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Abstract. It is proved that the class of separable Rosenthal compacta on the

Cantor set having a uniformly bounded dense sequence of continuous functions,

is strongly bounded.

1. Introduction

Our main result is a strong boundedness result for the class of separable Rosen-

thal compacta (that is, separable compact subsets of the first Baire class—see

[ADK, Ro2]) on the Cantor set having a uniformly bounded dense sequence of con-

tinuous functions. We shall denote this class by SRC. The phenomenon of strong

boundedness, which was first touched upon by Kechris and Woodin in [KW], is

a strengthening of the classical property of boundedness of Π1
1-ranks. Abstractly,

one has a Π1
1 set B, a natural notion of embedding between elements of B and

a canonical Π1
1-rank φ on B which is coherent with the embedding in the sense

that if x, y ∈ B and x embeds into y, then φ(x) 6 φ(y). The strong boundedness

of B is the fact that for every analytic subset A of B there exists y ∈ B such

that x embeds into y for every x ∈ A. Basic examples of strongly bounded classes

are the well-orderings WO and the well-founded trees WF (although, in these cases

strong boundedness is easily seen to be equivalent to boundedness). Recently, it was

shown (see [AD, DF]) that several classes of separable Banach spaces are strongly

bounded, where the corresponding notion of embedding is that of (linear) isomor-

phic embedding. These results have, in turn, important consequences in the study

of universality problems in Banach space theory.

We will add another example to the list of strongly bounded classes, namely the

class SRC. We notice that every K in SRC can be naturally coded by its dense

sequence of continuous functions. Hence, we identify SRC with the set{
(fn) ∈ B(2N)N : {fn}

p
⊆ B1(2N) and fn 6= fm if n 6= m

}
where B(2N) stands for the closed unit ball of the separable Banach space C(2N).

With this identification, the set SRC is Π1
1-true. A canonical Π1

1-rank on SRC

comes from the work of Rosenthal. Specifically, for every f = (fn) in SRC one

is looking at the order of the `1-tree of the sequence (fn). One also has a natural
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notion of topological embedding between elements of SRC. In particular, if f = (fn)

and g = (gn) are in SRC, then we say that g topologically embeds into f , if there

exists a homeomorphic embedding of the compact space {gn}
p

into {fn}
p
. However,

this topological embedding is rather weak and is not coherent with the Π1
1-rank

on SRC. Thus, we strengthen the notion of embedding by imposing extra metric

conditions on the relation between g and f . To motivate our definition, assume that

g = (gn) and f = (fn) were in addition (Schauder) basic sequences. In this case the

most natural thing to consider is equivalence of basic sequences, that is, g embeds

into f if there exists L = {l0 < l1 < · · · } ∈ [N]∞ such that (gn) is equivalent to

(fln). In such a case, it is easily seen the order of the `1-tree of g is dominated by

the one of f .

Although not every sequence f ∈ SRC is basic, the following condition incor-

porates the above observation. So, we say that g = (gn) strongly embeds into

f = (fn) if g topologically embeds into f and, moreover, for every ε > 0 there exists

Lε = {l0 < l1 < · · · } ∈ [N]∞ such that for every k ∈ N and a0, . . . , ak ∈ R we have

∣∣∣ max
06i6k

∥∥ i∑
n=0

angn
∥∥
∞ −

∥∥ k∑
n=0

anfln
∥∥
∞

∣∣∣ 6 ε k∑
n=0

|an|
2n+1

.

The notion of strong embedding is coherent with the Π1
1-rank on SRC and is consis-

tent with our motivating observation in the sense that if g = (gn) strongly embeds

into f = (fn) and (gn) is basic, then there exists L = {l0 < l1 < · · · } ∈ [N]∞ such

that (fln) is basic and equivalent to (gn). Under the above terminology, we prove

the following theorem.

Main Theorem. Let A be an analytic subset of SRC. Then there exists f ∈ SRC

such that for every g ∈ A the sequence g strongly embeds into f .

2. Background material

Let N = {0, 1, 2, . . . } denote the set of natural numbers. By [N]∞ we denote the

set of all infinite subsets of N, while for every L ∈ [N]∞ by [L]∞ we denote the set

of all infinite subsets of L. For every Polish space X by B1(X) we denote the set

of all real-valued, Baire-1 functions on X. If F is a subset of RX , then by Fp we

denote the closure of F in RX .

Our descriptive set theoretic notation and terminology follows [Ke]. If X,Y are

Polish spaces, A ⊆ X and B ⊆ Y , then we say that A is Wadge (respectively, Borel)

reducible to B if there exists a continuous (respectively, Borel) map f : X → Y such

that f−1(B) = A. If A is Π1
1, then a map φ : A→ ω1 is said to be a Π1

1-rank on A

if there exist relations 6Σ,6Π in Σ1
1 and Π1

1 respectively, such that for every y ∈ A
we have

x ∈ A and φ(x) 6 φ(y)⇔ x 6Σ y ⇔ x 6Π y.
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We notice that if B is Borel reducible to a set A via a Borel map f and φ is a

Π1
1-rank on A, then the map ψ : B → ω1 defined by ψ(y) = φ

(
f(x)

)
for every

y ∈ B, is a Π1
1-rank on B.

2.1. Trees. Let Λ be a nonempty set. By Λ<N we denote the set of all finite

sequences of Λ. We view Λ<N as a tree equipped with the (strict) partial order @ of

end-extension. If t ∈ Λ<N, then the length |t| of t is defined to be the cardinality of

the set {s ∈ Λ<N : s @ t}. If s, t ∈ Λ<N, then by sat we denote their concatenation.

Two nodes s, t ∈ Λ<N are said to be comparable if either s v t or t v s; otherwise,

they are said to be incomparable. A subset of Λ<N consisting of pairwise comparable

nodes is said to be a chain. If L ∈ [N]∞, then by FIN(L) we denote the subset of

L<N consisting of all finite strictly increasing sequences in L. For every x ∈ ΛN and

every n > 1 we set x|n =
(
x(0), . . . , x(n− 1)

)
∈ Λ<N while x|0 = ∅.

A tree T on Λ is a downwards closed subset of Λ<N. By Tr(Λ) we denote the set

of all trees on Λ. Hence,

T ∈ Tr(Λ)⇔ ∀s, t ∈ Λ<N (t ∈ T ∧ s v t⇒ s ∈ T ).

A tree T on Λ is said to be pruned if for every t ∈ T there exists s ∈ T with t @ s.

If T ∈ Tr(Λ), then the body [T ] of T is defined to be the set {x ∈ ΛN : x|n ∈ T ∀n}.
A tree T is said to be well-founded if [T ] = ∅. The subset of Tr(Λ) consisting of

all well-founded trees on Λ will be denoted by WF(Λ). If T ∈ WF(Λ), then set

T ′ := {t : ∃s ∈ T with t @ s} ∈ WF(Λ). By transfinite recursion, we define the

iterated derivatives T (ξ) of T . The order o(T ) of T is defined to be the least ordinal

ξ such that T (ξ) = ∅. If S, T are well-founded trees, then a map φ : S → T is called

monotone if s1 @ s2 in S implies that φ(s1) @ φ(s2) in T . Notice that in this

case o(S) 6 o(T ). If Λ,M are nonempty sets, then we identify every tree T on

Λ ×M with the set of all pairs (s, t) ∈ Λ<N ×M<N such that |s| = |t| = k and(
(s(0), t(0)), . . . , (s(k − 1), t(k − 1))

)
∈ T . If Λ = N, then we shall simply denote

by Tr and WF the sets of all trees and well-founded trees on N respectively. For

every countable set Λ the set WF(Λ) is Π1
1-complete and the map T → o(T ) is a

Π1
1-rank on WF(Λ) (see [Ke]).

2.2. Basic sequences. A sequence (xn) of non-zero vectors in a Banach space X

is said to be a basic sequence if it is a Schauder basis of its closed linear span (see

[LT]). This is equivalent to saying that there exists a constant K > 1 such that for

every m, k ∈ N with m < k and every a0, . . . , ak ∈ R we have

(1)
∥∥ m∑
n=0

anxn
∥∥ 6 K∥∥ k∑

n=0

anxn
∥∥.

The least constant K for which inequality (1) holds is called the basis constant of

(xn). A basic sequence (xn) is said to be monotone if K = 1. It is said to be

seminormalized (respectively, normalized) if there exists a constant M > 0 such

that 1
M 6 ‖xn‖ 6M (respectively, ‖xn‖ = 1) for every n ∈ N.
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Let X and Y be Banach spaces. If (xn) and (yn) are two sequences in X and Y

respectively and C > 1, then we say that (xn) is C-equivalent to (yn) (or simply

equivalent, if C is understood) if for every k ∈ N and every a0, . . . , ak ∈ R we have

1

C

∥∥ k∑
n=0

anyn
∥∥
Y
6 ‖

k∑
n=0

anxn
∥∥
X
6 C

∥∥ k∑
n=0

anyn
∥∥
Y
.

We denote by (xn)
C∼ (yn) the fact that (xn) is C-equivalent to (yn).

3. Coding SRC

Let X be a compact metrizable space and let SRC(X) be the family of all

separable Rosenthal compacta on X having a dense set of continuous functions

which is uniformly bounded with respect to the supremum norm. We denote by

B(X) the closed unit ball of the separable Banach space C(X). Notice that every

K ∈ SRC(X) is naturally coded by its dense sequence of continuous functions.

Hence, we may identify SRC(X) with the set{
(fn) ∈ B(X)N : {fn}

p
⊆ B1(X) and fn 6= fm if n 6= m

}
.

We denote by B(X) the Gδ subset of B(X)N consisting of all sequences f = (fn)

in B(X)N such that fn 6= fm if n 6= m. With the above identification the set

SRC(X) becomes a subset of the Polish space B(X). Moreover, as for every com-

pact metrizable space X the Banach space C(X) embeds isometrically into C(2N),

we shall denote by SRC the set SRC(2N) and we view SRC as the set of all separa-

ble Rosenthal compacta having a uniformly bounded dense sequence of continuous

functions and defined on a compact metrizable space (it is crucial that C(X) em-

beds isometrically into C(2N)—this will be clear later on). The following lemma

provides an estimate for the complexity of the set SRC(X).

Lemma 1. For every compact metrizable space X the set SRC(X) is Π1
1. More-

over, the set SRC is Π1
1-true.

Proof. Instead of calculating the complexity of SRC(X) we will actually find a Borel

map Φ: B(X) → Tr such that Φ−1(WF) = SRC(X). In other words, we will find

a Borel reduction of SRC(X) to WF. This will not only show that SRC(X) is Π1
1,

but also, it will provide a natural Π1
1-rank on SRC(X). This canonical reduction

comes from the work of Rosenthal.

Specifically, let (ei) be the standard basis of `1. With every d ∈ N with d > 1

and every f = (fn) in B(X) we associate a tree T df on N defined by

s ∈ T df ⇔ s = (n0 < · · · < nk) ∈ FIN(N) and (ei)
k
i=0

d∼ (fni)
k
i=0.

Notice that (ei)
k
i=0

d∼ (fni)
k
i=0 if for every a0, . . . , ak ∈ R we have

1

d

k∑
i=0

|ai| 6
∥∥ k∑
i=0

aifni
∥∥
∞ 6 d

k∑
i=0

|ai|.
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Observe that for every t ∈ N<N the set {f : t ∈ T df } is a closed subset of B(X).

This yields that the map B(X) 3 f 7→ T df ∈ Tr is Borel (actually it is Baire-1).

Next, we glue the sequence of trees {T df : d > 1} and we obtain a tree Tf on N
defined by the rule

s ∈ Tf ⇔ ∃d > 1 ∃s′ with s = das′ and s′ ∈ T df .

The tree Tf is usually called the `1-tree of the sequence f = (fn). Clearly the map

Φ: B(X)→ Tr defined by Φ(f) = Tf is Borel.

We observe that

f = (fn) ∈ SRC(X)⇔ Tf ∈WF.

This equivalence is essentially Rosenthal’s dichotomy [Ro1] (see also [Ke, To]). In-

deed, let f = (fn) be such that Tf is well-founded. By Rosenthal’s dichotomy, every

subsequence of (fn) has a further pointwise convergent subsequence. By the Main

Theorem in [Ro2], the closure of {fn} in RX is in B1(X), and so, f ∈ SRC(X).

Conversely, assume that Tf is ill-founded. There exists L = {l0 < l1 < · · · } ∈ [N]∞

such that the sequence (fln) is equivalent to the standard unit vector basis of `1. By

the fact that (fn) is uniformly bounded and Lebesgue’s dominated convergence the-

orem, we obtain that the sequence (fln) has no pointwise convergent subsequence.

This implies that the closure of {fn} in RX contains a homeomorphic copy of βN,

and so, f /∈ SRC(X). It follows that the map Φ determines a Borel reduction of

SRC(X) to WF. Hence, the set SRC(X) is Π1
1 and the map φX : SRC(X) → ω1

defined by φX(f) = o(Tf ) is a Π1
1-rank on SRC(X).

We proceed to show that the set SRC is Π1
1-true. Denote by φ the canonical

Π1
1-rank φ2N on SRC defined above. In order to prove that SRC is Π1

1-true, by

[Ke, Theorem 35.23], it is enough to show that sup{φ(f) : f ∈ SRC} = ω1. In the

argument below we shall use the following simple fact.

Fact 2. Let X,Y be compact metrizable spaces and e : X → Y a continuous onto

map. Let f = (fn) ∈ SRC(Y ) and define g = (gn) ∈ C(X)N by gn(x) = fn(e(x))

for every x ∈ X and every n ∈ N. Then g ∈ SRC(X) and φY (f) = φX(g).

Now let F be a family of finite subsets of N which is hereditary (that is, if F ∈ F
and G ⊆ F , then G ∈ F) and compact in the pointwise topology (that is, compact

in 2N). To every such family F one associates its order o(F) which is simply the

order of the downwards closed, well-founded tree TF on N defined by

s ∈ TF ⇔ s = (n0 < · · · < nk) ∈ FIN(N) and {n0, . . . , nk} ∈ F .

Such families are well-studied in combinatorics and functional analysis and a de-

tailed exposition can be found in [AT]. What we need is the simple fact that for

every countable ordinal ξ one can find a compact hereditary family F with o(F) > ξ.

So, fix a countable ordinal ξ and let F be a compact hereditary family with

o(F) > ξ. We will additionally assume that {n} ∈ F for every n ∈ N. Define

πFn : F → R by πFn (F ) = 1F (n) for every F ∈ F . Clearly for every n ∈ N we have
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πFn ∈ C(F) and ‖πFn ‖∞ = 1. Moreover, as the family F contains all singletons,

we see that πFn 6= πFm if n 6= m. It is easy to see that the sequence (πFn ) converges

pointwise to 0, and so, (πFn ) ∈ SRC(F).

Claim 3. We have φF
(
(πFn )

)
> o(F) > ξ.

Proof of Claim 3. The proof is essentially based on the fact that F is hereditary.

Indeed, notice that if F = {n0 < · · · < nk} ∈ F , then (ei)
k
i=0

2∼ (πFni)
k
i=0, or

equivalently, F ∈ T 2
(πFn ). To see this, fix F = {n0 < · · · < nk} ∈ F and let

a0, . . . , ak ∈ R be arbitrary. We set

I+ =
{
i ∈ {0, . . . , k} : ai > 0

}
and I− = {0, . . . , k} \ I+.

Then, either
∑
i∈I+ ai >

1
2

∑k
i=0 |ai| or −

∑
i∈I− ai >

1
2

∑k
i=0 |ai|. Assume that the

second case occurs (the argument is symmetric). Let F− = {ni : i ∈ I−} ⊆ F ∈ F .

Then F− ∈ F since F is hereditary. Now observe that

1

2

k∑
i=0

|ai| 6 −
∑
i∈I−

ai =
∣∣ k∑
i=0

aiπ
F
ni(F−)

∣∣ 6 ∥∥ k∑
i=0

aiπ
F
ni

∥∥
∞ 6 2

k∑
i=0

|ai|.

It follows by the above discussion that the identity map Id: TF → T 2
(πFn ) is a well-

defined monotone map. The proof of Claim 3 is completed. �

By Fact 2 and Claim 3, we conclude that sup{φ(f) : f ∈ SRC} = ω1, and so the

entire proof is completed. �

4. Topological and strong embedding

Consider the classes SRC(X) and SRC(Y ), where X and Y are compact metriz-

able spaces, as they were coded in the previous section. There is a canonical notion

of embedding between elements of SRC(X) and SRC(Y ) defined as follows.

Definition 4. Let X,Y be compact metrizable spaces, f = (fn) ∈ SRC(X) and

g = (gn) ∈ SRC(Y ). We say that g topologically embeds into f (in symbols g < f)

if there exists a homeomorphic embedding of {gn}
p

into {fn}
p
.

Clearly the notion of topological embedding is natural and meaningful, as f1 < f2

and f2 < f3 imply that f1 < f3. However, in this setting, one also has a canonical

Π1
1-rank on SRC and any notion of embedding between elements of SRC should

be coherent with this rank, in the sense that if g < f , then φY (g) 6 φX(f).

Unfortunately, the topological embedding is not strong enough in order to have

this property.

Example 1. Let F1 and F2 be two compact hereditary families of finite subsets

of N. As in the proof of Lemma 1, consider the sequences (πF1
n ) ∈ SRC(F1) and

(πF2
n ) ∈ SRC(F2). Both of them are pointwise convergent to 0. Hence, they are

topologically equivalent and clearly bi-embedable. However, it is easy to see that
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the corresponding ranks of the two sequences depend only on the order of the

families F1 and F2, and so, they are totally unrelated.

We are going to strengthen the notion of topological embedding between the

elements of SRC. To motivate our definition, let f = (fn),g = (gn) ∈ SRC and

assume that both (fn) and (gn) are basic sequences. In this case, the most natural

notion of embedding is that of equivalence, that is, g embeds into f if there exists

L = {l0 < l1 < · · · } ∈ [N]∞ such that the sequence (gn) is equivalent to (fln). It is

easy to verify that, in this case, we do have that φ(g) 6 φ(f). Although not every

f ∈ SRC is a basic sequence, there is a metric relation we can impose on f and g

which incorporates the above observation.

Definition 5. Let X,Y be compact metrizable spaces, f = (fn) ∈ SRC(X) and

g = (gn) ∈ SRC(Y ). We say that g strongly embeds into f (in symbols g ≺ f)

if g topologically embeds into f and, moreover, if for every ε > 0 there exists

Lε = {l0 < l1 < · · · } ∈ [N]∞ such that for every k ∈ N and every a0, . . . , ak ∈ R
we have

(2)
∣∣∣ max

06i6k

∥∥ i∑
n=0

angn
∥∥
∞ −

∥∥ k∑
n=0

anfln
∥∥
∞

∣∣∣ 6 ε k∑
n=0

|an|
2n+1

.

Below we gather the basic properties of the notion of strong embedding.

Proposition 6. Let X,Y be compact metrizable spaces. Then the following hold.

(i) If f ∈ SRC(X) and g ∈ SRC(Y ) with g ≺ f , then g < f .

(ii) If f ∈ SRC(X), g ∈ SRC(Y ) with g ≺ f and the sequence (gn) is a

normalized basic sequence, then there exists L = {l0 < l1 < · · · } ∈ [N]∞

such that the sequence (fln) is basic and equivalent to (gn).

(iii) If f1 ≺ f2 and f2 ≺ f3, then f1 ≺ f3.

(iv) If f ∈ SRC(X) and g ∈ SRC(Y ) with g ≺ f , then φY (g) 6 φX(f).

(v) Let Z be a compact metrizable space and e : Z → X a continuous onto map.

Let f = (fn) ∈ SRC(X) and, as in Fact 2, define h = (hn) ∈ SRC(Z) by

setting hn(z) = fn(e(z)) for every n ∈ N and every z ∈ Z. If g ∈ SRC(Y )

is such that g ≺ f , then g ≺ h.

Proof. (i) It is straightforward.

(ii) Let K > 1 be the basis constant of (gn). We are going to show that there exists

L = {l0 < l1 < · · · } ∈ [N]∞ such that (gn) is 2K-equivalent to (fln). Indeed, let

0 < ε < 1
4K and select Lε = {l0 < l1 < · · · } ∈ [N]∞ such that inequality (2) is

satisfied. Let k ∈ N and a0, . . . , ak ∈ R. Notice that

(3)
∥∥ k∑
n=0

angn
∥∥
∞ 6 max

06i6k

∥∥ i∑
n=0

angn
∥∥
∞ 6 K

∥∥ k∑
n=0

angn
∥∥
∞.
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Moreover, for every m ∈ {0, . . . , k} we have

(4) |am| 6 2K
∥∥ k∑
n=0

angn
∥∥
∞

as (gn) is a normalized Schauder basic sequence (see [LT]). Plugging in inequalities

(3) and (4) into (2) we obtain

∥∥ k∑
n=0

anfln
∥∥
∞ 6 K

∥∥ k∑
n=0

angn
∥∥
∞ + 2Kε

∥∥ k∑
n=0

angn
∥∥
∞

6 2K
∥∥ k∑
n=0

angn
∥∥
∞

by the choice of ε. Arguing similarly, we see that

1

2K

∥∥ k∑
n=0

angn
∥∥
∞ 6

∥∥ k∑
n=0

anfln
∥∥
∞.

Thus (gn) is 2K-equivalent to (fln), as desired.

(iii) It is a simple calculation, similar to that of part (ii), and we prefer not to

bother the reader with it.

(iv) Let d > 1. We fix ε > 0 with ε < 1
2d and we select Lε = {l0 < l1 < · · · } ∈ [N]∞

such that inequality (2) is satisfied. For every s = (m0 < · · · < mk) ∈ T dg we

set ts = (lm0 < · · · < lmk) ∈ FIN(N). Observe that for every k ∈ N and every

a0, . . . , ak ∈ R we have

2d

k∑
n=0

|an| >
∥∥ k∑
n=0

anflmn
∥∥
∞ > max

06i6k

∥∥ i∑
n=0

angmn
∥∥
∞ − ε

k∑
n=0

|an|

>
∥∥ k∑
n=0

angmn
∥∥
∞ − ε

k∑
n=0

|an|

>
1

d

k∑
n=0

|an| −
1

2d

k∑
n=0

|an|

=
1

2d

k∑
n=0

|an|.

This yields that ts ∈ T 2d
f . It follows that the map s 7→ ts is a monotone map

from T dg to T 2d
f . Hence, o(T dg ) 6 o(T 2d

f ). Since d was arbitrary, this implies that

φY (g) 6 φX(f), as desired.

(v) It is also straightforward since the map e induces an isometric embedding of

C(X) into C(Z). �

We are going to present another property of the notion of strong embedding

which has a Banach space theoretic flavor. To this end, we give the following

definition.
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Definition 7. Let E be a compact metrizable space and g = (gn) a bounded se-

quence in C(E). By Xg we shall denote the completion of c00(N) under the norm

(5) ‖x‖g := sup
{∥∥ k∑

n=0

x(n)gn
∥∥
∞ : k ∈ N

}
.

We shall denote by (egn) the standard Hamel basis of c00(N) regarded as a se-

quence in Xg. We isolate some elementary properties of (egn).

(P1) The sequence (egn) is a monotone basis of Xg. Moreover, (egn) is normalized

(respectively, seminormalized) if and only if (gn) is.

(P2) If (gn) is basic with basis constant K, then (egn) is K-equivalent to (gn).

Less trivial is the fact (which we will see in the next section) that g ∈ SRC(E) if

and only if (egn) is in SRC(K), where K is the closed unit ball of X∗g with the weak*

topology. In light of property (P2) above, the sequence (egn) may be regarded as an

“approximation” of (gn) by a basic sequence.

The following proposition relates the strong embedding of a sequence g = (gn)

into a sequence f = (fn) with the existence of subsequences of (fn) which are

“almost isometric” to (egn). Its proof, which is left to the interested reader, is based

on similar arguments as the proof of Proposition 6.

Proposition 8. Let X and Y be compact metrizable spaces, g = (gn) ∈ SRC(X)

and f = (fn) ∈ SRC(Y ). If g strongly embeds into f , then for every ε > 0 there

exists Lε = {l0 < l1 < · · · } ∈ [N]∞ such that (egn) is (1 + ε)-equivalent to (fln).

5. The main result

We are ready to state and prove the strong boundedness result for the class SRC.

Theorem 9. Let A be an analytic subset of SRC. Then there exists f ∈ SRC such

that for every g ∈ A we have g ≺ f .

We record the following consequence of Theorem 9 and Proposition 8.

Corollary 10. Let X be a compact metrizable space and g = (gn) ∈ SRC(X).

Then (egn) is in SRC(K) where K is the closed unit ball of X∗g with the weak*

topology.

We proceed to the proof of Theorem 9.

Proof of Theorem 9. We fix a norm dense sequence (dn) in the closed unit ball of

C(2N) such that dn 6= dm if n 6= m and dn 6= 0 for every n ∈ N. We also fix

a sequence (Dn) of infinite subsets of N such that Dn ∩ Dm = ∅ if n 6= m and

N =
⋃
nDn. Let A be an analytic subset of SRC and define Ã ⊆ NN by

σ ∈ Ã ⇔ ∃g = (gn) ∈ A ∃ε > 0 such that[
∀n ∀k

(
k ∈ Dn ⇒ ‖gn − dσ(k)‖∞ 6

ε

2k+1

)]
and[

∀n ∀m
(
n 6= m⇒ σ(n) 6= σ(m)

)]
.
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Then Ã is Σ1
1. Let T be the unique downwards closed, pruned tree on N × N

such that Ã = proj[T ]. We define a sequence (ht)t∈T in C(2N) as follows. If

t = (∅, ∅), then we set ht := 0. If t ∈ T with t 6= (∅, ∅), then t = (s, w) with

s = (n0, . . . , nm) ∈ N<N. We set ht := dnm . Clearly ‖ht‖∞ 6 1 for every t ∈ T .

We notice the following properties of the sequence (ht)t∈T .

(P1) For every σ ∈ [T ] there exist g = (gn) ∈ A and ε > 0 such that for every

n ∈ N and every k > 1 with k − 1 ∈ Dn we have ‖gn − hσ|k‖∞ 6 ε
2k

.

(P2) For every g = (gn) ∈ A and every ε > 0 there exists σ ∈ [T ] such that for

every n ∈ N and every k > 1 with k − 1 ∈ Dn we have ‖gn − hσ|k‖∞ 6 ε
2k

.

Let φ : T → 2<N be an embedding such that for every t, t′ ∈ T we have φ(t) @ φ(t′)

if and only if t @ t′. Also let e : T → N be a bijection such that e(t) < e(t′) for

every t, t′ ∈ T with t @ t′. We enumerate the nodes of T as (tn) according to e.

Now for every n ∈ N we define fn : 2N × 2N → R by

(6) fn(σ1, σ2) = 1Vφ(tn)
(σ1) · htn(σ2)

where Vφ(tn) := {σ ∈ 2N : φ(tn) @ σ}. Clearly, fn ∈ C(2N × 2N) and ‖fn‖∞ 6 1 for

every n ∈ N. Moreover, it is easy to check that fn 6= fm if n 6= m.

It will be convenient to introduce the following notation. For every function

g : 2N → R and every τ ∈ 2N by g ∗ τ : 2N × 2N → R we denote the function defined

by g ∗ τ(σ1, σ2) = δτ (σ1) · g(σ2) for every (σ1, σ2) ∈ 2N × 2N. (Here, δτ stands for

the Dirac function at τ .)

Claim 11. We have (fn) ∈ SRC(2N × 2N).

Proof of Claim 11. By the Main Theorem in [Ro2], it is enough to show that ev-

ery subsequence of (fn) has a further pointwise convergent subsequence. So, let

N ∈ [N]∞ be arbitrary. By Ramsey’s theorem, there exists M ∈ [N ]∞ such that

the family {φ(tn) : n ∈ M} either consists of pairwise incomparable nodes, or of

pairwise comparable. In the first case we see that the sequence (fn)n∈M is point-

wise convergent to 0. In the second case we notice that, by the properties of φ

and the enumeration of T , for every n,m ∈ M with n < m we have tn @ tm. It

follows that there exists σ ∈ [T ] such that tn @ σ for every n ∈ M . We may also

assume that tn 6= (∅, ∅) for every n ∈ M . By property (P1) above, there exist

g = (gn) ∈ A, ε > 0 and a sequence (kn)n∈M in N (with possible repetitions)

such that ‖gkn − htn‖∞ 6 ε
2|tn|

for every n ∈ M . Since g ∈ SRC, there exists

L ∈ [M ]∞ such that the sequence (gkn)n∈L is pointwise convergent to a Baire-1

function g. By the fact that limn∈L |tn| = ∞, we see that the sequence (htn)n∈L

is also pointwise convergent to g. Finally notice that the sequence (1Vφ(tn)
)n∈L

converges pointwise to δτ where τ is the unique element of 2N determined by the

infinite chain {φ(tn) : n ∈ L} of 2<N. It follows that the sequence (fn)n∈L is

pointwise convergent to the function g ∗ τ . The proof of Claim 11 is completed. �

Claim 12. For every g = (gn) ∈ A we have that g topologically embeds into (fn).
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Proof of Claim 12. Let g = (gn) ∈ A. By property (P2), there exists σ ∈ [T ] such

that for every n ∈ N and every k > 1 with k− 1 ∈ Dn we have ‖gn − hσ|k‖∞ 6 1
2k

.

By the choice of φ, we see that there exists a unique τ ∈ 2N such that φ(σ|k) @ τ

for every k ∈ N. Fix n0 ∈ N. By the fact that there exist infinitely many k with

‖gn0
− hσ|k‖∞ 6 1

2k
and arguing as in Claim 11, we see that the function gn0 ∗ τ

belongs to the closure of {fn} in R2N×2N
. It follows that the map

{gn}
p
3 g 7→ g ∗ τ ∈ {fn}

p

is a homeomorphic embedding. The proof of Claim 12 is completed. �

Claim 13. For every g = (gn) ∈ A we have that g strongly embeds into (fn).

Proof of Claim 13. Fix g = (gn) ∈ A. By Claim 12, it is enough to show that for

every ε > 0 there exists Lε = {l0 < l1 < · · · } ∈ [N]∞ such that inequality (2) is

satisfied for (gn) and (fln). So, let ε > 0 be arbitrary. Invoking property (P2),

we see that there exist σ ∈ [T ] such that for every n ∈ N and every k > 1 with

k−1 ∈ Dn we have ‖gn−hσ|k‖∞ 6 ε
2k

. There exists D = {m0 < m1 < · · · } ∈ [N]∞

with m0 > 1 and such that mn − 1 ∈ Dn for every n ∈ N. By the properties of the

enumeration e of T , there exists L = {l0 < l1 < · · · } ∈ [N]∞ such that tln = σ|mn

for every n ∈ N. We isolate, for future use, the following facts.

(F1) For every n ∈ N we have ‖gn − htln ‖∞ 6
ε

2mn 6
ε

2n+1 .

(F2) For every n,m ∈ N with n < m we have tln @ tlm .

We claim that the sequences (gn) and (fln) satisfy inequality (2) for the given ε > 0.

Indeed, let k ∈ N and a0, . . . , ak ∈ R. By (F1) above, for every i ∈ {0, . . . , k} we

have ∣∣∣ ∥∥ i∑
n=0

angn
∥∥
∞ −

∥∥ i∑
n=0

anhtln
∥∥
∞

∣∣∣ 6 ε i∑
n=0

|an|
2n+1

.

This implies that

∣∣∣ max
06i6k

∥∥ i∑
n=0

angn
∥∥
∞ − max

06i6k

∥∥ i∑
n=0

anhtln
∥∥
∞

∣∣∣ 6 ε k∑
n=0

|an|
2n+1

.

The above inequality is a consequence of the following elementary fact. If (ri)
k
i=0,

(θi)
k
i=0 and (δi)

k
i=0 are finite sequences of positive reals such that |ri − θi| 6 δi for

every i ∈ {0, . . . , k}, then ∣∣ max
06i6k

ri − max
06i6k

θi
∣∣ 6 max

06i6k
δi.

So the claim will be proved once we show that

max
06i6k

∥∥ i∑
n=0

anhtln
∥∥
∞ =

∥∥ k∑
n=0

anfln
∥∥
∞.
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To this end we argue as follows. For every t ∈ T the function ht is continuous. So

there exist j ∈ {0, . . . , k} and σ2 ∈ 2N such that

max
06i6k

∥∥ i∑
n=0

anhtln
∥∥
∞ =

∣∣ j∑
n=0

anhtln (σ2)
∣∣.

By (F2), we have tl0 @ · · · @ tlk . Hence, by the properties of φ, we see that

φ(tl0) @ · · · @ φ(tlk). It follows that there exists σ1 ∈ 2N such that 1Vφ(tln )
(σ1) = 1

if n ∈ {0, . . . , j} while 1Vφ(tln )
(σ1) = 0 otherwise. Therefore,

∥∥ k∑
n=0

anfln
∥∥
∞ >

∣∣ k∑
n=0

anfln(σ1, σ2)
∣∣ =

∣∣ j∑
n=0

anhtln (σ2)
∣∣.

Conversely, let (σ3, σ4) ∈ 2N × 2N be such that∥∥ k∑
n=0

anfln
∥∥
∞ =

∣∣ k∑
n=0

anfln(σ3, σ4)
∣∣.

We notice that if 1Vφ(tln )
(σ3) = 1 for some n ∈ N, then for every m ∈ N with m 6 n

we also have that 1Vφ(tlm )
(σ3) = 1. Hence, there exists p ∈ {0, . . . , k} such that

1Vφ(tln )
(σ3) = 1 if n ∈ {0, . . . , p} while 1Vφ(tln )

(σ3) = 0 otherwise. This implies

that ∥∥ k∑
n=0

anfln
∥∥
∞ =

∣∣ k∑
n=0

anfln(σ3, σ4)
∣∣ =

∣∣ p∑
n=0

anfln(σ3, σ4)
∣∣

=
∣∣ p∑
n=0

anhtln (σ4)
∣∣ 6 max

06i6k

∥∥ i∑
n=0

anhtln
∥∥
∞

and the proof of Claim 13 is completed. �

Since 2N × 2N is homeomorphic to 2N, by Claims 11 and 13 and part (v) of

Proposition 6, the proof of the theorem is completed. �

References

[AD] S. A. Argyros and P. Dodos, Genericity and amalgamation of classes of Banach spaces,

Adv. Math. 209 (2007), 666–748.

[ADK] S. A. Argyros, P. Dodos and V. Kanellopoulos, A classification of separable Rosenthal

compacta and its applications, Dissertationes Math. 449 (2008), 1–52.
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