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Abstract. We show that the classes of separable reflexive Banach spaces and

of spaces with separable dual are strongly bounded. This gives a new proof

of a recent result of Odell and Schlumprecht asserting that there exists a sep-

arable reflexive Banach space containing isomorphic copies of every separable

uniformly convex Banach spaces.

1. Introduction

A Banach space X is said to be universal for a class C of Banach spaces when

every space in C embeds isomorphically into X. It is complementably universal

when the embeddings are complemented.

According to the classical Mazur theorem, the space C(2N) is universal for sep-

arable Banach spaces. By [JS], there does not exist a separable Banach space

which is complementably universal for the class of separable Banach spaces. How-

ever, Pe lczyński [P] constructed a space U with a Schauder basis which is comple-

mentably universal for the class of spaces with a Schauder basis (and even for the

class of spaces with the Bounded Approximation Property—see [Ka]). There is also

an unconditional version of U , that is, a space with an unconditional basis which

is complementably universal for the class of spaces with an unconditional basis.

In 1968, Szlenk proved that there does not exist a Banach space with separa-

ble dual which is universal for the class of reflexive Banach spaces [Sz]. His proof

is based on the definition of the Szlenk index which is a transfinite measure of

the separability of the dual of a space. In 1980, Bourgain proved that any space

which is either universal for separable reflexive spaces, or for all C(K) for K count-

able compact, must be universal for all separable Banach spaces (see [Bou1, Bou2]).

Bossard formalized the use of descriptive set theory, initiated by Bourgain, to study

classes of separable Banach spaces in [Bo1, Bo3]. He proved that any class of sepa-

rable Banach spaces which is analytic, in the Effros–Borel structure of subspaces of

C(2N), and contains all separable reflexive Banach spaces must contain a universal

space. In a recent paper [AD], Argyros and the first named author have connected

Bourgain’s and Bossard’s approach to universality problems. Among others, they

introduced the following concept.
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Definition 1. A class C of separable Banach spaces is said to be strongly bounded

if for every analytic subset A of C, in the Effros–Borel structure of subspaces of

C(2N), there exists Y ∈ C that contains isomorphic copies of every X ∈ A.

This notion is central for understanding universality problems in Banach space

theory. In [AD], it is shown that several natural classes of separable Banach spaces

are strongly bounded. In particular, the following theorem is proved (see Theorem

N in the introduction of [AD]).

Theorem 2. The following hold.

(1) The class of reflexive spaces with a Schauder basis is strongly bounded.

(2) The class of spaces with a shrinking Schauder basis is strongly bounded.

In this note we remove the assumption of the existence of a basis in Theorem 2

and we prove the following theorem.

Theorem 3. The following hold.

(1) The class of separable reflexive spaces is strongly bounded.

(2) The class of spaces with a separable dual is strongly bounded.

Our method is to reduce the proof of Theorem 3 to Theorem 2 by using a

uniform version of the theorem of Zippin [Z] stating that every Banach space with

a separable dual embeds into a space with a shrinking Schauder basis. To this end,

we are essentially based on the results of Bossard in [Bo2] and the alternative proof

of Zippin’s theorem given by Ghoussoub, Maurey and Schachermayer in [GMS].

Theorem 3 answers positively a question of Rosenthal from 1979, [R]. He asked

whether there existed a universal space with a separable dual for any given class of

spaces on which the Szlenk index is bounded. In particular, we have the following

corollary.

Corollary 4. For every countable ordinal ξ, the class of spaces with Szlenk index

less than or equal ξ is Borel. Thus, for every ξ < ω1 there exists a Banach space

Yξ with separable dual such that any space X with Sz(X) 6 ξ embeds into Yξ.

Bourgain had asked whether there existed a separable reflexive Banach space

which is universal for separable uniformly convex spaces. Very recently, Odell and

Schlumprecht answered this question by the affirmative [OS]. In our point of view,

their result is an immediate consequence of Theorem 3 and of the fact that uniform

convexity is a local property, and therefore, that the class of separable uniformly

convex Banach spaces is Borel.

Corollary 5 (Odell and Schlumprecht). The class UC of uniformly convex sepa-

rable Banach spaces is Borel. Thus, there exists a separable reflexive Banach space

Y that contains isomorphic copies of all uniformly convex separable Banach spaces.
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2. Preliminaries

A topological space is Polish if it is separable and its topology may be generated

by a complete metric. Its Borel subsets are those belonging to the smallest σ-

algebra containing the open sets. An analytic subset is the continuous image of

a Polish space, or equivalently, of a Borel subset of a Polish space. A co-analytic

subset is the complement of an analytic subset. If X and Y are Polish spaces, then

a Borel map f from X into Y is a map f : X → Y such that f−1(B) is a Borel

subset of X for any Borel subset B of Y .

If X is a Polish space and B is a co-analytic subset of X, then a map φ : B → ω1

is said to be a co-analytic rank on B (a Π1
1-rank in the logical terminology) if there

are relations 6Σ,6Π in X×X which are analytic and co-analytic respectively, such

that for every x, y ∈ B we have

φ(x) 6 φ(y)⇔ x 6Σ y ⇔ x 6Π y.

We refer to [Ke] for a thorough presentation of rank theory as well as to [KL] for

its applications. Here we simply state the following properties of co-analytic ranks

which will be needed later on (see [Ke]).

Lemma 6. Let X be a Polish space, B a co-analytic subset of X and φ : B → ω1

a co-analytic rank on B. Then the following hold.

(a) (Boundedness) For every A ⊆ B analytic we have

sup{φ(x) : x ∈ A} < ω1.

(b) For every ξ < ω1 the set {x ∈ B : φ(x) 6 ξ} is Borel.

The standard Borel space of separable Banach spaces. Let X be a Polish

space and denote by F (X) the collection of all closed subsets of X. We equip

F (X) with the Effros–Borel σ-algebra. This is the σ-algebra generated by the sets

{F ∈ F (X) : F ∩ U 6= ∅} where U ranges over all nonempty open subsets of X. It

is well-known that the Effros–Borel structure is standard. This means that there

exists a Polish topology τ on F (X) such that the Borel σ-algebra of (F (X), τ)

coincides with the Effros–Borel σ-algebra (see [Ke, Theorem 12.6]).

Now let X be a separable Banach space and set

Subs(X) := {F ∈ F (X) : F is a linear subspace of X}.

Then Subs(X) is a Borel subset of F (X) (see [Ke, page 79]) and so a standard

Borel space of its own right. If X = C(2N), then Subs
(
C(2N)

)
is the standard Borel

space of all separable Banach spaces, and we denote it simply by SB. We refer to

[AD, AGR, Bo1, Bo3, Ke] for more background material on SB. We will need the

following fact which is essentially a consequence of the Kuratowski–Ryll-Nardzewski

selection theorem (see [Ke, page 76]). There exist two sequences dn : SB → C(2N)

and Sn : SB → C(2N) (n ∈ N) of Borel functions such that for every X ∈ SB
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we have {dn(X) : n ∈ N} = X and {Sn(X) : n ∈ N} = SX . As usual, for any

Banach space X by SX = {x ∈ X : ‖x‖ = 1} we denote the sphere of X while by

BX = {x ∈ X : ‖x‖ 6 1} its (closed) ball.

We denote by REFL and SD the subsets of SB consisting of all reflexive and all

spaces with separable dual respectively. Both are co-analytic non-Borel (see [Bo3]).

For every separable space X, by Sz(X) we denote the Szlenk index of X (see [Sz]).

It is defined as follows. Let F be a w∗-closed subset of BX∗ . For ε > 0 let F ′ε be the

set of x∗ in F such that for any w∗-neighborhood V of x∗ we have diam(V ∩F ) > ε.

Let F
(0)
ε = BX∗ and, by transfinite recursion, define

F (ξ)
ε = (F (ζ)

ε )′ε

if ξ = ζ + 1 is a successor ordinal, and

F (ξ)
ε =

⋂
ζ<ξ

F (ζ)
ε

if ξ is a limit ordinal. Then we set Szε(X) = inf{ξ < ω1 : F
(ξ)
ε = ∅} if the set

{ξ < ω1 : F
(ξ)
ε = ∅} is nonempty; otherwise, we set Szε(X) = ω1. Finally we set

Sz(X) := sup
ε>0

Szε(X).

It is well-known that X ∈ SD if and only if Sz(X) < ω1. However, most important

for our purposes is the fact that the Szlenk index is a co-analytic rank on SD (see

[Bo3]). Thus Lemma 6 applies to it. For an extensive survey on the Szlenk index

we refer to [L2].

3. A uniform version of Zippin’s theorem

The aim of this section is to present the following uniform version of Zippin’s

theorem [Z] essentially based on the results of Bossard in [Bo2].

Proposition 7. The following hold.

(1) Let A be an analytic subset of REFL. Then there exists an analytic subset

A′ of REFL such that for all X ∈ A there exists Y ∈ A′ with a Schauder

basis that contains X.

(2) Let A be an analytic subset of SD. Then there exists an analytic subset A′

of SD such that every Y ∈ A′ has a shrinking basis and such that for all

X ∈ A there exists Y ∈ A′ that contains X.

The proof of Proposition 7 is modeled after the proof of Zippin’s theorem given

by Ghoussoub, Maurey and Schachermayer [GMS]. Part (2) of Proposition 7 is an

immediate consequence of the following result of Bossard (see [Bo2, Theorem 3.1])

modulo the fact that the Szlenk index is a co-analytic rank on SD. Note that since

having a Schauder basis is analytic, we may always assume in Proposition 7 that

A′ is an analytic set of spaces with a Schauder basis.
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Theorem 8 (Bossard). There exists a map φ : ω1 → ω1 such that for every Banach

space X with separable dual and every countable ordinal ξ, if Sz(X) 6 ξ, then X

embeds into a Banach space Y with a shrinking basis which satisfies Sz(Y ) 6 φ(ξ).

To see that Theorem 8 implies part (2) of Proposition 7 one argues as follows.

Let A be an analytic subset of SD. By part (a) of Lemma 6, we obtain that

sup{Sz(X) : X ∈ A} = ξ < ω1.

Let [N]∞ denote the set of all infinite subsets of N and let (un) denote the basis of

the universal space U of Pe lczyński. Consider the set

S := {L ∈ [N]∞ : (un)n∈L is shrinking}.

In [Bo3], it is shown that S is co-analytic and that the map

S 3 L 7→ Sz
(
span{un : n ∈ L}

)
is a co-analytic rank on S (see [Bo3, Theorem 5.4]). Therefore, by part (b) of

Lemma 6, we see that the set

Sξ := {L ∈ S : Sz
(
span{un : n ∈ L}

)
6 φ(ξ)}

is a Borel subset of S. Since the map [N]∞ 3 L 7→ span{un : n ∈ L} ∈ SB is Borel,

it follows that the set

A′ := {Y ∈ SB : ∃L ∈ Sξ such that span{un : n ∈ L} ∼= Y }

is an analytic subset of SD. (Here, by ∼= we denote the relation of isomorphism

which is analytic.) Theorem 8 implies that A′ is as desired.

This simple argument cannot be used in order to derive part (1) of Proposition 7

directly from Theorem 8, as the Szlenk index is not a co-analytic rank on REFL

(see [Bo2, page 68]). However, it does follow from the techniques of [Bo2] and the

method of [GMS]. We will describe this below. Let f0 ∈ C(2N) be a fixed function

that separates points in 2N and let 1 be the constant function equal to 1. For every

X ∈ SB we set

E(X) := span{X ∪ f0 ∪ 1}.

We have the following fact.

Lemma 9. The map SB 3 X 7→ E(X) ∈ SB is Borel. In particular, if A ⊆ REFL

is analytic, then the set A1 := {E(X) : X ∈ A} is an analytic subset of REFL.

Proof. Let dn : SB → C(2N) (n ∈ N) be the sequence of Borel functions such that

for every X ∈ SB we have {dn(X) : n ∈ N} = X. Now observe that for every

U ⊆ C(2N) open, we have

E(X) ∩ U 6= ∅ ⇔ ∃n ∈ N ∃p1, p2 ∈ Q with dn(X) + p1f0 + p21 ∈ U.

Thus, the function E is Borel. Since for every reflexive space X the space E(X) is

reflexive, the lemma is proved. �
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From now on we fix an analytic subset A of REFL. Let A1 be the set obtained

by Lemma 9 for A. Applying part (a) of Lemma 6 we see that

sup{Sz(Z) : Z ∈ A1} = ξ < ω1.

Denote by e = (en) the canonical basis of `1. If H ∈ Subs(`1) and e ∈ `1, then eH

will be the class of e in `1/H and eH = (eHn ). Recall that any separable Banach

space is isometric to `1/H for some H. By Lemma 3.2 in [Bo2], the subset Zξ of

Subs(`1)× `N1 × C(2N)N × SB defined by

Zξ = {(H,h,x, X) : Sz(X) 6 ξ, span(x) = X, span(h) = H

x
1∼ eH , 1 ∈ X and f0 ∈ X}

is Borel (as usual, x
1∼ eH means that x is 1-equivalent to eH). For every a ∈ Zξ

write a =
(
H(a),h(a),x(a), X(a)

)
. Given such a and following the slicing methods

developed in [GMS] one produces the following.

(I) A closed, convex, bounded and symmetric subset W (a) of C(2N) in such a

way that the map

Zξ 3 a 7→W (a) ∈ F
(
C(2N)

)
is Borel (see [Bo2, Lemma 3.6]). Moreover, if X(a) is reflexive, then the set

W (a) is weakly compact.

(II) A monotone basis b(a) ∈ C(2N)N for C(2N) in such a way that the map

Zξ 3 a 7→ b(a) ∈ C(2N)N

is Borel (see [Bo2, Lemma 3.5]).

Performing the Davis–Figiel–Johnson–Pe lczyński interpolation [DFJP] for the pair(
C(2N),W (a)

)
, it is shown in [GMS] that the interpolation space ∆(a) contains

X(a) and the sequence b(a) defines a shrinking basis of ∆(a). We notice that, by (I)

above, if X(a) is reflexive, then classical properties of the interpolation scheme of

[DFJP] imply that the space ∆(a) is reflexive too. Denote by b̃(a) the sequence

b(a) regarded as a basis of ∆(a). The crucial fact established by this procedure is

that the subset R of Zξ × C(2N)N × SB defined by

R := {(a,v, V ) : span(v) = V and v
1∼ b̃(a)}

is Borel (see the proof of Lemma 3.7 in [Bo2]). Notice that if (a,v, V ) ∈ R, then

V is isometric to ∆(a). Now consider the set A′ defined by

V ∈ A′ ⇔ ∃Y ∈ A ∃a ∈ Zξ ∃v ∈ C(2N)N
[
E(Y ) = X(a) ∧ (a,v, V ) ∈ R

]
.

Since R is Borel and E is a Borel map, we see that A′ is analytic. By the fact that

A ⊆ REFL and property (I) above, we obtain that every V ∈ A′ is reflexive, that

is, A′ is an analytic subset of REFL. Finally, we notice that for every Y ∈ A there

exists aY ∈ Zξ such that X(aY ) = E(Y ). Thus, ∆(aY ) ∈ A′. Since E(Y ) = X(aY )
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embeds into ∆(aY ), so does Y . It follows that the set A′ has all the desired

properties, and the proof of part (1) of Proposition 7 is completed.

4. Proof of the main results

Proof of Theorem 3. (1) Let A be an analytic subset of REFL. By part (1) of

Proposition 7, there exists an analytic subset A′ of REFL such that for every

Y ∈ A there exists Z ∈ A′ with a Schauder basis such that Y is contained in Z.

By part (1) of Theorem 2, the result follows.

(2) Let A be an analytic subset of SD. By part (2) of Proposition 7, there exists

an analytic subset A′ of SD of spaces with a shrinking basis, such that for every

Y ∈ A there exists Z ∈ A′ such that Y is contained in Z. By part (2) of Theorem

2, the result follows. �

Proof of Corollary 4. Fix a countable ordinal ξ. By part (2) of Theorem 3, it

is enough to show that the set {X ∈ SD : Sz(X) 6 ξ} is Borel. But this is

an immediate consequence of the fact that the Szlenk index is a co-analytic rank

on SD and part (b) of Lemma 6. �

Proof of Corollary 5. By part (1) of Theorem 3, it is enough to show that the

class UC of separable uniformly convex Banach spaces is Borel. To see this let

Sn : SB → C(2N) (n ∈ N) be the sequence of Borel functions such that for every

X ∈ SB we have {Sn(X) : n ∈ N} = SX . Now observe that

X ∈ UC ⇔ ∀k ∈ N ∃l ∈ N such that
[
∀n,m ∈ N

‖Sn(X)− Sm(X)‖ > 1

k
⇒
∥∥Sn(X)− Sm(X)

2

∥∥ 6 1− 1

l

]
.

Invoking the Borelness of the functions (Sn) we see that UC is Borel. �

It is actually known that a separable space is isomorphic to a uniformly convex

space if and only if its weak*-dentability index (an ordinal index close to the Szlenk

index) is less than ω [L1]. Our method does not give information on the Szlenk in-

dex, or the weak*-dentability index, of the reflexive space provided by Corollary C.

This space must have weak*-dentability index strictly greater than ω.

We close this section by noting the following unconditional versions of the above

results. Their proofs are easy adaptations of the methods of [AD] with the use of the

unconditional version of the universal space of Pe lczyński instead of the Schauder

basis version.

Theorem 10. The following hold.

(1) The class of reflexive spaces with an unconditional basis is strongly bounded.

(2) The class of spaces with an unconditional basis and not containing `1 is

strongly bounded.
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The universal spaces with an unconditional basis and not containing `1 obtained

in (2) are actually complementably universal for the corresponding analytic classes

of spaces with an unconditional basis and not containing `1.

Corollary 11. The following hold.

(1) The class UUC of uniformly convex Banach spaces with an unconditional

basis is analytic. Thus, there exists a reflexive Banach Y with an uncondi-

tional basis that contains isomorphic copies of all uniformly convex Banach

spaces with an unconditional basis.

(2) The class of spaces with an unconditional basis and non-trivial type is ana-

lytic. Thus, there exists a reflexive space with an unconditional basis which

is universal for this class.

Proof. We notice that the class of spaces with an unconditional basis is analytic.

So part (1) is an immediate consequence of part (1) of Theorem 10. For part (2) we

recall that the subset of SB consisting of all spaces with non-trivial type is analytic

(see [AD]). Observe that a space with non trivial type cannot contain a copy of l1

or c0 and consequently, by the classical theorem of James, it must be reflexive if it

has an unconditional basis. By part (1) of Theorem 10, the result follows. �
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