, then A must be dominated

while if Â is not finitely splitting, then A must contain a fan.

For the second part, let T be a downwards closed, well-founded, infinite subtree

of Σ and fix A ∈ P∞(T ). If Â is finitely splitting, then by an application of König’s
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lemma we see that [T ] 6= ∅, a contradiction. Thus Â is not finitely splitting, and

so, A contains a fan. �

Notice that if b = (bn) is a block sequence of Σ and s ∈ Σ with s < b0, then the

set {s ∪ bn : n ∈ N} is a fan. A fan F of this form will be called a block fan. By

FBlock we denote the set of all block fans of Σ. We have the following elementary

fact.

Fact 6. Every fan contains a block fan.

We define Φ: B→ P∞(Σ) by

(16) Φ
(
(bn)

)
=
{
b0 ∪ b1 ∪ {min(b2)}, . . . , b0 ∪ b2n+1 ∪ {min(b2n+2)}, . . .

}
.

We observe the following properties.

(O1) The map Φ is continuous.

(O2) For every b ∈ B the set Φ(b) is a block fan.

We have the following analogue of Lemma 15.

Lemma 18. There exists b ∈ B such that Φ(c) ∈ H for every c ∈ [b].

Proof. We set

X := {c ∈ B : Φ(c) ∈ H}.

Then X is a C-measurable. By Theorem 2, there exists b = (bn) ∈ B such that [b]

is monochromatic. We claim that [b] ⊆ X . Indeed, for every n > 1 set

An :=
{
b0 ∪ bn ∪ {min(bk)} : k > n

}
∈ P∞(Σ).

The set An is a subset of the set
{
b0 ∪ bn ∪ {m} : m ∈ N and bn < {m}

}
which,

by property (P4), belongs to H. Therefore, by (P1), An ∈ H for every n ∈ N.

Since H is an M-family, by part (iii) of Fact 3, we may select L = {l0 < l1 < · · · },
M = {m0 < m1 < · · · } ∈ P∞(N) with 1 6 ln < mn < ln+1 for all n ∈ N and such

that {
b0 ∪ bln ∪ {min(bmn)} : n ∈ N

}
∈ H.

We define c = (cn) by c0 := b0 and c2n+1 := bln , c2n+2 := bmn for every n ∈ N.

Then c ∈ [b] and Φ(c) = {b0 ∪ bln ∪ {min(bmn)} : n ∈ N} ∈ H. Hence, [b] ∩ X 6= ∅
and the result follows. �

Let b = (bn) be the block sequence obtained by Lemma 18. We are going to

select a subset of Σ by defining an appropriate endomorphism of Σ (the desired

subset will be the image of this endomorphism). In particular, we define h : Σ→ Σ

as follows.

(a) We set h(∅) = ∅.
(b) If t = (n) with n ∈ N, then we set h

(
(n)
)

= b0 ∪ b2n+1 ∪ {min(b2n+2)}.
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(c) If t = (n0 < · · · < nk) ∈ Σ with k > 1, then we set

h(t) = b0 ∪
( k−1⋃
i=0

(b2ni+1 ∪ b2ni+2)
)
∪ b2nk+1 ∪ {min(b2nk+2)}.

It is easy to see that the map h is well-defined and one-to-one. We also observe the

following property.

(O3) For every s, t ∈ Σ we have s @ t if and only if h(s) @ h(t). Thus, if

C ∈ P∞(Σ), then C is a chain of Σ if and only if h(C) is.

The following fact shows the relation between the maps Φ and h.

Fact 7. Let F be a block fan of Σ. Then there exists c ∈ [b] such that h(F ) = Φ(c).

Proof. Let (un) be a block sequence of Σ and s ∈ Σ with s < u0 and such that

F = {s∪un : n ∈ N}. For every n ∈ N there exist sn ∈ Σ and ln ∈ N with sn < {ln}
and un = sn ∪ {ln} (notice that sn may be empty). We define c = (cn) ∈ B as

follows. We set

c0 := b0 ∪
⋃
k∈s

(b2k+1 ∪ b2k+2)

with the convention that
⋃
k∈s(b2k+1 ∪ b2k+2) = ∅ if s = ∅. For every n > 1 we set

c2n+1 :=
( ⋃
k∈sn

(b2k+1 ∪ b2k+2)
)
∪ b2ln+1 and c2n+2v := b2ln+2.

It is easy to see that c ∈ [b] and h(F ) = Φ(c), as desired. �

Finally, we define ψ : Σ → N by ψ(s) = φ
(
h(s)

)
for every s ∈ Σ. Both φ and

h are one-to-one, and so, the map ψ is one-to-one too. As in Example 2, let Iwf

be the ideal on Σ generated by the set WF of all downwards closed, well-founded,

infinite subtrees of Σ, that is,

Iwf = {W ∈ P∞(Σ) : ∃T ∈WF with W ⊆ T}.

Lemma 19. The following hold.

(i) C ⊆ {ψ−1(A) : A ∈ A}.
(ii) FBlock ⊆ {ψ−1(B) : B ∈ B}.
(iii) Iwf ⊆ {ψ−1(B) : B ∈ B⊥⊥}.

Proof. Part (i) is an immediate consequence of property (P2) and observation (O3)

above. Part (ii) follows by Lemma 18 and Fact 7. To see that part (iii) is satisfied,

fix W ∈ Iwf . Let A ∈ P∞(W ) be arbitrary. By Facts 5 and 6, there exists a block

fan F with F ⊆ A. By part (ii), we see that ψ(F ) ∈ B. Hence, by Fact 1, we

conclude that ψ(W ) ∈ B⊥⊥, as desired. �

The trees Σ and N<N are isomorphic, that is, there exists a bijection e : N<N → Σ

with |e(t)| = |t| for every t ∈ N<N and such that t1 @ t2 in N<N if and only if

e(t1) @ e(t2). Hence, by Lemma 19, the proof of Theorem II is completed.
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Remark 4. In [Kr], Krawczyk proved that if I is a bisequential analytic ideal on

N, then either,

(A1) I is countably generated in I, or

(A2) there exists a one-to-one map ψ : N<N → N such that, setting

J := {ψ−1(A) : A ∈ I},

we have C ⊆ J ⊆ Id,

where C denotes the set of all infinite chains of N<N and Id denotes the ideal of

all infinite dominated subsets of N<N. Let us see how Theorem II yields the above

result. So, fix a bisequential analytic ideal I on N. We set A = I and B = I⊥.

Clearly A and B are hereditary and orthogonal families. Moreover, A is Σ1
1 while

B is Π1
1. By part (ii) of Proposition 6, we see that B is an M-family. By Fact 2,

the ideal I has the Fréchet property, and so, B⊥ = I and B⊥⊥ = I⊥ = B. Thus,

applying Theorem II, the result follows.

Remark 5. Let A and B be as in Theorem II and assume that A is not countably

generated in B⊥. Let ψ : N<N → N be the one-to-one map obtained by Theorem II.

Notice that for every downwards closed, infinite subtree T of N<N we have T ∈WF

if and only if ψ(T ) ∈ B⊥⊥, that is, the set WF is Wadge reducible to B⊥⊥. Thus,

if A is not countably generated in B⊥, then the family B⊥⊥ is at least Π1
1-hard.
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