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Abstract. It is shown that for every separable Banach space X with non-

separable dual, the space X∗∗ contains an unconditional family of size |X∗∗|.
The proof is based on Ramsey theory for trees and finite products of perfect

sets of reals. Among its consequences, it is proved that every dual Banach

space has a separable quotient.

1. Introduction

The problem of the existence of an unconditional basic sequence in every, infinite

dimensional, Banach space was a central one and remained open for many years.

At the beginning of 1990s Gowers and Maurey [GM] settled that problem in the

negative. Their celebrated example led to the profound concept, introduced by

Johnson, of Hereditarily Indecomposable (HI) spaces, which completely changed

our understanding of the structure of Banach spaces. The class of HI spaces stands

in the opposite of the class of spaces with an unconditional basis and Gowers’

dichotomy [G1], a Ramsey theoretic principle for Banach spaces, yields that every

Banach space either is HI saturated, or contains an unconditional basic sequence.

Further investigation, by several authors, has shown that HI spaces occur almost

everywhere and this indicates the difficulty to obtain positive results concerning

the existence of unconditional sequences.

The aim of the present work is to prove a theorem, of unexpected generality,

providing unconditional families in the second dual of a separable Banach space,

and also, to present some of its consequences. More precisely, the following theorem

is proved.

Theorem 1. Let X be a separable Banach space not containing `1 and such

that X∗ is non-separable. Then there exists a bounded bi-orthogonal system

{(z∗σ, z∗∗σ ) : σ ∈ 2N} in X∗ × X∗∗ such that the family {z∗∗σ : σ ∈ 2N} is 1-uncon-

ditional, weak* discrete and has 0 as the unique weak* accumulation point.

A rather direct consequence is the following.

The second dual X∗∗ of a separable space X with non-separable dual contains an

unconditional family of size |X∗∗|.
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We also obtain a trichotomy, answering affirmatively the “unconditionality or

reflexivity problem”, which is stated as follows.

Every separable space X either is reflexively saturated, or one of its second or

third dual contains an unconditional family of cardinality equal to the size of the

corresponding dual.

A third application concerns the classical “separable quotient problem”, posed

by Banach, and settles the problem for the class of spaces isomorphic to a dual. In

particular, the following is shown.

Every dual Banach space has a separable quotient.

Let us point out that Theorem 1, as well as the aforementioned trichotomy, are

sharp. Indeed, there are separable spaces with separable dual and non-separable

HI second dual [ATo]. Moreover, such a space X can be chosen so that X, X∗

and X∗∗ are all HI and not containing a reflexive subspace [AAT]. Let us also

note the stability of the unconditionality constant obtained by Theorem 1 which

remains the best possible for any equivalent norm on X. This could be compared to

Maurey’s theorem [Mau] concerning second dual types in separable Banach spaces

containing `1. The Odell–Rosenthal theorem [OR] permits us to lift structure from

the 1-unconditional family {z∗∗σ : σ ∈ 2N} into the space X itself. This is the content

of the following theorem which corresponds to Theorem 18 in the main text.

Theorem 2. Let X be as in Theorem 1. Then there exists a Schauder tree basis

(wt)t∈2<N in X such that the following are satisfied.

(1) For every n > 1 the finite family {wt : t ∈ 2n} is
(
1 + 1

n

)
-unconditional.

(2) For every n,m ∈ N with 1 6 n < m and every {st : t ∈ 2n} ⊆ 2m with

t @ st for all t ∈ 2n, the families {wt : t ∈ 2n} and {wst : t ∈ 2n} are(
1 + 1

n

)
-equivalent under the natural correspondence.

(3) For every infinite chain (tn) of 2<N the sequence (wtn) is weak Cauchy, and

for every infinite antichain (sn) of 2<N the sequence (wsn) is weakly-null.

This result reveals the generic character of the basis of the James Tree space

JT , the first example of a separable Banach space not containing `1 and with

non-separable dual ([J]). For further applications of Theorem 1 we refer to [AAK].

The ingredients for proving Theorem 1 are mainly Ramsey theoretical. In partic-

ular, we use results concerning definable partitions of certain classes of antichains

of the dyadic tree, which we call increasing and decreasing, as well as, definable

partitions of finite products of perfect sets. Theorem 12, extracted from Stegall’s

fundamental construction [St] for separable Banach spaces with non-separable dual,

also plays a key role. More precisely, using the Ramsey properties of increasing and

decreasing antichains, proved in [ADK], we obtain the following extension of Stern’s

theorem [Ste] (see §2 for unexplained terminology).
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Theorem 3. Let X be a separable Banach space and let ∆ = {xt : t ∈ 2<N} be a

bounded family in X. Then there exists a regular dyadic subtree T of 2<N such that

the following are satisfied.

(1) Either, (i) there exists C > 0 such that for every infinite chain (tn) of T

the sequence (xtn) is C-equivalent to the standard basis of `1, or (ii) for

every infinite chain (tn) of T the sequence (xtn) is weak Cauchy.

(2) Either, (i) there exists C > 0 such that for every increasing antichain (tn)

of T the sequence (xtn) is C-equivalent to the standard basis of `1, or

(ii) for every increasing antichain (tn) of T the sequence (xtn) is weak

Cauchy. Moreover, for every pair (tn) and (sn) of increasing antichains of

T with the same limit point in 2N, the sequences (xtn) and (xsn) are both

weak* convergent to the same element of X∗∗.

(3) Similar to (2) for the decreasing antichains.

We should point out that part (1.i) of Theorem 3 does not necessarily imply

part (2.i), or conversely (see Remark 1 in the main text). Theorem 3 incorporates

all the machinery of Ramsey theory for trees needed for the proof of Theorem 1,

which proceeds as follows. For a separable Banach space X with non-separable

dual, Theorem 12 yields that there exist a bounded family {xt}t∈2<N in X and a

bounded family {x∗σ : σ ∈ 2N} in X∗ such that for every σ, τ ∈ 2N and every weak*

accumulation point x∗∗σ of (xσ|n) we have x∗∗σ (x∗τ ) = δστ . Next, applying Theorem 3

and taking into account that `1 does not embed into X, we obtain a regular dyadic

subtree T of 2<N and to each σ in the body [T̂ ] of T a triplet {x0σ, x+σ , x−σ } in

X∗∗ associated to the unique weak* limit points along subsequences of {xt}t∈T
determined by chains, increasing and decreasing antichains. The key observation is

that the family {z∗∗σ = x0σ − x+σ : σ ∈ [T̂ ]} is weak* discrete having 0 as the unique

weak* accumulation point. Moreover, for every σ, τ ∈ [T̂ ] we have z∗∗σ (x∗τ ) = δστ .

The final step in the proof of Theorem 1 is the perfect unconditionality theorem,

stated as follows.

Theorem 4. Let X be a separable Banach space. Also let Q be a perfect subset

of 2N and let D = {z∗∗σ : σ ∈ Q} be a bounded family in X∗∗ which is weak*

discrete and has 0 as the unique weak* accumulation point. Assume that the map

Φ: Q× (BX∗ , w
∗)→ R defined by Φ(σ, x∗) = z∗∗σ (x∗) is Borel. Then there exists a

perfect subset R of Q such that the family {z∗∗σ : σ ∈ R} is 1-unconditional.

The construction of the perfect subset R in Theorem 4 is done by induction

and by repeated applications of a partition theorem due to Galvin. Note that the

Borelness of the function Φ is crucial for the proof, as it is used to show that certain

partitions are definable. One could not expect a similar result for an arbitrary

uncountable family as above. Indeed, there exists an uncountable weakly discrete

family accumulating to 0 in a reflexive and HI saturated space X (see [AT]).
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2. The Ramsey theoretical background

The aim of this section is to review the Ramsey theoretical background needed in

the sequel. There is a long history on the interaction between infinite dimensional

Ramsey theory and Banach space theory, going back to Farahat’s proof [F] of

Rosenthal’s `1 theorem [Ro]. We refer the reader to the survey papers [Od] and

[G2] for an account of related results.

The component of Ramsey theory we will use, concerns partitions of infinite

subsets of the dyadic tree and in particular partitions of chains and antichains. As

it is well-known there is a complete Ramsey theory for partitions of infinite subsets

of N as long as the colors are sufficiently definable (see [E]). On the other hand,

the corresponding result for partitions of infinite dyadic subtrees of the Cantor

tree fails in the sense that if we color all dyadic subtrees of the Cantor tree into

finitely many, say, open colors, then we cannot expect to find a dyadic subtree

all of whose dyadic subtrees are monochromatic. This has been recognized quite

early by Galvin. His conjecture about partitions of k-tuples of reals, settled in the

affirmative by Blass [B], reflects this phenomenon.

So, it is necessary, in order to have Ramsey theorems for trees, to consider not

all subsets of the dyadic tree but only those which are of a fixed “shape”. By now,

there are several partition theorems along this line, obtained in [Ste] for chains, in

[Mil] for strong subtrees, in [LSV] for strongly increasing sequences of reals, and in

[Ka] for rapidly increasing subtrees.

It is well-known, and it is incorporated in the abstract Ramsey theory due to

Carlson [C], that in order to obtain an infinite dimensional Ramsey result, one

needs a pigeon-hole principle that corresponds to the finite dimensional case. In the

case of partitions of infinite subsets of N, this is the classical pigeon-hole principle.

In the case of trees, this is the deep and fundamental Halpern–Läuchli partition

theorem [HL]. The original proof was using metamathematical arguments. The

proof avoiding metamathematics was given in [AFK].

For a presentation of some of the partition theorems we use, we refer the reader

to [AT]. Applications of Ramsey theory for trees in analysis and topology can be

found in [ADK] and [To1].

It is a standard fact that once one is willing to present results about trees one

has to set up a, rather large, notational system. Below, we gather all the notations

we need. We follow the conventions from [ADK] which are, more or less, standard.

2.1. Notation. Let N = {0, 1, 2, . . . } denote the set of natural numbers. By [N]∞

we denote the set of all infinite subsets of N, and for every L ∈ [N]∞ by [L]∞ we

denote the set of all infinite subsets of L.

2.1.1. By 2<N we denote the set of all finite sequences of 0’s and 1’s (the empty

sequence is included). We view 2<N as a tree equipped with the (strict) partial order

@ of extension. If t ∈ 2<N, then the length |t| of t is defined to be the cardinality
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of the set {s : s @ t}. If s, t ∈ 2<N, then by sat we denote their concatenation.

Two nodes s, t are said to be incomparable if neither s v t nor t v s. A subset of

2<N consisting of pairwise incomparable nodes is said to be an antichain, while a

subset of 2<N consisting of pairwise comparable nodes is called a chain. For every

x ∈ 2N and every n > 1 we set x|n =
(
x(0), . . . , x(n − 1)

)
∈ 2<N while x|0 = ∅.

For x, y ∈ (2<N ∪ 2N) with x 6= y we denote by x ∧ y the @-maximal node t of 2<N

with t v x and t v y. Moreover, we write x ≺ y if wa0 v x and wa1 v y, where

w = x∧ y. We also write x � y if either x = y or x ≺ y. The ordering ≺ restricted

on 2N is the usual lexicographical ordering of the Cantor set.

2.1.2. We view every subset of 2<N as a subtree with the induced partial ordering.

A subtree T of 2<N is said to be pruned if for every t ∈ T there exists s ∈ T with

t @ s. It is said to be downwards closed if for every t ∈ T and every s @ t we have

that s ∈ T . For a subtree T of 2<N (not necessarily downwards closed), by T̂ we

denote the downwards closure of T , that is, the set T̂ := {s : ∃t ∈ T with s v t}. If

T is downwards closed, then the body [T ] of T is the set {x ∈ 2N : x|n ∈ T ∀n}.

2.1.3. Let T be a (not necessarily downwards closed) subtree of 2<N. For every

t ∈ T by |t|T we denote the cardinality of the set {s ∈ T : s @ t} and for every

n ∈ N we set T (n) := {t ∈ T : |t|T = n}. Moreover, for every t1, t2 ∈ T by t1 ∧T t2
we denote the @-maximal node w of T such that w v t1 and w v t2. Notice

that t1 ∧T t2 v t1 ∧ t2. Given two subtrees S and T of 2<N, we say that S is a

regular subtree of T if S ⊆ T and for every n ∈ N there exists m ∈ N such that

S(n) ⊆ T (m). For a regular subtree T of 2<N, the level set LT of T is the set

{ln : T (n) ⊆ 2ln} ⊆ N. Notice that the infinite chains of T are naturally identified

with the product [T̂ ] × [LT ]∞. A pruned subtree T of 2<N is said to be dyadic if

every t ∈ T has exactly two immediate successors in T . We observe that a subtree

T of the Cantor tree is a regular dyadic subtree of 2<N if and only if there exists a

(necessarily unique) bijection iT : 2<N → T such that the following are satisfied.

(1) For every t1, t2 ∈ 2<N we have |t1| = |t2| if and only if |iT (t1)|T = |iT (t2)|T .

(2) For every t1, t2 ∈ 2<N we have t1 @ t2 (respectively, t1 ≺ t2) if and only if

iT (t1) @ iT (t2) (respectively, iT (t1) ≺ iT (t2)).

When we write T = (st)t∈2<N , where T is a regular dyadic subtree of 2<N, we mean

that st = iT (t) for all t ∈ 2<N. Finally we notice the following. If T is a regular

dyadic subtree of 2<N and R is a regular dyadic subtree of T , then R is a regular

dyadic subtree of 2<N too.

2.1.4. Let L be an infinite subset of 2<N and σ ∈ 2N. We say that L converges to

σ if for every k ∈ N the set L \ {t ∈ 2<N : σ|k v t} is finite. The element σ will be

called the limit of the set L. We write L→ σ to denote that L converges to σ.
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2.1.5. For every infinite L ⊆ 2<N and every σ ∈ 2N we write L ≺ σ (respectively,

σ ≺ L) to denote the fact that for every t ∈ L we have t ≺ σ (respectively, for every

t ∈ L we have σ ≺ t).

2.2. Chains. For a regular dyadic subtree T of 2<N, denote by [T ]chains the set of

all infinite chains of T . By identifying every infinite chain of T with its characteristic

function (that is, an element of 2T ), it is easy to see that the set [T ]chains is a Gδ

(hence Polish) subspace of 2T . The following result, essentially due to Stern [Ste]

(see also [Mi, Pa]), includes the Ramsey property of [T ]chains needed in the sequel.

Theorem 5. Let T be a regular dyadic subtree of 2<N and let A be an analytic

subset of [T ]chains. Then there exists a regular dyadic subtree R of T such that

either [R]chains ⊆ A, or [R]chains ∩A = ∅.

2.3. Increasing and decreasing antichains. This subsection is devoted to the

presentation of an analogue of Theorem 5 for infinite antichains of the Cantor tree.

It not difficult to find an open partition of all infinite antichains (tn) of 2<N satisfying

tn ≺ tn+1 and |tn| < |tn+1| for every n ∈ N and such that there is no dyadic subtree

of 2<N for which all of its antichains of the above form are monochromatic. This

explains the necessity of condition (2) in the following definition.

Definition 6. Let T be a regular dyadic subtree of the Cantor tree 2<N. An infinite

antichain (tn) of T will be called increasing if the following conditions are satisfied.

(1) For every n,m ∈ N with n < m we have |tn|T < |tm|T .

(2) For every n,m, l ∈ N with n < m < l we have |tn|T 6 |tm ∧T tl|T .

(3I) For every n,m ∈ N with n < m have tn ≺ tm.

The set of all increasing antichains of T will be denoted by Incr(T ). Similarly,

an infinite antichain (tn) of T will be called decreasing if (1) and (2) above are

satisfied and (3I) is replaced by the following.

(3D) For every n,m ∈ N with n < m we have tm ≺ tn.

The set of all decreasing antichains of T will be denoted by Decr(T ).

Below we collect some basic properties of increasing and decreasing antichains.

Proposition 7. The following hold.

(P1) Let (tn) ∈ Incr(T ) and let L = {l0 < l1 < · · · } be an infinite subset of N.

Then (tln) ∈ Incr(T ). Similarly, if (tn) ∈ Decr(T ), then (tln) ∈ Decr(T ).

(P2) Let (tn) be an infinite antichain of T . Then there exists L = (ln) ∈ [N]∞

such that either (tln) ∈ Incr(T ) or (tln) ∈ Decr(T ).

(P3) We have Incr(T ) = Incr(2<N) ∩ 2T , and similarly for the decreasing an-

tichains.

(P4) Let (tn) be an increasing (respectively, decreasing) antichain of 2<N. Then

(tn) converges to σ, where σ is the unique element of 2N determined by the

chain (cn) with cn = tn ∧ tn+1.
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(P5) If L is an infinite subset of 2<N and σ ∈ 2N are such that L→ σ and L ≺ σ
(respectively, σ ≺ L), then every infinite subset of L contains an increasing

(respectively, decreasing) antichain converging to σ.

(P6) Let A1 = (t1n) and A2 = (t2n) be two increasing (respectively, decreasing)

antichains of 2<N converging to the same σ ∈ 2N. Then there exists an

increasing (respectively, decreasing) antichain (tn) of 2<N converging to σ

such that t2n ∈ A1 and t2n+1 ∈ A2 for all n ∈ N.

(P7) Let (σn) be a sequence in 2N converging to σ ∈ 2N. For every n ∈ N let

Nn = (tnk ) be a sequence in 2<N converging to σn. If σn ≺ σ (respectively,

σn � σ) for all n, then there exist an increasing (respectively, decreasing)

antichain (tm) and L = {nm : m ∈ N} such that (tm) converges to σ and

tm ∈ Nnm for all m ∈ N.

Most of the above properties are easily verified. We refer the reader to [ADK]

for more information.

By property (P4) of the above proposition, we see that for every regular dyadic

subtree T of 2<N and every increasing (respectively, decreasing) antichain (tn) of

T there exists a unique σ ∈ [T̂ ] such that the sequence (tn) converges to σ. We call

this σ as the limit point of (tn).

Let T be a regular dyadic subtree of 2<N. As in the case of chains and by

identifying every increasing antichain of T with its characteristic function, we see

that the set Incr(T ) is a Gδ subspace of 2T . Respectively, the set Decr(T ) is also a

Gδ subspace of 2T . The Ramsey properties of increasing and decreasing antichains

are included in the following theorem.

Theorem 8. Let T be a regular dyadic subtree of 2<N and let A be an analytic

subset of Incr(T ) (respectively, of Decr(T )). Then there exists a regular dyadic

subtree R of T such that either Incr(R) ⊆ A, or Incr(R) ∩ A = ∅ (respectively,

either Decr(R) ⊆ A, or Decr(R) ∩A = ∅).

We will briefly comment on the proof, referring to [ADK] for a more detailed pre-

sentation. The method is to reduce the coloring of Incr(T ) (respectively, Decr(T ))

to a coloring of a certain class of subtrees of the dyadic tree, for which it is known

that it is Ramsey.

We argue for the case of increasing antichains as the case of decreasing antichains

is similar. For every regular dyadic subtree T of 2<N we define a class [T ]Incr of

regular subtrees of T as follows. For notational convenience, let us assume that

T = 2<N. Let σ ∈ 2N not eventually zero. We select a sequence (sn) in 2<N such

that sn @ san 1 v sn+1 @ σ for every n ∈ N (this can be done since σ is not

eventually zero). Next, we select a sequence (σn) in 2N such that san 0 @ σn for

every n ∈ N. Let L = {l0 < l1 < · · · } ∈ [N]∞ where ln = |sn| for all n ∈ N. A tree

S belongs to [2<N]Incr if there exist σ ∈ 2N, a sequence (sn) in 2<N and a sequence
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(σn) in 2N as described above, such that

S =
⋃
k∈N
{σn|lk : n 6 k}.

It is easy to see that S is a regular subtree and [Ŝ] = {σn : n ∈ N}∪{σ}. Moreover,

observe that the sequence IS = (σn|ln+1) is an increasing antichain of 2<N which

converges to σ. The map Φ: [T ]Incr → Incr(T ) defined by Φ(S) = IS is easily seen

to be continuous and onto. By the results in [Ka], the family [T ]Incr is Ramsey,

that is, for every analytic subset B of [T ]Incr there exists a regular dyadic subtree

R of T such that either [R]Incr ⊆ B, or [R]Incr ∩B = ∅.
Now let T and A be as in Theorem 8 and consider the coloring B = Φ−1(A) of

[T ]Incr. If R is any regular dyadic subtree of T such that [R]Incr is monochromatic

with respect to B, then it is easy to see that so is Incr(R) with respect to A.

We notice that Theorem 8 has been obtained independently by Todorčević with

a different proof based on Milliken’s theorem ([To2]).

2.4. Partitions of perfect sets of reals. Recall that a subset M of a Polish

space X is said to be meager (or of first category) if M is covered by a countable

union of closed nowhere dense sets. A subset C of X is said to be co-meager if its

complement is meager. Finally, a subset A of X is said to have the Baire property

if there exist an open subset U of X and meager set M such that A 4 U = M .

It is classical fact that the family of all sets with the Baire property contains the

σ-algebra generated by the analytic sets (see [Ke]). We will need the following

partition theorem due to Galvin (see, e.g., [Ke, Theorem 19.6]).

Theorem 9. Let X1, . . . , Xn be perfect Polish spaces. Also let A be a subset

of X1 × · · · × Xn with the Baire property. If A is non-meager, then for every

i ∈ {1, . . . , n} there exists a perfect set Pi ⊆ Xi such that P1 × · · · × Pn ⊆ A.

3. An extension of Stern’s theorem

Let us start with the proof of Theorem 3 stated in the introduction, which is

implicitly contained in [ADK].

Proof of Theorem 3. Denote by (en) the standard basis of `1. First, we argue as in

[Ste] to homogenize the behavior of all subsequences of {xt : t ∈ 2<N} determined

by chains. In particular, consider the following subsets of [2<N]chains defined by

X1 :=
{

(tn) ∈ [2<N]chains : (xtn) is equivalent to (en)
}
,

X2 :=
{

(tn) ∈ [2<N]chains : (xtn) is weak Cauchy
}
, and

X3 := [2<N]chains \ (X1 ∪ X2).

It is easy to see that the set X1 is Fσ. On the other hand, the set X2 is co-

analytic (see [Ste] for a detailed explanation of this fact). Applying Theorem 5

successively three times, we obtain a regular dyadic subtree T1 of 2<N such that
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for every i ∈ {1, 2, 3} we have that either [T1]chains ⊆ Xi or [T1]chains ∩ Xi = ∅. By

Rosenthal’s `1 theorem [Ro], we see that for every regular dyadic subtree R of 2<N

we have that either [R]chains ∩ X1 6= ∅, or [R]chains ∩ X2 6= ∅. It follows that there

exists i ∈ {1, 2} such that [T ]chains ⊆ Xi, that is, either for every infinite chain

(tn) of T1 the sequence (xtn) is equivalent to the standard basis of `1, or for every

infinite chain (tn) of T1 the sequence (xtn) is weak Cauchy.

Now consider the following subsets of Incr(T1) defined by

C1 :=
{

(tn) ∈ Incr(T1) : (xtn) is equivalent to (en)
}
,

C2 :=
{

(tn) ∈ Incr(T1) : (xtn) is weak Cauchy
}
, and

C3 := Incr(T1) \ (C1 ∪ C2).

Again we see that C1 is Fσ while the set C2 is co-analytic (this can be checked

by similar arguments as in [Ste]). Applying Theorem 8 three times and arguing

as before, we obtain a regular dyadic subtree T2 of T1 and j ∈ {1, 2} such that

Incr(T2) ⊆ Cj .
Finally, applying Theorem 8 for the decreasing antichains of T2 and the colors

K1 :=
{

(tn) ∈ Decr(T2) : (xtn) is equivalent to (en)
}
,

K2 :=
{

(tn) ∈ Decr(T2) : (xtn) is weak Cauchy
}
, and

K3 := Decr(T2) \ (K1 ∪ K2)

we find a regular dyadic subtree T3 of T2 and l ∈ {1, 2} such that Decr(T3) ⊆ Kl.
If [T3]chains, Incr(T3) and Decr(T3) avoid the colors X1, C1 and K1 respectively,

then the tree T3 is the desired one. If not, then we will pass to a further dyadic

subtree T of T3 in order to achieve uniformity. So, assume that Incr(T3) is included

in C1 (the other cases are similar). For every k ∈ N set

Fk :=
{

(tn) ∈ Incr(T3) : (xtn) is k-equivalent to (en)
}
.

Clearly Fk is a closed subset Incr(T3). Moreover, Incr(T3) =
⋃
k Fk. It follows that

there exists k0 ∈ N such that the set Fk0 has nonempty interior in Incr(T3). Let

(tn) ∈ Int(Fk0). There exists n0 ∈ N such that if (sn) ∈ Incr(T3) and sn = tn

for every n 6 n0, then (sn) ∈ Fk0 . We set w := tn0+1 ∧T tn0+2 and we define

T := {t ∈ T3 : w v t}. Clearly T is a regular dyadic subtree of T3. Moreover, it

is easy to see that Incr(T ) ⊆ Fk0 . That is, for every increasing antichain (rn) of

T the sequence (xrn) is k0-equivalent to (en). Thus, we have achieved the desired

uniformity.

Finally, we notice that if Incr(T ) ⊆ C2, then for every (tn) and (sn) in Incr(T )

with the same limit point in [T̂ ], the sequences (xtn) and (xsn) are both weak*

convergent to the same element of X∗∗. For if not, then by property (P6) of

Proposition 7, we would be able to construct an increasing antichain (rn) of T such

that the sequence (xrn) is not weak Cauchy, contradicting in particular the fact
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that Incr(T ) ⊆ C2. The case of decreasing antichains is similarly treated. The

proof is completed. �

Remark 1. We notice that the behavior of the sequence (xt)t∈T along chains of T

is independent of the corresponding one along increasing antichains (and decreasing

antichains, respectively). In particular, all subsequences of (xt)t∈T determined by

chains and increasing antichains can be weak* convergent while all subsequences

determined by decreasing antichains are equivalent to the standard basis of `1. For

example, let X be the completion of c00(2<N) under the norm

‖x‖ := sup
{∑
n∈N
|x(tn)| : (tn) ∈ Decr(2<N)

}
.

Consider the standard Hamel basis (et)t∈2<N of c00(2<N). It is easy to see that

for every sequence (tn) in 2<N which is either a chain or an increasing antichain,

the sequence (etn) is 1-equivalent to the standard basis of c0. In particular, it is

weakly-null. On the other hand, if (tn) is a decreasing antichain, then the sequence

(etn) is 1-equivalent to the standard basis of `1.

We will also need the following result which is based on Theorem 3 and on the

properties of increasing and decreasing antichains described in Proposition 7.

Theorem 10. Let X be a separable Banach space not containing `1. Also let

∆ = {xt : t ∈ 2<N} be a bounded family in X. Then there exist a regular dyadic

subtree T of 2<N and a family {y0σ, y+σ , y−σ : σ ∈ P} ⊆ X∗∗, where P = [T̂ ], such

that for every σ ∈ P the following are satisfied.

(1) The sequence (xσ|n)n∈LT is weak* convergent to y0σ (recall that LT stands

for the level set of T ).

(2) For every sequence (σn) in P converging to σ such that σn ≺ σ for all

n ∈ N, the sequence (yεnσn) is weak* convergent to y+σ for any choice of

εn ∈ {0,+,−}. If such a sequence (σn) does not exist, then y+σ = y0σ.

(3) For every sequence (σn) in P converging to σ such that σ ≺ σn for all

n ∈ N, the sequence (yεnσn) is weak* convergent to y−σ for any choice of

εn ∈ {0,+,−}. If such a sequence (σn) does not exist, then y−σ = y0σ.

(4) For every infinite subset L of T converging to σ with L ≺ σ, the sequence

(xt)t∈L is weak* convergent to y+σ .

(5) For every infinite subset L of T converging to σ with σ ≺ L, the sequence

(xt)t∈L is weak* convergent to y−σ .

Moreover, the functions 0,+,− : P × (BX∗ , w
∗)→ R defined by

0(σ, x∗) = y0σ(x∗), +(σ, x∗) = y+σ (x∗), −(σ, x∗) = y−σ (x∗)

are all Borel.

The family {y0σ, y+σ , y−σ : σ ∈ P} obtained by Theorem 10, determines the weak*

closure of the family {xt : t ∈ T}. Theorem 10 appears in [ADK] where it is stated
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and proved in the broader frame of separable Rosenthal compacta. It is part of a

finer analysis of the topological behavior of the family {xt : t ∈ 2<N} yielding a

complete canonization of any family as above.

Proof. Applying Theorem 3 and invoking our hypotheses on the space X, we obtain

a regular dyadic subtree T of 2<N such that, setting P = [T̂ ], the following are

satisfied.

(i) For every (tn) ∈ Incr(T ) the sequence (xtn) is weak Cauchy.

(ii) For every (tn) ∈ Decr(T ) the sequence (xtn) is weak Cauchy.

(iii) For every σ ∈ P the sequence (xσ|n)n∈LT is weak Cauchy.

For every σ ∈ P we define y0σ, y
+
σ and y−σ in X∗∗ as follows. First, let y0σ be the

weak* limit of the sequence (xσ|n)n∈LT . If there exists an increasing antichain (tn)

of T converging to σ, then let y+σ be the weak* limit of the sequence (xtn). By

Theorem 3, y+σ is well-defined and independent of the choice of (tn). Otherwise,

we set y+σ = y0σ. Similarly, we define y−σ as the weak* limit of the sequence (xtn)

with (tn) a decreasing antichain of T converging to σ, if such an antichain exists.

Otherwise, we set y−σ = y0σ.

We claim that the tree T and the family {y0σ, y+σ , y−σ : σ ∈ P} are as desired.

First we notice that, by property (P5) in Proposition 7, properties (i) and (ii) above

are strengthened as follows.

(iv) For every σ ∈ P and every infinite subset L of T with L → σ and L ≺ σ,

the sequence (xt)t∈L is weak* convergent to y+σ .

(v) For every σ ∈ P and every infinite subset L of T with L → σ and σ ≺ L,

the sequence (xt)t∈L is weak* convergent to y−σ .

Hence, by (iii), (iv) and (v), we see that properties (1), (4) and (5) in the statement

of the theorem are satisfied. We will only check that property (2) is satisfied (the

argument for (3) is symmetric). We argue by contradiction. So assume that there

exist a sequence (σn) in P , σ ∈ P and a sequence (εn) in {0,+,−} such that σn ≺ σ
for all n ∈ N, σn → σ while (yεnσn) is not weak* convergent to y+σ . Hence, there

exist L ∈ [N]∞, a weak* open neighborhood V of y+σ such that yεnσn /∈ V
w∗

for every

n ∈ L. For every n ∈ L we select a sequence (tnk ) in T such that the following are

satisfied.

(a) The sequence Nn = (tnk ) converges (as a subset of T ) to σn.

(b) The sequence (xtnk ) is weak* convergent to yεnσn .

(c) For every k ∈ N we have xtnk /∈ V
w∗

.

By property (P7) in Proposition 7, there exists a diagonal increasing antichain (tm)

converging to σ. By (c) above, we see that (xtm) is not weak* convergent to y+σ ,

which is a contradiction by the definition of y+σ .

Finally, we will check the Borelness of the maps 0, + and −. Let {l0 < l1 < · · · }
be the increasing enumeration of the level set LT of T . For every n ∈ N define

hn : P × (BX∗ , w
∗)→ R by hn(σ, x∗) = x∗(xσ|ln). Clearly hn is continuous. Notice
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that for every (σ, x∗) ∈ P ×BX∗ we have

0(σ, x∗) = y0σ(x∗) = limhn(σ, x∗).

Hence 0 is Borel (actually, it is Baire class one). We will only check the Borelness

of the function + (the argument for the map − is symmetric). For every n ∈ N
and every σ ∈ P let ln(σ) be the lexicographically minimum of the closed set

{τ ∈ P : σ|ln @ τ}. Clearly ln(σ) ∈ P . Moreover, observe that the function

P 3 σ 7→ ln(σ) ∈ P is continuous. Invoking the definition of y+σ and property (2)

in the statement of the theorem, we see that for all (σ, x∗) ∈ P ×BX∗ we have

+(σ, x∗) = y+σ (x∗) = lim y0ln(σ)(x
∗) = lim 0

(
ln(σ), x∗

)
.

Thus, + is a Borel map and the proof is completed. �

4. Perfect unconditional families

This section is devoted to the proof of Theorem 4 stated in the introduction. Let

us recall that a family {xi : i ∈ I} in a Banach space X is said to be 1-unconditional

if for every F ⊆ G ⊆ I and every (ai)i∈G in RG we have∥∥∑
i∈F

aixi
∥∥ 6 ∥∥∑

i∈G
aixi

∥∥.
As we have already mentioned, the construction of the perfect subset R in Theo-

rem 4 is done by induction. The basic step for accomplishing the construction is

described in the following lemma. Its proof is based on the partition theorem of

Galvin (Theorem 9 above).

Lemma 11. Let X, Q and D be as in Theorem 4. Let n ∈ N and let Q0, . . . , Qn

be pairwise disjoint perfect subsets of Q. Then for every i ∈ {0, . . . , n} there exists

a perfect subset Ri of Qi such that for every (σ0, . . . , σn) ∈ R0×· · ·×Rn the family

{z∗∗σ0
, . . . , z∗∗σn} is 1-unconditional.

Proof. For every k ∈ N and every tuple P0, . . . , Pk of pairwise disjoint perfect

subsets of Q we set

U(P0, . . . , Pk) :=
{

(σ0, . . . , σk) ∈ P0 × · · · × Pk : {z∗∗σ0
, . . . , z∗∗σk} is 1-unconditional

}
.

Let n ∈ N and let Q0, . . . , Qn be as in the statement of the lemma. For every

nonempty F ⊆ {0, . . . , n}, every rational ε > 0 and every (ai)
n
i=0 ∈ Qn+1 we define

D := D
(
F, ε, (ai)

n
i=0

)
by

D =
{

(σ0, . . . , σn) ∈ Q0 × · · · ×Qn :
∥∥∑
i∈F

aiz
∗∗
σi

∥∥ < (1 + ε)
∥∥ n∑
i=0

aiz
∗∗
σi

∥∥}.
Clearly we have

(1) U(Q0, . . . , Qn) =
⋂

F,ε,(ai)ni=0

D
(
F, ε, (ai)

n
i=0

)
.

Claim 1. The set D = D
(
F, ε, (ai)

n
i=0

)
has the Baire property in Q0 × · · · ×Qn.
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Proof of the claim. By our assumptions, we see that the functions Φn,ΦF : Q0 ×
· · · × Qn × (BX∗ , w

∗) → R, defined by Φn(σ0, . . . , σn, x
∗) =

∑n
i=0 aiz

∗∗
σi (x

∗) and

ΦF (σ0, . . . , σn, x
∗) =

∑
i∈F aiz

∗∗
σi (x

∗) respectively, are both Borel. Notice that

(σ0, . . . , σn) ∈ D ⇔ ∃p ∈ Q
(∥∥∑

i∈F
aiz
∗∗
σi

∥∥ 6 p and
p

1 + ε
<
∥∥ n∑
i=0

aiz
∗∗
σi

∥∥)
⇔ ∃p ∈ Q

[(
∀x∗ ∈ BX∗ we have ΦF (σ0, . . . , σn, x

∗) 6 p
)

and
(
∃x∗ ∈ BX∗ with

p

1 + ε
< Φn(σ0, . . . , σn, x

∗)
)]

Hence, D belongs to the σ-algebra generated by the analytic sets. Finally, we recall

that the σ-algebra generated by the analytic sets is included in the σ-algebra of all

sets with Baire property. The claim is proved. �

Claim 2. For every tuple P0, . . . , Pn of perfect subsets of Q0, . . . , Qn there exists

(σ0, . . . , σn) ∈ D
(
F, ε, (ai)

n
i=0

)
∩ (P0 × · · · × Pn).

Proof of the claim. For every i ∈ {0, . . . , n} we fix τi ∈ Pi. Let x∗0 ∈ BX∗ such that∥∥∑
i∈F

aiz
∗∗
τi

∥∥ < (1 + ε)
∑
i∈F

aiz
∗∗
τi (x∗0).

The family {z∗∗σ : σ ∈ Q} accumulates to 0 in the weak* topology. Therefore,

z∗∗σ (x∗0) = 0 for all but countable many σ ∈ Q. For every i ∈ {0, . . . , n} \F we may

select σ′i ∈ Pi with z∗∗σ′i
(x∗0) = 0. Finally, for every i ∈ {0, . . . , n} we define σi := τi

if i ∈ F and σi := σ′i otherwise. Then (σ0, . . . , σn) ∈ P0 × · · · × Pn and, moreover,∥∥∑
i∈F

aiz
∗∗
σi

∥∥ =
∥∥∑
i∈F

aiz
∗∗
τi

∥∥ < (1 + ε)
∑
i∈F

aiz
∗∗
τi (x∗0)

= (1 + ε)

n∑
i=0

aiz
∗∗
σi (x

∗
0) 6 (1 + ε)

∥∥ n∑
i=0

aiz
∗∗
σi

∥∥.
Thus, (σ0, . . . , σn) ∈ D

(
F, ε, (ai)

n
i=0

)
∩ (P0× · · · ×Pn) and the claim is proved. �

By Claim 1, for every F, ε and (ai)
n
i=0 the set D

(
F, ε, (ai)

n
i=0

)
has the Baire

property in Q0×· · ·×Qn. We claim that the set D
(
F, ε, (ai)

n
i=0

)
must be co-meager

in Q0 × · · · × Qn. Indeed, if not, then by Theorem 9 there would existed perfect

subsets P0, . . . , Pn of Q0, . . . , Qn such that D
(
F, ε, (ai)

n
i=0

)
∩ (P0 × · · · × Pn) = ∅

which clearly contradicts Claim 2. It follows that D
(
F, ε, (ai)

n
i=0

)
is co-meager.

By (1), so is the set U(Q0, . . . , Qn). By Theorem 9 once more, there exist perfect

subsets R0, . . . , Rn of Q0, . . . , Qn such that R0×· · ·×Rn ⊆ U(Q0, . . . , Qn) and the

proof is completed. �

We are ready to proceed to the proof of Theorem 4.

Proof of Theorem 4. By recursion on the length of finite sequences in 2<N, we shall

construct a family (Rt)t∈2<N of perfect subsets of Q such that the following are

satisfied.
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(C1) For every t ∈ 2<N we have diam(Rt) 6 1
2|t|

.

(C2) For every t ∈ 2<N we have Rta0, Rta1 ⊆ Rt and Rta0 ∩Rta1 = ∅.
(C3) For every n > 1, every t ∈ 2n and every σt ∈ Rt the family {z∗∗σt : t ∈ 2n}

is 1-unconditional.

Assuming that the construction has been carried out, we set

R :=
⋃
σ∈2N

⋂
n∈N

Rσ|n.

Clearly, R is a perfect subset of Q. Moreover, using condition (C2) above, it is easy

to see that the family {z∗∗σ : σ ∈ R} is 1-unconditional.

We proceed to the construction. We set R∅ := Q. Assume that for some

n > 1 the family (Rt)t∈2n−1 has been constructed. For every t ∈ 2n−1 and ev-

ery i ∈ {0, 1} we select Qtai perfect subset of Rt with diam(Qtai) 6
1
2n and such

that Qta0 ∩ Qta1 = ∅. Let t0 ≺ · · · ≺ t2n−1 denote the ≺-increasing enumeration

of 2n. We apply Lemma 11 to the family of perfect setsQt0 , . . . , Qt2n−1
and for every

t ∈ 2n we obtain a perfect subset Rt of Qt such that for every (σt)t∈2n ∈
∏
t∈2n Rt

the family {z∗∗σt : t ∈ 2n} is 1-unconditional. Clearly, the family (Rt)t∈2n satisfies

(C1)–(C3) above. This completes the construction and the proof is completed. �

Remark 2. We notice that the existence of a subset of X∗∗ of the size of the

continuum which is weak* discrete and having 0 as the unique weak* accumulation

point can be obtained by the results of Todorčević in [To1], after observing that

(BX∗∗ , w
∗) is a separable Rosenthal compact containing 0 as a non-Gδ point. His

remarkable proof uses, among others, forcing arguments and absoluteness. This

result has been strengthened and extended to a wider class of Rosenthal compacta

in [ADK], with a proof avoiding metamathematics.

5. The main results

In this section we present the proof of Theorem 1 stated in the introduction. We

also state and prove some of its consequences. As we have mentioned, the proof is

based on the following fundamental construction due to Stegall [St]. A variation of

Stegall’s construction has been presented by Godefroy and Talagrand [GT] in the

more general context of representable Banach spaces (see, also, [GL]). We refer the

reader to [AGR] for a full account of related results.

Theorem 12. Let X be a separable Banach space with non-separable dual. Then

for every ε > 0 there exist a family ∆ε = {xt : t ∈ 2<N} in (1 + ε)BX and a

subset Dε = {x∗σ : σ ∈ 2N} in the sphere of X∗ which is weak* homeomorphic to

the Cantor set 2N via the map σ 7→ x∗σ and such that for every σ ∈ 2N and every

t ∈ 2<N we have

|x∗σ(xt)− δσt| <
1

2|t|

where δσt = 1 if t @ σ and δσt = 0 otherwise.
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Although the above statement is not explicitly isolated in [St], it is the precise

content of the proof.

We notice the following property of the sets ∆ε and Dε obtained by Theorem

12. For every σ ∈ 2N let x∗∗σ be any weak* accumulation point of the family

{xσ|n : n ∈ N}. Then the family {(x∗σ, x∗∗σ ) : σ ∈ 2N} ⊆ X∗ × X∗∗ forms a

bi-orthogonal system, and so, the set {x∗∗σ : σ ∈ 2N} is weak* discrete.

We are ready to proceed to the proof of Theorem 1.

Proof of Theorem 1. We apply Theorem 12 for ε = 1 and we obtain a family

∆1 = {xt : t ∈ 2<N} in 2BX and a family D1 = {x∗σ : σ ∈ 2N} in the sphere

of X∗ as described in Theorem 12. Next, we apply Theorem 10 for the family

∆ = {xt/2 : t ∈ 2<N} and we obtain a regular dyadic subtree T of 2<N and a family

{y0σ, y+σ , y−σ : σ ∈ P} ⊆ BX∗∗ where P = [T̂ ]. Notice that the set {(y0σ, 2x∗σ) : σ ∈ P}
forms a bi-orthogonal system. We fix a perfect subset Q of P with the following

property. For every τ ∈ Q there exists a sequence (τn) in P with τn ≺ τ for all

n ∈ N and such that τn → τ . This condition guarantees that the function y+τ is not

trivially equal to y0τ . For every τ ∈ Q we set z∗∗τ = y0τ − y+τ and z∗τ = 2x∗τ .

Claim. The following hold.

(1) For every τ ∈ Q we have z∗∗τ 6= 0.

(2) The family {(z∗τ , z∗∗τ ) : τ ∈ Q} forms a bounded bi-orthogonal system in

X∗ ×X∗∗.
(3) The family {z∗∗τ : τ ∈ Q} is weak* discrete having 0 as the unique weak*

accumulation point.

(4) The function Φ: Q×(BX∗ , w
∗)→ R defined by Φ(τ, x∗) = z∗∗τ (x∗) is Borel.

Granting the claim, we complete the proof as follows. By (3) and (4) above,

we see that Theorem 4 can be applied to the family D = {z∗∗τ : τ ∈ Q}. Hence,

there exists a further perfect subset R of Q such that the family {z∗∗τ : τ ∈ R}
is 1-unconditional. By (2) above and identifying R with 2N, we conclude that the

family {(z∗τ , z∗∗τ ) : τ ∈ R} is as desired.

So it only remains to prove the claim. First we argue for (1). Fix τ ∈ Q and

pick a sequence (τn) in P with τn → τ and such that τn ≺ τ for every n ∈ N. By

property (2) of Theorem 10, we see that y0τn(x∗) → y+τ (x∗) for all x∗ ∈ BX∗ . By

the bi-orthogonality of the family {(y0σ, 2x∗σ) : σ ∈ P}, we see that

0 = y0τn(x∗τ )→ y+τ (x∗τ )

and so z∗∗τ (z∗τ ) = 2y0τ (x∗τ ) = 1. Hence, z∗∗τ 6= 0. With identical arguments, we

see that for every τ, τ ′ ∈ Q with τ 6= τ ′ we have z∗∗τ (z∗τ ′) = 0. Thus, the family

{(z∗τ , z∗∗τ ) : τ ∈ Q} forms a bi-orthogonal system in X∗×X∗∗, that is, (2) is satisfied.

To see (3), it is enough to show that for every sequence (τn) in Q with tn 6= tm if

n 6= m, the sequence (z∗∗τn) has a subsequence weak* convergent to 0. So, let (τn)

be one. By passing to a subsequence, we may assume that there exists τ ∈ Q such
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that τn → τ and either τn ≺ τ for all n ∈ N or vice versa. We will treat the first

case (the argument is symmetric). By property (2) of Theorem 10, we see that

both (y0τn) and (y+τn) are weak* convergent to y+τ . Therefore,

z∗∗τn = y0τn − y
+
τn

w∗→ y+τ − y+τ = 0.

This shows that {z∗∗τ : τ ∈ Q} is weak* discrete having 0 as the unique weak* accu-

mulation point. Finally, the Borelness of the map Φ is an immediate consequence

of the Borelness of the maps 0 and + obtained by Theorem 10. This completes the

proof of the claim, and so, the entire proof is completed. �

5.1. Consequences. Below we state and prove some consequences of Theorem 1.

We start with the following theorem.

Theorem 13. Let X be a separable Banach space with non-separable dual. Then

X∗∗ contains an unconditional family of size |X∗∗|.

Proof. If `1(N) embeds into X, then `1(2c) embeds into X∗∗. Hence, X∗∗ contains

an unconditional family of size 2c = |X∗∗|. If `1(N) does not embed into X, then

the cardinality of X∗∗ is equal to the continuum (see [OR]). By Theorem 1, the

result follows. �

The following trichotomy provides the first positive answer to the “reflexivity or

unconditionality problem”.

Theorem 14. Let X be a separable Banach space. Then one of the following holds.

(a) The space X is saturated with reflexive subspaces.

(b) There exists an unconditional family in X∗∗ of size |X∗∗|.
(c) There exists an unconditional family in X∗∗∗ of size |X∗∗∗|.

Proof. Let X be a separable Banach space. If X∗∗ is separable, then by a result

stated in [M] and proved in [JR] (see also [EW, Theorem 4.1] for a somewhat more

general result), we see that the space X is reflexive saturated, that is, part (a) holds.

So assume that X∗∗ is non-separable. If X∗ is non-separable, then by Theorem 13

we see that (b) is satisfied. Finally, if X∗ is separable, then invoking again Theorem

13 we conclude that (c) holds. The proof is completed. �

We close this section with the following result which provides a positive answer

for the class of dual spaces to Banach’s classical “separable quotient problem”.

Theorem 15. Let X be a Banach space which is isomorphic to a dual Banach

space. Then one of the following holds.

(i) The space X has the Radon–Nikodym property.

(ii) The space X has a separable quotient with an unconditional basis.

Thus, every dual Banach space has a separable quotient.
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For the proof of Theorem 15 we need the following well-known result ([HJ]). We

include the proof for completeness.

Proposition 16. Let X be a Banach space. If X∗ contains an unconditional basic

sequence, then X has a separable quotient with an unconditional basis.

Proof. Let (x∗n) be an unconditional basic sequence in X∗ and set R := span{x∗n :

n ∈ N}. By a classical result of James (see [LT]), either R is reflexive, or `1 embeds

into R, or c0 embeds into R. If R is reflexive, then the weak and weak* topologies

on R coincide. Hence R is weak* linearly homeomorphic to a subspace of X∗, which

yields that X maps onto R∗. Also observe that if `1 embeds into X, then L1[0, 1]

embeds into X∗ (see [Pe]). Therefore, `2 embeds into X∗ which implies that `2 is

a quotient of X.

From now on we assume that `1 does not embed into X. By [BP], we conclude

that c0 does not embed into X∗. Hence, R does not contain c0. What remains is to

treat the case where `1 embeds into R. Since `1 does not embed into X, by [HJ], we

conclude that there exists a weak* null sequence (z∗n) in R equivalent to the usual

basis of `1. Denote by T : `1 → span{z∗n : n ∈ N} ↪→ X∗ the natural isomorphism

and let T ∗ : X∗∗ → `∞ be the dual onto operator. Observe that T ∗|X maps X to

c0, and so, it is weak*-weak continuous. It follows that T ∗ maps X onto c0. This

completes the proof. �

We are ready to proceed to the proof of Theorem 15.

Proof of Theorem 15. Let Y be a Banach space such that X is isomorphic to Y ∗.

Assume that (i) does not hold. It follows that there exists a separable subspace

Z of Y such that Z∗ is non-separable (see [St]). By Theorem 13, we see that Z∗∗

contains an unconditional basic sequence. Hence, so does X∗. By Proposition 16,

we conclude that X has a separable quotient with an unconditional basis and the

result follows. �

Let us mention that Todorčević has shown that there exists a model of set theory

where the continuum hypothesis fails and in which every Banach space of density

character ℵ1 has a separable quotient ([To3]).

6. Tree bases in Banach spaces

We start with the following theorem.

Theorem 17. Let X be a separable Banach space not containing `1 and such that

X∗ is non-separable. Then there exists a seminormalized family (et)t∈2<N such that

the following are satisfied.

(1) For every σ ∈ 2N the sequence (eσ|n) is weak* convergent to an element

z∗∗σ ∈ X∗∗.
(2) For every antichain A of 2<N the sequence (et)t∈A is weakly-null.
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(3) The family {z∗∗σ : σ ∈ 2N} is weak* discrete and has 0 as the unique weak*

accumulation point.

Theorem 17 follows by the general structural result obtained in [ADK] and con-

cerning the behavior of non-Gδ points in a large class of Rosenthal compacta. The

proof, however, given in [ADK] uses deep results from the theory of Rosenthal

compacta and it is rather involved. The one we present below is based on Stegall’s

construction as well as on the analysis behind the proof of Theorem 1.

Proof of Theorem 17. First we argue as in the proof of Theorem 1. Specifically,

applying Theorem 12 for ε = 1 we obtain ∆1 = (xt)t∈2<N and D1 = {x∗σ : σ ∈ 2N}.
Next, we apply Theorem 10 for the family ∆1 and we obtain a regular dyadic

subtree T of 2<N and a family {y0σ, y+σ , y−σ : σ ∈ P}, where P = [T̂ ], as described in

Theorem 10. Without loss of generality and by re-enumerating if necessary (which

can be done since the tree T is regular dyadic), we may assume that T = 2<N and

so P = 2N.

We fix a regular dyadic subtree R = (rt)t∈2<N of 2<N with the following property.

(P) For every t ∈ R we have ta0 /∈ R̂ while ta1 ∈ R̂.

A possible choice can be as follows. For every t = (ε0, . . . , εk) ∈ 2<N set rt :=

(1, ε0, 1, ε1, . . . , 1, εk) if t 6= ∅ and r∅ = ∅. It is easy to see that R = (rt)t∈2<N satisfies

(P) above. We denote by Q the body of R̂. For every σ ∈ 2N let τσ =
⋃
n rσ|n ∈ Q.

The map 2N 3 σ 7→ τσ ∈ Q is a homeomorphism. We isolate the following properties

of R and Q.

(a) If t ∈ 2<N and σ ∈ 2N with rt ≺ τσ (respectively, τσ ≺ rt), then rat 0 ≺ τσ

(respectively, τσ ≺ rat 0).

(b) If (tn) is a sequence in 2<N and σ ∈ 2N are such that rtn → τσ, then

ratn0→ τσ.

(c) For every σ ∈ 2N, the sequence (raσ|n0) is an increasing antichain converging

to τσ.

For every t ∈ 2<N we define

et := xrt − xrat 0.

We claim that the family (et)t∈2<N is the desired one. Using (c) above and properties

(1) and (4) of Theorem 10, we see that for every σ ∈ 2N the sequence (eσ|n) is weak*

convergent to the element

z∗∗σ := y0τσ − y
+
τσ ∈ X

∗∗.

With identical arguments as in the proof of Theorem 1, we see that the family

{z∗∗σ : σ ∈ 2N} is weak* discrete having 0 as the unique weak* accumulation point.

Hence (1) and (3) in the statement of the theorem are satisfied. Let us see that (2)

is also satisfied. Notice that it is enough to prove that for every infinite antichain

A of 2<N there exists B ⊆ A infinite such that the sequence (et)t∈B is weakly-null.

So let A be one. There exist σ ∈ 2N and an infinite subset B of A such that B → σ
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and either t ≺ σ for all t ∈ B or vice versa. Assume that the first case occurs (the

argument is symmetric). Observe that rt ≺ τσ for every t ∈ B. By (a) and (b)

above and property (4) in Theorem 10, we obtain that

w∗ − lim
t∈B

et = w∗ − lim
t∈B

(xtt − xrat 0) = y+τσ − y
+
τσ = 0.

Therefore, the sequence (et)t∈B is weakly-null and the proof is completed. �

Actually, we can considerably strengthen the properties of the sequence (et)t∈2<N

obtained by Theorem 17, as follows.

Theorem 18. Let X be a separable Banach space not containing `1 and with

non-separable dual. Then there exist a family (wt)t∈2<N in X and a family

{w∗∗σ : σ ∈ 2N} in X∗∗ satisfying (1), (2) and (3) of Theorem 17 as well as the

following properties.

(i) The family (wt)t∈2<N is basic when it is enumerated appropriately.

(ii) The family {w∗∗σ : σ ∈ 2N} is 1-unconditional.

(iii) For every n > 1 if t1 ≺ · · · ≺ t2n is the ≺-increasing enumeration of 2n,

then for every {σ1, . . . , σ2n} ⊆ 2N with ti @ σi the families {wti}2
n

i=1 and

{w∗∗σi }
2n

i=1 are (1 + 1
n )-equivalent.

(iv) For every n > 1 the family {wt : t ∈ 2n} is (1 + 1
n )-unconditional.

The proof of Theorem 18 is based on Theorem 17, as well as, on the following

lemmas. In the first one we use Theorem 9 in a similar way as in the proof of

Lemma 11.

Lemma 19. Let X be a separable Banach space. Also let Q be a perfect subset

of 2N and let {z∗∗σ : σ ∈ Q} be a bounded family in X∗∗. Assume that the map

Φ: Q × (BX∗ , w
∗) → R defined by Φ(σ, x∗) = z∗∗σ (x∗) is Borel. Let n ∈ N and let

Q0, . . . , Qn be pairwise disjoint perfect subsets of Q. Then, for every ε > 0 there

exist perfect subsets P0, . . . , Pn of Q0, . . . , Qn such that∣∣∣ ∥∥ n∑
i=0

λiz
∗∗
σi

∥∥− ∥∥ n∑
i=0

λiz
∗∗
τi

∥∥ ∣∣∣ < ε

for every (σi)
n
i=0 and (τi)

n
i=0 in P0 × · · · × Pn and every (λi)

n
i=0 in [−1, 1]n+1.

Proof. Let δ > 0 be sufficiently small which will be determined later, and let

Λ ⊆ [−1, 1] and N ⊆ [0, (n + 1)M ] be finite δ-nets where M > 0 is such that

‖z∗∗σ ‖ 6M for all σ ∈ Q. For every (ai)
n
i=0 in Λn+1 and every a ∈ N set

D(a0, . . . , an, a) :=
{

(σ0, . . . , σn) ∈ Q0 × · · · ×Qn : a− δ <
∥∥ n∑
i=0

aiz
∗∗
σi

∥∥ < a+ δ
}
.

Arguing as in the proof of Claim 1 in Lemma 11, it is easy to verify that the set

D(a0, . . . , an, a) belongs to the σ-algebra generated by the analytic sets, and so, it
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has the Baire property in Q0 × · · · ×Qn. It is easy to see that for every (ai)
n
i=0 in

Λn+1 we have

Q0 × · · · ×Qn =
⋃
a∈N

D(a0, . . . , an, a).

Applying successively Theorem 9 for every (a0, . . . , an) ∈ Λn+1, we obtain prefect

subsets P0, . . . , Pn of Q0, . . . , Qn such that the following property is satisfied. For

every (a0, . . . , an) ∈ Λn+1 there exists unique a ∈ N such that P0 × · · · × Pn ⊆
D(a0, . . . , an, a). We claim that the perfect set P0, . . . , Pn satisfy the conclusion

of the lemma for a sufficiently small δ. Indeed, for every (σi)
n
i=0 and (τi)

n
i=0 in

P0 × · · · × Pn and every (ai)
n
i=0 in Λn+1 we have

−2δ 6
∥∥ n∑
i=0

aiz
∗∗
σi

∥∥− ∥∥ n∑
i=0

aiz
∗∗
τi

∥∥ 6 2δ.

Using this, it is easy to check that for every (λi)
n
i=0 in [−1, 1]n+1 we have∣∣∣ ∥∥ n∑

i=0

λiz
∗∗
σi

∥∥− ∥∥ n∑
i=0

λiz
∗∗
τi

∥∥ ∣∣∣ 6 2(n+ 1)δM + 2δ.

Choosing δ > 0 so that 2(n+ 1)δM + 2δ < ε, the lemma is proved. �

Lemma 20. Let X be a separable Banach space not containing `1. Let n ∈ N
and (z∗∗i )ni=0 in X∗∗. For every i ∈ {0, . . . , n} let (eik) be a sequence in X which is

weak* convergent to z∗∗i . Then, for every ε > 0 there exist w0, . . . , wn finite convex

combinations of (e0k), . . . , (enk ) respectively, such that∣∣∣ ∥∥ n∑
i=0

λiwi
∥∥− ∥∥ n∑

i=0

λiz
∗∗
i

∥∥ ∣∣∣ < ε

for every (λi)
n
i=0 in [−1, 1]n+1.

Proof. We will need the following claim.

Claim. Let d ∈ N and y∗∗0 , . . . , y∗∗d in X∗∗. For every j ∈ {0, . . . , d} let (yjk) be a

sequence in X which is weak* convergent to y∗∗j . Then, for every θ > 0 there exist

k0 ∈ N and µ0, . . . , µk0 in [0, 1] with
∑k0
k=0 µk = 1 such that

(2)
∣∣∣ ∥∥ k0∑

k=0

µky
j
k

∥∥− ‖y∗∗j ‖ ∣∣∣ < θ

for every j ∈ {0, . . . , d}.

Granting the claim, we proceed as follows. Let δ > 0 be sufficiently small, which

we will determine later, and let Λ be a finite δ-net in [−1, 1]. Let (a0i )
n
i=0, . . . , (a

d
i )
n
i=0

be an enumeration of the set Λn+1. For every j ∈ {0, . . . , d} and every k ∈ N we

set y∗∗j =
∑n
i=0 a

j
iz
∗∗
i and yjk =

∑n
i=0 a

j
ie
i
k. Notice that the sequence (yjk) is weak*

convergent to y∗∗j for every j ∈ {0, . . . , d}. We apply the above claim for θ = ε
2 and
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we obtain k0 ∈ N and µ0, . . . , µk0 in [0, 1] satisfying inequality (2) above. For every

i ∈ {0, . . . , n} we set

wi =

k0∑
k=0

µke
i
k.

Notice that for every j ∈ {0, . . . , d} we have

k0∑
k=0

µky
j
k =

k0∑
k=0

µk

( n∑
i=0

ajie
i
k

)
=

n∑
i=0

aji

( k0∑
k=0

µke
i
k

)
=

n∑
i=0

ajiwi.

Hence, inequality (2) is reformulated as follows. For every j ∈ {0, . . . , d} we have∣∣∣ ∥∥ n∑
i=0

aiwi
∥∥− ∥∥ n∑

i=0

aiz
∗∗
i

∥∥ ∣∣∣ < ε

2
.

Let M > 0 be such that ‖eik‖ 6 M and ‖z∗∗i ‖ 6 M for every i ∈ {0, . . . , n} and

every k ∈ N. It follows that for every (λi)
n
i=0 in [−1, 1]n+1 we have∣∣∣ ∥∥ n∑

i=0

λiwi
∥∥− ∥∥ n∑

i=0

λiz
∗∗
i

∥∥ ∣∣∣ 6 2(n+ 1)δM +
ε

2
.

Hence, by choosing δ sufficiently small, the result follows.

It remains to prove the claim. For every j ∈ {0, . . . , d} we select x∗j ∈ X∗ with

‖x∗j‖ = 1 such that ‖y∗∗j ‖ − θ
4 < y∗∗j (x∗j ). By [OR], for every j ∈ {0, . . . , d} we may

select a sequence (xjk) in X satisfying the following.

(a) The sequence (xjk) is weak* convergent to y∗∗j .

(b) For every k ∈ N we have ‖xjk‖ 6 ‖y∗∗j ‖.
(c) For every k ∈ N we have |x∗j (x

j
k)− y∗∗j (x∗j )| < θ

4 .

Notice that for every convex combination w of (xjk) we have

(3) ‖y∗∗j ‖ −
θ

2
6 ‖w‖ 6 ‖y∗∗j ‖.

For every j ∈ {0, . . . , d} and every k ∈ N we set djk := yjk − x
j
k. Observe that the

sequence (djk) is weakly-null. Applying successively Mazur’s theorem (for every j),

we obtain k0 ∈ N and µ0, . . . , µk0 in [0, 1] with
∑k0
k=0 µk = 1 such that for every

j ∈ {0, . . . , d} we have

(4)
∥∥ k0∑
k=0

µkd
j
k

∥∥ < θ

4
.

Since ∣∣∣ ∥∥ k0∑
k=0

µky
j
k

∥∥− ∥∥ k0∑
k=0

µkx
j
k

∥∥ ∣∣∣ 6 ∥∥ k0∑
k=0

µkd
j
k

∥∥,
by inequalities (3) and (4) above, the proof of the claim follows and the lemma is

proved. �
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We recall that a subset I of 2<N is said to be a (finite) segment if there exist

s, t ∈ 2<N with s v t and such that I = {w : s v w v t}. If I = {w : s v w v t}
is a segment, then we set min(I) := s and max(I) := t. By φ : 2<N → N we denote

the unique bijection satisfying φ(s) < φ(t) if either |s| < |t|, or |s| = |t| and s ≺ t

for all s, t ∈ 2<N. For every t ∈ 2<N by Vt we denote the clopen subset {σ : t @ σ}
of 2N. We are ready to proceed to the proof of Theorem 18.

Proof of Theorem 18. First, we start with the families (et)t∈2<N and {z∗∗σ : σ ∈ 2N}
obtained by Theorem 17. Using Theorem 4 and by passing to regular dyadic subtree

if necessary, we may assume that the family {z∗∗σ : σ ∈ 2N} is 1-unconditional. We

observe the following. For every t ∈ 2<N there exists an infinite antichain (sn) of

2<N such that t @ sn for every n ∈ N. By property (2) of Theorem 17, we see that

(esn) is weakly-null. Hence, considering the space X as a subspace of C[0, 1], using

a standard sliding hump argument and by passing to a dyadic (but not necessarily

regular) subtree of 2<N, we may assume the following.

(i) If (tn) is the enumeration of 2<N according to φ, then the sequence (etn) is

Schauder basic.

Let (εn) be a decreasing sequence of positive reals converging sufficiently fast to

zero. By recursion on the length of finite sequences in 2<N, we shall construct

(C1) a Cantor scheme (Pt)t∈2<N of perfect subsets of 2N,

(C2) a family (It)t∈2<N of segments of 2<N, and

(C3) a family (wt)t∈2<N of convex combinations of (et)t∈2<N .

The construction is done so that for every t ∈ 2<N the following are satisfied.

(P1) wt is a convex combination of {es : s ∈ It}.
(P2) Pt ⊆ Vmax(It).

(P3) For every ε ∈ {0, 1} we have max(Iat ε) v min(Itaε).

(P4) For every s, t ∈ 2<N we have |s| < |t| if and only if |max(Is)| < |min(It)|.
(P5) For every n ∈ N and every (σt)t∈2n and (τt)t∈2n in

∏
t∈2n Pt we have

(a) (z∗∗σt )t∈2n is (1 + εn)-equivalent to (z∗∗τt )t∈2n , and

(b) (z∗∗σt )t∈2n is (1 + εn)-equivalent (wt)t∈2n .

Using Lemma 19 and Lemma 20, one can easily realize that such a construction

can be carried out.

For every σ ∈ 2N let τσ be the unique element of 2N determined by the infinite

chain
⋃
n Iσ|n. Clearly the sequence (wσ|n) is weak* convergent to w∗∗σ := z∗∗τσ . It is

easy to check using properties (P3), (P4) and (P5) above that the families (wt)t∈2<N

and {w∗∗σ : σ ∈ 2N} are as desired. The proof is completed. �
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