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Abstract. Let ε > 0 and let F be a family of finite subsets of the Cantor

set C. Following Fremlin we say that F is ε-filling over C if F is hereditary

and for every finite F ⊆ C there exists G ⊆ F such that G ∈ F and |G| > ε|F |.
We show that if F is ε-filling over C and C-measurable in [C]<ω , then for every

perfect P ⊆ C there exists perfect Q ⊆ P such that [Q]<ω ⊆ F . A similar

result for weaker versions of density is also obtained.

1. Introduction

Let X be a set and let ε > 0. A family F ⊆ [X]<ω is said to be ε-filling

over X if F is hereditary (that is, for every F ∈ F and every G ⊆ F we have

G ∈ F) and for every F ∈ [X]<ω there exists G ⊆ F with G ∈ F and |G| > ε|F |.
The notion of an ε-filling family is due to Fremlin [6] who posed the following

problem. For which cardinals κ, λ we have that whenever |X| = κ and F ⊆ [X]<ω

is ε-filling, then there exists A ⊆ X with |A| = λ and such that [A]<ω ⊆ F?

It is well-known that if κ = ω, then λ < ω. A classical example is the Schreier

family S := {F ⊆ ω : |F | 6 min(F ) + 1}. On the other hand, Fremlin has shown

(see [6, Corollary 6D]) that large cardinal hypotheses imply the consistency of the

statement that for every ε-filling family F over c, there exists an infinite subset A

of c such that [A]<ω ⊆ F .

In this paper we look at the problem when X is the Cantor set C = 2ω. No-

tice that [C]<ω has the structure of a Polish space since it is the direct sum of

[C]k (k > 1). Argyros, Lopez-Abad and Todorčević asked whether the above men-

tioned result of Fremlin is valid without extra set-theoretic assumptions provided

that F is reasonably definable. We prove the following theorem which answers this

question positively.

Theorem A. Let F be an ε-filling family over C. If F is C-measurable in [C]<ω,

then for every perfect P ⊆ C there exists perfect Q ⊆ P such that [Q]<ω ⊆ F .

Actually, we prove a more general result (Theorem 2 in the main text) which

implies, for instance, that Theorem A is valid for an arbitrary ε-filling family in the

Solovay model [9].

2000 Mathematics Subject Classification: 03E15, 05D10, 46B15.

Research supported by a grant of EPEAEK program “Pythagoras”.

1



2 PANDELIS DODOS AND VASSILIS KANELLOPOULOS

Our second result concerns weaker versions of density. For every F ⊆ [C]<ω and

every n > 1 let dF (n) be the density of F at n, that is,

dF (n) := min
F∈[C]n

max
{
|G| : G ⊆ F and G ∈ F

}
.

Notice that F is ε-filling if and only if F is hereditary and satisfies dF (n)
n > ε for

every n > 1. Although every C-measurable ε-filling family F over C is not compact,

Fremlin has shown that for every f : ω → ω with n > f(n) > 0 for every n > 1 and

lim f(n)
n = 0, there exists a compact and hereditary family F , closed in [C]<ω and

such that dF (n) > f(n) for every n > 1 (see [6, Proposition 4B]). The following

theorem shows, however, that any such family F must still be large.

Theorem B. Let F ⊆ [C]<ω be hereditary. Assume that F has the Baire property

in [C]<ω and satisfies

(∗) lim sup
log2 dF (2n)

log2 n
= +∞.

Then for every k > 1 there exists a perfect subset P of C such that [P ]k ⊆ F .

The proof of Theorem B is based on Blass’ theorem [4]. Theorem B has the

following consequence which shows that we can increase the density of F by passing

to a perfect subset. In particular, if F is C-measurable and satisfies equation (∗)
above, then for every f : ω → ω with n > f(n) > 0 for every n > 1 and lim f(n)

n = 0,

and every perfect subset P of C there exists a perfect subset Q of P such that the

density of F in Q is greater or equal to f . We also include some connections of the

above results with Banach spaces.

2. Preliminaries

2.1. Let ω = {0, 1, . . . }. The cardinality of a set A is denoted by |A|. By < we

denote the (strict) lexicographical ordering on the Cantor set C = 2ω. If A,B ⊆ C,
then we write A < B if for every x ∈ A and every y ∈ B we have x < y. For every

n > 1 and every P ⊆ C by [P ]n we denote the set of all <-increasing sequences of

P of cardinality n, while by [P ]<ω the set of all finite <-increasing sequences of P .

2.2. By 2<ω we denote the Cantor tree, that is, the set of all finite sequences of

0’s and 1’s; we equipped 2<ω with the (strict) partial ordering @ of initial segment.

If s, t ∈ 2<ω, then by sat we denote their concatenation. For every s ∈ 2<ω the

length `(s) of s is defined to be the cardinality of the set {t ∈ 2<ω : t @ s}. For

every n ∈ ω by 2n we denote the set of all sequences in 2<ω of length n, while for

every n > 1 by 2<n we denote the set of all sequences of length less than n. For

every s, t ∈ 2<ω we denote by s ∧ t the @-maximal node w such that w v s and

w v t. Similarly, if x, y ∈ C, then by x∧ y we denote the @-maximal node t of 2<ω

with t @ x and t @ y. We write s ≺ t if wa0 v s and wa1 v t, where w = s ∧ t.
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2.3. We view every subset of 2<ω as a subtree of 2<ω equipped with the induced

partial ordering. For every m ∈ ω and every subtree T of 2<ω by T (m) we denote

the m-level of T , that is, the set of all t ∈ T such that |{s ∈ T : s @ t}| = m.

A node t ∈ T is said to be a splitting node of T if t has at least two immediate

successors in T . By Spl(T ) we denote the set of splitting nodes of T .

A subtree T of 2<ω is said to be downwards closed if for every t ∈ T the set

{s : s v t} is a subset of T . Notice that if T is a downwards closed subtree

and m ∈ ω, then T (m) = {t ∈ T : t ∈ 2m}. The body [T ] of T is the set

{x ∈ C : x|n ∈ T ∀n ∈ ω}, where x|n = (x0, . . . , xn−1) ∈ 2<ω if n > 1 and x|0 = ∅
if n = 0. If t ∈ T , then we set [T ]t := {x ∈ [T ] : t @ x}. In particular, for every

t ∈ 2<ω we have Ct = {x ∈ C : t @ x}.
If A ⊆ 2<ω, then the downwards closure Â of A is the set {s ∈ 2<ω : ∃t ∈

A with s v t}. Moreover, for every F ⊆ C we set TF := {x|n : x ∈ F, n ∈ ω}.
Observe that F is closed if and only if F = [TF ]. It is easy to see that if F is a

finite subset of C, then |Spl(TF )| = |F | − 1. Similarly, if A is a finite antichain of

2<ω, then |Spl(Â)| = |A| − 1.

A subtree T of 2<ω is said to be pruned if for every t ∈ T there exists s ∈ T
with t @ s. It is said to be skew if for every m ∈ ω we have |T (m) ∩ Spl(T )| 6 1.

2.4. We recall the notion of the type τ of a downwards closed, pruned, skew

subtree T of 2<ω following the presentation of Louveau, Shelah and Veličković

in [8]. We will only treat trees T with [T ] finite. So, let k > 2 and let T be a

downwards closed, pruned, skew subtree of 2<ω such that [T ] has k elements. The

type of T is a function τ : {1, . . . , k− 1} → ω which is defined as follows. For every

n ∈ {1, . . . , k−1} let m ∈ ω be the least such that T (m) has n+1 nodes, and write

the set T (m− 1) in ≺-increasing order as {s0 ≺ · · · ≺ sn−1}. Then we set τ(n) = d

if sd is the unique splitting node of T (m− 1). Every type of a tree T with [T ] = k

will be called a k-type. It is easy to see that for every k > 2 there exist (k − 1)!

k-types. We remark that the above definition is equivalent to the initial one, given

by Blass [4]. If F is a finite subset of C, then we say that F is of type τ if TF is

skew and of type τ . If P ⊆ C and τ is a k-type, then by [P ]kτ we shall denote the

set of all subsets of P of type τ .

2.5. We will also deal with the following class of subtrees of 2<ω which are not

downwards closed. A subtree T of 2<ω is said to be regular dyadic if T can be

written in the form T = (ts)s∈2<ω such that for every s1, s2 ∈ 2<ω we have

(a) s1 @ s2 if and only if ts1 @ ts2 ,

(b) s1 ≺ s2 if and only if ts1 ≺ ts2 , and

(c) `(s1) = `(s2) if and only if `(ts1) = `(ts2).

It is easy to see that the representation of T as (ts)s∈2<ω is unique. In what

follows, when we deal with a regular dyadic subtree T we will always use this
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unique representation. We also notice that if T is a regular dyadic tree, then [T̂ ] is

a perfect subset of C homeomorphic to C.

2.6. We recall that a subset A of an uncountable Polish space X is C-measurable if

it belongs to the smallest σ-algebra which is closed under the Souslin operation and

contains the open sets. We remark that the class of C-measurable sets is strictly

bigger than the σ-algebra generated by the analytic sets (see, e.g., [7]).

3. Definable ε-filling families

We start with the following definition.

Definition 1. Let F ⊆ [C]<ω. The family F is said to have the Galvin property

if for every n ∈ ω and every tuple P0 < · · · < Pn of perfect subsets of C there exist

Q0, . . . , Qn such that the following hold.

(a) For every i ∈ {0, . . . , n} we have that Qi is a perfect subset of Pi.

(b) Either Q0 × · · · ×Qn ⊆ F or (Q0 × · · · ×Qn) ∩ F = ∅.

We notice that if for every n ∈ ω and every tuple P0 < · · · < Pn of perfect

subsets of C the set F ∩ (P0 × · · · × Pn) has the Baire property in P0 × · · · × Pn,

then the family F has the Galvin property. This is a consequence of a theorem of

Galvin (see, e.g., [7, Theorem 19.6]). Under the above terminology, we have the

following theorem.

Theorem 2. Let ε > 0 and let F be an ε-filling family over C. If F has the Galvin

property, then for every perfect subset P of C there exists a perfect subset Q of P

such that [Q]<ω ⊆ F .

For the proof of Theorem 2 we need to introduce the following definition.

Definition 3. Let F ⊆ [C]<ω and let T = (ts)s∈2<ω be a regular dyadic subtree of

2<ω. We say that the tree T decides for F if for every n ∈ ω, every 0 6 d 6 2n− 1

and every F = {s0 ≺ · · · ≺ sd} ⊆ 2n we have that the product [T̂ ]ts0 × · · · × [T̂ ]tsd
either is included in or is disjoint from F . In the case where [T̂ ]ts0 × · · · × [T̂ ]tsd is

included in F , then we say that F is trapped in F .

The following lemma is the combinatorial part of the proof of Theorem 2.

Lemma 4. Let F ⊆ [C]<ω with the Galvin property and let P be a perfect subset

of C. Then there exists a regular dyadic tree T = (ts)s∈2<ω that decides for F and

with [T̂ ] ⊆ P .

Proof. By recursion on the length of s ∈ 2<ω, we will select a regular dyadic tree

T = (ts)s∈2<ω and a family (P s)s∈2<ω of subsets of C such that for every n ∈ ω the

following are satisfied.

(C1) For every s ∈ 2n we have that P s is a perfect subset of P .
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(C2) If n > 1, then for every s ∈ 2n−1 and every i ∈ {0, 1} we have that

P s
ai ⊆ P s ∩ Ct

sai
.

(C3) For every 0 6 d 6 2n − 1 and every {s0 ≺ · · · ≺ sd} ⊆ 2n we have that the

set P s0 × · · · × P sd either is included in or is disjoint from F .

We proceed to the selection. For n = 0 we set t∅ = ∅. By the Galvin property of F ,

there exists perfect P ∅ ⊆ P such that either [P ∅]1 ⊆ F or [P ∅]1 ∩ F = ∅. Then

(C1) and (C3) are satisfied. Next assume that for some n ∈ ω, the nodes (ts)s∈2n

and the perfect sets (P s)s∈2n have been selected. Since the family {P s : s ∈ 2n}
consists of perfect subsets of P and P s ⊆ Cts , we may select a sequence (ts)s∈2n+1

such that the following are satisfied.

(i) For every s1, s2 ∈ 2n+1 we have `(ts1) = `(ts2).

(ii) For every s ∈ 2n the nodes tsa0 and tsa1 are successors of ts and, moreover,

tsa0 ≺ tsa1.

(iii) For every s ∈ 2n and every i ∈ {0, 1}, setting Qs
ai := P s ∩ Ct

sai
, we have

that Qs
ai is a perfect subset of P s.

Using the fact that the family F has the Galvin property, by an exhaustion argu-

ment over all subsets of 2n+1, for every s ∈ 2n+1 we select a perfect set P s ⊆ Qs

such that condition (C3) is satisfied. The recursive selection is thus completed.

We will check that T = (ts)s∈2<ω satisfies the desired properties. We first observe

that, by (C1), (C2) and the fact that P ∅ ⊆ P , we have [T̂ ] ⊆ P . On the other

hand, by (C2), we have that [T̂ ]ts ⊆ P s for every s ∈ 2<ω. Therefore, by (C3), we

conclude that T decides for F as desired. �

Lemma 5. Let F ⊆ [C]<ω and let T = (ts)s∈2<ω be a regular dyadic tree that

decides for F . Assume that F is ε-filling for some ε > 0. Then the following hold.

(a) For every n ∈ ω there exists Fn ⊆ 2n with |Fn| > ε · 2n and such that Fn is

trapped in F .

(b) Let n, k ∈ ω with k 6 n, F ⊆ 2n and G ⊆ 2k such that G is dominated by

F (that is, for every w ∈ G there exists s ∈ F with w v s). If F is trapped

in F , then so does G.

Proof. (a) For every s ∈ 2n we select xs ∈ [T̂ ]ts . The family F is ε-filling, and

so, there exists Fn = {s0 ≺ · · · ≺ sd−1} ⊆ 2n with d > ε · 2n and such that

{xs : s ∈ Fn} ⊆ F . It follows that ([T̂ ]ts0 × · · · × [T̂ ]tsd−1
) ∩ F 6= ∅. Since the tree

T decides for F , we conclude that Fn is trapped in F .

(b) First we notice that if F is trapped in F , then every subset of F is also trapped

in F , as F is hereditary. Now let G be dominated by F . There exists F ′ subset of

F with |F ′| = |G| and such that for every w ∈ G there exists a unique s ∈ F ′ with

w v s. Arguing as in (a) above, we see that G is trapped in F . �

For every regular dyadic tree T = (ts)s∈2<ω we define a Borel probability measure

µT on [T̂ ] by assigning to every [T̂ ]ts , with s ∈ 2n and n ∈ ω, measure equal
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to 1
2n . That is, µT is the image of the usual measure on C induced by the natural

homeomorphism between C and [T̂ ]. We remark that µT is continuous (that is, it

vanishes on singletons) and regular. The final lemma is the analytic part of the

argument.

Lemma 6. Let F ⊆ [C]<ω and let T = (ts)s∈2<ω a regular dyadic tree that decides

for F . Assume that F is ε-filling for some ε > 0. Then there exists K ⊆ [T̂ ] closed

such that µT (K) > ε and [K]<ω ⊆ F .

Proof. By part (a) of Lemma 5, for every n ∈ ω there exists a subset Fn of 2n with

|Fn| > ε · 2n and such that Fn is trapped in F . Define

Cn :=
⋃
s∈Fn

[T̂ ]ts .

Then Cn is a clopen subset of [T̂ ] and, moreover, µT (Cn) > ε for every n ∈ ω.

Denote by K([T̂ ]) the hyperspace of all compact subsets of [T̂ ] equipped with the

Vietoris topology. It is a compact metrizable space (see, e.g., [7]). Hence, there

exist an infinite subset L of ω and K ∈ K([T̂ ]) such that the sequence (Cn)n∈L is

convergent to K. Since the measure µT is regular, the map K([T̂ ]) 3 K 7→ µT (K)

is upper semicontinuous. It follows that

µT (K) > lim sup
n∈L

µT (Cn) > ε.

It remains to show that [K]<ω ⊆ F . Indeed, let {x0 < · · · < xl} ⊆ K. Since

K ⊆ [T̂ ], there exist k ∈ ω and {w0 ≺ · · · ≺ wl} ⊆ 2k such that twi @ xi for every

i ∈ {0, . . . , l}; notice that `(tw0
) = · · · = `(twl). The sequence (Cn)n∈L converges

to K, and so, there exists n0 ∈ L such that for every n ∈ L with n > n0 the

set {ts : s ∈ Fn} dominates the set {tw0
, . . . , twl}. The tree T is regular dyadic,

and so, Fn dominates {w0, . . . , wl}. Since every Fn is trapped in F , by part (b)

of Lemma 5, we obtain that {w0, . . . , wl} is trapped in F too. This clearly implies

that {x0, . . . , xl} ∈ F and the proof is completed. �

We are ready to give the proof of Theorem 2.

Proof of Theorem 2. Let P ⊆ C be perfect. Since F has the Galvin property, by

Lemma 4, there exists a regular dyadic tree T such that T decides for F and [T̂ ] ⊆ P .

Since F is ε-filling, by Lemma 6, there exists K ⊆ [T̂ ] closed with µT (K) > ε and

such that [K]<ω ⊆ F . As µT is continuous, K is an uncountable closed subset of P

and the result follows. �

3.1. Consequences. We notice that for every Polish space X, every closed subset

F of X and every C-measurable subset A of X the set A∩F is C-measurable in F .

Invoking the classical fact that every C-measurable subset of a Polish space has the

Baire property (hence, by the remarks at the beginning of the section, the Galvin

property too), we obtain the following corollary of Theorem 2.
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Corollary 7. Let F ⊆ [C]<ω be ε-filling. If F is C-measurable in [C]<ω, then for

every perfect P ⊆ C there exists perfect Q ⊆ P such that [Q]<ω ⊆ F .

As projective determinacy (PD) implies that every projective set in a Polish

space has the Baire property (see [7, Theorem 38.17]), under PD, Corollary 7 is

also true for every projective set.

There are some natural limitations on the possibility of extending Corollary 7 for

an arbitrary ε-filling family. Indeed, let B be a Bernstein set, that is, a subset of C
such that neither B nor C \B contain a perfect set. Setting F = [B]<ω ∪ [C \B]<ω,

we see that F is 1/2-filling, yet there does not exist a perfect set P with [P ]<ω ⊆ F .

Notice, however, that the above counterexample depends on the axiom of choice.

As a matter of fact, every counterexample known to us depends on the axiom of

choice. This is not an accident. As in the proof of Theorem 2 we made no use of

the axiom of choice, we have the following corollary.

Corollary 8. Assume ZF + DC and the statement that “every subset of a Polish

space has the Baire property”. Then for every ε-filling family F over C and every

perfect P ⊆ C there exists perfect Q ⊆ P such that [Q]<ω ⊆ F .

We notice that the hypotheses of Corollary 8 hold in the Solovay model [9]—see,

also, [3, Section 5.3] for a discussion about this in a different but related context.

A similar result has been also obtained by Apter and Džamonja [1].

Remark 1. By Corollary 7, it follows that if F ⊆ [C]<ω is analytic and ε-filling,

then F cannot be compact; that is, there exists an infinite subset A of C such that

[A]<ω ⊆ F . We should point out that this can also be derived by the results of

Fremlin in [6]. To see this one argues by contradiction. So, assume that F ⊆ [C]<ω

is analytic, compact and ε-filling for some ε > 0. It was observed by Argyros,

Lopez-Abad and Todorčević that the rank of F is a countable ordinal whenever

F is analytic and compact. This follows by an application of the Kunen–Martin

theorem (see, e.g., [7, Theorem 31.1]). On the other hand, by [6, Lemma 2C]

applied to the ideal I of countable subsets of C, we see that the rank of F must be

greater or equal to ω1, a contradiction.

Remark 2. By modifying the proof of Theorem 2, we obtain the following result

for an arbitrary family F .

Theorem 9. Let ε > 0 and let F ⊆ [C]<ω be an arbitrary ε-filling family. Then for

every perfect P ⊆ C there exists perfect Q ⊆ P such that for every perfect R ⊆ Q

and every k > 1 the set F ∩ [R]k is dense in [R]k.

The proof of Theorem 9 follows the arguments of the proof of Theorem 2. The

only important change is that of the notion of a regular dyadic the decides for F .

Specifically, Definition 3 is modified as follows.
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Definition 10. Let F ⊆ [C]<ω and let T = (ts)s∈2<ω be a regular dyadic subtree

of 2<ω. We say that the tree T weakly decides for F if for every n ∈ ω, every

0 6 d 6 2n − 1 and every F = {s0 ≺ · · · ≺ sd} ⊆ 2n we have that one of the

following (mutually exclusive) alternatives holds.

(A1) Either ([T̂ ]ts0 × · · · × [T̂ ]tsd ) ∩ F = ∅, or

(A2) for every i ∈ {0, . . . , d} and every perfect subset Qi of [T̂ ]tsi we have that

(Q0 × · · · ×Qd) ∩ F 6= ∅.
If alternative (A2) holds true, then we say that F is weakly trapped in F .

It is easily seen that the arguments of the proofs of Lemmas 4, 5 and 6 can be

carried out using the above definition, yielding the proof of Theorem 9.

4. Families of weaker density

This section is devoted to the proof of Theorem B stated in the introduction. For

the convenience of the reader, let us present the example of Fremlin which provides

closed hereditary families over C (of weaker density) for which Theorem 2 is not

valid.

Example 1. Let f : ω → ω be any function such that n > f(n) > 0 for every

n > 1 and lim f(n)
n = 0. Then there exists a family F ⊆ [C]<ω with the following

properties.

(P1) F is closed in [C]<ω and hereditary.

(P2) We have that dF (n) > f(n) for every n > 1.

(P3) There does not exist A ⊆ C infinite with [A]<ω ⊆ F .

Indeed, we select a strictly increasing sequence (nk) in ω such that n0 = 1 and

supi>nk
f(i)
i 6

1
2k

for every k > 1, and we set

F :=
⋃
k∈ω

⋃
t∈2k

{
G : G ⊆ Ct and |G| 6

⌈
nk+1/2

k
⌉}
.

It is easy to see that (P1) and (P3) are satisfied. To verify (P2), let F ⊆ C with

|F | = n. Let k ∈ ω such that nk 6 n < nk+1. Then F is partitioned into the

sets {F ∩ Ct : t ∈ 2k}. There exists t0 ∈ 2k such that |F ∩ Ct0 | > dn/2ke. Let G

be any subset of F ∩ Ct0 with |G| = dn/2ke. By the definition of F and the fact

that n < nk+1, we see that G ∈ F . Since n > nk, we have f(n)
n 6 1

2k
, and so,

f(n) 6 dn/2ke 6 dF (n).

We now proceed to the proof of the main result of this section (Theorem 16

below). Observe that for every perfect P ⊆ C and every k-type τ the set [P ]kτ is

nonempty. We will need a finite version of this fact. To this end, we introduce the

following definitions.

Definition 11. Let n > 1. A finite subtree T of the Cantor tree 2<ω is said to

be n-increasing if T can be written in the form T = (ts)s∈2<n such that for every

s1, s2 ∈ 2<n we have
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(1) ts1@ ts2 (respectively, ts1≺ ts2) if and only if s1@s2 (respectively, s1≺ s2),

(2) if `(s1) = `(s2) and s1 ≺ s2, then `(ts1) < `(ts2), and

(3) if `(s1) < `(s2), then `(ts1) < `(ts2).

Definition 12. A subset F of C with |F | = 2n is said to be 2n-increasing if the

set Spl(TF ) of splitting nodes of TF is an n-increasing subtree of 2<ω. The set of

all 2n-increasing subsets of C will be denoted by [C]2nM .

It is easy to see that if F is a 2n-increasing subset of C, then TF is a skew subtree

of 2<ω. The class of increasing subsets of C has the following stability property.

Lemma 13. Let n > 2 and k > 1 be such that 2n > nk. Then for every F ∈ [C]2nM
and every G ⊆ F with |G| > nk there exists H ⊆ G with H ∈ [C]2kM .

Proof. By our assumption, we have that Spl(TF ) = (ts)s∈2<n is n-increasing. For

every 0 6 j 6 n − 1 we set LF (j) := {ts ∈ Spl(TF ) : s ∈ 2j}. By the definition

of n-increasing subtrees, the set LF (j) is the j-level of Spl(TF ), and so, it is an

antichain of 2<ω. Also let Spl(TG) be the set of splitting nodes of the tree TG.

Clearly, Spl(TG) is a subset of Spl(TF ).

Recursively, for every 0 6 m 6 k − 1 we will select jm ∈ ω and a subset Am of

2<ω such that

(C1) 0 6 jm 6 n− 1, and if m1 < m2, then jm1
> jm2

,

(C2) 2jm > nk−m−1,

(C3) Am ⊆ LF (jm) and |Am| > nk−m−1,

(C4) if 0 6 m1 < m2 6 k − 1, then Am2
is a subset of Spl(Âm1

), and

(C5) for every 0 6 m 6 k − 1 we have Am ⊆ Spl(TG).

We begin the selection. Notice that the family {Spl(TG) ∩ LF (j) : 0 6 j 6 n − 1}
is a partition of Spl(TG). Since |Spl(TG)| = |G| − 1 > nk − 1, by the pigeonhole

principle, there exists l ∈ {0, . . . , n−1} such that |Spl(TG)∩LF (l)| > nk−1. Notice

that |LF (l)| = 2l > nk−1. We set j0 = l and A0 = Spl(TG) ∩ LF (l). Then

conditions (C2), (C3) and (C5) are satisfied. This completes the first step of the

selection. Next, observe that A0 is an antichain—it is a subset of LF (j0)—and

so |Spl(Â0)| = |A0| − 1 > nk−1 − 1. As in the first step, we observe that the

family {Spl(Â0) ∩ LF (j) : 0 6 j 6 j0 − 1} is a partition of Spl(Â0). Hence, there

exists l′ ∈ {0, . . . , j0 − 1} such that |Spl(Â0) ∩ LF (l′)| > nk−2. We set j1 := l′ and

A1 := Spl(Â0) ∩ LF (l′) and we proceed similarly.

We isolate the crucial properties established by the above selection.

(P1) For every 1 6 m 6 k − 1 and every w ∈ Am the node w has at least two

successors in Am−1.

(P2) For every 0 6 m 6 k−1 if w1, w2 ∈ Am with w1 ≺ w2, then `(w1) < `(w2).

(P3) For every 0 6 m1 < m2 6 k − 1 if w1 ∈ Am1 and w2 ∈ Am2 , then

`(w1) > `(w2).
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Property (P1) follows by condition (C4) of the selection, while properties (P2) and

(P3) follow by (C3) and (C1) above and the fact that Spl(TF ) is n-increasing.

Using (P1)–(P3) and starting from a node in Ak−1 we may select a k-increasing

subtree T = (ws)s∈2<k which is, by condition (C5), a subset of Spl(TG). This

clearly implies the lemma. �

Lemma 14. Let k > 1 and H ∈ [C]2kM . Then for every (k + 1)-type τ there exists

a subset I of H of type τ .

Proof. By induction on k. If k = 1, then we set I := H. Suppose that the result

holds for some k > 1. LetH ∈ [C]2k+1

M and let τ : {1, . . . , k+1} → ω be a (k+2)-type.

Write the set H in lexicographically increasing order as H = {y0 < · · · < y2k+1−1},
and set E := {yi : 0 6 i < 2k+1 and i even}. Also write Spl(TH) = (ts)s∈2<k+1 . It

is easy to see that Spl(TE) = (ts)s∈2<k and so E ∈ [C]2kM . We set τ ′ := τ |{1,...,k}.
Then τ ′ is a (k+ 1)-type. By our inductive assumption, there exists I ′ ⊆ E of type

τ ′. There exists {i0 < · · · < ik} ⊆ {0, . . . , 2k−1} such that I ′ = {y2i0 < · · · < y2ik}.
We set I := I ′ ∪ {y2iτ(k+1)+1}. Then I ⊆ G and is of type τ , as desired. �

Lemma 15. Let F ⊆ [C]<ω be hereditary and let n > 2 and k > 2 such that

dF (2n) > nk−1. Then for every perfect P ⊆ C and every k-type τ there exists

I ∈ F ∩ [P ]kτ .

Proof. Since P is perfect, there exists a 2n-increasing subset F of P . On the other

hand, since dF (2n) > nk−1, there exists G ⊆ F with G ∈ F and |G| > nk−1. Notice

that 2n > dF (2n) > nk−1. Therefore, by Lemma 13, there exists H ⊆ G which is

2k−1-increasing. By Lemma 14, there exists I ⊆ H of type τ . Since I ⊆ H ⊆ G ∈ F
and F is hereditary, the result follows. �

We are ready to state and prove the main result of this section. To this end, we

recall that Blass’ theorem [4] on partitions of [C]k asserts that if U is open subset

of [C]k and τ is a k-type, then there exists a perfect subset P of C perfect (which is

the body of a skew tree) such that either [P ]kτ ⊆ U or [P ]kτ ∩ U = ∅.

Theorem 16. Let F ⊆ [C]<ω be hereditary.

(a) Let n > 2 and k > 1 such that dF (2n) > nk−1. If F ∩ [C]k has the Baire

property, then there exists a perfect subset P of C such that [P ]k ⊆ F .

(b) Assume that F has the Baire property in [C]<ω and satisfies

(∗) lim sup
log2 dF (2n)

log2 n
= +∞.

Then for every k > 1 there exists a perfect subset P of C such that [P ]k ⊆ F .

Proof. First we argue for part (a). If k = 1 the result is trivial. So let k > 2 and

assume that F has the Baire property in [C]k. By a classical result of Mycielski (see,

e.g., [7]) and by passing to a perfect subset of C, we may assume that F ∩ [C]k is

open. Fix a k-type τ . By Blass’ theorem, there exists perfect P ⊆ C such that [P ]kτ
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either is included in F or is disjoint from F . The second alternative is impossible by

Lemma 15. So, the result follows by a finite exhaustion argument over all possible

k-types. Part (b) follows from part (a) by a direct computation. �

Remark 3. We do not know whether equation (∗) in part (b) of Theorem 16 is the

optimal one. We notice, however, that the conclusion of part (b) of Theorem 16

is not valid if we merely assume that lim dF (n) = +∞. For instance, let F be

the union of all strongly increasing and strongly decreasing finite subsets of C.
(Recall that a subset {x0 < · · · < xk} of C is said to be strongly increasing if

`(xi ∧ xi+1) < `(xi+1 ∧ xi+2) for every i ∈ {0, . . . , k − 2}—a strongly decreasing

subset of C is similarly defined.) Then F is closed in [C]<ω and it is easy to verify

that lim dF (n) = +∞. However, for every k > 4 there does not exist a perfect

subset P of C with [P ]k ⊆ F .

4.1. Consequences. The following proposition shows that the families presented

in Example 1 are essentially the only ones within the class of C-measurable hered-

itary families which satisfy (∗).

Proposition 17. Let F ⊆ [C]<ω be hereditary. Assume that F is C-measurable in

[C]<ω and satisfies equation (∗) in Theorem 16. Then for every g : ω → ω and every

perfect P ⊆ C there exists a regular dyadic subtree T = (ts)s∈2<ω with [T̂ ] ⊆ P and

such that G ⊆ F where G :=
⋃
k∈ω

⋃
s∈2k

{
G : G ⊆ [T̂ ]ts and |G| 6 g(k)

}
.

Proof. By our assumptions and Theorem 16, for every perfect P ⊆ C and every

m > 1 there exists perfect Q ⊆ P such that [Q]m ⊆ F . Hence, arguing as in

Lemma 4, we may select a regular dyadic subtree T = (ts)s∈2<ω with t∅ = ∅ and a

family (P s)s∈2<ω of perfect subsets of P such that the following are satisfied.

(i) For every k ∈ ω, every s ∈ 2k and every i ∈ {0, 1} we have P s
ai ⊆ P s∩Ct

sai
.

(ii) For every k ∈ ω and every s ∈ 2k we have [P s]g(k) ⊆ F .

Clearly, T is as desired. �

We need to introduce some terminology. Let f : ω → ω such that n > f(n) > 0

for every n > 1. Also let F ⊆ [C]<ω and A ⊆ C. We say that F is f -filling over A

if for every n > 1 and every F ⊆ A with |F | = n there exists G ⊆ F with G ∈ F
and |G| > f(n). We notice that if F ⊆ [C]<ω is an arbitrary hereditary family

with lim dF (n) = +∞, then for every infinite subset A of C there exists a countable

subset B of A such that F becomes 1/2-filling over B (this follows by an application

of Ramsey’s theorem). Although, by Theorem 2, this fact cannot be extended to

perfect sets, it can be extended for weaker versions of density as follows.

Corollary 18. Let F ⊆ [C]<ω be as in Proposition 17 and let f : ω → ω such that

n > f(n) > 0 for every n > 1 and lim f(n)
n = 0. Then for every perfect P ⊆ C there

exists perfect Q ⊆ P such that F is f -filling over Q.
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Proof. We select a strictly increasing sequence (nk) in ω such that n0 = 1 and

supi>nk
f(i)
i 6 1

2k
for every k ∈ ω. Next, we define g : ω → ω by the rule

g(k) = dnk+1/2
ke. Let T = (ts)s∈2<ω be the regular dyadic subtree obtained

by Proposition 17 for the function g and the given perfect set P . Setting Q := [T̂ ]

and arguing as in Example 1, we see that Q has the desired properties. �

5. Connections with Banach spaces

Theorem 2 has some Banach space theoretic implications which we are about

to describe. Let F ⊆ [C]<ω be hereditary and such that [C]1 ⊆ F . We define a

Banach space XF associated with F as follows. Let c00(C) be the vector space of all

real-valued functions on C with finite support, and denote by (ex)x∈C the standard

Hamel basis of c00(C). The space XF is the completion of c00(C) under the norm

∥∥ n∑
i=0

aiexi
∥∥
F := sup

{∑
i∈F
|ai| : {xi : i ∈ F} ∈ F

}
.

We recall that a bounded sequence (en) in a Banach space E is called Cesaro

summable if the sequence of averages 1
n (e0 + · · ·+ en−1) converges in norm. Under

the above terminology we have the following proposition.

Proposition 19. Let F ⊆ [C]<ω be hereditary, compact and such that [C]1 ⊆ F .

Assume that F is C-measurable and lim dF (n) = +∞. Then the following hold.

(a) For every sequence (xi) in C there exists infinite L ⊆ ω such that for every

infinite N ⊆ L the sequence (exi)i∈N is not Cesaro summable in XF .

But on the other hand,

(b) for every perfect P ⊆ C there exists a sequence (xi) in P such that the

sequence (exi) is Cesaro summable in XF .

Proof. (a) Let (xi) be a sequence in C. As we have already remarked, by the fact

that F is hereditary and lim dF (n) = +∞, there exists infinite L ⊆ ω such that F
is 1/2-filling over {xi : i ∈ L}. By the definition of the norm of XF , we see that for

every finite F ⊆ L we have ‖
∑
i∈F exi‖F >

|F |
2 . This clearly implies that for every

infinite N ⊆ L the sequence (exi)i∈N is not Cesaro summable in XF .

(b) Let P ⊆ C be perfect. By our assumptions, Lemma 4 can be applied. Hence,

there exists a regular dyadic subtree T = (ts)s∈2<ω that decides for F and with

[T̂ ] ⊆ P . Let Z be the set of all eventually zero sequences in C. We enumerate

Z as (zi) as follows. For every i ∈ ω let zi be the unique element of Z satisfying

i =
∑
k∈ω zi(k)2k. By the uniqueness of the dyadic representation of every natural

number, we see that if i 6= j, then zi 6= zj and, moreover, if n, i, j ∈ ω are such that

i, j < 2n, then zi|n 6= zj |n.

For every i ∈ ω we set xi :=
⋃
k∈ω tzi|k ∈ [T̂ ]. We claim that the sequence (xi)

is as desired. Indeed, for every n ∈ ω let s ∈ 2n and set ln := `(ts) (since T is
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regular dyadic, ln is well-defined and independent of the choice of s). By the above

mentioned property of the sequence (zi), for every i, n ∈ ω with i < 2n we have

(1) |{x0|ln, . . . , xi|ln}| = |{x0, . . . , xi}| = i+ 1.

For every n ∈ ω we set

Mn := max{|F | : F ⊆ 2n and F is trapped in F}.

By (1) and the fact that the tree T decides for F , for every i < 2n we have

max
{
|G| : G ⊆ {x0, . . . , xi} and G ∈ F

}
6Mn.

Let i, n > 1 with 2n−1 6 i < 2n. Then,

(2)
∥∥ 1

i+ 1

i∑
k=0

exk
∥∥
F 6

Mn

i+ 1
6

Mn

2n−1
= 2

Mn

2n
.

Finally, notice that

lim
Mn

2n
= 0.

For if not, arguing as in the proof of Lemma 6, we would obtain a perfect subset R

of [T̂ ] such that [R]<ω ⊆ F which contradicts, of course, the fact that F is compact.

Hence, by (2), we conclude that

1

i+ 1

i∑
k=0

exk → 0

and the proof is completed. �

Remark 4. (a) Part (b) of Proposition 19 can be also derived by [6, Theorem 3A]

taking into account that every C-measurable, hereditary and compact family F is

not ε-filling for every ε > 0. For completeness we have included a proof in the

present setting.

(b) The fact that every subsequence of the sequence (xi)i∈L obtained by part (a)

of Proposition 19, is not Cesaro summable, is expected by the Erdős–Magidor

theorem [5] (see, also, [2]).

(c) We notice that under the assumptions of Proposition 19 for every perfect P ⊆ C
there exists perfect Q ⊆ P with the following property. If (xi) is a sequence in

Q and the sequence (exi) generates a spreading model (see, e.g., [2]), then this

spreading model must be `1.
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