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1. Introduction

The theory of Rosenthal compacta, namely of compact subsets of the first Baire

class on a Polish space X, was initiated with the pioneering work of Rosenthal

[Ro2]. Significant contributions of many researchers coming from divergent areas

have revealed the deep structural properties of this class. Our aim is to study

some aspects of separable Rosenthal compacta, as well as, to present some of their

applications.

The present work consists of three parts. In the first part we determine the

prototypes of separable Rosenthal compacta and we provide a classification theo-

rem. The second part concerns an extension of a theorem of Todorčević included

in his profound study of Rosenthal compacta [To1]. The last part is devoted to

applications.

Our results, concerning the first part, are mainly included in Theorems 2 and 3

below. Roughly speaking, we assert that there exist seven separable Rosenthal

compacta such that every K in the same class contains one of them in a very

canonical way. We start with the following definition.
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Definition 1. (a) Let I be a countable set and let X,Y be Polish spaces. Let

{fi}i∈I and {gi}i∈I be two pointwise bounded families of real-valued functions on

X and Y respectively, indexed by the set I. We say that {fi}i∈I and {gi}i∈I are

equivalent if the natural map fi 7→ gi is extended to a topological homeomorphism

between {fi}
p

i∈I and {gi}
p

i∈I .

(b) Let X be a Polish space and let {ft}t∈2<N be relatively compact in B1(X). We

say that {ft}t∈2<N is minimal if for every dyadic subtree S = (st)t∈2<N of the Cantor

tree 2<N the families {ft}t∈2<N and {fst}t∈2<N are equivalent.

Related to the above notions the following theorem is proved.

Theorem 2. The following hold.

(a) Up to equivalence, there are exactly seven minimal families.

(b) For every family {ft}t∈2<N relatively compact in B1(X), with X Polish,

there exists a regular dyadic subtree S = (st)t∈2<N of the Cantor tree 2<N

such that {fst}t∈2<N is equivalent to one of the seven minimal families.

For any of the seven minimal families the corresponding pointwise closure is a

separable Rosenthal compact containing the family as a discrete set. We denote

them as follows

A(2<N), 26N, Ŝ+(2N), Ŝ−(2N), Â(2N), D̂(2N) and D̂
(
S(2N)

)
.

The precise description of the families and the corresponding compacta is given

in Subsection 4.3. The first two in the above list are metrizable spaces. The

next two are hereditarily separable, non-metrizable and mutually homeomorphic

(thus, the above defined notion of equivalence of families is stronger than saying

that the corresponding closures are homeomorphic). The space Ŝ+(2N), and so

the space Ŝ−(2N) as well, can be realized as a closed subspace of the split interval

S(I). Following [E], we shall denote by A(2N) the one point compactification of

the Cantor set 2N. The space Â(2N) is the standard separable extension of A(2N)

(see [Po2, Ma]). This is the only not first countable space from the above list. The

space D̂(2N) is the separable extension of the Alexandroff duplicate of the Cantor

set D(2N) as it was described in [To1]. Finally, the space D̂
(
S(2N)

)
can be realized

as a closed subspace of the Helly space. Its accumulation points is the closure of

the standard uncountable discrete subset of the Helly space.

Theorem 2 is essentially a success of the infinite-dimensional Ramsey theory for

trees and perfect sets. There is a long history on the interaction between Ramsey

theory and Rosenthal compacta which can be traced back to Farahat’s proof [F] of

Rosenthal’s `1 theorem [Ro1] and its tree extension due to Stern [Ste]. This interac-

tion was further expanded by Todorčević in [To1] with the use of the parameterized

Ramsey theory for perfect sets.

The new Ramsey theoretic ingredient in the proof of Theorem 2 is a result

concerning partitions of two classes of antichains of the Cantor tree which we call
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increasing and decreasing. We will briefly comment on the proof of Theorem 2

and the critical role of this result. One starts with a family {ft}t∈2<N relatively

compact in B1(X). A first topological reduction shows that in order to understand

the closure of {ft}t∈2<N in RX it is enough to determine all subsets of the Cantor

tree for which the corresponding subsequence of {ft}t∈2<N is pointwise convergent.

A second reduction shows that it is enough to determine only a cofinal subset of

convergent subsequences. One is then led to analyze which classes of subsets of

the Cantor tree are Ramsey and cofinal. First we observe that every infinite subset

of 2<N either contains an infinite chain or an infinite antichain. It is well-known,

and goes back to Stern, that chains are Ramsey. On the other hand, the set of all

antichains is not. However, the classes of increasing and decreasing antichains are

Ramsey and, moreover, they are cofinal in the set of all antichains. Using these

properties of chains and of increasing and decreasing antichains, we are able to

have a satisfactory control over the convergent subsequences of {ft}t∈2<N . Finally,

repeated applications of Galvin’s theorem on partitions of doubletons of perfect sets

of reals permit us to fully canonize the topological behavior of {ft}t∈2<N yielding

the proof of Theorem 2.

A direct consequence of part (b) of Theorem 2 is that for every separable Rosen-

thal compact and for every countable dense subset {ft}t∈2<N of it there exists a

regular dyadic subtree S = (st)t∈2<N such that the pointwise closure of {fst}t∈2<N

is homeomorphic to one of the above described compacta. In general, for a given

countable dense subset {fn} of a separable Rosenthal compact K, we say that one

of the minimal families canonically embeds into K with respect to {fn} if there exists

an increasing injection φ : 2<N → N such that the family {fφ(t)}t∈2<N is equivalent

to it. The next theorem is a supplement of Theorem 2 and shows that the minimal

families characterize certain topological properties of K.

Theorem 3. Let K be a separable Rosenthal compact and let {fn} be a countable

dense subset of K.

(a) If K consists of bounded functions in B1(X), is metrizable and non-separable

in the supremum norm, then 26N canonically embeds into K with respect to

{fn} such that its image is norm non-separable.

(b) If K is non-metrizable and hereditarily separable, then either Ŝ+(2N) or

Ŝ−(2N) canonically embeds into K with respect to {fn}.
(c) If K is not hereditarily separable and first countable, then either D̂(2N) or

D̂
(
S(2N)

)
canonically embeds into K with respect to {fn}.

(d) If K is not first countable, then Â(2N) canonically embeds into K with

respect to {fn}.

In particular, if K is non-metrizable, then one of the non-metrizable prototypes

canonically embeds into K with respect to any dense subset of K.
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Part (a) is an extension of the classical result of Stegall [St] which led to the

characterization of the Radon–Nikodym property in dual Banach spaces. We men-

tion that Todorčević [To1] has shown that in case (b) above the split interval S(I)

embeds into K. It is an immediate consequence of the above theorem that every

not hereditarily separable K contains an uncountable discrete subspace of the size

of the continuum, a result which is due to Pol [Po1]. The proofs of parts (a), (b)

and (c) use variants of Stegall’s fundamental construction similar in spirit as in the

work of Godefroy and Talagrand [GT]. Part (d) is a consequence of a more general

structural result concerning non-Gδ points which we are about to describe. To this

end we start with the following definition.

Definition 4. Let K be a separable Rosenthal compact on a Polish space X and let

C be a closed subspace of K. We say that C is an analytic subspace if there exist a

countable dense subset {fn} of K and an analytic subset A of [N]∞ such that the

following are satisfied.

(1) For every L ∈ A the accumulation points of the set {fn : n ∈ L} in RX is

a subset of C.

(2) For every g ∈ C which is an accumulation point of K there exists L ∈ A
with g ∈ {fn}

p

n∈L.

Observe that every separable Rosenthal compact K is an analytic subspace of

itself with respect to any countable dense set. Let us point out that while the class

of analytic subspaces is strictly wider than the class of separable ones, it shares all

structural properties of separable Rosenthal compacta. This will become clear in

the sequel.

A natural question raised by the above definition is whether the concept of an

analytic subspace depends on the choice of the countable dense subset of K. We

believe that it is independent. This is supported by the fact that this is indeed

the case for analytic subspaces of separable Rosenthal compacta in B1(X) with X

compact metrizable.

To state our results concerning analytic subspaces we need to introduce the

following definition.

Definition 5. Let K be a separable Rosenthal compact, let {fn} be a countable

dense subset of K and let C be a closed subspace of K. We say that one of the

prototypes Ki (1 6 i 6 7) canonically embeds into K with respect to {fn} and C
if there exists a subfamily {ft}t∈2<N of {fn} which is equivalent to the canonical

dense family of Ki and such that all accumulation points of {ft}t∈2<N are in C.

The following theorem describes the structure of not first countable analytic

subspaces.

Theorem 6. Let K be a separable Rosenthal compact, let C be an analytic subspace

of K and let {fn} be a countable dense subset of K witnessing the analyticity of C.
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Also let f ∈ C be a non-Gδ point of C. Then Â(2N) canonically embeds into K with

respect to {fn} and C and such that f is the unique non-Gδ point of its image.

Theorem 6 is the last step of a serie of results initiated by a fruitful prob-

lem concerning the character of points in separable Rosenthal compacta posed by

Pol [Po1]. The first decisive step towards the solution of this problem was made by

Krawczyk [Kr]. He proved that a point f ∈ K is non-Gδ if and only if the set

Lf ,f := {L ∈ [N]∞ : (fn)n∈L is pointwise convergent to f}

is co-analytic non-Borel. His analysis revealed a fundamental construction which

we call Krawczyk tree (K-tree) with respect to the given point f and any countable

dense subset f = {fn} of K. He showed that there exists a subfamily {ft}t∈N<N of

{fn} such that the following are satisfied.

(P1) For every σ ∈ NN we have f /∈ {fσ|n}
p
.

(P2) If A ⊆ N<N is such that f /∈ {ft}
p

t∈A, then for every n ∈ N there exist

t0, . . . , tk ∈ Nn such that A is almost included in the set of the successors

of the ti’s.

Using K-trees, the second named author has shown that the set

Lf := {L ∈ [N]∞ : (fn)n∈L is pointwise convergent}

is complete co-analytic if there exists a non-Gδ point f ∈ K ([Do]). Let us also

point out that the deep effective version of Debs’ theorem [De] yields that for any

separable Rosenthal compact the set Lf contains a Borel cofinal subset.

There are strong evidences, as Debs’ theorem mentioned above, that separable

Rosenthal compacta are definable objects and, consequently, they are connected to

descriptive set theory (see, also, [ADK1, B, Do]). One of the first results illustrating

this connection was proved in the late 1970s by Godefroy [Go] and asserts that a

separable compact K is Rosenthal if and only if C(K) is an analytic subset of RD

for every countable dense subset D of K. Related to this, Pol has conjectured that

a separable Rosenthal compact K embeds into B1(2N) if and only if C(K) is a Borel

subset of RD (see [Ma, Po2]). It is worth mentioning that for a separable K in

B1(2N), for every countable dense subset {fn} of K and every f ∈ K, there exists

a Borel cofinal subset of the corresponding set Lf ,f , a property not shared by all

separable Rosenthal compacta.

The last step to the solution of Pol’s problem was made by Todorčević [To1]. He

proved that if f is a non-Gδ point of K, then the space A(2N) is homeomorphic to

a closed subset of K with f as the unique limit point. His remarkable proof uses

metamathematical arguments (in particular, forcing and absoluteness).

We proceed to discuss the proof of Theorem 6. The first decisive step is the

following theorem concerning the existence of K-trees.
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Theorem 7. Let K, C, {fn} and f ∈ C be as in Theorem 6. Then there exists a

K-tree {ft}t∈N<N with respect to the point f and the dense sequence {fn} such that

for every σ ∈ NN all accumulation points of the set {fσ|n : n ∈ N} are in C.

The proof of the above result is a rather direct extension of the results of

Krawczyk [Kr] and is based on the key property of bisequentiality established for

separable Rosenthal compacta by Pol [Po3]. We will briefly comment on some fur-

ther properties of the K-tree {ft}t∈N<N obtained by Theorem 7. To this end, let us

call an antichain {tn} of N<N a fan if there exist s ∈ N<N and a strictly increasing

sequence (mn) in N such that samn v tn for every n ∈ N. We also say that an

antichain {tn} converges to σ ∈ NN if for every k ∈ N the set {tn} is almost con-

tained in the set of the successors of σ|k. Property (P2) of K-trees implies that for

every fan {tn} of N<N the sequence (ftn) must be pointwise convergent to f . This

fact combined with the bisequentiality of separable Rosenthal compacta yields the

following property.

(P3) For every σ ∈ NN there exists an antichain {tn} of N<N which converges

to σ and such that the sequence (ftn) is pointwise convergent to f .

In the second crucial step, we use the infinite dimensional extension of Hindman’s

theorem, due to Milliken [Mil1], to select an infinitely splitting subtree T of N<N

such that for every σ ∈ [T ] the corresponding antichain {tn}, described in property

(P3) above, is found in a canonical way. We should point out that, although

Milliken’s theorem is a result concerning partitions of block sequences, it can be

also considered as a partition theorem for a certain class of infinitely splitting

subtrees of N<N. This fact was first realized by Henson, in his alternative proof of

Stern’s theorem (see [Od]); it is used in the proof of Theorem 6 in a similar spirit.

The proof of Theorem 6 is completed by choosing an appropriate dyadic subtree S

of T and applying the canonization method (Theorem 2) to the family {fs}s∈S .

The following consequence of Theorem 6 describes the universal property of

Â(2N) among all fundamental prototypes.

Corollary 8. Let K be a non-metrizable separable Rosenthal compact and D = {fn}
a countable dense subset of K. Then the space Â(2N) canonically embeds into K−K
with respect to D−D and with the constant function 0 as the unique non-Gδ point.

We notice that the above corollary remains valid within the class of analytic

subspaces.

The embedding of Â(2N) in an analytic subspace C of a separable Rosenthal

compact K yields unconditional families of elements of C as follows.

Theorem 9. Let K be a separable Rosenthal compact on a Polish space X consisting

of bounded functions. Also let C be an analytic subspace of K having the constant

function 0 as a non-Gδ point. Then there exists a family {fσ : σ ∈ 2N} in C which

is 1-unconditional in the supremum norm, pointwise discrete and has 0 as unique

accumulation point.
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The proof of Theorem 9 follows from Theorem 6 and the “perfect uncondition-

ality theorem” form [ADK2].

A second application concerns representable Banach spaces, a class introduced

in [GT] and closely related to separable Rosenthal compacta.

Theorem 10. Let X be a non-separable representable Banach space. Then X∗

contains an unconditional family of size |X∗|.

We also introduce the concept of spreading and level unconditional tree bases.

This notion is implicitly contained in [ADK2] where their existence was established

in every separable Banach space not containing `1 and with non-separable dual.

We present some extensions of this result in the framework of separable Rosenthal

compacta.

We proceed to discuss how this work is organized. In Section 2 we set up our

notation concerning trees and we present the Ramsey theoretic preliminaries needed

in the rest of this paper. In the next section we define and study the classes of

increasing and decreasing antichains. The main result in Section 3 is Theorem 10

which establishes the Ramsey properties of these classes. Section 4 is exclusively

devoted to the proof of Theorem 2. It consists of four subsections. In the first

subsection we prove a theorem (Theorem 16 in the main text) which is the first

step towards the proof of Theorem 2. Theorem 16 is a consequence of the Ramsey

and structural properties of chains and of increasing and decreasing antichains.

In Subsection 4.2 we introduce the notion of equivalence of families of functions

and we provide a criterion for establishing it. As we have already mentioned, in

Subsection 4.3 we describe the seven minimal families. The proof of Theorem 2 is

completed in Subsection 4.4.

In Subsection 5.1 we introduce the class of analytic subspaces of separable Rosen-

thal compacta and we present some of their properties, and in Subsection 5.2 we

study separable Rosenthal compacta in B1(2N). In Section 6 we present parts (a),

(b) and (c) of Theorem 3. Actually, Theorem 3 is proved for the wider class of

analytic subspaces and within the context of Definition 5. More precisely, we prove

the following theorem.

Theorem 11. Let K be a separable Rosenthal compact, let C be an analytic subspace

of K and let {fn} be a countable dense subset of K witnessing the analyticity of C.

(a) If C is metrizable in the pointwise topology, consists of bounded functions

and is non-separable in the supremum norm of B1(X), then 26N canonically

embeds into K with respect to {fn} and C such that its image is norm non-

separable.

(b) If C is hereditarily separable and non-metrizable, then either Ŝ+(2N) or

Ŝ−(2N) canonically embeds into K with respect to {fn} and C.

(c) If C is not hereditarily separable and first countable, then either D̂(2N) or

D̂
(
S(2N)

)
canonically embeds into K with respect to {fn} and C.
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Section 7 is devoted to the study of not first countable analytic subspaces. In

Subsection 7.1 we prove Theorem 7, and in Subsection 7.2 we present the proof of

Theorem 6. The last section is devoted to applications (in particular to the proofs

of Theorems 9 and 10).

We thank Stevo Todorčević for his valuable remarks and comments.

2. Ramsey properties of perfect sets and of subtrees of the Cantor

tree

The aim of this section is to present the Ramsey theoretic preliminaries needed

in the rest of the paper, as well as, to set up our notation concerning trees.

Ramsey theory for trees was initiated with the fundamental Halpern–Läuchli

partition theorem [HL]. The original proof was based on metamathematical ar-

guments. The proof avoiding metamathematics was given in [AFK]. Partition

theorems related to the ones presented in this section can be found in the work of

Milliken [Mil2], Blass [Bl], and Louveau, Shelah and Veličković [LSV].

2.1. Notation. Let N = {0, 1, 2, . . . } denote the set of natural numbers. By [N]∞

we denote the set of all infinite subsets of N, and for every L ∈ [N]∞ by [L]∞ we

denote the set of all infinite subsets of L. If k > 1 and L ∈ [N]∞, then [L]k stands

for the set of all subsets of L of cardinality k.

2.1.1. By 2<N we denote the set of all finite sequences of 0’s and 1’s (the empty

sequence is included). We view 2<N as a tree equipped with the (strict) partial

order @ of extension. If t ∈ 2<N, then the length |t| of t is defined to be the

cardinality of the set {s : s @ t}. If s, t ∈ 2<N, then by sat we denote their

concatenation. Two nodes s, t are said to be comparable if either s v t or t v s;

otherwise, they are said to be incomparable. A subset of 2<N consisting of pairwise

comparable nodes is said to be a chain while a subset of 2<N consisting of pairwise

incomparable nodes is said to be an antichain. For every x ∈ 2N and every n > 1

we set x|n =
(
x(0), . . . , x(n − 1)

)
∈ 2<N while x|0 = ∅. If x, y ∈ (2<N ∪ 2N) with

x 6= y, then by x∧ y we denote the @-maximal node t of 2<N with t v x and t v y.

Moreover, we write x ≺ y if wa0 v x and wa1 v y where w = x∧ y. The ordering

≺ restricted on 2N is the usual lexicographical ordering of the Cantor set.

2.1.2. We view every subset of 2<N as a subtree with the induced partial ordering.

A subtree T of 2<N is said to be pruned if for every t ∈ T there exists s ∈ T with

t @ s. It is said to be downwards closed if for every t ∈ T and every s @ t we have

s ∈ T . If T is a subtree of 2<N (not necessarily downwards closed), then we set

T̂ := {s : ∃t ∈ T with s v t}. If T is downwards closed, then the body [T ] of T is

the set {x ∈ 2N : x|n ∈ T ∀n}.

2.1.3. Let T be a (not necessarily downwards closed) subtree of 2<N. For every

t ∈ T by |t|T we denote the cardinality of the set {s ∈ T : s @ t} and for every

n ∈ N we set T (n) := {t ∈ T : |t|T = n}. Moreover, for every t1, t2 ∈ T by
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t1 ∧T t2 we denote the @-maximal node w of T such that w v t1 and w v t2.

Notice that t1 ∧T t2 v t1 ∧ t2. Given two subtrees S and T of 2<N, we say that S

is a regular subtree of T if S ⊆ T and for every n ∈ N there exists m ∈ N such

that S(n) ⊆ T (m). For a regular subtree T of 2<N the level set LT of T is the set

{ln : T (n) ⊆ 2ln} ⊆ N. Notice that for every x ∈ [T̂ ] and every m ∈ N we have

that x|m ∈ T if and only if m ∈ LT . Hence, the chains of T are naturally identified

with the product [T̂ ] × [LT ]∞. A pruned subtree T of 2<N is said to be skew if

for every n ∈ N there exists at most one splitting node of T in T (n) with exactly

two immediate successors in T ; it is said to be dyadic if every t ∈ T has exactly

two immediate successors in T . We observe that a subtree T of the Cantor tree

is regular dyadic if there exists a (necessarily unique) bijection iT : 2<N → T such

that the following are satisfied.

(1) For every t1, t2 ∈ 2<N we have |t1| = |t2| if and only if |iT (t1)|T = |iT (t2)|T .

(2) For every t1, t2 ∈ 2<N we have t1 @ t2 (respectively, t1 ≺ t2) if and only if

iT (t1) @ iT (t2) (respectively, iT (t1) ≺ iT (t2)).

When we write T = (st)t∈2<N , where T is a regular dyadic subtree of 2<N, we mean

that st = iT (t) for every t ∈ 2<N. Finally, we notice the following property. If T is

a regular dyadic subtree of 2<N and R is a regular dyadic subtree of T , then R is

also a regular dyadic subtree of 2<N.

2.2. Partitions of trees. We begin by recalling the following notion from [Ka].

Definition 1. Let T be a skew subtree of 2<N. We define fT : N → {1, 2}<N as

follows. For every n ∈ N let {s0 ≺ · · · ≺ sm−1} be the ≺-increasing enumeration

of T (n). We set fT (n) = (e0, . . . , em−1) ∈ {1, 2}m where ei denotes the cardinality

of the set of the immediate successors of si in T for every i ∈ {0, . . . ,m− 1}. The

function fT will be called the code of the tree T . If f : N→ {1, 2}<N is a function

such that there exists a skew tree T with f = fT , then f will be called a skew tree

code.

For instance, if fT (n) = (1) for every n ∈ N, then the tree T is a chain. On

the other hand, if fT (0) = (2) and fT (n) = (1, 1) for all n > 1, then T consists of

two chains. Moreover, observe that if T and S are two skew subtrees of 2<N with

fT = fS , then T and S are isomorphic with respect to both ≺ and @. If f is a skew

tree code and T is a regular dyadic subtree of 2<N, then by [T ]f we denote the set

of all regular skew subtrees of T of code f . It is easy to see that the set [T ]f is a

Polish subspace of 2T . Also observe that if R is a regular dyadic tree of T , then

[R]f = [T ]f ∩ 2R. We will need the following theorem which is a consequence of

[Ka, Theorem 46].

Theorem 2. Let T be a regular dyadic subtree of 2<N, let f be a skew tree code

and let A be an analytic subset of [T ]f . Then there exists a regular dyadic subtree

R of T such that either [R]f ⊆ A or [R]f ∩A = ∅.
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For a regular dyadic subtree T of 2<N by [T ]chains we denote the set of all infinite

chains of T . Theorem 2 includes the following result due to Stern [Ste], Miller,

Todorčević [Mi] and Pawlikowski [Pa].

Theorem 3. Let T be a regular dyadic subtree of 2<N and let A be an analytic

subset of [T ]chains. Then there exists a regular dyadic subtree R of T such that

either [R]chains ⊆ A or [R]chains ∩A = ∅.

Theorem 2 will be applied to the following classes of skew subtrees.

Definition 4. Let T be a regular dyadic subtree of 2<N. A subtree S of T will be

called increasing (respectively, decreasing) if the following are satisfied.

(a) The tree S is uniquely rooted, regular, skew and pruned.

(b) For every n ∈ N there exists a splitting node of S in S(n) which is the

≺-maximum (respectively, ≺-minimum) node of S(n) and it has two imme-

diate successors in S.

The class of increasing (respectively, decreasing) subtrees of T will be denoted by

[T ]Incr (respectively, [T ]Decr).

It is easy to see that every increasing (respectively, decreasing) subtree is of fixed

code. Thus Theorem 2 can be applied to yield the following corollary.

Corollary 5. Let T be a regular dyadic subtree of 2<N and let A be an analytic

subset of [T ]Incr. Then there exists a regular dyadic subtree R of T such that either

[R]Incr ⊆ A or [R]Incr ∩A = ∅. Similarly for the case of [T ]Decr.

Corollary 5 may be considered as a parameterized version of the Louveau–

Shelah–Veličković theorem [LSV].

2.3. Partitions of perfect sets. For every subset X of 2N by [X]2 we denote

the set of all doubletons of X. We identify [X]2 with the set of all (σ, τ) ∈ X2

with σ ≺ τ . We will need the following partition theorem due to Galvin (see, e.g.,

[Ke, Theorem 19.7]).

Theorem 6. Let P be a perfect subset of 2N. If A is a subset of [P ]2 with the

Baire property, then there exists a perfect subset Q of P such that either [Q]2 ⊆ A
or [Q]2 ∩A = ∅.

3. Increasing and decreasing antichains of a regular dyadic tree

In this section we define the increasing and decreasing antichains and we establish

their fundamental Ramsey properties.

As we have already seen in Section 2 the class of infinite chains of the Cantor

tree is Ramsey. On the other hand an analogue of Theorem 3 for infinite antichains

is not valid. For instance, color an antichain (tn) of 2<N red if t0 ≺ t1; otherwise

color it blue. It is easy to see that this is an open partition, yet there is no dyadic



A CLASSIFICATION OF SEPARABLE ROSENTHAL COMPACTA 11

subtree of 2<N all of whose antichains are monochromatic. So, it is necessary, in

order to have a Ramsey result for antichains, to restrict our attention to those

which are monotone with respect to ≺. Still, however, this is not enough. To see

this, consider the set of all ≺-increasing antichains and color such an antichain (tn)

red if |t0| 6 |t1 ∧ t2|; otherwise color it blue. Again, we see that this is an open

partition which is not Ramsey.

The following definition incorporates all the restrictions indicated in the above

discussion and which are, as we shall see, essentially the only obstacles to a Ramsey

result for antichains.

Definition 7. Let T be a regular dyadic subtree of the Cantor tree 2<N. An infinite

antichain (tn) of T will be called increasing if the following conditions are satisfied.

(1) For every n,m ∈ N with n < m we have |tn|T < |tm|T .

(2) For every n,m, l ∈ N with n < m < l we have |tn|T 6 |tm ∧T tl|T .

(3I) For every n,m ∈ N with n < m we have tn ≺ tm.

The set of all increasing antichains of T will be denoted by Incr(T ). Similarly,

an infinite antichain (tn) of T will be called decreasing if (1) and (2) above are

satisfied and (3I) is replaced by the following.

(3D) For every n,m ∈ N with n < m we have tm ≺ tn.

The set of all decreasing antichains of T will be denoted by Decr(T ).

The classes of increasing and decreasing antichains of T have the following crucial

stability properties.

Lemma 8. Let T be a regular dyadic subtree of 2<N. Then the following hold.

(1) (Hereditariness) Let (tn) ∈ Incr(T ) and let L = {l0 < l1 < · · · } be an

infinite subset of N. Then (tln) ∈ Incr(T ). Similarly, if (tn) ∈ Decr(T ),

then (tln) ∈ Decr(T ).

(2) (Cofinality) Let (tn) be an infinite antichain of T . Then there exists

{l0 < l1 < · · · } ∈ [N]∞ such that either (tln) ∈ Incr(T ) or (tln) ∈ Decr(T ).

(3) (Coherence) We have Incr(T ) = Incr(2<N) ∩ 2T , and similarly for the de-

creasing antichains.

Proof. (1) It is straightforward.

(2) The point is that all three properties in the definition of increasing and de-

creasing antichains are cofinal in the set of all antichains of T . Indeed, let (tn) be

an infinite antichain of T . Clearly, there exists N ∈ [N]∞ such that the sequence

(|tn|T )n∈N is strictly increasing. Moreover, by Ramsey’s theorem, there exists

M ∈ [N ]∞ such that the sequence (tn)n∈M is either ≺-increasing or ≺-decreasing.

Finally, to see that condition (2) in Definition 7 is cofinal, set

A :=
{

(n,m, l) ∈ [M ]3 : |tn|T 6 |tm ∧T tl|T
}
.



12 SPIROS ARGYROS, PANDELIS DODOS AND VASSILIS KANELLOPOULOS

By Ramsey’s theorem again, there exists L ∈ [M ]∞ such that either [L]3 ⊆ A or

[L]3 ∩ A = ∅. We claim that [L]3 ⊆ A which clearly completes the proof. Assume

not, that is, [L]3 ∩ A = ∅. Set n := min(L) and L′ := L \ {n} ∈ [L]∞. Also

set k := |tn|T . Then for every (m, l) ∈ [L′]2 we have |tm ∧T tl|T < k. The set

{t ∈ T : |t|T < k} is finite. Hence, by another application of Ramsey’s theorem,

there exist s ∈ T with |s|T < k and L′′ ∈ [L′]∞ such that for every (m, l) ∈ [L′′]2

we have that s = tm ∧T tl. But this is impossible since the tree T is dyadic.

(3) First we observe the following. As the tree T is regular, for every t, s ∈ T

we have |t|T < |s|T (respectively, |t|T = |s|T ) if and only if |t| < |s| (respectively,

|t| = |s|).
Now, let (tn) ∈ Incr(T ). In order to show that (tn) ∈ Incr(2<N)∩2T it is enough

to prove that for every n < m < l we have |tn| 6 |tm ∧ tl|. By the previous remark,

we have |tn| 6 |tm ∧T tl|. Since tm ∧T tl v tm ∧ tl, we are done.

Conversely assume that (tn) ∈ Incr(2<N) ∩ 2T . Again it is enough to check that

condition (2) in Definition 7 is satisfied. So, let n < m < l. There exist sm, sl ∈ T
with |sm|T = |sl|T = |tn|T , sm v tm and sl v tl. We claim that sm = sl. Indeed, if

not, then |tm ∧ tl| = |sm ∧ sl| < |tn| contradicting the fact that the antichain (tn) is

increasing in 2<N. It follows that tm∧T tl w sm, and so, |sm|T = |tn|T 6 |tm∧T tl|T
as desired. The proof for the decreasing antichains is identical. �

By part (3) of Lemma 8, we obtain the following corollary.

Corollary 9. Let T be a regular dyadic subtree of 2<N and let R be a regular dyadic

subtree of T . Then Incr(R) = Incr(T ) ∩ 2R and Decr(R) = Decr(T ) ∩ 2R.

We notice that for every regular dyadic subtree T of the Cantor tree 2<N the sets

Incr(T ) and Decr(T ) are Polish subspaces of 2T . The main result in this section is

the following theorem.

Theorem 10. Let T be a regular dyadic subtree of 2<N and let A be an analytic

subset of Incr(T ) (respectively, of Decr(T )). Then there exists a regular dyadic

subtree R of T such that either Incr(R) ⊆ A or Incr(R) ∩ A = ∅ (respectively,

either Decr(R) ⊆ A or Decr(R) ∩A = ∅).

We notice that, after a first draft of the present paper, Todorčević informed us

that he is also aware of the above result with a proof based on Milliken’s theorem

for strong subtrees ([To2]).

The proof of Theorem 10 is based on Corollary 5. The method is to reduce the

coloring of Incr(T ) in Theorem 10 to a coloring of the class [T ]Incr of all increasing

regular subtrees of T introduced in Definition 4. (The case of decreasing antichains

is similar.) To this end, we need the following easy fact concerning the classes

[T ]Incr and [T ]Decr.

Fact 11. Let T be a regular dyadic subtree of 2<N. If S ∈ [T ]Incr or S ∈ [T ]Decr,

then for every n ∈ N we have |S(n)| = n+ 1.
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As we have indicated, the crucial fact in the present setting is that there is a

canonical correspondence between [T ]Incr and Incr(T ) (and similarly for the de-

creasing antichains) which we are about to describe. For every S ∈ [2<N]Incr or

S ∈ [2<N]Decr and every n ∈ N let {sn0 ≺ · · · ≺ snn} be the ≺-increasing enumera-

tion of S(n). Define Φ: [2<N]Incr → Incr(2<N) by

Φ(S) = (sn+1
n ).

It is easy to see that Φ is a well-defined continuous map. Respectively, define

Ψ: [2<N]Decr → Decr(2<N) by Ψ(S) = (sn+1
1 ). Again it is easy to see that Ψ is

well-defined and continuous.

Lemma 12. Let T be a regular dyadic subtree of 2<N. Then Φ
(
[T ]Incr

)
= Incr(T )

and Ψ
(
[T ]Decr

)
= Decr(T ).

Proof. We shall give the proof only for the case of increasing subtrees. (The

proof of the other case is similar.) First, we notice that for every S ∈ [T ]Incr

we have Φ(S) ∈ Incr(2<N) ∩ 2T , and so, by part (3) of Lemma 8, we obtain that

Φ
(
[T ]Incr

)
⊆ Incr(T ). Conversely, let (tn) ∈ Incr(T ).

Claim 1. For every n < m < l we have tn ∧T tm = tn ∧T tl.

Proof of the claim. Let n < m < l. By condition (2) in Definition 7, there exists

s ∈ T with |s|T = |tn|T and such that s v tm ∧T tl. Moreover, observe that tn ≺ s
since tn ≺ tm. It follows that tn ∧T tm = tn ∧T s = tn ∧T tl, as claimed. �

For every n ∈ N we set cn := tn ∧T tn+1.

Claim 2. For every n < m we have cn @ cm. That is, the sequence (cn) is an

infinite chain of T .

Proof of the claim. Let n < m. By Claim 1, we see that cn and cm are compatible

since cn = tn ∧T tm and, by definition, cm = tm ∧T tm+1. Finally, notice that

|cn|T < |tn|T 6 |tm ∧T tm+1|T = |cm|T . �

For every n > 1 let c′n denote the unique node of T such that c′n v cn and

|c′n|T = |tn−1|T . Recursively, we define S ∈ [T ]Incr as follows. We set S(0) := {c0}
and S(1) = {t0, c′1}. Assume that S(n) = {sn0 ≺ · · · ≺ snn} has been defined so as

snn−1 = tn−1 and snn = c′n. For every i ∈ {0, . . . , n− 1} we select a node sn+1
i such

that sni @ s
n+1
i and |sn+1

i |T = |tn|T . We set

S(n+ 1) := {sn+1
0 ≺ · · · ≺ sn+1

n−1 ≺ tn ≺ c′n+1}.

It is easy to check that S ∈ [T ]Incr and Φ(S) = (tn). The proof of Lemma 12 is

completed. �

We are ready to give the proof of Theorem 10.
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Proof of Theorem 10. Let A be an analytic subset of Incr(T ). By Lemma 12, the

set B = Φ−1(A)∩[T ]Incr is an analytic subset of [T ]Incr. By Corollary 5, there exists

a regular dyadic subtree R of T such that either [R]Incr ⊆ B or [R]Incr ∩B = ∅. By

Lemma 12, the first case implies that Incr(R) = Φ
(
[R]Incr

)
⊆ Φ(B) ⊆ A while the

second case yields that Incr(R) ∩ A = Φ
(
[R]Incr

)
∩ A = ∅. The proof for the case

of decreasing antichains is similar. �

4. Canonizing sequential compactness of trees of functions

The present section consists of four subsections. In the first one, using the

Ramsey properties of chains and of increasing and decreasing antichains, we prove

a strengthening of a result of Stern [Ste]. In the second one, we introduce the notion

of equivalence of families of functions and we provide a criterion for establishing it.

In the third subsection, we define the seven minimal families. The last subsection

is devoted to the proof of the main result of the section, concerning the canonical

embedding in any separable Rosenthal compact of one of the minimal families.

4.1. Sequential compactness of trees of functions. We start with the following

definition.

Definition 13. Let L ⊆ 2<N be infinite and σ ∈ 2N. We say that L converges to σ

if for every k ∈ N the set L is almost included in the set {t ∈ 2<N : σ|k v t}. The

element σ will be called the limit of the set L. We write L→ σ to denote the fact

that L converges to σ.

It is clear that the limit of a subset L of 2<N is unique, if it exists.

Fact 14. Let (tn) be an increasing (respectively, decreasing) antichain of 2<N. Then

(tn) converges to σ where σ is the unique element of 2N determined by the chain

(cn) with cn = tn ∧ tn+1 (see the proof of Lemma 12).

We also need to introduce some pieces of notation.

Notation. For every infinite L ⊆ 2<N and every σ ∈ 2N we write L ≺∗ σ if the

set L is almost included in the set {t : t ≺ σ}. Respectively, we write L �∗ σ if

L is almost included in the set {t : t ≺ σ} ∪ {σ|n : n ∈ N}. The notation σ ≺∗ L
(respectively, σ �∗ L) has the obvious meaning. We also write L ⊆∗ σ if for all but

finitely many t ∈ L we have t @ σ. Finally, we write L ⊥ σ to denote the fact that

the set L ∩ {σ|n : n ∈ N} is finite.

The following fact is essentially a consequence of part (2) of Lemma 8.

Fact 15. If L is an infinite subset of 2<N and σ ∈ 2N are such that L → σ and

L ≺∗ σ (respectively, σ ≺∗ L), then every infinite subset of L contains an increasing

(respectively, decreasing) antichain which converges to σ.

Our goal in this subsection is to give a proof of the following theorem.
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Theorem 16. Let X be a Polish space and let {ft}t∈2<N be a family relatively

compact in B1(X). Then there exist a regular dyadic subtree T of 2<N and a family

{g0
σ, g

+
σ , g

−
σ : σ ∈ P}, where P = [T̂ ], such that for every σ ∈ P the following are

satisfied.

(1) The sequence (fσ|n)n∈LT converges pointwise to g0
σ (recall that LT stands

for the level set of T ).

(2) For every sequence (σn) in P converging to σ with σn ≺ σ for all n ∈ N, the

sequence (gεnσn) converges pointwise to g+
σ for any choice of εn ∈ {0,+,−}.

If such a sequence (σn) does not exist, then g+
σ = g0

σ.

(3) For every sequence (σn) in P converging to σ with σ ≺ σn for all n ∈ N, the

sequence (gεnσn) converges pointwise to g−σ for any choice of εn ∈ {0,+,−}.
If such a sequence (σn) does not exist, then g−σ = g0

σ.

(4) For every infinite subset L of T converging to σ with L ≺∗ σ, the sequence

(ft)t∈L converges pointwise to g+
σ .

(5) For every infinite subset L of T converging to σ with σ ≺∗ L, the sequence

(ft)t∈L converges pointwise to g−σ .

Moreover, the functions 0,+,− : P ×X → R defined by

0(σ, x) = g0
σ(x), +(σ, x) = g+

σ (x), −(σ, x) = g−σ (x)

are all Borel.

For the proof of Theorem 16 we will need the following simple fact (the proof of

which is left to the reader).

Fact 17. The following hold.

(1) Let A1 = (t1n), A2 = (t2n) be two increasing (respectively, decreasing) an-

tichains of 2<N converging to the same σ ∈ 2N. Then there exists an in-

creasing (respectively, decreasing) antichain (tn) of 2<N converging to σ

such that t2n ∈ A1 and t2n+1 ∈ A2 for every n ∈ N.

(2) Let (σn) be a sequence in 2N converging to σ ∈ 2N. For every n ∈ N let

Nn = (tnk ) be a sequence in 2<N converging to σn. If σn ≺ σ (respectively,

σn � σ) for every n, then there exist an increasing (respectively, decreasing)

antichain (tm) and L = {nm : m ∈ N} ∈ [N]∞ such that (tm) converges to

σ and tm ∈ Nnm for every m ∈ N.

We proceed to the proof of Theorem 16.

Proof of Theorem 16. Our hypotheses imply that for every sequence (gn) belong-

ing to the closure of {ft}t∈2<N in RX there exists a subsequence of (gn) which is

pointwise convergent. Consider the following subset Π1 of [2<N]chains defined by

Π1 :=
{
c ∈ [2<N]chains : the sequence (ft)t∈c is pointwise convergent

}
.

Then Π1 is a co-analytic subset of [2<N]chains (see [Ste]). Applying Theorem 3 and

invoking our hypotheses, we obtain a regular dyadic subtree T1 of 2<N such that
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[T1]chains ⊆ Π1. Now consider the subset Π2 of Incr(T1) defined by

Π2 :=
{

(tn) ∈ Incr(T1) : the sequence (ftn) is pointwise convergent
}
.

Again Π2 is co-analytic (this can be checked with similar arguments as in [Ste]).

Applying Theorem 10, we obtain a regular dyadic subtree T2 of T1 such that

Incr(T2) ⊆ Π2. Finally, applying Theorem 10 for the decreasing antichains of

T2 and the color

Π3 :=
{

(tn) ∈ Decr(T2) : the sequence (ftn) is pointwise convergent
}
,

we obtain a regular dyadic subtree T of T2 such that, setting P = [T̂ ], the following

are satisfied.

(i) For every increasing antichain (tn) of T the sequence (ftn) is pointwise

convergent.

(ii) For every decreasing antichain (tn) of T the sequence (ftn) is pointwise

convergent.

(iii) For every σ ∈ P the sequence (fσ|n)n∈LT is pointwise convergent to a

function g0
σ.

We notice the following. By part (1) of Fact 17, if (t1n) and (t2n) are two increasing

(respectively, decreasing) antichains of T converging to the same σ, then (ft1n) and

(ft2n) are both pointwise convergent to the same function. For every σ ∈ P we

define g+
σ as follows. If there exists an increasing antichain (tn) of T converging

to σ, then we set g+
σ to be the pointwise limit of (ftn). (By the previous remark,

g+
σ is independent of the choice of (tn).) Otherwise, we set g+

σ = g0
σ. Similarly, we

define g−σ to be the pointwise limit of (ftn) where (tn) is a decreasing antichain of

T converging to σ, if such an antichain exists. Otherwise, we set g−σ = g0
σ. By Fact

15 and the above discussion, properties (i) and (ii) can be strengthened as follows.

(iv) For every σ ∈ P and every infinite L ⊆ T converging to σ with L ≺∗ σ, the

sequence (ft)t∈L is pointwise convergent to g+
σ .

(v) For every σ ∈ P and every infinite L ⊆ T converging to σ with σ ≺∗ L, the

sequence (ft)t∈L is pointwise convergent to g−σ .

We claim that the tree T and the family {g0
σ, g

+
σ , g

−
σ : σ ∈ P} are as desired. First

we check that properties (1)–(5) are satisfied. Clearly we only have to check (2)

and (3). As the argument is symmetric, we will prove only property (2). We argue

by contradiction. So, assume that there exist a sequence (σn) in P , σ ∈ P and

εn ∈ {0,+,−} such that σn ≺ σ and (σn) converges to σ while the sequence (gεnσn)

does not converge pointwise to g+
σ . Hence, there exist L ∈ [N]∞ and an open

neighborhood V of g+
σ in RX such that gεnσn /∈ V for every n ∈ L. By definition,

for every n ∈ L we may select a sequence (tnk ) in T such that for every n ∈ L the

following hold.

(a) The sequence Nn = (tnk ) converges to σn.

(b) The sequence (ftnk ) converges pointwise to gεnσn .
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(c) For every k ∈ N we have ftnk /∈ V .

(d) The sequence (σn)n∈L converges to σ and σn ≺ σ.

By part (2) of Fact 17, there exist a diagonal increasing antichain (tm) converging

to σ. By (c) above, we see that (ftm) is not pointwise convergent to g+
σ . This leads

to a contradiction by the definition of g+
σ .

We will now show that the maps 0,+ and − are Borel. Let {l0 < l1 < · · · }
be the increasing enumeration of the level set LT of T . For every n ∈ N define

hn : P × X → R by hn(σ, x) = fσ|ln(x). Clearly hn is Borel. Since for every

(σ, x) ∈ P ×X we have

0(σ, x) = g0
σ(x) = limhn(σ, x)

the Borelness of 0 is clear. We will only check the Borelness of the function +

(the argument for the map − is identical). For every n ∈ N and every σ ∈ P let

ln(σ) be the lexicographically minimum of the closed set {τ ∈ P : σ|ln @ τ}. The

function P 3 σ 7→ ln(σ) ∈ P is clearly continuous. Invoking the definition of g+
σ and

property (2) in the statement of the theorem, we see that for every (σ, x) ∈ P ×X
we have

+(σ, x) = g+
σ (x) = lim g0

ln(σ)(x) = lim 0
(
ln(σ), x

)
.

Thus + is Borel too, and the proof of the theorem is completed. �

Remark 1. We would like to point out that in order to apply the Ramsey theory

for trees in the present setting one has to know that all the colors are sufficiently

definable. This is also the reason why the Borelness of the functions 0,+ and −
is emphasized in Theorem 16. As a matter of fact, we will need the full strength

of the Ramsey theory for trees and perfect sets in the sense that in certain cases

the color will belong to the σ-algebra generated by the analytic sets. It should be

noted that this is in contrast with the classical Silver theorem [Si] for which, most

applications, involve Borel partitions.

4.2. Equivalence of families of functions. We start with the following defini-

tion.

Definition 18. Let I be a countable set and let X,Y be Polish spaces. Also let

{fi}i∈I and {gi}i∈I be two pointwise bounded families of real-valued functions on

X and Y respectively, indexed by the set I. We say that {fi}i∈I is equivalent to

{gi}i∈I if the map

fi 7→ gi

is extended to a topological homeomorphism between {fi}
p

i∈I and {gi}
p

i∈I .

The equivalence of the families {fi}i∈I and {gi}i∈I is stronger than saying that

{fi}
p

i∈I is homeomorphic to {gi}
p

i∈I (an example illustrating this fact will be given

in the next subsection). The crucial point in Definition 18 is that the equivalence

of {fi}i∈I and {gi}i∈I gives a natural homeomorphism between their closures.
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The following lemma provides an efficient criterion for checking the equivalence

of families of Borel functions. We mention that in its proof we will often make

use of the Bourgain–Fremlin–Talagrand theorem [BFT] without making an explicit

reference. From the context it will be clear that this is what we use.

Lemma 19. Let I be a countable set and let X,Y be Polish spaces. Let K1 and

K2 be two separable Rosenthal compacta on X and Y respectively. Let {fi}i∈I and

{gi}i∈I be two dense families of K1 and K2 respectively. Assume that for every i ∈ I
the functions fi and gi are isolated in K1 and K2 respectively. Then the following

are equivalent.

(1) The families {fi}i∈I and {gi}i∈I are equivalent.

(2) For every infinite subset L of I the sequence (fi)i∈L converges pointwise if

and only if the sequence (gi)i∈L does.

Proof. The direction (1)⇒ (2) is obvious. What remains is to prove the converse.

So assume that (2) holds. For every infinite M ⊆ I we set KM1 = {fi}
p

i∈M and

KM2 = {gi}
p

i∈M . Notice that KM1 and KM2 are separable Rosenthal compacta. Our

assumptions imply that the isolated points of KM1 is precisely the set {fi : i ∈M},
and similarly for KM2 . Define ΦM : KM1 → KM2 as follows. First, for every i ∈ M
we set ΦM (fi) = gi. If h ∈ KM1 with h /∈ {fi : i ∈M}, then there exists an infinite

subset L of M such that h is the pointwise limit of the sequence (fi)i∈L. Define

ΦM (h) to be the pointwise limit of the sequence (gi)i∈L (by our assumptions this

limit exists). To simplify notation, we set Φ = ΦI .

Claim. Let M ⊆ I be infinite. Then the following hold.

(1) The map ΦM is well-defined, one-to-one and onto.

(2) We have Φ|KM1 = ΦM .

Proof of the claim. (1) Fix an infinite subsetM of I. To see that ΦM is well-defined,

notice that for every h ∈ KM1 with h /∈ {fi : i ∈M} and every pair L1, L2 of infinite

subsets of M with h = limi∈L1
fi = limi∈L2

fi we have that limi∈L1
gi = limi∈L2

gi.

For if not, we would have that the sequence (fi)i∈L1∪L2
converges pointwise while

the sequence (gi)i∈L1∪L2
does not, contradicting our assumptions.

We observe the following consequence of our assumptions and the definition of

the map ΦM . For every h ∈ KM1 the point h is isolated in KM1 if and only if ΦM (h)

is isolated in KM2 . Using this we will show that ΦM is one-to-one. Indeed, let

h1, h2 ∈ KM1 with ΦM (h1) = ΦM (h2). Then, either ΦM (h1) is isolated in KM2 or

not. In the first case, there exists an i0 ∈M with ΦM (h1) = gi0 = ΦM (h2). Thus,

h1 = fi0 = h2. So assume that ΦM (h1) is not isolated in Km2 . Hence, neither

ΦM (h2) is. It follows that both h1 and h2 are not isolated points of KM1 . We

select two infinite subsets L1, L2 of M with h1 = limi∈L1
fi and h2 = limi∈L2

fi.

Since the sequence (gi)i∈L1∪L2
is pointwise convergent to ΦM (h1) = ΦM (h2), our



A CLASSIFICATION OF SEPARABLE ROSENTHAL COMPACTA 19

assumptions yield that

h1 = lim
i∈L1

fi = lim
i∈L1∪L2

fi = lim
i∈L2

fi = h2

which proves that ΦM is one-to-one. Finally, to see that ΦM is onto, let w ∈ KM2
with w /∈ {gi : i ∈ M}. Let L ⊆ M be infinite with w = limi∈L gi. By our

assumptions, the sequence (fi)i∈L converges pointwise to an h ∈ KM1 and clearly

ΦM (h) = w.

(2) Using similar arguments as in (1). �

By the above claim, it is enough to show that the map Φ is continuous. Notice

that it is enough to show that if (hn) is a sequence in K1 that converges pointwise

to an h ∈ K1, then the sequence
(
Φ(hn)

)
converges to Φ(h). Assume not. Then

there exist a sequence (hn) in K1, h ∈ K1 and w ∈ K2 such that h = limhn,

w = lim Φ(hn) and w 6= Φ(h). Since the map Φ is onto, there exists z ∈ K1 such

that z 6= h and Φ(z) = w. We select x ∈ X and ε > 0 such that |h(x)− z(x)| > ε.

The sequence (hn) converges pointwise to h, and so, we may assume that for every

n ∈ N we have |hn(x)− z(x)| > ε. Set

M :=
{
i ∈ I : |fi(x)− z(x)| > ε

2

}
.

Observe that

(O1) for every n ∈ N we have hn ∈ KM1 , and

(O2) z /∈ KM1 .

By part (2) of the above claim and (O1), we have that Φ(hn) = ΦM (hn) ∈ KM2
for every n ∈ N, and so, w ∈ KM2 . Since ΦM is onto, there exists h′ ∈ KM1 such

that ΦM (h′) = w. Therefore, by (O2) and invoking the above claim once again,

we see that z 6= h′ while ΦM (h′) = Φ(h′) = Φ(z), contradicting the fact that Φ is

one-to-one. The proof of the lemma is completed. �

4.3. Seven families of functions. Our aim in this subsection is to describe seven

families

{dit : t ∈ 2<N} (1 6 i 6 7)

of functions indexed by the Cantor tree. For every i ∈ {1, . . . , 7} the closure of the

family {dit : t ∈ 2<N} in the pointwise topology is a separable Rosenthal compact

Ki. Each one of them is minimal, namely, for every dyadic (not necessarily regular)

subtree S = (st)t∈2<N of 2<N and every i ∈ {1, . . . , 7} the families {dit}t∈2<N and

{dist}t∈2<N are equivalent in the sense of Definition 18. Although the families are

mutually non-equivalent, the corresponding compacta might be homeomorphic. In

all cases the family {dit : t ∈ 2<N} will be discrete in its closure. For any of the

corresponding compacta Ki (1 6 i 6 7) by L(Ki) we shall denote the set of all

infinite subsets L of 2<N for which the sequence (dit)t∈L is pointwise convergent.

We will name the corresponding compacta (all of them are homeomorphic to closed

subspaces of well-known compacta—see [AU, E]) and we will refer to the families
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of functions as the canonical dense sequences of them. We will use the following

pieces of notation.

If σ ∈ 2N, then δσ is the Dirac function at σ. By x+
σ we denote the characteristic

function of the set {τ ∈ 2N : σ � τ}, and by x−σ we denote the characteristic

function of the set {τ ∈ 2N : σ ≺ τ}. Notice that if t ∈ 2<N, then ta0∞ ∈ 2N,

and so, the function x+
ta0∞

is well-defined. It is useful at this point to isolate the

following property of the functions x+
σ and x−σ which will justify the notation g+

σ

and g−σ in Theorem 16. If (σn) is a sequence in 2N converging to σ with σn ≺ σ

(respectively, σ ≺ σn) for every n ∈ N, then the sequence (xεnσn) converges pointwise

to x+
σ (respectively, to x−σ ) for any choice of εn ∈ {+,−}.

By identifying the Cantor set with a subset of the unit interval, we will identify

every σ ∈ 2N with the real-valued function on 2N which is equal everywhere with σ.

Notice that for every t ∈ 2<N we have ta0∞ ∈ 2N, and so, the function ta0∞ is

well-defined. For every t ∈ 2<N be vt we denote the characteristic function of the

clopen set Vt := {σ ∈ 2N : t @ σ}. By 0 we denote the constant function on 2N

which is equal everywhere with zero. We will also consider real-valued functions

on 2N ⊕ 2N. In this case when we write, for instance, (δσ, x
+
σ ) we mean that this

function is the function δσ on the first copy of 2N and it is the function x+
σ on the

second copy of 2N.

We also fix a regular dyadic subtree R = (st)t∈2<N of 2<N with the following

property.

(Q) For every s, s′ ∈ R we have sa0∞ 6= s′a0∞ and sa1∞ 6= s′a1∞. Therefore,

the set [R̂] does not contain the eventually constant sequences.

In what follows by P we shall denote the perfect set [R̂]. By P+ we shall denote

the subset of P consisting of all σ’s for which there exists an increasing antichain

(sn) of R converging to σ in the sense of Definition 13. Respectively, by P− we

shall denote the subset of P consisting of all σ’s for which there exists a decreasing

antichain (sn) of R converging to σ.

4.3.1. The Alexandroff compactification of the Cantor tree A(2<N). It is the point-

wise closure of the family { 1

|t|+ 1
vt : t ∈ 2<N

}
.

Clearly the spaceA(2<N) is countable compact as the whole family accumulates to 0.

Setting d1
t := 1

|t|+1vt for every t ∈ 2<N, we see that the family {d1
t : t ∈ 2<N} is

a dense discrete subset of A(2<N). In this case the description of L
(
A(2<N)

)
is

trivial, since

L ∈ L
(
A(2<N)

)
⇔ L ⊆ 2<N.

4.3.2. The space 26N. It is the pointwise closure of the family

{sa0∞ : s ∈ R}.
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The accumulation points of 26N is the set

{σ : σ ∈ P}

which is clearly homeomorphic to 2N. Thus, the space 26N is uncountable compact

metrizable. Setting d2
t := sat 0∞ for every t ∈ 2<N and invoking property (Q)

above, we see that the family {d2
t : t ∈ 2<N} is a dense discrete subset of 26N. The

description of L
(
26N) is given by

L ∈ L
(
26N)⇔ ∃σ ∈ 2N with L→ σ.

4.3.3. The extended split Cantor set Ŝ+(2N). It is the pointwise closure of the family

{x+
sa0∞

: s ∈ R}.

Notice that Ŝ+(2N) can be realized as a closed subspace of the split interval S(I).

Thus, it is hereditarily separable. For every σ ∈ P the function x+
σ belongs to

Ŝ+(2N). However, for an element σ ∈ P , the function x−σ belongs to Ŝ+(2N) if and

only if there exists a decreasing antichain (sn) of R converging to σ. Finally observe

that the family {x+
sa0∞

: s ∈ R} is a discrete subset of Ŝ+(2N) (this is essentially a

consequence of property (Q) above). Therefore, the accumulation points of Ŝ+(2N)

is the set

{x+
σ : σ ∈ P} ∪ {x−σ : σ ∈ P−}.

Setting d3
t := x+

sat 0∞
for every t ∈ 2<N, we see that the family {d3

t : t ∈ 2<N} is a

dense discrete subset of Ŝ+(2N). Moreover, we have

L ∈ L
(
Ŝ+(2N)

)
⇔ ∃σ ∈ 2N with L→ σ and (either L �∗ σ or σ ≺∗ L).

4.3.4. The mirror image Ŝ−(2N) of the extended split Cantor set. The space Ŝ+(2N)

has a natural “mirror image” Ŝ−(2N) which is the pointwise closure of the set

{x−
sa1∞

: s ∈ R}.

The spaces Ŝ+(2N) and Ŝ−(2N) are homeomorphic. To see this, for every t ∈ 2<N

let t̄ ∈ 2<N be the finite sequence obtained by reversing 0 with 1 and 1 with 0 in

the finite sequence t. Define φ : R → R by setting φ(st) = st̄ for every t ∈ 2<N.

Then it is easy to see that the map

Ŝ+(2N) 3 x+

sat 0∞
7→ x−

φ(st)a1∞
∈ Ŝ−(2N)

is extended to a topological homeomorphism between Ŝ+(2N) and Ŝ−(2N). However,

the canonical dense sequences in them are not equivalent. Notice that for every

σ ∈ P the function x−σ belongs to Ŝ−(2N) while the function x+
σ belongs to Ŝ−(2N)

if and only if there exists an increasing antichain (sn) of R converging to σ. It

follows that the accumulation points of Ŝ−(2N) is the set

{x−σ : σ ∈ P} ∪ {x+
σ : σ ∈ P+}.
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As before, setting d4
t := x−

sat 1∞
for every t ∈ 2<N, the family {d4

t : t ∈ 2<N} is a

dense discrete subset of L
(
Ŝ−(2N)

)
and, moreover,

L ∈ L
(
Ŝ−(2N)

)
⇔ ∃σ ∈ 2N with L→ σ and (either L ≺∗ σ or σ �∗ L).

4.3.5. The extended Alexandroff compactification of the Cantor set Â(2N). The

space Â(2N) is the pointwise closure of the family

{vt : t ∈ 2<N}.

For every σ ∈ 2N the function δσ belongs in Â(2N), the family {δσ : σ ∈ 2N} is

discrete and accumulates to 0. The function 0 is the only non-Gδ point of Â(2N)

and this is witnessed in the most extreme way. The accumulation points of Â(2N)

is the set

{δσ : σ ∈ 2N} ∪ {0}

Setting d5
t := vt for every t ∈ 2<N, the family {d5

t : t ∈ 2<N} is a dense discrete

subset of Â(2N) and

L ∈ L
(
Â(2N)

)
⇔ (∃σ ∈ 2N with L ⊆∗ σ) or (∀σ ∈ 2N L ⊥ σ).

4.3.6. The extended duplicate of the Cantor set D̂(2N). The space D̂(2N) is the

pointwise closure of the family

{(vt, ta0∞) : t ∈ 2<N}.

This is the separable extension of the space D(2N) as it was described in [To1]. The

accumulation points of D̂(2N) is the set

{(δσ, σ) : σ ∈ 2N} ∪ {(0, σ) : σ ∈ 2N}

which is homeomorphic to the Alexandroff duplicate of the Cantor set. Todorčević

was the first to realize that this classical construction can be represented as a

compact subset of the first Baire class. The space D̂(2N) is not only first countable

but it is also pre-metric of degree at most two in the sense of [To1]. As in the

previous cases, setting d6
t := (vt, t

a0∞) for every t ∈ 2<N, we see that the family

{d6
t : t ∈ 2<N} is a dense discrete subset of D̂(2N), and

L ∈ L
(
D̂(2N)

)
⇔ ∃σ ∈ 2N with L→ σ and (either L ⊆∗ σ or L ⊥ σ).

4.3.7. The extended duplicate of the split Cantor set D̂
(
S(2N)

)
. It is the pointwise

closure of the family

{(vs, x+
sa0∞

) : s ∈ R}.

The space D̂
(
S(2N)

)
is homeomorphic to a subspace of the Helly space H. To see

this let {(at, bt) : t ∈ 2<N} be a family in [0, 1]2 such that

(i) at = ata0 < bta0 < ata1 < bta1 = bt, and

(ii) bt − at 6 1
3|t|
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for every t ∈ 2<N. Define ht : [0, 1]→ [0, 1] by

ht(x) =


1 if bt < x,

1
2 if at 6 x 6 bt,

0 if x < at.

It is easy to see that the map

D̂
(
S(2N)

)
3 (vst , x

+

sat 0∞
) 7→ ht ∈ H

is extended to a homeomorphic embedding. It is follows that the space D̂
(
S(2N)

)
is first countable. Notice, however, that it is not pre-metric of degree at most two.

As in all previous cases, we will describe the accumulation points of D̂
(
S(2N)

)
.

First we observe that if (sn) is a chain of R converging to σ ∈ P , then the sequence(
(vsn , x

+
sna0∞

)
)

is pointwise convergent to (δσ, x
+
σ ). If (sn) is an increasing antichain

of R converging to σ, then the sequence
(
(vsn , x

+
sna0∞

)
)

is pointwise convergent to

(0, x+
σ ), and if it is decreasing, then it is pointwise convergent to (0, x−σ ). Thus, the

accumulation points of D̂
(
S(2N)

)
is the set

{(δσ, x+
σ ) : σ ∈ P} ∪ {(0, x+

σ ) : σ ∈ P+} ∪ {(0, x−σ ) : σ ∈ P−}.

Finally, setting d7
t := (vst , x

+
sta0∞

) for every t ∈ 2<N, we see that the family

{d7
t : t ∈ 2<N} is a dense discrete subset of D̂

(
S(2N)

)
, and

L ∈ L
(
D̂
(
S(2N)

))
⇔ ∃σ ∈ 2N with L→ σ and (L ≺∗ σ or L ⊆∗ σ or σ ≺∗ L).

We close this subsection by noticing the following minimality property of the

above described families.

Proposition 20. Let {dit : t ∈ 2<N} with i ∈ {1, . . . , 7} be one of the seven

families of functions and let S = (st)t∈2<N be a dyadic (not necessarily regular)

subtree of 2<N. Then the family {dit : t ∈ 2<N} and the corresponding family

{dist : t ∈ 2<N} determined by the tree S are equivalent.

We also observe that any two of the seven families are not equivalent. Moreover,

beside the case of Ŝ+(2N) and Ŝ−(2N), the corresponding compacta are not mutually

homeomorphic either.

4.4. Canonization. The following theorem is the main result of this section.

Theorem 21. Let {ft}t∈2<N be a family of real-valued functions on a Polish space

X which is relatively compact in B1(X). Also let {dit}t∈2<N (1 6 i 6 7) be the

families described in the previous subsection. Then there exist a regular dyadic

subtree S = (st)t∈2<N of 2<N and i0 ∈ {1, . . . , 7} such that {fst}t∈2<N is equivalent

to {di0t }t∈2<N .
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Proof. The family {ft}t∈2<N satisfies the hypotheses of Theorem 16. Thus, there

exist a regular dyadic subtree T of 2<N and a family {g0
σ, g

+
σ , g

−
σ : σ ∈ P} of

functions, where P = [T̂ ], as described in Theorem 16. Let 0,+ and − denote the

corresponding Borel functions. We recall that for every subset X of 2N we identify

the set [X]2 of all doubletons of X with the set of all (σ, τ) ∈ X2 with σ ≺ τ . For

every ε ∈ {0,+,−} we set

Aε,ε := {(σ1, σ2) ∈ [P ]2 : gεσ1
6= gεσ2

}.

Then Aε,ε is an analytic subset of [P ]2. To see this notice that

(σ1, σ2) ∈ Aε,ε ⇔ ∃x ∈ X with gεσ1
(x) 6= gεσ2

(x)

⇔ ∃x ∈ X with ε(σ1, x) 6= ε(σ2, x).

Invoking the Borelness of the functions 0,+,− we see that Aε,ε is analytic, as

desired. Notice that for every perfect subset Q of P and every ε ∈ {0,+,−} the set

Aε,ε ∩ [Q]2 is analytic in [Q]2. Thus, applying Theorem 6 successively three times,

we obtain a perfect subset Q0 of P such that for every ε ∈ {0,+,−} we have

either [Q0]2 ⊆ Aε,ε or Aε,ε ∩ [Q0]2 = ∅.

Case 1: A0,0∩ [Q0]2 = ∅. In this case we have g0
σ1

= g0
σ2

for every (σ1, σ2) ∈ [Q0]2.

Thus, there exists a function g such that g0
σ = g for every σ ∈ Q0. By properties (2)

and (3) in Theorem 16 and the homogeneity of Q0, we see that g+
σ = g−σ = g0

σ = g

for every σ ∈ Q0. We select a regular dyadic subtree S = (st)t∈2<N of T such

that [Ŝ] ⊆ Q0 and fs 6= g for every s ∈ S. Invoking properties (1), (4) and (5) of

Theorem 16 and part (2) of Lemma 8, we see that for every infinite subset A of S

the sequence (ft)t∈A accumulates to g. It follows that {fs}
p

s∈S = {fs}s∈S ∪ {g},
and so, {fst}t∈2<N is equivalent to the canonical dense family of A(2<N).

Case 2: [Q0]2 ⊆ A0,0. Notice that for every (σ1, σ2) ∈ [Q0]2 we have g0
σ1
6= g0

σ2
.

By passing to a further perfect subset of Q0 if necessary, we may also assume that

(P1) g0
σ 6= ft for every σ ∈ Q0 and every t ∈ T .

Case 2.1: Either A+,+ ∩ [Q0]2 = ∅ or A−,− ∩ [Q0]2 = ∅. Assume, first, that

A+,+ ∩ [Q0]2 = ∅. In this case, there exists a function g such that g+
σ = g for

every σ ∈ Q0. By property (3) in Theorem 16 and the homogeneity of Q0, we

also have that g−σ = g for every σ ∈ Q0. This means that A−,− ∩ [Q0]2 = ∅.
Thus, by symmetry, this case is equivalent to saying that A+,+ ∩ [Q0]2 = ∅ and

A−,− ∩ [Q0]2 = ∅. It follows that there exists a function g such that g+
σ = g−σ = g

for every σ ∈ Q0. By passing to a further perfect subset of Q0 if necessary, we

may also assume that g0
σ 6= g for every σ ∈ Q0. We select a regular dyadic subtree

S = (st)t∈2<N of T such that [Ŝ] ⊆ Q0 and fs 6= g for every s ∈ S. This property

and (P1) implies that for every s ∈ S the function fs is isolated in {fs}
p

s∈S .

We claim that {fst}t∈2<N is equivalent to the canonical dense family of Â(2N).

We will give a detailed exposition of the argument which will serve as a prototype
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for the other cases as well. First, we notice that, by Lemma 19 and the description

of L
(
Â(2N)

)
, it is enough to show that for a subset A of S, the sequence (fs)s∈A

converges pointwise if and only if either A is almost included in a chain or A does

not contain an infinite chain. For the if part we observe that if A is almost contained

in a chain, then, by property (1) of Theorem 16, the sequence (fs)s∈A is pointwise

convergent. Assume that A does not contain an infinite chain. Since g+
σ = g−σ = g

for every σ ∈ Q0, we see that for every increasing and every decreasing antichain

(sn) of S, the sequence (fsn) converges pointwise to g. Thus, (fs)s∈A is pointwise

convergent to g. For the only if part we argue by contradiction. If there exist

σ1 6= σ2 contained in [Ŝ] such that A ∩ {σ1|n : n ∈ N} and A ∩ {σ2|n : n ∈ N}
are both infinite, then the fact that g0

σ1
6= g0

σ2
implies that the sequence (fs)s∈A

is not pointwise convergent. Finally, if A contains an infinite chain and an infinite

antichain, then the fact that g0
σ 6= g for every σ ∈ [Ŝ] implies that (fs)s∈A is not

pointwise convergent either.

Case 2.2: [Q0]2 ⊆ A+,+ and [Q0]2 ⊆ A−,−. In this case we have

(P2) gεσ1
6= gεσ2

for every (σ1, σ2) ∈ [Q0]2 and every ε ∈ {0,+,−}.

Moreover, by passing to a further perfect subset of Q0, we may strengthen (P1) to

(P3) gεσ 6= ft for every σ ∈ Q0, every ε ∈ {0,+,−} and every t ∈ T .

Observe that (P3) implies the following. For every regular dyadic subtree S of T

with [Ŝ] ⊆ Q0 and every s ∈ S the function fs is isolated in the closure of {fs}s∈S
in RX . Thus, as in Case 2.1, in what follows Lemma 19 will be applicable.

For every ε1, ε2 ∈ {0,+,−} with ε1 6= ε2 we set

Aε1,ε2 := {(σ1, σ2) ∈ [Q0]2 : gε1σ1
6= gε2σ2

}.

Notice that Aε1,ε2 is an analytic subset of [Q0]2. Applying Theorem 6 successively

six times, we find a perfect subset Q1 of Q0 such that for every ε1, ε2 ∈ {0,+,−}
with ε1 6= ε2 we have

either [Q1]2 ⊆ Aε1,ε2 or Aε1,ε2 ∩ [Q1]2 = ∅.

We claim that for every pair ε1, ε2 the first alternative must occur. Assume, on the

contrary, that there exist ε1, ε2 with ε1 6= ε2 such that Aε1,ε2 ∩ [Q1]2 = ∅. Let τ be

the lexicographical minimum of Q1. Then for every σ, σ′ ∈ Q1 with τ ≺ σ ≺ σ′ we

have gε2σ = gε1τ = gε2σ′ which contradicts (P2). Summing up, by passing to Q1, we

have strengthen (P2) to

(P4) gε1σ1
6= gε2σ2

for every (σ1, σ2) ∈ [Q1]2 and every ε1, ε2 ∈ {0,+,−}.

For every ε ∈ {+,−} we define B0,ε ⊆ Q1 by

B0,ε := {σ ∈ Q1 : g0
σ 6= gεσ}.

It is easy to see that B0,ε is an analytic subset of Q1. Thus, by the classical perfect

set theorem, there exists a perfect subset Q2 of Q1 such that for every ε ∈ {+,−}
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we have

either Q2 ⊆ B0,ε or B0,ε ∩Q2 = ∅.

Case 2.2.1: B0,+ ∩ Q2 = ∅ and B0,− ∩ Q2 = ∅. In this case for every σ ∈ Q2

there exists a function gσ such that gσ = g0
σ = g+

σ = g−σ . Moreover, gσ1
6= gσ2

for

every σ1 6= σ2 in Q2 since Q2 ⊆ Q1. Invoking properties (2) and (3) in Theorem

16, we see that the set {gσ : σ ∈ Q2} is homeomorphic to Q2. We select a regular

dyadic subtree S = (st)t∈2<N of T such that [Ŝ] ⊆ Q2 ⊆ Q0. It follows that

{fs}
p

s∈S = {fs}s∈S ∪ {gσ : σ ∈ [Ŝ]}, and so, the family {fst}t∈2<N is equivalent to

the canonical dense family of 26N.

Case 2.2.2: B0,+∩Q2 = ∅ and Q2 ⊆ B0,−. This means that g0
σ = g+

σ and g0
σ 6= g−σ

for every σ ∈ Q2. Let S = (st)t∈2<N be a regular dyadic subtree of T such that

[Ŝ] ⊆ Q2 ⊆ Q0. Invoking (P3) and the remarks following it, the description of

L
(
Ŝ+(2N)

)
, Lemma 19 and arguing precisely as in Case 2.1, we see that {fst}t∈2<N

is equivalent to the canonical dense family of Ŝ+(2N).

Case 2.2.3: Q2 ⊆ B0,+ and B0,−∩Q2 = ∅. This means that g0
σ = g−σ and g0

σ 6= g+
σ

for every σ ∈ Q2. As in the previous case, let S = (st)t∈2<N be a regular dyadic

subtree of T such that [Ŝ] ⊆ Q2 ⊆ Q0. In this case {fst}t∈2<N is equivalent to

canonical dense family of the mirror image Ŝ−(2N) of the extended split Cantor set;

the argument is similar to that in the proof of Case 2.1.

Case 2.2.4: Q2 ⊆ B0,+ and Q2 ⊆ B0,−. In this case we have

(P5) g0
σ 6= g+

σ and g0
σ 6= g−σ for every σ ∈ Q2.

Set

B+,− := {σ ∈ Q2 : g+
σ 6= g−σ }

Again we see that B+,− is an analytic subset of Q2. Thus, there exists a perfect

subset Q3 of Q2 such that either Q3 ⊆ B+,− or Q3 ∩B+,− = ∅.

Case 2.2.4.1: Q3 ∩ B+,− = ∅. This means that for every σ ∈ Q3 there exists a

function gσ such that gσ = g+
σ = g−σ and gσ 6= g0

σ. Moreover since Q3 ⊆ Q2 ⊆ Q1,

by property (P4) above, we have gσ1
6= gσ2

and g0
σ1
6= g0

σ2
for every (σ1, σ2) ∈ [Q3]2.

Let S = (st)t∈2<N be a regular dyadic subtree of T such that [Ŝ] ⊆ Q3 ⊆ Q0. In

this case {fst}t∈2<N is equivalent to the canonical dense family of D̂(2N). The

verification is similar to the previous cases.

Case 2.2.4.2: Q3 ⊆ B+,−. This means that g+
σ 6= g−σ for every σ ∈ Q3. Combining

this property with (P4) and (P5), we see that gε1σ1
6= gε2σ2

if either ε1 6= ε2 or

σ1 6= σ2. As before, let S = (st)t∈2<N be a regular dyadic subtree of T such that

[Ŝ] ⊆ Q3 ⊆ Q0. It follows that the family {fst}t∈2<N is equivalent to the canonical

dense family of D̂
(
S(2N)

)
.

The above cases are exhaustive and the proof of the theorem is completed. �

By Theorem 21 and Proposition 20, we obtain the following corollary.
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Corollary 22. Let X be a Polish space and let {ft}t∈2<N be a family of functions

relatively compact in B1(X). Then for every regular dyadic subtree T of 2<N there

exist a regular dyadic subtree S of T and i0 ∈ {1, . . . , 7} such that for every regular

dyadic subtree R = (rt)t∈2<N of S the family {frt}t∈2<N is equivalent to {di0t }t∈2<N .

5. Analytic subspaces of separable Rosenthal compacta

In this section we introduce a class of subspaces of separable Rosenthal compacta

and we present some of their basic properties.

5.1. Definitions and basic properties. Let K be a separable Rosenthal compact

on a Polish space X. For every subset F of K by Acc(F) we denote the set of

accumulation points of F in RX . We start with the following definition.

Definition 23. Let K be a separable Rosenthal compact on a Polish space X and

let C be a closed subspace of K. We say that C is an analytic subspace of K if there

exist a countable dense subset {fn} of K and an analytic subset A of [N]∞ such

that the following are satisfied.

(1) For every L ∈ A we have Acc
(
{fn : n ∈ L}

)
⊆ C.

(2) For every g ∈ C ∩Acc(K) there exists L ∈ A with g ∈ {fn}
p

n∈L.

Let us make some remarks concerning the above notion. First we notice that

the analytic set A witnessing the analyticity of C can always be assumed to be

hereditary. Also observe that an analytic subspace of K is not necessarily separable.

For instance, if K = Â(2N) and C = A(2N), then it is easy to see that C is an

analytic subspace of K. In the following proposition we give some examples of

analytic subspaces.

Proposition 24. Let K be a separable Rosenthal compact. Then the following hold.

(1) K is analytic with respect to any countable dense subset {fn} of K.

(2) Every closed Gδ subspace C of K is analytic.

(3) Every closed separable subspace C of K is analytic.

Proof. (1) Take A = [N]∞.

(2) Let (Uk) be a sequence of open subsets of K such that Uk+1 ⊆ Uk for every

k ∈ N and with C =
⋂
k Uk. Also let {fn} be a countable dense subset of K. For

every k ∈ N set Mk := {n ∈ N : fn ∈ Uk}. Notice that the sequence (Mk) is

decreasing. Let A ⊆ [N]∞ be defined by

L ∈ A⇔ ∀k ∈ N (L ⊆∗ Mk).

Clearly, the set A is Borel. It is easy to see that A satisfies condition (1) of

Definition 23 for C. To see that condition (2) is also satisfied let g ∈ C ∩ Acc(K).

By the Bourgain–Fremlin–Talagrand theorem [BFT], there exists an infinite subset

L on N such that g is the pointwise limit of the sequence (fn)n∈L. Since g ∈ Uk



28 SPIROS ARGYROS, PANDELIS DODOS AND VASSILIS KANELLOPOULOS

for every k ∈ N, we see that L ⊆∗ Mk for every k. Therefore, the set A witness the

analyticity of C.

(3) Let D1 be a countable dense subset of K and D2 a countable dense subset of C.
Let {fn} be an enumeration of the set D1 ∪D2 and set L := {n ∈ N : fn ∈ D2}.
Also set M := {k ∈ L : fk ∈ Acc(K)}, and for every k ∈ M we select Lk ∈ [N]∞

such that the function fk is the pointwise limit of the sequence (fn)n∈Lk . We define

A := [L]∞ ∪
(⋃

k∈M [Lk]∞
)
. The countable dense subset {fn} of K and the set A

verify the analyticity of C. �

To proceed with our discussion on the properties of analytic subspaces we need

to introduce some pieces of notation. Let K be a separable Rosenthal compact and

let f = {fn} be a countable dense subset of K. We set

Lf := {L ∈ [N]∞ : (fn)n∈L is pointwise convergent}.

Moreover, for every accumulation point f of K we set

Lf ,f := {L ∈ [N]∞ : (fn)n∈L is pointwise convergent to f}.

We notice that both Lf and Lf ,f are co-analytic. The first result relating the

topological behavior of a point f in K with the descriptive set-theoretic properties

of the set Lf ,f is the result of Krawczyk from [Kr] asserting that a point f ∈ K is

Gδ if and only if the set Lf ,f is Borel. Another important structural property is the

following consequence of the effective version of the Bourgain–Fremlin–Talagrand

theorem proved by Debs in [De].

Theorem 25. Let K be a separable Rosenthal compact. Then for every countable

dense subset f = {fn} of K there is a Borel, hereditary and cofinal subset C of Lf .

We refer the reader to [Do] for an explanation of how Debs’ theorem yields the

above result.

Let K and f = {fn} be as above. For every A ⊆ Lf we set

KA,f := {g ∈ K : ∃L ∈ A with g = lim
n∈L

fn}.

We have the following characterization of analytic subspaces which is essentially a

consequence of Theorem 25.

Proposition 26. Let K be a separable Rosenthal compact and C a closed subspace

of K. Then C is analytic if and only if there exist a countable dense subset f = {fn}
of K and a hereditary and analytic subset A′ of Lf such that KA′,f = C ∩Acc(K).

Proof. The direction (⇐) is immediate. Conversely, assume that C is analytic

and let f = {fn} and A ⊆ [N]∞ verifying its analyticity. As we have already

remarked, we may assume that A is hereditary. By Theorem 25, there exists a

Borel, hereditary and cofinal subset C of Lf . We set A′ := A∩C. We claim that A′

is the desired set. Clearly A′ is a hereditary and analytic subset of Lf . Also observe
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that, by condition (1) in Definition 23, for every L ∈ A′ the sequence (fn)n∈L must

be pointwise convergent to a function g ∈ C. Therefore, KA′,f ⊆ C ∩ Acc(K).

Conversely, let g ∈ C ∩ Acc(K). There exists M ∈ A with g ∈ {fn}
p

n∈M . By the

Bourgain–Fremlin–Talagrand theorem, there exists N ∈ [M ]∞ such that g is the

pointwise limit of the sequence (fn)n∈N . Clearly we have N ∈ Lf . Since C is

cofinal in Lf , there exists L ∈ [N ]∞ with L ∈ C. As A is hereditary, we see that

L ∈ A ∩ C = A′. The proof is completed. �

5.2. Separable Rosenthal compacta in B1(2N). Let K be separable Rosenthal

compact on a Polish space X and let f = {fn} be a countable dense subset of K.

By Theorem 25, there exists a Borel cofinal subset of Lf . The following proposition

shows that if X is compact metrizable, then this global property of Lf (namely, that

it contains a Borel cofinal set) is also valid locally. We notice that in the argument

below we make use of the Arsenin–Kunugui theorem in a spirit similar as in [Po2].

Proposition 27. Let X be a compact metrizable space, K a separable Rosenthal

compact on X and f = {fn} a countable dense subset of K. Then for every f ∈ K
there exists an analytic hereditary subset B of Lf ,f which is cofinal in Lf ,f .

Proof. We apply Theorem 25 and we obtain a hereditary, Borel and cofinal subset

C of Lf . Consider the function Φ: C×X → R defined by Φ(L, x) = fL(x) where by

fL we denote the pointwise limit of the sequence (fn)n∈L. Notice that Φ is Borel.

Indeed, for every n ∈ N let Φn : C ×X → R be defined by Φn(L, x) = fln(x) where

ln is the n-th element of the increasing enumeration of L. Clearly the function Φn

is Borel. Since Φ(L, x) = lim Φn(L, x) for every (L, x) ∈ C ×X, the Borelness of Φ

follows. For every m ∈ N define Pm ⊆ C ×X by

(L, x) ∈ Pm ⇔ |fL(x)− f(x)| > 1

m+ 1

⇔ (c, x) ∈ Φ−1
(
(−∞,− 1

m+ 1
) ∪ (

1

m+ 1
,+∞)

)
.

Clearly, Pm is Borel. For every L ∈ C the function x 7→ |fL(x) − f(x)| is Baire-1.

Hence, for every L ∈ C the section (Pm)L = {x ∈ X : (L, x) ∈ Pm} of Pm at L is

Fσ, and since X is compact metrizable, it is Kσ. By the Arsenin–Kunugui theorem

(see, e.g., [Ke, Theorem 35.46]), the set

Gm = projCPm

is Borel. It follows that the set G =
⋃
mGm is a Borel subset of C. We set

D := C \G. Now observe that for every L ∈ C we have that L ∈ Lf ,f if and only

if L /∈ G. Hence, the set D is a Borel subset of Lf ,f , and as C is cofinal, we see

that D is cofinal in Lf ,f . Therefore, setting B to be the hereditary closure of D,

we conclude that B is as desired. �

Remark 2. (1) We notice that Proposition 27 is not valid for an arbitrary separable

Rosenthal compact. A counterexample, taken from [Po2] (see also [Ma]), is the
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following. Let A be an analytic non-Borel subset of 2N and denote by KA the

separable Rosenthal compact obtained by restrict every function of Â(2N) on A.

Clearly, the function 0|A belongs to KA and is a non-Gδ point of KA. It is easy to

check that, in this case, there does not exist a Borel cofinal subset of L0|A .

(2) We should point out that the hereditary and cofinal subset B of Lf ,f obtained

by Proposition 27, can be chosen to be Borel. To see this, start with an analytic

and cofinal subset A0 of Lf ,f . Using Souslin’s separation theorem, we construct

two sequences (Bn) and (Cn) such that Bn is Borel, Cn is the hereditary closure of

Bn and A0 ⊆ Bn ⊆ Cn ⊆ Bn+1 ⊆ Lf ,f for every n ∈ N. Setting B :=
⋃
nBn, we

see that B is as desired.

The argument in the proof of Proposition 27 can be used to derive certain prop-

erties of analytic subspaces of separable Rosenthal compacta. To state these prop-

erties we need to introduce some pieces of notation. If K is a separable Rosenthal

compact K on a Polish space X, f = {fn} is a countable dense subset of K and C
is a closed subspace of K, then we set

Lf ,C := {L ∈ [N] : ∃g ∈ C with g = lim
n∈L

fn}.

Clearly Lf ,C is a subset of Lf . Also notice that if C = {f} for some f ∈ K, then

Lf ,C = Lf ,f .

Part (1) of the following proposition extends Proposition 27 for analytic sub-

spaces. The second part shows that the notion of an analytic subspace of K is

independent of the choice of the dense sequence for every separable Rosenthal com-

pact K in B1(2N).

Proposition 28. Let X be a compact metrizable space, K a separable Rosenthal

compact on X and C and analytic subspace of K. Let f = {fn} be a countable

dense subset of K and let A ⊆ [N]∞ be analytic witnessing the analyticity of C.

Then the following hold.

(1) There exists an analytic cofinal subset A1 of Lf ,C.

(2) For every countable dense subset g = {gn} of K there exists an analytic

subset A2 of Lg such that KA2,g = C ∩Acc(K).

Proof. (1) By Proposition 26, there exists a hereditary and analytic subset A′ of Lf

such that KA′,f = C ∩Acc(K). Applying Theorem 25, we obtain a Borel, hereditary

and cofinal subset C of Lf . As in Proposition 27, for every L ∈ C by fL we denote

the pointwise limit of the sequence (fn)n∈L. We set A′′ := A′ ∩ C. Clearly A′′ is

analytic and hereditary. Moreover, it is easy to see that KA′′,f = C ∩Acc(K) (that

is, the set A′′ codes all function in Acc(K)∩C). Consider the following equivalence

relation ∼ on C defined by the rule

L ∼M ⇔ fL = fM ⇔ ∀x ∈ X fL(x) = fM (x).
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We claim that ∼ is Borel. To see this notice that the map

C × C ×X 3 (L,M, x) 7→ |fL(x)− fM (x)|

is Borel (this can be easily checked arguing as in the proof of Proposition 27).

Moreover, for every (L,M) ∈ C × C the map x 7→ |fL(x) − fM (x)| is Baire-1.

Observe that

¬(L ∼M)⇔ ∃x ∈ X ∃ε > 0 with |fL(x)− fM (x)| > ε.

By the fact that X is compact metrizable and the Arsenin–Kunugui theorem, we

see that ∼ is Borel. We set A1 to be the ∼ saturation of A′′, that is,

A1 := {M ∈ C : ∃L ∈ A′′ with M ∼ L}.

Since A′′ is analytic and ∼ is Borel, we see that A1 is analytic. As C is cofinal, it

is easy to check that A1 is cofinal in Lf ,C . Thus, the set A1 is the desired one.

(2) Let C1 and C2 be two hereditary, Borel and cofinal subsets of Lf and Lg

respectively. By part (1), there exists a hereditary and analytic subset A1 of Lf

which is cofinal in Lf ,C . We set A′1 = A1 ∩ C1. Consider the following subset S of

C1 × C2 defined by setting

(L,M) ∈ S ⇔ fL = gM ⇔ ∀x ∈ X fL(x) = gM (x)

where fL denotes the pointwise limit of the sequence (fn)n∈L and gM denotes the

pointwise limit of the sequence (gn)n∈M . Since X is compact metrizable, arguing

as in part (1), it is easy to see that S is Borel. We set

A2 := {M ∈ C2 : ∃L ∈ A′1 with (L,M) ∈ S}.

The set A2 is as desired. �

We close this subsection with the following proposition which provides further

examples of analytic subspaces.

Proposition 29. Let K be a separable Rosenthal compact on a Polish space X.

Also let F be a Kσ subset of X. Then the subspace CF := {f ∈ K : f |F = 0} of K
is analytic with respect to any countable dense subset f = {fn} of K.

Proof. Let C be a hereditary, Borel and cofinal subset of Lf . Let Z be the subset

of C ×X defined by

(L, x) ∈ Z ⇔ (x ∈ F ) and (∃ε > 0 with |fL(x)| > ε).

The set Z is Borel. Since F is Kσ, we see that for every L ∈ C the section

ZL = {x ∈ X : (L, x) ∈ Z} of Z at L is Kσ. Thus, setting A := C \ projCZ

and invoking the Arsenin–Kunugui theorem, we see that the set A witnesses the

analyticity of CF with respect to {fn}. �
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Related to the concept of an analytic subspace of K and the above propositions,

the following questions are open to us.

Problem 1. Is it true that the concept of an analytic subspace is independent of

the choice of the countable dense subset of K? More precisely, if C is an analytic

subspace of a separable Rosenthal compact K on a Polish space X and f = {fn} is

an arbitrary countable dense subset of K, then does there exists A ⊆ Lf analytic

with KA,f = C ∩Acc(K)?

Problem 2. Let K be a separable Rosenthal compact on a Polish space X and let

B ⊆ X be Borel. Is the subspace CB := {f ∈ K : f |B = 0} analytic?

6. Canonical embeddings in analytic subspaces

This section is devoted to the canonical embedding of the most representative

prototype, among the seven minimal families, into a given analytic subspace of a

separable Rosenthal compact. The section is divided into two subsections. The first

subsection concerns metrizable Rosenthal compacta, and the second subsection the

non-metrizable ones. We start with the following definitions.

Definition 30. An injection φ : 2<N → N is said to be canonical provided that

φ(s) < φ(t) if either |s| < |t|, or |s| = |t| and s ≺ t. By φ0 we denote the unique

canonical bijection between 2<N and N.

Definition 31. Let K be a separable Rosenthal compact, {fn} a countable dense

subset of K and C a closed subspace of K. Also let {dit}t∈2<N (1 6 i 6 7) be the

canonical families described in Subsection 4.3 and let Ki (1 6 i 6 7) be the cor-

responding separable Rosenthal compacta. For every i ∈ {1, . . . , 7} we say that Ki
canonically embeds into K with respect to {fn} and C if there exists a canonical in-

jection φ : 2<N → N such that the families {dit}t∈2<N and {fφ(t)}t∈2<N are equivalent,

that is, if the map

Ki 3 dit 7→ fφ(t) ∈ K

is extended to a homeomorphism between Ki and {fφ(t)}
p

t∈2<N and, moreover,

Acc
(
{fφ(t) : t ∈ 2<N}

)
⊆ C.

If C = K, then we simply say that Ki canonical embeds into K with respect to {fn}.

6.1. Metrizable Rosenthal compacta. We have the following theorem.

Theorem 32. Let K be a separable Rosenthal compact on a Polish space X consist-

ing of bounded functions. Also let {fn} be a countable dense subset of K. Assume

that K is metrizable in the pointwise topology and non-separable in the supremum

norm of B1(X). Then there exists a canonical embedding of 26N into K with respect

to {fn} whose accumulation points are ε-separated in the supremum norm for some

ε > 0. In particular, its image is non-separable in the supremum norm.
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Proof. Fix a compatible metric ρ for the pointwise topology of K. Our assumptions

on K yield that there exist ε > 0 and a family Γ = {fξ : ξ < ω1} ⊆ K such that

Γ is ε-separated in the supremum norm and each fξ is a condensation point of the

family Γ in the pointwise topology.

By recursion on the length of finite sequences in 2<N, we shall construct

(C1) a family (Bt)t∈2<N of open subsets of K,

(C2) a family (xt)t∈2<N in X,

(C3) two families (rt)t∈2<N and (qt)t∈2<N of reals, and

(C4) a canonical injection φ : 2<N → N

such that for every t ∈ 2<N the following are satisfied.

(P1) We have Bta0 ∩Bta1 = ∅, Bta0 ∪Bta1 ⊆ Bt and ρ− diam(Bt) 6 1
|t|+1 .

(P2) We have |Bt ∩ Γ| = ℵ1.

(P3) We have rt < qt and qt − rt > ε.

(P4) If f ∈ Bta0, then f(xt) < rt, and if f ∈ Bta1, then f(xt) > qt.

(P5) We have fφ(t) ∈ Bt.

We set B∅ = K and φ(∅) = 0. We select f, g ∈ Γ and we fix x ∈ X and r, q ∈ R
such that f(x) < r < q < g(x) and q − r > ε. We set x∅ := x, r∅ := r and q∅ := q.

We select B(0), B(1) open subsets of K such that f ∈ B(0) ⊆ {h ∈ RX : h(x∅) < r∅},
g ∈ B(1) ⊆ {h ∈ RX : h(x∅) > q∅}, ρ − diam(B(0)) <

1
2 and ρ − diam(B(1)) <

1
2 .

Observe that x∅, r∅, q∅, B(0) and B(1) satisfy properties (P1)–(P4) above. Also

notice that B(0), B(1) are uncountable, hence, they intersect the dense set {fn} at

an infinite set. Therefore, we may select φ(∅) < φ
(
(0)
)
< φ

(
(1)
)

satisfying (P5).

The general inductive step proceeds similarly assuming that

(a) xt, rt and qt have been selected for every t ∈ 2<N with |t| < n− 1, and

(b) Bt and φ(t) have been selected for every t ∈ 2<N with |t| < n

so that (P1)–(P5) are satisfied. This completes the recursive construction.

Now notice that for every σ ∈ 2N we have that
⋂
nBσ|n = {fσ} and the map

2N 3 σ 7→ fσ ∈ K is a homeomorphic embedding. Moreover, for every σ ∈ 2N

the sequence (fφ(σ|n)) is pointwise convergent to fσ. Also observe the following

consequence of properties (P3) and (P4). If σ < τ ∈ 2N, then, setting t = σ ∧ τ ,

we have that fσ(xt) 6 rt < qt 6 fτ (xt), and so, ‖fσ − fτ‖∞ > ε. Since there are

at most countable many σ ∈ 2N with fσ ∈ {fn}, by passing to a regular dyadic

subtree of 2<N if necessary, we may assume that for every t ∈ 2<N the function

fφ(t) is isolated in {fφ(t)}
p

t∈2<N . This easily yields that the family {fφ(t)}t∈2<N is

equivalent to the canonical dense family of 26N. The proof is completed. �

6.2. Non-metrizable separable Rosenthal compacta. This subsection is de-

voted to the proofs of the following theorems.

Theorem 33. Let K be a separable Rosenthal compact on a Polish space X and

let C be an analytic subspace of K. Also let {fn} be a countable dense subset of
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K and let A ⊆ [N]∞ be analytic witnessing the analyticity of C. Assume that C is

not hereditarily separable. Then either Â(2N), or D̂(2N), or D̂
(
S(2N)

)
canonically

embeds into K with respect to {fn} and C.

In particular, if K is first countable and not hereditarily separable, then either

D̂(2N) or D̂
(
S(2N)

)
canonically embeds into K with respect to every countable dense

subset {fn} of K.

As it is shown in Corollary 45, if K is not first countable, then Â(2N) canonically

embeds into K.

Theorem 34. Let K be a separable Rosenthal compact on a Polish space X and

let {fn} be a countable dense subset of K. Assume that K is hereditarily separable

and non-metrizable. Then either Ŝ+(2N) or Ŝ−(2N) canonically embeds into K with

respect to {fn}.

6.2.1. Proof of Theorem 33. The main goal is to prove the following proposition.

Proposition 35. Let K, C and {fn} be as in Theorem 33. Then there exists a

canonical injection ψ : 2<N → N such that, setting

Kσ = {fψ(σ|n)}
p
\ {fψ(σ|n)}

for every σ ∈ 2N, there exists an open subset Vσ of RX with Kσ ⊆ Vσ ∩ C and such

that Kτ ∩ Vσ = ∅ for every τ ∈ 2N with τ 6= σ.

Granting Proposition 35, we complete the proof as follows. Let ψ be the canonical

injection obtained by the above proposition, and define ft = fψ(t) for every t ∈ 2<N.

We apply Theorem 21 and we obtain a regular dyadic subtree S = (st)t∈2<N of 2<N

and i0 ∈ {1, . . . , 7} such that {fst}t∈2<N is equivalent to {di0t }t∈2<N . By Proposition

35, we see that the closure of {fst}t∈2<N in RX contains an uncountable discrete

set. Thus, {fst}t∈2<N is equivalent to the canonical dense family of either Â(2N),

or D̂(2N), or D̂
(
S(2N)

)
. Setting φ = ψ ◦ iS , we see that φ is an injection imposing

a canonical embedding of either Â(2N), or D̂(2N), or D̂
(
S(2N)

)
into K with respect

to {fn} and C.
We proceed to the proof of Proposition 35. By enlarging the topology on X if

necessary (see, e.g., [Ke]), we may assume that the functions {fn} are continuous.

We may also assume that the set A is hereditary. By condition (2) of Definition 23

and the Bourgain–Fremlin–Talagrand theorem, for every g ∈ C ∩ Acc(K) there

exists L ∈ A such that g is the pointwise limit of the sequence (fn)n∈L. We fix a

continuous map Φ: NN → [N]∞ with Φ(NN) = A.

We need to introduce some pieces of notation. For every m ∈ N, every

y = (x1, . . . , xm) ∈ Xm, every λ = (λ1, . . . , λm) ∈ Rm and every ε > 0 we set

V (y, λ, ε) := {g ∈ RX : λi − ε < g(xi) < λi + ε ∀i = 1, . . . ,m}.

By V (y, λ, ε), we denote the closure of V (y, λ, ε) in RX .
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Using the fact that C is not hereditarily separable, by recursion on countable

ordinals, we select

(1) m ∈ N, λ = (λ1, . . . , λm) ∈ Qm and positive rationals ε and δ,

(2) a family Γ = {yξ = (xξ1, . . . , x
ξ
m) : ξ < ω1} ⊆ Xm,

(3) a family {fξ : ξ < ω1} ⊆ C,
(4) a family {Mξ : ξ < ω1} ⊆ [N]∞, and

(5) a family {bξ : ξ < ω1} ⊆ NN

such that for every ξ < ω1 the following are satisfied.

(i) We have fξ ∈ Acc(K).

(ii) We have fξ ∈ V (yξ, λ, ε), while for every ζ < ξ we have fζ /∈ V (yξ, λ, ε+ δ).

(iii) yξ is a condensation point of Γ in Xm.

(iv) We have Φ(bξ) = Mξ and fξ is the pointwise limit of the sequence (fn)n∈Mξ
.

Next, by induction on the length of the finite sequences in 2<N, we shall construct

(C1) a canonical injection ψ : 2<N → N,

(C2) a family (Bt)t∈2<N of open balls in Xm taken with respect to a compatible

complete metric ρ of Xm, and

(C3) a family (∆t)t∈2<N of uncountable subsets of ω1.

The construction is done so that for every t ∈ 2<N the following are satisfied.

(P1) If t 6= ∅, then fψ(t) ∈ V (y, λ, ε) for every y ∈ Bt.
(P2) For every t′, t ∈ 2<N with |t′| = |t| and t′ 6= t we have fψ(t) /∈ V (y, λ, ε+ δ)

for every y ∈ Bt′ .
(P3) We have Bta0 ∩Bta1 = ∅, Bta0 ∪Bta1 ⊆ Bt and ρ− diam(Bt) 6 1

|t|+1 .

(P4) We have ∆ta0 ∩∆ta1 = ∅ and ∆ta0 ∪∆ta1 ⊆ ∆t.

(P5) We have diam
(
{bξ : ξ ∈ ∆t}

)
6 1

2|t|
.

(P6) We have {yξ : ξ ∈ ∆t} ⊆ Bt.
(P7) If t 6= ∅, then ψ(t) ∈Mξ for every ξ ∈ ∆t.

Assume that the construction has been carried out. We set yσ :=
⋂
nBσ|n and

Vσ := V (yσ, λ, ε+ δ
2 ) for every σ ∈ 2N. Using (P1) and (P2), it is easy to see that

Kσ ⊆ Vσ and Kσ ∩ Vτ = ∅ if σ 6= τ . We only need to check that Kσ ⊆ C for every

σ ∈ 2N. So, let σ ∈ 2N be arbitrary. We set M := {ψ(σ|n) : n > 1} ∈ [N]∞. It is

enough to show that M ∈ A. For every k > 1 we select ξk ∈ ∆σ|k. By properties

(P4), (P5) and (P7), the sequence (bξk)k>1 converges to a unique b ∈ NN and,

moreover, ψ(σ|n) ∈Mξk = Φ(bξk) for every 1 6 n 6 k. By the continuity of Φ, we

see that Mξk → Φ(b), and so M ⊆ Φ(b). Since A is hereditary, we conclude that

M ∈ A as desired.

We proceed to the construction. We set ψ(∅) := 0, B∅ := Xm and ∆∅ := ω1.

Assume that for some n > 1 and for every t ∈ 2<n the values ψ(t) ∈ N, the open

balls Bt and the sets ∆t have been constructed. Refining if necessary, we may

assume that for every t ∈ 2<n and every ξ ∈ ∆t the point yξ is a condensation

point of the set {yζ : ζ ∈ ∆t}.
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Let {t0 ≺ · · · ≺ t2n−1−1} be the ≺-increasing enumeration of 2n−1. For every

j ∈ {0, . . . , 2n − 1} we select an open ball B−1
j in Xm and an uncountable subset

∆−1
j of ω1 such that ρ− diam(B−1

j ) < 1
n+1 , {yξ : ξ ∈ ∆−1

j } ⊆ B−1
j and, moreover,

diam{bξ : ξ ∈ ∆−1
j } 6 1

2n . The selection is done so that for j even we have that

B−1
j ∩ B−1

j+1 = ∅, B−1
j ∪ B−1

j+1 ⊆ Btj/2 and ∆−1
j ∪ ∆−1

j+1 ⊆ ∆tj/2 . Also we set

m−1 := max{ψ(t) : t ∈ 2<n}.
By recursion on k ∈ {0, . . . , 2n−1}, we will select a family {Bkj : j = 0, . . . , 2n−1}

of open balls of Xm, a family {∆k
j : j = 0, . . . , 2n− 1} of uncountable subsets of ω1

and a positive integer mk such that for every k ∈ {0, . . . , 2n − 1} the following are

satisfied.

(a) For every j ∈ {0, . . . , 2n − 1} we have that Bk−1
j ⊇ Bkj , ∆k−1

j ⊇ ∆k
j and

{yξ : ξ ∈ ∆k
j } ⊆ Bkj . Moreover, for every j and every ξ ∈ ∆k

j the point yξ

is a condensation point of {yζ : ζ ∈ ∆k
j }.

(b) We have mk−1 < mk.

(c) For every y ∈ Bkk we have fmk ∈ V (y, λ, ε), and for every j ∈ {0, . . . , 2n−1}
with j 6= k and every y ∈ Bkj we have fmk /∈ V (y, λ, ε+ δ).

(d) We have mk ∈Mξ for every ξ ∈ ∆k
k.

The first step of the recursive selection is identical to the general one, and so

we may assume that the selection has been carried out for every k′ < k where

k ∈ {0, . . . , 2n − 1}. Fix a countable base B of open balls of Xm. We first observe

that for every ξ ∈ ∆k−1
k and every j ∈ {0, . . . , 2n − 1} there exist

(e) a basic open ball Bk,ξj ⊆ Bk−1
j , and

(f) a positive integer mξ ∈Mξ with mk−1 < mξ

such that the following holds.

(g) For every y ∈ Bk,ξk we have fmξ ∈ V (y, λ, ε), and for every j 6= k and every

y ∈ Bk,ξj we have fmξ /∈ V (y, λ, ε+ δ).

To see that such choices are possible, fix ξ ∈ ∆k−1
k . We select distinct countable

ordinals ξ0, . . . , ξ2n−1 such that

(h) for every j ∈ {0, . . . , 2n − 1} we have ξj ∈ ∆k−1
j , and

(k) ξ = ξk = min
{
ξj : j ∈ {0, . . . , 2n − 1}

}
.

By (ii) and (k) above, we have that fξk ∈ V (yξk , λ, ε) while fξk /∈ V (yξj , λ, ε + δ)

for every j 6= k. By (iv), we can select mξ ∈Mξ with mk−1 < mξ (thus, condition

(f) above is satisfied) and such that fmξ ∈ V (yξ, λ, ε) while fmξ /∈ V (yξj , λ, ε + δ)

for every j 6= k. Since fmξ is continuous, for every j ∈ {0, . . . , 2n − 1} there exists

a basic open ball Bk,ξj in Xm containing yξj such that conditions (e) and (g) above

are satisfied.

By cardinality arguments, we see that there exist an uncountable subset ∆k
k of

∆k−1
k , a positive integer mk and for every j a ball Bkj such that mξ = mk and

Bk,ξj = Bkj for every ξ ∈ ∆k
k. Setting ∆k

j := {ξ : yξ ∈ Bkj } ∩∆k−1
j , we see that the

recursive selection, described in (a)–(d) above, is completed.
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Now let {t0 ≺ · · · ≺ t2n−1} be the ≺-increasing enumeration of 2n. We set

ψ(tk) := mk, Btk := B2n−1
k and ∆tk := ∆2n−1

k for every k ∈ {0, . . . , 2n − 1}.
It is easy to check that (P1)–(P7) are satisfied. This completes the construction

described in (C1), (C2) and (C3). As we have already indicated, having completed

the proof of Proposition 35, the proof of Theorem 33 is also completed.

6.2.2. Proof of Theorem 34. As in the proof of Theorem 33, the main goal is to

prove the following proposition.

Proposition 36. Let {fn} be a family of continuous functions relatively compact in

B1(X). If the closure K of {fn} in RX is non-metrizable, then there exist canonical

injections ψ1 : 2<N → N and ψ2 : 2<N → N such that following holds. Setting

K1
σ = {fψ1(σ|n)}

p
\ {fψ(σ|n)} and K2

σ = {fψ2(σ|n)}
p
\ {fψ2(σ|n)}

for every σ ∈ 2N, there exists an open subset Vσ of RX with (K1
σ − K2

σ) ⊆ Vσ and

such that (K1
τ −K2

τ ) ∩ Vσ = ∅ for every τ ∈ 2N with τ 6= σ.

Granting Proposition 36, we complete the proof of Theorem 34 as follows. Let

{fn} be the countable dense subset of K. As we have already remarked, we may

assume that the functions {fn} are continuous. We apply Proposition 36 to the

family {fn} and we obtain two canonical injections ψ1 : 2<N → N and ψ2 : 2<N → N
as described above. We define gt = fψ1(t) and ht = fψ2(t) for every t ∈ 2<N.

Applying Corollary 22 successively two times, we obtain a regular dyadic subtree

S = (st)t∈2<N of 2<N such that the families {gst}t∈2<N and {hst}t∈2<N are canonized.

The fact that K is hereditarily separable implies that each of the above families must

be equivalent to the canonical dense family of either A(2<N), or 26N, or Ŝ+(2N), or

Ŝ−(2N). By Proposition 36, we see that it cannot be the case that both {gst}
p

t∈2<N

and {hst}
p

t∈2<N are metrizable. Thus, at least one of them is equivalent to either

Ŝ+(2N) or Ŝ−(2N). Clearly, this implies Theorem 34.

We proceed to the proof of Proposition 36 which is similar to the proof of Propo-

sition 35. It relies on the fact that K is metrizable if and only if there exists D ⊆ X
countable such that the map Acc(K) 3 f 7→ f |D ∈ RD is one-to-one. Thus, by our

assumptions and by transfinite recursion on countable ordinals, we obtain

(1) two rationals p < q,

(2) a set Γ = {xξ : ξ < ω1} ⊆ X, and

(3) two families {gξ : ξ < ω1} and {hξ : ξ < ω1} in Acc(K)

such that for every ξ < ω1 the following are satisfied.

(i) We have gξ(xζ) = hξ(xζ) for every ζ < ξ.

(ii) We have gξ(xξ) < p < q < hξ(xξ).

(iii) xξ is a condensation point of Γ.

By recursion on the length of the finite sequences in 2<N, we shall construct

(C1) two canonical injections ψ1 : 2<N → N and ψ2 : 2<N → N, and
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(C2) a family (Bt)t∈2<N of open balls in X taken with respect to a compatible

complete metric ρ of X.

The construction is done so that for every t ∈ 2<N the following are satisfied.

(P1) If t 6= ∅, then fψ1(t)(x) < p < q < fψ2(t)(x) for every x ∈ Bt.
(P2) For every t, t′ ∈ 2<N with |t′| = |t| and t′ 6= t and every x′ ∈ Bt′ we have

|fψ1(t)(x
′)− fψ2(t)(x

′)| < 1
|t|+1 .

(P3) We have Bta0 ∩Bta1 = ∅, Bta0 ∪Bta1 ⊆ Bt and ρ− diam(Bt) 6 1
|t|+1 .

(P4) We have |Bt ∩ Γ| = ℵ1.

Assuming that the construction has been carried out, setting xσ :=
⋂
nBσ|n and

Vσ := {w ∈ RX : |w(xσ)| > (q − p)/2}

for every σ ∈ 2N, it is easy to see that ψ1, ψ2 and {Vσ : σ ∈ 2N} satisfy the

requirements of Proposition 36.

We proceed to the construction. We set ψ1(∅) := 0, ψ2(∅) := 0 and B∅ := X.

Assume that for some n > 1 and for every t ∈ 2<n the values ψ1(t), ψ2(t) ∈ N
and the open balls Bt have been constructed. As in Proposition 35, in order to

determine ψ1(t), ψ2(t) and Bt for every t ∈ 2n we will follow a finite selection.

Let {t0 ≺ · · · ≺ t2n−1−1} be the ≺-increasing enumeration of 2n−1. For every

j ∈ {0, . . . , 2n−1} we select an open ball B−1
j in X such that ρ−diam(B−1

j ) < 1
n+1

and |B−1
j ∩ Γ| = ℵ1. Moreover, the selection is done so that for j even we have

B−1
j ∩ B

−1
j+1 = ∅ and B−1

j ∪ B
−1
j+1 ⊆ Btj/2 . We set m−1 := max{ψ1(t) : t ∈ 2<n}

and l−1 := max{ψ2(t) : t ∈ 2<n}.
By recursion on k ∈ {0, . . . , 2n−1}, we will select a family {Bkj : j = 0, . . . , 2n−1}

of open balls of X and a pair mk, lk ∈ N such that for every k ∈ {0, . . . , 2n− 1} the

following are satisfied.

(a) For every j ∈ {0, . . . , 2n − 1} we have Bk−1
j ⊇ Bkj .

(b) We have mk−1 < mk and lk−1 < lk.

(c) For every x ∈ Bkk we have fmk(x) < p < q < flk(x); on the other hand,

for every j ∈ {0, . . . , 2n − 1} with j 6= k and every x′ ∈ Bkj we have

|fmk(x′)− flk(x′)| < 1
n+1 .

(d) For every j ∈ {0, . . . , 2n − 1} we have |Bkj ∩ Γ| = ℵ1.

We omit this recursive selection since it is similar to the selection in the proof of

Proposition 35. We only notice that condition (k) is replaced by

(k)′ ξk = max
{
ξj : j ∈ {0, . . . , 2n − 1}

}
.

Let {t0 ≺ · · · ≺ t2n−1} be the ≺-increasing enumeration of 2n. We set ψ1(tk) := mk,

ψ2(tk) := lk and Btk := B2n−1
k for every k ∈ {0, . . . , 2n−1}. It is easy to check that

with these choices properties (P1)–(P4) are satisfied. The proof of Proposition 36

is completed.
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Remark 3. We notice that Theorem 32 (respectively, Theorem 34) is valid for an

analytic and metrizable (respectively, hereditarily separable) subspace C of K. In

particular, we have the following theorem.

Theorem 37. Let K be a separable Rosenthal compact and let C be an analytic

subspace of K. Let {fn} be a countable dense subset of K and let A ⊆ [N]∞ be

analytic witnessing the analyticity of C.

If C is metrizable in the pointwise topology, consists of bounded functions and

it is norm non-separable, then 26N canonically embeds into K with respect to {fn}
and C such that its image is norm non-separable.

Respectively, if C is hereditarily separable and not metrizable, then either Ŝ+(2N)

or Ŝ−(2N) canonically embeds into K with respect to {fn} and C.

The additional information provided by Theorem 37 is that the canonical em-

bedding of the corresponding prototype is found with respect to the dense subset

{fn} of K witnessing the analyticity of C which is not necessarily a subset of C. The

proof of Theorem 37 follows the lines of Theorems 32 and 34 using the arguments

of the proof of Proposition 35.

7. Non-Gδ points in analytic subspaces

This section is devoted to the study of the structure of not first countable analytic

subspaces. The first subsection is devoted to the presentation of an extension of a

result of Krawczyk [Kr]. The proof follows the same lines as in [Kr]. In the second

subsection we show that Â(2N) canonically embeds into any not first countable

analytic subspace C of a separable Rosenthal compact K and with respect to any

countable subset D of K witnessing the analyticity of C.

7.1. Krawczyk trees. We begin by introducing some pieces of notation and

recalling some standard terminology. By Σ we denote the set of all nonempty

strictly increasing finite sequences of N. We view Σ as a tree equipped with the

(strict) partial order @ of extension. We view, however, every t ∈ Σ not only as a

finite increasing sequence but also as a finite subset of N. Thus, for every t, s ∈ Σ

with max(s) < min(t) we will frequently denote by s∪ t the concatenation of s and

t. By [Σ] we denote the branches of Σ, that is, the set {σ ∈ NN : σ|n ∈ Σ ∀n > 1}.
For every t ∈ Σ by Σt we denote the set {s ∈ Σ : t v s}.

For every A,B ∈ [N]∞ we write A ⊆∗ B if the set A\B is finite. IfA ⊆ [N]∞, then

we set A∗ := {N\A : A ∈ A}. For a pair A,B ⊆ [N]∞ we say that A is B-generated

if for every A ∈ A there exist B0, . . . , Bk ∈ B such that A ⊆ B0 ∪ · · · ∪Bk. We say

that A is countably B-generated if there exists a sequence (Bn) is B such that A
is {Bn : n ∈ N}-generated. An ideal I on N is said to be bisequential if for every

p ∈ βN with I ⊆ p∗ the family I is countably p∗-generated. Finally, for every family

F of subsets of N and every A ⊆ N let F [A] := {L∩A : L ∈ F} denote the trace of
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F on A. Observe that if F is hereditary, then F [A] = F∩P(A) = {L ∈ F : L ⊆ A}.
The following lemma is essentially Lemma 1 from [Kr].

Lemma 38. Let I be a bisequential ideal. Also let F ⊆ I and A ∈ [N]∞. Assume

that F [A] is not countably I-generated. Then there exists a sequence (An) of pair-

wise disjoint infinite subsets of A such that, setting A = {An : n ∈ N}, we have

that I[A] is A-generated, while F [An] is not countably I-generated for every n ∈ N.

Proof. (Sketch) It suffices to prove the lemma for A = N. We set

J := {C ⊆ N : F [C] is countably I − generated}.

Then J is an ideal, N /∈ J and I ⊆ J . We select p ∈ βN with J ⊆ p∗. By the

bisequentiality of I, there exists a sequence (Dn) in p∗ such that I is {Dn : n ∈ N}-
generated. Since p∗ is an ideal, we may assume that Dn∩Dm = ∅ if n 6= m. Define

M := {n ∈ N : Dn ∈ J }. By the fact that I is {Dn : n ∈ N}-generated and F ⊆ I,

we see that F is {Dn : n ∈ N}-generated. This observation and the fact that (Dn)

are pairwise disjoint yield that the set D =
⋃
n∈M Dn belongs to J . Moreover, the

set N \M is infinite (for if not, we would obtain that N ∈ p∗). Let {k0 < k1 < · · · }
be the increasing enumeration of N \M and define A0 := D ∪Dk0 and An := Dkn

for n > 1. It is easy to see that the sequence (An) is as desired. �

The main result of this subsection is the following theorem which corresponds

to Lemma 2 in [Kr]. We notice that it is one of the basic ingredients in the proof

of the embedding of Â(2N) in not first countable separable Rosenthal compacta.

Theorem 39. Let I be a bisequential ideal and let F ⊆ I be analytic and hereditary.

Assume that F is not countably I-generated. Then there exists a one-to-one map

κ : Σ→ N such that, setting JF := {κ−1(L) : L ∈ F} and J := {κ−1(M) : M ∈ I},
the following are satisfied.

(1) For every σ ∈ [Σ] we have {σ|n : n > 1} ∈ JF .

(2) (Domination property) For every B ∈ J and every n > 1 there exist

t0, . . . , tk ∈ Σ with |t0| = · · · = |tk| = n such that B ⊆∗ Σt0 ∪ · · · ∪ Σtk .

It is easy to see that property (2) in Theorem 39 is equivalent to saying that B

is contained in a finitely splitting subtree of Σ.

Proof. We fix a continuous map φ : NN → [N]∞ with φ(NN) = F . Recursively, we

shall construct

(C1) a family (As)s∈N<N of infinite subsets of N,

(C2) a family (as)s∈N<N of finite subsets of N, and

(C3) a family (Us)s∈N<N of basic clopen subsets of NN.

The construction is done so that the following are satisfied.

(P1) We have that As ⊆ At if t @ s, and As∩At = ∅ if s and t are incomparable.
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(P2) For every s ∈ N<N we have |as| = |s| and max(as) ∈ As for every s ∈ N<N

with s 6= ∅. Moreover, as @ at if and only if s @ t.

(P3) We have Us ⊆ Ut if t @ s and diam(Us) 6 1
2|s|

. Moreover, Us ∩ Ut = ∅ if s

and t are incomparable.

(P4) For every s ∈ N<N we have that φ(Us)[As] is not countably I-generated.

(P5) For every s ∈ N<N and every τ ∈ Us we have as ⊆ φ(τ).

(P6) For every s ∈ N<N we have that I[
⋃
nAsan] is {Asan : n ∈ N}-generated.

Assuming that the construction has been carried out, we complete the proof as

follows. We define λ : N<N \ {∅} → N by λ(s) = max(as). By (P1) and (P2) above,

we see that λ is one-to-one. Let σ ∈ NN. We claim that {λ(σ|n) : n > 1} =⋃
n aσ|n ∈ F . To see this, by (P3), let τ be the unique element of

⋂
n Uσ|n. Then,

by (P5), we have that aσ|n ⊆ φ(τ) for every n ∈ N. Thus,
⋃
n aσ|n ⊆ φ(τ) ∈ F .

Since the family F is hereditary, our claim is proved. Now let B ⊆ N<N \ {∅} be

such that {λ(t) : t ∈ B} ∈ I. We claim that B must be dominated, that is, for every

n > 1 there exist s0, . . . , sk ∈ Nn such that B is almost included in the set of the

successors of the si’s in N<N. If not, then we may find a subset {tn} of B, a node

s of N<N and a subset {mn : n ∈ N} of N such that samn v tn for every n ∈ N.

Notice that {λ(tn) : n ∈ N} ∈ I since I is hereditary. Moreover, by the definition

of λ and properties (P1) and (P2) above, we see that λ(tn) ∈ Asamn for every

n ∈ N. Therefore, {λ(tn) : n ∈ N} ∈ I[
⋃
nAsan]. This leads to a contradiction by

properties (P1) and (P6) above. We set κ := λ|Σ. Clearly κ is as desired.

We proceed to the construction. We set A∅ = N, a∅ = ∅ and U∅ = NN. Assume

that As, as and Us have been constructed for some s ∈ N<N. We set Fs := φ(Us).

By property (P4) above and Lemma 38, there exists a sequence (An) of pairwise

disjoint infinite subsets of As such that Fs[An] is not countably I-generated for

every n ∈ N, while I[As] is {An : n ∈ N}-generated. Recursively, we select a subset

{τn : n ∈ N} in Us such that for every n ∈ N the following are satisfied.

(i) The set φ(τn) ∩An is infinite.

(ii) The family φ(Vτn|k)[An] is not countably I-generated for every k ∈ N where

Vτn|k = {σ ∈ NN : τn|k @ σ}.

This can be easily done since φ(Us)[An] = Fs[An] is not countably I-generated for

every n ∈ N. We select L = {l0 < l1 < · · · } ∈ [N]∞ and a sequence (kn) in N such

that, setting σn := τln for every n, the following are satisfied.

(iii) We have Vσn|kn ∩ Vσm|km = ∅ if n 6= m.

(iv) For every n ∈ N we have Vσn|kn ⊆ Us.
(v) For every n ∈ N we have diam(Vσn|kn) < 1

2|s|+1 .

Using the continuity of the map φ, for every n ∈ N we may also select k′n, in ∈ N
such that the following are satisfied.

(vi) We have in ∈ φ(σn) ∩Aln .

(vii) We have max(as) < in and kn < k′n.
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(viii) For every τ ∈ Vσn|k′n we have in ∈ φ(τ).

For every n ∈ N we set asan := as ∪ {in}, Asan := Aln and Usan := Vσn|k′n . It is

easy to verify that properties (P1)–(P6) are satisfied. The proof of the theorem is

thus completed. �

7.2. The embedding of Â(2N) in analytic subspaces. The main result in this

subsection is the following theorem.

Theorem 40. Let K be a separable Rosenthal compact and let C be an analytic

subspace of K. Let {fn} be a countable dense subset of K and let A ⊆ [N]∞ be

analytic witnessing the analyticity of C. Also let f ∈ C be a non-Gδ point of C.

Then there exists a canonical homeomorphic embedding of Â(2N) into K with respect

to {fn} and C which sends 0 to f .

For the proof we need to do some preparatory work. Let K, C, {fn} and f ∈ C
be as in Theorem 40. We may assume that fn 6= f for every n ∈ N. We set

If := {L ∈ [N]∞ : f /∈ {fn}
p

n∈L}.

Then If is an analytic ideal on N (see [Kr]). A fundamental property of If is that

it is bisequential. This is due to Pol [Po3]. We notice that the bisequentiality of If
can be also derived by the non-effective proof of the Bourgain–Fremlin–Talagrand

theorem due to Debs (see [De] or [AGR]).

Next, let A ⊆ [N]∞ be as in Theorem 40. As we have already pointed out, we

may assume that A is hereditary. We set

F := A ∩ If .

Clearly F is an analytic and hereditary subset of If . The assumption that f is

a non-Gδ point of C yields (and, in fact, is equivalent to saying) that F is not

countably If -generated, that is, there does exist a sequence (Mk) in If such that

for every L ∈ F there exists k ∈ N with L ⊆ M0 ∪ · · · ∪Mk. To see this, assume

on the contrary that such a sequence (Mk) existed. We set Nk := M0 ∪ · · · ∪Mk

for every k ∈ N. Since If is an ideal, we see that Nk ∈ If for every k. We set

Fk := {fn}
p

n∈Nk ∪{fk}. The fact that Nk ∈ If implies that f /∈ Fk for every k ∈ N.

Let g ∈ C∩Acc(K) with g 6= f . By condition (2) of Definition 23, there exists L ∈ A
with g ∈ {fn}

p

n∈L. Hence, there exists M ∈ [L]∞ such that g is the pointwise limit

of the sequence (fn)n∈M . Since A is hereditary, we see that M ∈ F , and so, there

exists k0 ∈ N with M ⊆ Nk0 . This implies that g ∈ Fk0 . It follows by the above

discussion that {f} =
⋂
k(C \ Fk), that is, the point f is Gδ in C, a contradiction.

Summarizing, we see that If is bi-sequential, F ⊆ If is analytic, hereditary and

not countably If -generated. Thus, we may apply Theorem 39 and we obtain the

one-to-one map κ : Σ → N as described above. Setting ft := fκ(t) for every t ∈ Σ

and invoking condition (1) of Definition 23, we obtain the following corollary.

Corollary 41. There is a sub-family {ft}t∈Σ of {fn} with the following properties.
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(1) For every σ ∈ [Σ] we have f /∈ {fσ|n}
p

and Acc
(
{fσ|n : n ∈ N}

)
⊆ C.

(2) For every B ⊆ Σ with f /∈ {ft}
p

t∈B and every n > 1 there exist t0, . . . , tk ∈ Σ

with |t0| = · · · = |tk| = n such that B ⊆∗ Σt0 ∪ · · · ∪ Σtk .

We call the family {ft}t∈Σ obtained by Corollary 41 as the Krawczyk tree of f

with respect to {fn} and C. The following property of the Krawczyk tree {ft}t∈Σ

will be needed later on.

(P) Let i ∈ Σ and let (bn) be a sequence in Σ such that max(i) < min(bn)

and max(bn) < min(bn+1) for every n ∈ N. Then, setting sn := i ∪ bn
for every n ∈ N, the sequence (fsn) is pointwise convergent to f . Indeed,

by property (2) in Corollary 41, every subsequence of the sequence (fsn)

accumulates to f . Hence, the sequence (fsn) is pointwise convergent to f .

We will also need the following well-known consequence of the bisequentiality of If .

For the sake of completeness we include a proof.

Lemma 42. Let (Al) be a sequence in [N]∞ such that limn∈Al fn = f for every

l ∈ N. Then there exists D ∈ [N]∞ with limn∈D fn = f and D ⊆
⋃
lAl, and such

that D ∩Al 6= ∅ for infinitely many l ∈ N.

Proof. For every k ∈ N we set Bk :=
⋃
l>k Al. Then (Bk) is a decreasing sequence

of infinite subsets of N. We may select p ∈ βN such that p− lim fn = f and Bk ∈ p
for every k ∈ N. By the bisequentiality of If , there exists a sequence (Cm) of

elements of p converging to f . We select a strictly increasing sequence (lk) in N
such that lk ∈ Bk ∩C0 ∩ · · · ∩Ck for every k ∈ N, and we set D := {lk : k ∈ N}. It

is easy to see that D is as desired. �

In the sequel we will apply Milliken’s theorem [Mil1]. To this end we need to

recall some pieces of notation. Given b, b′ ∈ Σ we write b < b′ provided that

max(b) < min(b′). By B we denote the subset of ΣN consisting of all sequences (bn)

which are increasing, that is, bn < bn+1 for every n ∈ N. It is easy to see that B

is a closed subspace of ΣN where Σ is equipped with the discrete topology and ΣN

with the product topology. For every b = (bn) ∈ B we set

〈b〉 :=
{ ⋃
n∈F

bn : F ⊆ N is nonempty finite
}

and [b] := {(cn) ∈ B : cn ∈ 〈b〉 ∀n}.

Notice that for every block sequence b the set 〈b〉 corresponds to an infinitely

branching subtree of Σ denoted by Tb. Also observe that the chains of Tb are in

one-to-one correspondence with the set [b] of all block subsequences of b. More

precisely, if (tn) is a chain of Tb, then (t0, t1 \ t0, . . . , tn+1 \ tn, . . . ) is the block

subsequence of b which corresponds to the chain (tn). This observation was used

by Henson to derive an alternative proof of Stern’s theorem (see, e.g., [Od]). If

β = (b0, . . . , bk) with b0 < · · · < bk and d ∈ B, then we set

[β,d] := {(cn) ∈ B : cn = bn ∀n 6 k and cn ∈ 〈d〉 ∀n > k}.
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We will use the following consequence of Milliken’s theorem.

Theorem 43. For every b ∈ B and every analytic subset A of B there exists

c ∈ [b] such that either [c] ⊆ A or [c] ∩A = ∅.

For every b = (bn) ∈ B and every n ∈ N we set in := b0 ∪ · · · ∪ bn. We define

C : B→ ΣN and A : B→ ΣN by

C
(
(bn)

)
= (i0, . . . , in, . . . ) and A

(
(bn)

)
= (i0 ∪ b2, . . . , i3n ∪ b3n+2, . . . ).

Note that for every b ∈ B the sequence C(b) is a chain of Σ, while A(b) is an

antichain of Σ converging, in the sense of Definition 13, to σ =
⋃
n in ∈ [Σ]. Also

observe that the functions C and A are continuous.

Lemma 44. Let {ft}t∈Σ be a Krawczyk tree of f with respect to {fn} and C. Then

there exists a block sequence b = (bn) such that for every c ∈ [b] the sequence

(ft)t∈C(c) is pointwise convergent to a function which belongs to C and is different

from f , while the sequence (ft)t∈A(c) is pointwise convergent to f .

Proof. Let

C1 := {c ∈ B : the sequence (ft)t∈C(c) is pointwise convergent}.

It is easy to see that C1 is a co-analytic subset of B. By Theorem 43 and the

sequential compactness of K, there exists d ∈ B such that [d] is a subset of C1. As

we have already remarked, for every block sequence c the sequence C(c) is a chain

of Σ. Hence, by part (1) of Corollary 41, we see that for every c ∈ [d] the sequence

(ft)t∈C(c) must be pointwise convergent to a function which belongs to C and is

different from f .

Now let

C2 := {c ∈ [d] : the sequence (ft)t∈A(c) is pointwise convergent to f}.

Again by Milliken’s theorem, there exists b = (bn) ∈ [d] such that either [b] ⊆ C2

or [b] ∩ C2 = ∅. We claim that [b] is subset of C2. It is enough to show that

[b] ∩ C2 6= ∅. To this end we argue as follows. Recall that for every l ∈ N we have

that il = b0 ∪ · · · ∪ bl. Set

Al := {il ∪ bm : m > l + 1} ⊆ Σ.

Since the sequence (bn) is block, by property (P) above, we see that the sequence

(ft)t∈Al is pointwise convergent to f . By Lemma 42, there exists D ⊆
⋃
lAl such

that the sequence (ft)t∈D is pointwise convergent to f and D∩Al 6= ∅ for infinitely

many l. We may select L = {l0 < l1 < · · · },M = {m0 < m1 < · · · } ∈ [N]∞ such

that ln + 1 < mn < ln+1 and iln ∪ bmn ∈ D for every n ∈ N. Next we define

c = (cn) ∈ [b] as follows. We set c0 := il0 , c1 := bl0+1 ∪ · · · ∪ bm0−1 and c2 := bm0
.

For every n ∈ N with n > 1 let In = [mn−1 + 1, ln] and Jn = [ln,mn − 1], and set

c3n :=
⋃
i∈In

bi, c3n+1 :=
⋃
i∈Jn

bi and c3n+2 := bmn .
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It is easy to see that c ∈ [b] and A(c) = (iln ∪ bmn) ⊆ D. Hence, the sequence

(ft)t∈A(c) is pointwise convergent to f . It follows that [b] ∩ C2 6= ∅ and the proof

is completed. �

We are ready to proceed to the proof of Theorem 40.

Proof of Theorem 40. Let b = (bn) be the block sequence obtained by Lemma 44.

If β = (bn0 , . . . , bnk) with n0 < · · · < nk is a nonempty finite subsequence of b,

then we set ∪β = bn0 ∪ · · · ∪ bnk ∈ Σ. Recursively, we will select a family (βs)s∈2<N

such that the following are satisfied.

(C1) For every s ∈ 2<N we have that βs is a finite subsequence of b.

(C2) For every s, s′ ∈ 2<N we have s @ s′ if and only if βs @ βs′ .

(C3) For every s ∈ 2<N and every c ∈ [βsa0,b] we have ∪βsa1 ∈ A(c).

We set β∅ := ∅ and we proceed as follows. For every M = {m0 < m1 < · · · } ∈ [N]∞

let bM = (bmn) be the subsequence of b determined by M . Assume that for some

s ∈ 2<N the finite sequence βs has been defined. Let M = Ms ∈ [N]∞ be such that

βs @ bM . The set A(bM ) converges to the unique branch of Σ determined by the

infinite chain C(bM ). Therefore, we may select a finite subsequence βsa1 such that

βs @ βsa1 and ∪βsa1 ∈ A(bM ). The function A : [b] → ΣN is continuous, and so,

there exists a finite subsequence βsa0 of b with βsa0 @ bM such that condition (C3)

above is satisfied. Finally, notice that βsa0 and βsa1 are incomparable with respect

to the partial order @ of extension.

One can also explicitly define a family (βs)s∈2<N satisfying conditions (C1)–(C3).

Specifically, set β∅ := ∅, β(0) := (b0, b1, b2) and β(1) := (b0, b2). Assume that βs has

been defined for some s ∈ 2<N and set ns := max{n : bn ∈ βs}. If s ends with 0,

then we set

βsa0 := βa
s (bns+1, bns+2, bns+3) and βsa1 := βa

s (bns+1, bns+3).

On the other hand, if s ends with 1, then we set

βsa0 := βa
s (bns+1, bns+2, bns+3, bns+4) and βsa1 := βa

s (bns+1, bns+2, bns+4).

It is easy to see that, with the above choices, conditions (C1)–(C3) are satisfied.

Having defined the family (βs)s∈2<N , for every s ∈ 2<N we set

ts := ∪βs ∈ Σ and hs := fts .

Clearly, the family {hs}s∈2<N is a dyadic subtree of the Krawczyk tree {ft}t∈Σ of

f with respect to {fn} and C. The basic properties of the family {hs}s∈2<N are

summarized in the following claim.

Claim 1. The following hold.

(1) For every σ ∈ 2N the sequence (hσ|n) is pointwise convergent to a function

gσ ∈ C with gσ 6= f .
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(2) For every perfect subset P of 2N the function f belongs to the closure of

the family {gσ : σ ∈ P}.

Proof of the claim. (1) Let σ ∈ 2N and set bσ :=
⋃
n βσ|n ∈ [b]. It is easy to see

that the sequence (tσ|n) is a subsequence of the sequence C(bσ). Therefore, the

result follows by Lemma 44.

(2) Assume not. Then there exist a perfect subset P of 2N and a neighborhood

V of f in RX such that gσ /∈ V for every σ ∈ P . By part (1), for every σ ∈ P

there exists nσ ∈ N such that hσ|n /∈ V for every n > nσ. For every n ∈ N
let Pn = {σ ∈ P : nσ 6 n}. Then each Pn is a closed subset of P and, clearly,

P =
⋃
n Pn. Thus, there exist n0 ∈ N and a perfect subset Q of 2N with Q ⊆ Pn0 . It

follows that hσ|n /∈ V for every σ ∈ Q and every n > n0. Let τ be the lexicographical

minimum of Q. We may select a sequence (σk) in Q such that, setting sk = τ ∧ σk
for every k ∈ N, we have σk → τ , τ ≺ σk and |sk| > n0. Notice that sak 0 @ τ ,

while sak 1 @ σk and |sak 1| > n0. Hence, by our assumptions on the set Q and the

definition of {hs}s∈2<N , we obtain that

hsak 1 = ft
s
a
k

1
/∈ V for every k ∈ N.(1)

We are ready to derive the contradiction. Set bτ :=
⋃
n βτ |n ∈ [b]. Since βsak 0 @ bτ ,

by property (C3) in the above construction, we see that tsak 1 = ∪βsak 1 ∈ A(bτ ) for

every k ∈ N. By Lemma 44, the sequence (ft)t∈A(bτ ) is pointwise convergent to the

function f . It follows that the sequence (ft
s
a
k

1
) is also pointwise convergent to f

and this clearly contradicts (1) above. The proof of the clam is completed. �

We apply Theorem 21 to the family {hs}s∈2<N and we obtain a regular dyadic

subtree T = (st)t∈2<N of 2<N such that the family {hst}t∈2<N is canonized. The

main claim is the following.

Claim 2. {hst}t∈2<N is equivalent to the canonical dense family of Â(2N).

Proof of the claim. In order to prove the claim we will isolate a property of the

whole family {hs}s∈2<N (property (Q) below). Let S be an arbitrary regular dyadic

subtree of 2<N. Notice that gσ ∈ {hs}
p

s∈S for every σ ∈ [Ŝ]. By part (2) of Claim 1,

we see that the function f belongs to the pointwise closure of {hs}s∈S in RX . By the

Bourgain–Fremlin–Talagrand theorem, there exists an infinite subset A of S such

that the sequence (hs)s∈A is pointwise convergent to f . By part (1) of Claim 1, we

see that A can be chosen to be an antichain converging to some σ ∈ [Ŝ]. Since all

these facts hold for every regular dyadic subtree S of 2<N, we obtain the following

property of the family {hs}s∈2<N .

(Q) For every regular dyadic subtree S of 2<N there exist two antichains A1, A2

of S and σ1, σ2 ∈ [Ŝ] with σ1 6= σ2 such that A1 converges to σ1, A2 con-

verges to σ2 and the sequences (hs)s∈A1
and (hs)s∈A2

are both pointwise

convergent to f .
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Now let T = (st)t∈2<N be the regular dyadic subtree of 2<N such that the family

{hst}t∈2<N is canonized. Invoking property (Q) above and referring to the descrip-

tion of the families {dit : t ∈ 2<N} (1 6 i 6 7) in Subsection 4.3, we see that

{hst}t∈2<N must be equivalent either to the canonical dense family of A(2<N) or

the canonical dense family of Â(2N). By part (1) of Claim 1, the first case is impos-

sible. It follows that {hst}t∈2<N must be equivalent to the canonical dense family

of Â(2N) and the claim is proved. �

Let T = (st)t∈2<N and {hst}t∈2<N be as above. Observe that for every t ∈ 2<N

there exists a unique nt ∈ N with hst = fnt . Thus, by passing to dyadic subtree of

T if necessary and invoking the minimality of the canonical dense family of Â(2N),

we see that the function 2<N 3 t 7→ nt ∈ N is a canonical injection and, moreover,

the map

Â(2N) 3 vt 7→ fnt ∈ K

is extended to homeomorphism Φ between Â(2N) and {fnt}
p

t∈2<N . The fact that

this homeomorphism sends 0 to f is an immediate consequence of property (Q) in

Claim 2 above. Moreover, by part (1) of Claim 1, we see that Φ(δσ) ∈ C for every

σ ∈ 2N. The proof of the theorem is completed. �

By Theorem 40 and part (1) of Proposition 24, we obtain the following corollary.

Corollary 45. Let K be a separable Rosenthal compact on a Polish space X, let

{fn} be a countable dense subset of K and let f ∈ K. If f is a non-Gδ point of K,

then there exists a canonical homeomorphic embedding of Â(2N) into K with respect

to {fn} which sends 0 to f .

After a first draft of the present paper, Todorčević informed us ([To3]) that he

is aware of the above corollary with a proof based on his approach in [To1].

We notice that if K is a non-metrizable separable Rosenthal compact on a Polish

space X, then the constant function 0 is a non-Gδ point of K − K. Indeed, since

K is non-metrizable, for every D ⊆ X countable there exist f, g ∈ K with f 6= g

and such that f |D = g|D. This easily yields that 0 is a non-Gδ point of K − K.

By Corollary 45, we see that there exists a homeomorphic embedding of Â(2N) into

K − K with 0 as the unique non-Gδ point of its image. This fact can be lifted to

the class of analytic subspaces as follows.

Corollary 46. Let K be a separable Rosenthal compact and C an analytic subspace

of K which is non-metrizable. Also let D = {fn} be a countable dense subset of

K witnessing the analyticity of C. Then there exists a family {ft}t∈2<N ⊆ D − D
which is equivalent to the canonical dense family of Â(2N). Moreover, we have

Acc
(
ft : t ∈ 2<N}

)
⊆ C − C and the constant function 0 is the unique non-Gδ point

of {ft}
p

t∈2<N .
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Proof. Let {gn} be an enumeration of the set D −D which is dense in K − K. It

is easy to see that C − C is analytic subspace of K − K and this is witnessed by

the family {gn}. Moreover, by the fact that C is non-metrizable, we see that the

constant function 0 belongs to C−C and is a non-Gδ point of C−C. By Theorem 40,

the result follows. �

8. Connections with Banach space theory

This section is devoted to applications, motivated by the results obtained in

[ADK2], of the embedding of Â(2N) in analytic subspaces of separable Rosenthal

compacta containing 0 as a non-Gδ point. The first application concerns the exis-

tence of unconditional families. The second deals with spreading and level uncon-

ditional tree bases.

8.1. Existence of unconditional families. We recall that a family (xi)i∈I in a

Banach space X is said to be 1-unconditional if for every F ⊆ G ⊆ I and every

(ai)i∈G ∈ RG we have ∥∥∑
i∈F

aixi
∥∥ 6 ∥∥∑

i∈G
aixi

∥∥.
We will need the following reformulation of Theorem 4 in [ADK2] where we also

refer the reader for a proof.

Theorem 47. Let X be a Polish space and let {fσ : σ ∈ 2N} be a bounded family

of real-valued functions on X which is pointwise discrete and having the constant

function 0 as the unique accumulation point in RX . Assume, moreover, that the

map Φ: 2N × X → R defined by Φ(σ, x) = fσ(x) is Borel. Then there exists a

perfect subset P of 2N such that the family {fσ : σ ∈ P} is 1-unconditional in the

supremum norm.

In [ADK2] it is shown that if X is a separable Banach space not containing `1

and with non-separable dual, then X∗∗ contains an 1-unconditional family of the

size of the continuum. This result can be lifted to the setting of separable Rosenthal

compacta as follows.

Theorem 48. Let K be a separable Rosenthal compact on a Polish space X. Also

let C be an analytic subspace of K consisting of bounded functions.

(a) If C contains the function 0 as a non-Gδ point, then there exists a fam-

ily {fσ : σ ∈ 2N} in C which is 1-unconditional in the supremum norm,

pointwise discrete and having 0 as unique accumulation point.

(b) If C is non-metrizable, then there exists a family {fσ − gσ : σ ∈ 2N}, where

fσ, gσ ∈ C for every σ ∈ 2N, which is 1-unconditional in the supremum

norm.

Proof. (a) Let D = {fn} be a countable dense subset of K witnessing the analyticity

of C. As 0 is a non-Gδ point of C, by Theorem 40, there exists a family {ft}t∈2<N ⊆ D
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equivalent to the canonical dense family of Â(2N) with Acc
(
{ft : t ∈ 2<N}

)
⊆ C

and such that the constant function 0 is the unique non-Gδ point of {ft}
p

t∈2<N . For

every σ ∈ 2N let fσ be the pointwise limit of the sequence (fσ|n). Clearly the family

{fσ : σ ∈ 2N} is pointwise discrete and has 0 as the unique accumulation point.

Moreover, it is easy to see that the map Φ: 2N×X → R defined by Φ(σ, x) = fσ(x)

is Borel. By Theorem 47, the result follows.

(b) It follows by Corollary 46 and Theorem 47. �

Actually, we can strengthen the properties of the family {fσ : σ ∈ 2N} obtained

by part (a) of Theorem 48 as follows.

Theorem 49. Let K be a separable Rosenthal compact on a Polish space X and

let C be an analytic subspace of K consisting of bounded functions. Assume that C
contains the function 0 as a non-Gδ point. Then there exist a family {(gσ, xσ) :

σ ∈ 2N} ⊆ C ×X and ε > 0 satisfying |gσ(xσ)| > ε and gσ(xτ ) = 0 if σ 6= τ , and

such that the family {gσ : σ ∈ 2N} is 1-unconditional in the supremum norm and

has 0 as the unique accumulating point.

Proof. Let {fσ : σ ∈ 2N} ⊆ C be the family obtained by part (a) of Theorem 48.

Notice that, by the proof of Theorem 48, we have that the map Φ: 2N × X → R
defined by Φ(σ, x) = fσ(x) is Borel. Using this fact and by passing to a perfect

subset of 2N if necessary, we may select ε > 0 such that ‖fσ‖∞ > ε for every σ ∈ 2N.

Define N ⊆ 2N ×X by the rule

(σ, z) ∈ N ⇔ |fσ(z)| > ε.

The set N is Borel since the map Φ is Borel. Moreover, by the choice of ε, we have

that for every σ ∈ 2N the section Nσ = {z : (σ, z) ∈ N} of N at σ is nonempty. By

the Yankov–von Neumann uniformization theorem (see, e.g., [Ke, Theorem 18.1]),

there exists a map

2N 3 σ 7→ zσ ∈ X
which is measurable with respect to the σ-algebra generated by the analytic sets

and such that (σ, zσ) ∈ N for every σ ∈ 2N. Invoking the classical fact that analytic

sets have the Baire property, by [Ke, Theorem 8.38] and by passing to a further

perfect subset of 2N if necessary, we may assume that the map σ 7→ zσ is continuous.

For every m ∈ N define Am ⊆ 2N × 2N by setting

(σ, τ) ∈ Am ⇔ |fτ (zσ)| > 1

m+ 1
.

Notice that the set Am is Borel. Since the family {fσ : σ ∈ 2N} accumulates to 0,

for every σ ∈ 2N the section (Am)σ = {τ : (σ, τ) ∈ Am} of Am at σ is finite, and

so, it is meager in 2N. By the Kuratowski–Ulam theorem (see [Ke, Theorem 8.41]),

we see that the set Am is meager in 2N × 2N. Hence, so is the set

A :=
⋃
m∈N

Am.
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By a result of Mycielski (see, e.g., [Ke, Theorem 19.1]), there exists a perfect

subset P of 2N such that for every σ, τ ∈ P with σ 6= τ we have that (σ, τ) /∈ A and

(τ, σ) /∈ A. This implies that fτ (zσ) = 0 and fσ(zτ ) = 0. We fix a homeomorphism

h : 2N → P and we set gσ = fh(σ) and xσ = zh(σ) for every σ ∈ 2N. Clearly the

family {(gσ, xσ) : σ ∈ 2N} is as desired. �

The proof of the corresponding result in [ADK2] is based on Ramsey and Banach

space tools, avoiding the embedding of Â(2N) into (BX∗∗ , w
∗).

We recall that a Banach space X is said to be representable if X isomorphic to

a subspace of `∞(N) which is analytic in the weak* topology (see [GT, GL, AGR]).

We close this subsection with the following theorem.

Theorem 50. Let X be a non-separable representable Banach space. Then X∗

contains an unconditional family of size |X∗|.

Proof. Identify X with its isomorphic copy in `∞(N). Then BX is an analytic

subset of (B`∞ , w
∗). Let f : NN → BX be an onto continuous map. Let {xn} be a

norm dense subset of `1(N). Viewing `1 as a subspace of `∗∞, we define fn : NN → R
by setting fn = xn ◦ f . Then {fn} is a uniformly bounded sequence of continuous

real-valued functions on NN. Notice that {fn}
p

= {x∗ ◦ f : x∗ ∈ BX∗} which can

be naturally identified with {x∗|BX : x∗ ∈ BX∗}. By the non-effective version of

Debs’ theorem (see, e.g., [AGR]), one of the following cases must occur.

Case 1: There exist an increasing sequence (nk), a continuous map φ : 2N → NN

and real numbers a < b such that for every σ ∈ 2N and every k ∈ N if σ(k) = 0

then fnk
(
φ(σ)

)
< a, while if σ(k) = 1, then fnk

(
φ(σ)

)
> b. In this case for every

p ∈ βN we set

gp := p− lim fnk .

Then gp = x∗p|BX for some x∗p ∈ X∗. We claim that the family {x∗p : p ∈ βN} is

equivalent to the natural basis of `1(2c). To see this observe that gp
(
φ(σ)

)
6 a if

and only if {k : σ(k) = 0} ∈ p, and gp
(
φ(σ)

)
> b if and only if {k : σ(k) = 1} ∈ p.

Setting Ap := [gp 6 a] and Bp := [gp > b] for every p ∈ βN, we see that the

family (Ap, Bp)p∈βN is an independent family of disjoint pairs. By Rosenthal’s

criterion, the family {gp : p ∈ βN} is equivalent to `1(2c). Thus, so is the family

{x∗p : p ∈ βN}.

Case 2: The sequence {fn} is relatively compact in B1(NN). In this case since X is

non-separable, we see that 0 ∈ {fn}
p

is a non-Gδ point. By part (a) of Theorem 48,

there exists an 1-unconditional family in X∗ of the size of the continuum. �

It can also be shown that every representable Banach space has a separable

quotient (see [ADK2, Theorem 15]). For further applications of the existence of

unconditional families we refer the reader to [ADK2].
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8.2. Spreading and level unconditional tree bases. We start with the follow-

ing definition.

Definition 51. Let X be a Banach space.

(1) A tree basis is a bounded family {xt}t∈2<N in X which is a basic sequence

when enumerated according to the canonical bijection φ0 between 2<N and N.

(2) A tree basis {xt}t∈2<N is said to be spreading if there exists a sequence

(εn) ↘ 0 such that for every n,m ∈ N with n < m, every 0 6 d < 2n and

every pair {si}di=0 ⊆ 2n and {ti}di=0 ⊆ 2m with si @ ti for all i ∈ {0, . . . , d},
we have ‖T‖ · ‖T−1‖ < 1 + εn where

T : span{xsi : i = 0, . . . , d} → span{xti : i = 0, . . . , d}

is the natural one-to-one and onto linear operator.

(3) A tree basis {xt}t∈2<N is said to be level unconditional if there exists a

sequence (εn) ↘ 0 such that for every n ∈ N the family {xt : t ∈ 2n} is

(1 + εn)-unconditional.

In [ADK2] the existence of spreading and level unconditional tree bases was

established for every separable Banach space X not containing `1 and with non-

separable dual. This result can be extended in the context of separable Rosenthal

compacta as follows.

Theorem 52. Let K be a uniformly bounded separable Rosenthal compact on a

compact metrizable space X and having a countable dense subset D of continuous

functions. Also let (εn) be a decreasing sequence of positive reals with lim εn = 0.

Assume that the constant function 0 is a non-Gδ point of K. Then there exists a

family {ut}t∈2<N ⊆ conv(D) which is equivalent to the canonical dense family of

Â(2N) and such that, setting gσ := limuσ|n for every σ ∈ 2N, the following hold.

(1) The function 0 is the unique non-Gδ point of {ut}
p

t∈2<N .

(2) The family {ut}t∈2<N is a tree basis with respect to the supremum norm.

(3) The family {gσ : σ ∈ 2N} is a subset of K and 1-unconditional.

(4) For every n ∈ N if {t0 ≺ · · · ≺ t2n−1} is the ≺-increasing enumeration

of 2n, then for every collection {σ0, . . . , σ2n−1} ⊆ 2N with ti @ σi for all

i ∈ {0, . . . , 2n−1} we have that (gσi)
2n−1
i=0 is (1+εn)-equivalent to (uti)

2n−1
i=0 .

The proof of the above result is a slight modification of [ADK2, Theorem 17]

where we also refer the reader for more information.

We close this subsection with the following result whose proof is based on Ste-

gall’s construction [St].

Theorem 53. Let X be a Banach space such that X∗ is separable and X∗∗ is

non-separable. Also let ε > 0. Then there exists a family {ut}t∈2<N ⊆ BX such that

the following are satisfied.

(i) The family {ut}t∈2<N is equivalent to the canonical dense family of 26N.
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(ii) For every σ ∈ 2N if y∗∗σ is the weak* limit of the sequence (uσ|n), then there

exists y∗∗∗σ ∈ X∗∗∗ with ‖y∗∗∗σ ‖ 6 1 + ε and such that y∗∗∗σ (y∗∗σ ) = 1, while

y∗∗∗σ (y∗∗τ ) = 0 for every τ 6= σ.

(iii) For every n ∈ N if {t0 ≺ · · · ≺ t2n−1} is the ≺-increasing enumeration

of 2n, then for every collection {σ0, . . . , σ2n−1} ⊆ 2N with ti @ σi for all

i ∈ {0, . . . , 2n−1} we have that (y∗∗σi )
2n−1
i=0 is (1+ 1

n )-equivalent to (uti)
2n−1
i=0 .

Proof. Since X∗ is separable, the space (BX∗∗ , w
∗) is compact metrizable. We fix

a compatible metric ρ for (BX∗∗ , w
∗). Using Stegall’s construction [St], we obtain

(C1) a family {x∗t }t∈2<N ⊆ X∗, and

(C2) a family {Bt}t∈2<N of open subsets of (BX∗∗ , w
∗)

such that for every t ∈ 2<N the following properties are satisfied.

(P1) We have 1 < ‖x∗t ‖ < 1 + ε.

(P2) We have Bta0 ∩Bta1 = ∅, Bta0 ∪Bta1 ⊆ Bt and ρ− diam(Bt) 6 1
|t|+1 .

(P3) For every x∗∗ ∈ Bt we have |x∗∗(x∗t )− 1| < 1
|t|+1 .

(P4) For every t′ 6= t with |t| = |t′| and every x∗∗ ∈ Bt′ we have |x∗∗(x∗t )| < 1
|t|+1 .

By property (P2), we see that
⋂
nBσ|n = {x∗∗σ } for every σ ∈ 2N and the map

2N 3 σ 7→ x∗∗σ ∈ (BX∗∗ , w
∗) is a homeomorphic embedding. By Goldstine’s theo-

rem, for every t ∈ 2<N we may select xt ∈ Bt ∩X. Notice that w∗ − limxσ|n = x∗∗σ
for every σ ∈ 2N. For every σ ∈ 2N we select x∗∗∗σ ∈

⋂
n {x∗σ|k : k > n}

w∗
. By prop-

erty (P3), we see that x∗∗∗σ (x∗∗σ ) = 1 while, by property (P4), we have x∗∗∗σ (x∗∗τ ) = 0

for every τ 6= σ. Moreover,

sup{|λi| : i = 0, . . . , n} 6 (1 + ε)
∥∥ n∑
i=0

λix
∗∗
σi

∥∥
for every n ∈ N, every {σ0, . . . , σn} ⊆ 2N and every (λi)

n
i=0 ∈ Rn+1. Arguing as in

the proof of [ADK2, Theorem 17], we select a family {ut}t∈2<N ⊆ conv{xt : t ∈ 2<N}
and a regular dyadic subtree S = (st)t∈2<N of 2<N such that the following are

satisfied.

(1) For every σ ∈ 2N the sequence (uσ|n) is weak* convergent to y∗∗σ where

y∗∗σ := limxsσ|n .

(2) For every n ∈ N if {t0 ≺ · · · ≺ t2n−1} is the ≺-increasing enumeration of 2n,

then for every {σ0, . . . , σ2n−1} ⊆ 2N with ti @ σi for all i ∈ {0, . . . , 2n − 1}
we have that (y∗∗σi )

2n−1
i=0 is (1 + 1

n )-equivalent to (uti)
2n−1
i=0 .

For every σ ∈ 2N let σ̄ =
⋃
n sσ|n ∈ 2N. Setting y∗∗∗σ = x∗∗∗σ̄ for every σ ∈ 2N,

we see that properties (ii) and (iii) in the statement of the theorem are satisfied.

Finally, by passing to a regular dyadic subtree if necessary, we may also assume

that the family {ut}t∈2<N is equivalent to the canonical dense family of 26N, that

is, property (i) is satisfied. The proof is completed. �
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Remark 4. (1) We do not know if the family {ut}t∈2<N obtained by Theorem

53 can be chosen to be basic or an FDD. Also note that it seems to be unknown

whether for every Banach space X with X∗ separable and X∗∗ non-separable, there

exists a subspace Y of X with a Schauder basis such that Y ∗∗ is non-separable.

(2) The family {y∗∗σ : σ ∈ 2N} obtained by Theorem 53 cannot be chosen to be un-

conditional as the examples of non-separable HI spaces show (see [AAT, AT]). How-

ever, all these second duals, non-separable HI spaces have quotients with separable

kernel which contain unconditional families of the cardinality of the continuum.

The following problem is motivated by the previous observation.

Problem. Let X be a separable Banach space with X∗∗ non-separable. Does there

exist a quotient Y of X∗∗ containing an unconditional family of size |X∗∗|?
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