GENERICITY AND AMALGAMATION OF CLASSES OF
BANACH SPACES
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ABSTRACT. We study universality problems in Banach space theory. We show
that if A is an analytic class, in the Effros—Borel structure of subspaces of
C0,1], of non-universal separable Banach spaces, then there exists a non-
universal separable Banach space Y, with a Schauder basis, that contains iso-
morphic copies of each member of A with the bounded approximation property.
The proof is based on the amalgamation technique of a class C of separable
Banach spaces, introduced in the paper. We show, among others, that there
exists a separable Banach space R not containing L1(0,1) such that the in-
dices 8 and rnp are unbounded on the set of Baire-1 elements of the ball of
the double dual R** of R. This answers two questions of Rosenthal.

We also introduce the concept of a strongly bounded class of separable
Banach spaces. A class C of separable Banach spaces is strongly bounded if
for every analytic subset A of C there exists Y € C that contains all members
of A up to isomorphism. We show that several natural classes of separable
Banach spaces are strongly bounded, among them the class of non-universal
spaces with a Schauder basis, the class of reflexive spaces with a Schauder
basis, the class of spaces with a shrinking Schauder basis and the class of

spaces with Schauder basis not containing a minimal Banach space X.
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1. INTRODUCTION

1.1. Problems concerning the structure of a separable Banach space X containing
a class C of separable Banach spaces have attracted the attention of researchers
for more than forty years. Indeed after the classical Mazur theorem that C10,1]
is universal for all separable Banach spaces, Pelczynski [P] presented two universal
spaces for the classes of spaces with a Schauder basis and an unconditional basis
respectively. In 1968, Szlenk in his pioneering paper [Sz] showed that there does
not exist a Banach space with separable dual that contains isomorphically every
separable reflexive space. His proof was based on a transfinite analysis of every
separable dual space, leading to the famous Szlenk index. In 1980, in two seminal
papers [B1, B3|, Bourgain proved that every separable Banach space containing
either all separable reflexive Banach spaces or all C'(K) with K countable com-
pact, is universal for all separable Banach spaces. For the case of reflexive spaces
Bourgain’s idea was to consider a representability tree of a given Banach space
X into a Banach space Y. The complexity of this tree provides an index of the
embedability of X into Y. The Kunen—Martin theorem and an appropriate trans-
finite sequence (R¢ : £ < w) of separable reflexive Banach spaces yield the result.
(Actually, the version of the Kunen—Martin theorem needed for Bourgain’s appli-
cation was known to the Russian and Polish set theorists.) Bourgain’s approach
is simple, efficient and it is essentially the unique method for showing that a given
class C of separable Banach spaces is universal. In both results, Bourgain engaged
results from descriptive set theory in his study. In the middle of 1990’s Bossard
[Bol, Bo2, Bo3] considered universality problems in a pure descriptive set theoretic
context. He showed that every analytic subset, in the Effros—Borel structure of
subspaces of C[0, 1], that contains all separable reflexive spaces must also contain a
universal space. To proceed with our discussion let us state the following definitions
motivated by the corresponding results of Bourgain and Bossard.

Definition A. Let C be an isomorphic invariant class of separable Banach spaces

such that every X € C is not universal.

(1) We say that the class C is Bourgain generic if every separable Banach space
Y that contains all members of C, must be universal.

(2) We say that the class C is Bossard generic if every analytic subset A that
contains all members of C up to isomorphism, must also contain Y € A

which is universal.

We recall that a separable Banach space X is said to be universal if it contains all
separable Banach spaces up to isomorphism.

It is clear that Bourgain genericity is what Banach space theory specialists are
interested in. A glance at the definition of Bossard genericity gives the impression
that it is related to descriptive set theory rather than Banach space theory. In the



GENERICITY AND AMALGAMATION OF CLASSES OF BANACH SPACES 3

opposite, Godefroy [AGR, Go| has repeatedly stated that Bossard’s approach pro-
vides the appropriate frame for studying several problems of Banach space theory.
One of the goals of the present work is to support Godefroy’s thesis for problems
related to generic classes of separable Banach spaces. We believe that in the next
few lines we will convince the reader for the importance of Bossard genericity. The
following problem is central in our approach.

Problem B. Is it true that a class C of separable Banach spaces is Bourgain
generic if and only if it is Bossard generic?

We have been informed that Kechris several years ago, motivated by the results
of [KW2], had also posed a similar problem.

It is easy to see that Bossard genericity implies the Bourgain one. Therefore,
the real problem concerns the converse implication. We conjecture that the above
problem has an affirmative answer. Our optimism is based on the following theorem
which is one of the main results of the paper.

Theorem C. Let C be an analytic class of separable Banach spaces such that every
X € C is not universal. Then there exists a non-universal Banach space Y with
a Schauder basis that contains isomorphic copies of each member of C with the
bounded approximation property.

The importance of a possible positive answer to Problem B arises from the fact
that it provides an efficient tool in order to check the non-universality of certain
classes of separable Banach spaces. Simply compute the complexity of the class
in question. If it is analytic, then the class is not universal. For instance, let Cy.
be the class of all separable uniformly convex Banach spaces. Bourgain in [B1]
had asked if there exists a reflexive Banach space universal for the class C,.. Prus
[Prl, Pr2] answered affirmatively Bourgain’s question for the subclass of uniformly
convex spaces with the approximation property. We have been informed [OS1] that
very recently Odell and Schlumprecht have succeeded to give a complete affirmative
answer to the question [OS2]. Under our point of view the class C,. is Borel, and so
a positive answer to Problem B would immediately imply that there exists a non-
universal separable Banach space containing all members of Cy.. Other examples
are the classes Ciype and Ceotype Of all separable spaces with non-trivial type and
non-trivial cotype respectively. Both are Borel, and so Theorem C provides a non-
universal separable Banach space Y containing all members of Ciype (respectively,
Cootype) With the bounded approximation property.

We proceed to discuss the proof of Theorem C. A basic ingredient in its proof is
the HI-amalgamation (respectively, p-amalgamation for 1 < p < 00) of a family C of
separable Banach spaces with a bimonotone Schauder basis. Roughly speaking the
HI-amalgamation (respectively, p-amalgamation) of a class C is a Banach space A$,
(respectively, Ag) with a Schauder basis with the following properties.
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(P1) Every X € C is isomorphic to a complemented subspace of AS; (respec-
tively, Ag).

(P2) Every subspace Y of A{; (respectively, Ag) either contains a HI subspace
(respectively, a subspace isomorphic to £,,), or there exists a finite sequence
(X1,...,X,) in C such that Y is isomorphic to a subspace of Y1 | ®X;.

We prove the following theorem related to the above concept.

Theorem D. Let C be an analytic class of separable Banach spaces, and set
Cpo={X €C: X has a Schauder basis}. Then there exists a HI-amalgamation A
hi
(respectively, p-amalgamation Agb for 1 < p < o0) of the class Cy,. Moreover, the
following hold.
(a) If every X € Cy is reflexive, then Aﬁf (respectively, Agb) is reflexive.
b) If C does not contain a universal member, then neither AC respectively,
hi
.AIC)”) does.

To prove Theorem C from Theorem D we employ a result of Lusky [Lu] which
asserts that for every Banach space X with the bounded approximation property,
the space X®Cj has a Schauder basis. Here Cjy denotes the corresponding Johnson’s
space. Let us notice that results, similar to Theorem D, can also be obtained for
the class Cppp = {X € C: X has a Schauder FDD}.

It does not seem easy to pass from Theorem C to a complete answer of Problem B,
even for specific classes. A possible approach is the following. Starting from a class
C as in Theorem C, to pass to a class C’ which is also analytic, does not contain
universal members and satisfies the following. For every X € C there exists X’ € C’
such that X’ has a Schauder basis and X is isomorphic to a subspace of X’. In this
direction the following is open for us.

Problem E. Assume that X has non-trivial type (respectively, cotype). Does there
exist a Banach space Y with a Schauder basis (or even Schauder FDD) with asymp-
totic non-trivial type (respectively, cotype) such that X is isomorphic to a subspace
of Y?

An affirmative answer to this problem would yield that the classes Ciype and
Cootype are not universal. (The definitions of asymptotic non-trivial type and cotype
are given in Section 9, Definition 9.11.)

A second approach is related to a deep result due to Zippin [Z]. A consequence of
it and the interpolation theorem [DFJP], is that every separable reflexive Banach
space is contained in a reflexive Banach space with a Schauder basis. However,
in order to apply this result, one needs to know that such a selection is done in a
uniform way. Zippin’s approach does not appear to be able to provide this selection
and it seems necessary to further understand the relation between the initial and
the final space.

Next we extend the concepts of Bourgain and Bossard genericity for every sep-
arable Banach space X. A deep theorem of Rosenthal [Ro3] yields that when X is
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a universal space, then the X-genericities introduced below are equivalent to the
ones defined above. There are examples showing that the additional assumptions
are necessary. One of them was indicated to us by Rosendal and Schlumprecht.

Definition F. Let X be a separable Banach space and let C be an isomorphic
invariant class of separable Banach spaces such that X is not contained in any

finite direct sum of members of C.

(1) We say that the class C is Bourgain X-generic if for every separable Banach
space Y that contains all members of C, X is isomorphic to a subspace of
a finite direct sum of Y.

(2) We say that the class C is Bossard X-generic if for every analytic subset A
that contains all members of C up to isomorphism, X is isomorphic to a
subspace of a finite direct sum of members of A.

As we mentioned above for X universal these definitions coincide with the pre-
vious ones and if X is a minimal separable Banach space (e.g., an ¢, space), then
the above definitions can be reduced to the corresponding analogue of Definition A.
The following problem extends Problem B.

Problem G. Let X be a separable Banach space and let C be an isomorphic in-
variant class of separable Banach spaces such that X is not contained in any finite
direct sum of members of C. Is it true C is Bourgain X -generic if and only if it is
Bossard X -generic?

It is open for us if the analogue of Theorem C is valid for an arbitrary separable
Banach space X. However, there are several classes of Banach spaces (for instance,
if X is unconditionally saturated, or HI saturated, or minimal) where the following
analogue is proved.

Theorem H. Let X be either an unconditional saturated, or HI saturated, or
minimal separable Banach space. Also let A be an analytic class of separable Banach
spaces such that X is not contained in any finite sum of members of A. Then there
exists a separable Banach space Y that contains all members of A with a Schauder
basis and X is not contained in any finite sum of Y.

As a consequence we obtain that the subspaces with a Schauder basis of a Banach
space X do not necessarily define a Bourgain X-generic class.

Corollary I. Let X be a HI separable Banach space without a Schauder basis. Then
the class C of all subspaces of X with a Schauder basis is not Bourgain X -generic
and, consequently, not Bossard X -generic either.

The existence of separable HI Banach spaces without a Schauder basis (even
without a Schauder FDD) follows from a result of Allexandrov, Kutzarova and
Plichko [AKP].
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Now we shall present two other applications of amalgamations of classes of sepa-
rable Banach spaces. The first one concerns two problems due to Rosenthal stated
in [AGR, Problems 1 and 2, page 1043]. Following Rosenthal’s notation, let us
denote by Xz the set of all z** € X** which are the weak® limit of a sequence
(z,) of X. This is equivalent to saying that z**: (Bx«,w*) — R is a Baire-1
function (see [OR]). As it is well known, for every real-valued Baire-1 function
f on a compact metrizable space K several indices (scaled on countable ordinals)
have been defined measuring the discontinuities of f. We refer to [AGR, KL2]
for a detailed exposition. Rosenthal’s problems concern the indices S(x**|x) and
rNp (27| k) where X is a separable Banach space, 2™ € Xz* and K = (Bx=-,w").
Before we state the problems let us mention two known results related to these
indices. The first one is due to Bourgain [B2] and asserts that if X is separable
and sup{B(z**|k) : z** € Xg'} = w1, then /; is isomorphic to a subspace of X.
The second result is the ¢p-index theorem [AK] asserting that if X is separable and
sup{rnp(z**|k) : 2™ € X'} = w1, then ¢g embeds into X. In his problems Rosen-
thal expresses the belief that if the two indices 8 and ryp are unbounded, then the
structure of X must be richer than the above two results indicate. Bossard [Bo4]
has also pointed out that the only known examples of separable Banach spaces with
unbounded @ are the universal ones. Rosenthal’s problems state the following.

Problem. (1) Assume that for every countable ordinal { there evists x** € Xj
such that £ < rap(x™| k) < wi. Is the space X universal?

(2) Assume that 3 is unbounded on Xi*. Does L1(0,1) embed into X ?

In Section 10, we present a separable Banach space R which answers negatively
both problems.

Theorem J. There exists a separable Banach space R such both [ and rNp are
unbounded on Ry and neither L1(0,1) nor C(w“’Q) embeds into R.

As both indices are unbounded on R, clearly ¢; and ¢y embed into R. Actually,
we show that every subspace Y of R either contains a reflexive subspace, or /1,
or ¢g. The space R is obtained either as the Hl-amalgamation, or p-amalgamation
for 2 < p < o0, of the class C = {Jx : X has an 1-unconditional basis} where Jx
denotes the Bellenot—Haydon—Odell Jamesfication of X [BHO].

The second application of the amalgamations technique concerns a separable
Banach space Aﬁli which is the HI-amalgamation of ¢;, and where the HI and ¢4

structures co-exist in the following manner.

Theorem K. There is a separable Banach space Aﬁli with the following properties.
(1) A subspace of Aflli is reflexive if and only if it is HIL
(2) The classC = {X : X is a reflexive subspace of Afl} is {1-Bossard generic.
(3) Ewvery non-reflexive subspace of Aﬁli contains a complemented copy of (1.
(4) If Aflli =7Z ®W, then either Z or W is isomorphic to a subspace of ;.
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1.2. The paper is organized as follows. The second section contains preliminary
notations and definitions for trees. Let us point out that trees are the central
combinatorial tool for both the descriptive set theoretic as well as the Banach
space theoretic part of the present work.

The third section is of descriptive set theoretic nature. We deal with the classes
of hereditarily indecomposable, and indecomposable separable Banach spaces, as
well as with the class of spaces not containing an unconditional sequence. It turns
out that all these classes are co-analytic non-Borel (actually, they are co-analytic
complete). Moreover, we provide some natural co-analytic ranks on these sets.
The notion of a co-analytic rank is due to Moschovakis. It is an ordinal index
on a co-analytic set A which satisfies some further definability assumptions. One
of the important properties of co-analytic ranks is that they satisfy boundedness.
This means that the rank is uniformly bounded below w; for every analytic subset
of the set A. Of particular importance is the embedability index introduced by
Bourgain [B1] and further studied by Bossard [Bo3]. It is defined on a separable
Banach space X and gives a quantitative estimate of how much a separable Banach
space Z with a Schauder basis (e,) embeds into X. The definition of the rank
depends on the choice of the basis (e,,). Using the parameterized version of Lusin’s
classical theorem we show that there exists a co-analytic rank which dominates the
embedability rank of X for every choice of the Schauder basis of Z. Similar results
hold if the Banach space Z does not necessarily have a Schauder basis.

Sections 4 and 5 are devoted to the 5 Baire sum of a Schauder tree basis (x4 )ser.
By a Schauder tree basis we mean a bounded sequence (z):cr indexed by a count-
able tree of height w and satisfying the property that for every branch o of T
the sequence {x; : t C o} is a bimonotone basic sequence. The ¢ Baire sum of
(7¢)ter, denoted by T5%, is a new norm defined on (z)¢er similar to norms con-
sidered by Bourgain [B1] and Bossard [Bo3]. It follows easily from the definition
that, for every branch ¢ of T the initial norm and the new one are isometric on
the space X, = span{xz; : t C o}. Furthermore, for every o the space X, is an
1-complemented subspace of 75X by a natural projection P,. Our investigation is
focused on the X-singular subspaces on 75, that is, on the subspaces Y of 7% for
which the operator P,:Y — T5¥ is strictly singular for every o € [T]. It is shown
that every X-singular subspace does not contain ¢;. On the other hand for every
(w¢)ser with T perfect, the space cg is isomorphic to an X-singular subspace of 75~ .
Next, we consider the set Wx = W{ UUE[T] B XU} where Bx_ denotes the unit
ball of X,. On the pair (75X, Wx) we apply the Davis-Figiel-Johnson-Pelczynski
p-interpolation method (for 1 < p < 00), or its variant, the HI interpolation which
is presented in this paper and it is a modification of the corresponding one in [AF].
The resulting spaces .Aff and, respectively, A% are the amalgamation spaces men-
tioned before. There is a key property of the set Wy, permitting us to establish
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the properties of the amalgamation of a class C, which is related to the notion of
thin sets (see [N1, AF]).

Theorem L. For every X -singular subspace Y of T5* the set Wx is thin on Y.

Theorem L requires several steps and uses some techniques from [AF].

Sections 6 and 7 are devoted to a brief presentation of the HI interpolation
mentioned above. In Section 8, we establish the properties of Aﬁ and we pro-
vide some applications. Sections 9 and 10 include the proofs of the results men-
tioned in the first part of the introduction. In an appendix, we have included
the study of the structure of the dual of 7;X. More precisely, we show that
(75)" =span{ U,eir X5 }-

We also define the concept of a strongly bounded class of separable Banach spaces
and we provide some examples of such classes. This notion is a strengthening of
the classical property of boundedness of co-analytic ranks. Kechris had also asked
for the existence of non-trivial strongly bounded classes of Banach spaces.

Definition M. Let C be an isomorphic invariant class of separable Banach spaces.
We say that C is strongly bounded if for every analytic subset A of C there exists
Y € C that contains all members of A up to isomorphism.

Under the terminology of the above definition, Theorem C states that the class of
non-universal separable Banach spaces with a Schauder basis is strongly bounded.
The following theorem provides other examples of strongly bounded classes.

Theorem N. Let C denote one of the following classes of Banach spaces.

(1) The reflexive spaces with a Schauder basis.

(2) The spaces with a shrinking Schauder basis.

(3) The {y-saturated for some 1 < p < oo, or cy-saturated spaces with a
Schauder basis.

(4) The unconditionally saturated spaces with a Schauder basis.

(5) The HI saturated spaces with a Schauder basis.

Then C is strongly bounded.

We close this introduction by pointing out that all the results related to classes C
of separable Banach spaces with a Schauder basis, remain valid for the wider class
of spaces with a Schauder FDD.

Acknowledgments. During the preparation of the paper and also after a first draft
of it, we have been benefited from the comments and remarks of Gilles Godefroy,
Bill Johnson, Vassilis Kanellopoulos, Alekos Kechris, Ted Odell, Christian Rosendal
and Thomas Schlumprecht. We extend our warm thanks to all of them. Also we
are grateful to Haris Raikoftsalis for pointing out to us a gap in an earlier version
of the proof of Proposition 5.10.
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Addendum. Recently, Valentin Ferenczi and the second named author have shown
that the classes of separable reflexive spaces and of spaces with separable dual are

strongly bounded.

2. TREES

2.1. Let N ={1,2,...} denote the set of positive integers. By [N]** we denote the
set of all infinite subsets on N. If L € [N]*°, then by [L]* we denote the set of all
infinite subsets of L. As it is common in Ramsey theory, for every L € [N]* by
[L]? we denote the set of all pairs (i,5) such that i,j € L and i < j.

2.2. Let A be a countable set. By A<N we denote the set of all nonempty finite
sequences of A (we do not include the empty sequence for purely technical reasons).
We view A<V as a tree under the strict partial order C of extension. Notice that
A<N has infinitely many roots.

2.2. We use the letter ¢ to denote the nodes of A<N,

2.3. If t,ty € A<N with t; C to, then the set {t : t; C t C to} is called a segment
of A<N (in particular, nodes are segments). The sets of the form {t' : ¢’ C t} are
called initial segments while the sets of the form {t' : t T t'} final segments. All
segments will be denoted by s.

2.4. If t € A<N, then the length of t is defined to be the cardinality of the set
{t' .t/ T t}. Tt is denoted by |t|. Observe that if t = (I1,12,...,l;), then [¢t| = k. If
n € N, then the n-level of A<N is defined to be the set {t : [t| = n}.

2.5. We identify the branches of (A<N, ) with the elements of the space AN. If we
equip A with the discrete topology, then AN is homeomorphic to the Baire space NV,
denoted by N. For every o € AN and every n € N we set oln = (o(1),...,0(n)).
Notice that |J|n} =n for every n € N and every o € AN,

2.6. Two nodes t1,ts € A<N are called comparable if either t; T to or to C t1. More
generally, if A1, 49 € A<N, then A; and A, are called comparable if there exist
t1 € Ay and ty € Ay with £, t5 comparable; otherwise, they are called incomparable.
Notice that if A; and Ay are incomparable, then they are disjoint.

2.7. If t € A<N, then by £; we denote the set of all segments s of A<N for which
there exists ¢’ € s with ¢ C ¢/. Observe that the family {£; : t € A<N} restricted to
the branches of A<N forms the usual sub-basis of the topology of AN.

2.8. If s is a segment of A<Nand A C AN, then we write s N A = () to denote the
fact that the sets s and {t : 3o € A with ¢t C o} are disjoint. More generally, if s is
a segment of A<N and A C A<N, then we write s N A = () to denote the fact that
the sets s and {t : ¢t € A} are disjoint.

2.9. Let A be a subset of A<N. We say that A is segment complete if for every
t1,ta, t3 € A<N with t; Tty T t3 and t1,t3 € A, we have that ¢, € A.
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2.10. By Tr(A) we denote the set of all downward closed subtrees of A<N| that is,
TeTr(A) eVt e AN ({ Ctandte T =1t €T).

(By convention, the empty set is a tree.) By identifying every T € Tr(A) with
its characteristic function, we see that Tr(A) is a closed subspace of 287 A tree
T € Tr(A) is said to be well-founded if for every o € AN there exists n € N such
that oln ¢ T. The set of all well-founded trees is denoted by WF(A). A tree
T € Tr(A) \ WF(A) is called ill-founded. The set of all ill-founded trees is denoted
by IF(A). If A =N, then the set of trees on N is simply denoted by Tr.

2.11. For every T € WF(A) we set T/ == {t € T : 3’ € T witht C t'}. By
transfinite recursion, for every ¢ < w; we define 70 = T, TE+) = (T(ﬁ))l and
T = Ne<e T© if ¢ is a limit ordinal. The order of T is defined to be the least
ordinal ¢ such that 7 = (). Tt is denoted by o(T).

2.12. A (downward closed) subtree T of A<V is said to be pruned if for every t € T
there exists ¢’ € T such that ¢ T ¢'. Given a pruned tree T one defines the body [T]
of T' to be the set

[T] == {0 € AN : g|n € T for every n € N}.

Notice that [T is a closed subset of AN. Actually the pruned subtrees of A<N are in
one-to-one correspondence with the closed subsets of AN via the bijection T + [T]
(see [K, page 7]). There is a canonical way to assign to every tree T its pruned part
Ty This is done using the derivative operation T +— T defined above. Specifically,
for every T' € Tr(A) set 7" == {t € T : ' € T with ¢ C t'}, and notice that T
is pruned if and only if 77 = T. By transfinite recursion, we define the iterated
derivatives T of T for every £ < w;. Finally, we set Tor =T (), Observe that
T € WF(A) if and only if T}, = 0.

3. COMPLEXITY AND RANKS
We shall briefly review some basic concepts of descriptive set theory.

3.1. Standard Borel spaces. Let (X,3) be a measurable space. Then (X,X)
is said to be a standard Borel space if there exists a Polish topology 7 on X such
that ¥ = B(X, 1), that is, the Borel o-algebra of (X, ) coincides with 3. Using
the classical fact that for every Borel subset B of a Polish space X, there exists a
finer Polish topology on X (with the same Borel sets) making B clopen (see [K,
Theorem 13.1]) we see that if (X, ) is a standard Borel space and B € ¥, then B
equipped with the relative o-algebra is a standard Borel space too.

An important example of a standard Borel space is the Effros—Borel structure.
Let X be a Polish space and denote by F(X) the set of all closed subsets of X. We
endow F'(X) with the o-algebra generated by the sets {F € F(X) : FNU # (}
where U ranges over all open subsets of X. The space F(X) equipped with this
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o-algebra is called the Effros-Borel space of F(X). The basic fact is the following
(see [K, Theorem 12.6]).

Theorem 3.1. If X is Polish, then the Effros—Borel space of F(X) is standard.

The fact that a standard Borel space is just the Borel o-algebra of a Polish space,
allows us to speak about analytic, co-analytic and projective, in general, subsets of
a standard Borel space. We will use the modern logical notation to denote these
classes. Hence, X1 stands for the analytic sets while IT} stands for the co-analytic
ones. For more information we refer to [K].

3.2. The standard Borel space of separable Banach spaces. Let X be a
separable Banach space, and set

Subs(X) :={F € F(X) : F is a closed linear subspace of X}.

Then Subs(X) is a Borel set in F(X) (see [K, page 79]) and so a standard Borel
space on its own right. If X = C(2"), then the space Subs(C(2")) is the standard
Borel space of all separable Banach spaces and we denote it simply by SB. We
recall some basic properties of SB.

3.2.1. If X € SB, then Subs(X) is a Borel subset of SB (see [K, page 76]).

3.2.2. The set of all infinite-dimensional separable Banach spaces is a Borel subset
of SB. More generally, this holds for the infinite-dimensional subspaces of a fixed
infinite-dimensional X € SB (see [K, page 79]).

3.2.3. The relation {(Y, X) : Y is a closed subspace of X} is Borel in SB x SB (see
[K, page 76]).

3.2.4. A simple application of the Kuratowski—Ryll-Nardzewski selection theorem
(see [K, page 76]) yields that there exists a sequence d,: SB — C(2Y) (n € N)
of Borel functions such that {d,,(X):n € N} = X for every X € SB. As these
functions can be chosen so that d, (X) # 0 for every n € N and every X € SB, this
shows that there also exists a sequence S,,: SB — C(2") (n € N) of Borel functions
such that {S,(X):n € N} = Sx for every X € SB. Clearly all these facts can be
relativized to Subs(X) for any X € SB.

3.2.5. The equivalence relation = of isomorphism is analytic, that is, the set
{(X,Y) : X is linearly isomorphic to Y}
is 31 in SB x SB (see [Bo3, page 127]).

As we are mainly interested in infinite-dimensional Banach spaces we will follow
the convention that SB consists of all infinite-dimensional separable Banach spaces
(the same also holds for Subs(X) of any infinite-dimensional X € SB). This causes
no problems since, by 3.2.2, these are standard Borel spaces.
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3.3. The method of completeness. Let X,Y be standard Borel spaces, A C X
and B CY. We say that A is reducible to B, in symbols A < B, if there exists a
Borel map f: X — Y such that

r€eAs f(x) € B.

Notice that if A < B and B < C, then A < C. Also observe that if A < B, then
X\ A <Y\ B. Now let I be any class of sets in Polish spaces (such as X1, or IT})
and let T be its dual class, that is, [ = {4 : X \ A € T'}.

Definition 3.2. A subset B of a standard Borel space X is said to be I'-hard if
for any standard Borel space Y and any A C'Y which is in T'(Y) we have that A
is reducible to B. If, in addition, B is in T'(X), then B is said to be T-complete.

Notice that if " is closed under pre-images of Borel maps and not self-dual, that
is, I # I, then no I-hard set is in I. In particular, any ITi-complete set is not
analytic (whether the converse is true is one of the most fascinating questions in
descriptive set theory). This gives us a method (which goes back to the beginnings
of descriptive set theory) of proving that a subset B of a standard Borel space is not
analytic. Select an already known IT}-complete set and show that it is reducible
to B. A basic example of a IT}-complete set is the set WF of all well-founded trees
on N. In particular, we have the following theorem (see [K, page 243]).

Theorem 3.3. The set WF is I1}-complete.

Clearly, the above theorem yields that the set IF is X1-complete.

3.4. Co-analytic ranks. Let X be standard Borel space and let A C X be a
IT} set. A map ¢: A — Ord is said to be a II}-rank on A if there are relations
<5, <nC X x X in ¥} and I} respectively, such that for any y € A we have

d(z)<9ly) ®r<syez<ny.

The notion of a IT}-rank is due to Moschovakis (although its present form is due to
Kechris). It is a fundamental fact of the structural theory of IT} sets that every IT}
set admits a IT}-rank (see [Mo, K]). For our purposes the most important property
of a IIi-rank ¢ is that it must satisfy boundedness. That is, if ¢: A — w; is a
ITl-rank on A and B C A is 3}, then we have (see [K, Theorem 35.23])

sup{¢(z) : ¢ € B} < wy.

On the ITi-complete set WF, a canonical ITi-rank is the map which assigns to every
well-founded tree T its order o(T'), which is of course a countable ordinal (see [K,
page 269]).

Notice that if X and Y are standard Borel spaces, A C X is reducible to B C Y
via a Borel map f and ¢ is a II}-rank on B, then the map ¢: A — Ord defined by
Y(x) = ¢(f(z)) for every x € A, is a IT}-rank on A. This provides us a canonical
way for producing natural II}-ranks on IT} sets. Simply find a natural reduction of
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the set in question to WF (which of course a priori exists, but may be artificial in
some sense), and then assign to every point in our set the order of the well-founded
tree to which the point is reduced. For more on ITi-ranks as well as applications of
rank theory in analysis we refer to [K, KL1, KW1].

3.5. Classes of separable Banach spaces. In this subsection we will treat
some classes of separable Banach spaces. We will give an upper bound for their
complexity and provide natural ranks on them.

3.5.1. Hereditarily indecomposable spaces. Let HI be the set of all separable hered-
itarily indecomposable Banach spaces. Notice that

X eHl < VKZ%Xd(Sy,Sz):O
1

< VY, Z < X Vk In,m such that ||S,(Y) — S, (2)] < T

(Here, (S,) stands for the sequence of Borel functions defined in 3.2.4.) This shows
that HI is IT}. For the convenience of the reader not familiar with descriptive set-
theoretic calculations we will briefly describe a more detailed argument. Indeed,
let A1 =UpenNpmen{(Y:2) 1 [[Sn(Y) = Sn(2)] = +}. Since for every n € N the
function S,,: SB — C(2N) is Borel, we see that A; is Borel in SB x SB. Now set
A={(X,Y,2):Y,Z <= X} N(SB x A;). The relation {(X,Y) : Y < X} is Borel
in SB x SB. Therefore, the set A is Borel in SB®. Moreover,

X ¢ HI & X € projggA

where projgp denotes the projection in the first coordinate. This implies that SB\HI
is analytic, as desired.

We proceed to find a reduction of HI to the set of all well-founded trees on N x N.
To this end let Tr(N x N) be the set of all downward closed trees on N x N. We
identify every T € Tr(N x N) with the set of all pairs (¢1,t2) € N<N x N<N with
|t1] = |t2] = I and such that

((tl(l),tz(l)),...,(tl(l),tg(l))) €.

Before we describe the reduction let us introduce some terminology. For every
t € NN with ¢ = (ny,...,n;) and every X € SB set

Xy =span{dy, (X),...,dn,(X)}.

Observe that X is a finite-dimensional subspace of X. Moreover, notice that the
vectors dy, (X), ..., dp, (X) are linearly independent if and only if dim X; = = [¢|.
We say that ¢ is X-independent if dim X; = [t|. Note that, for every ¢t € N<N the
set I; = {X € SB : ¢ is X-independent} is Borel. To see this observe that

Xé¢lL, & HFay,...,qp €RIie{l,...,1l} such that a; # 0 and
a1dp, (X) 4+ -+ aidy, (X) = 0.
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Now let X € SB and k € N. We introduce a tree on N x N, denoted by Ty (X, k),
as follows. We set

El i

(t1,t2) € T < |t1| = [ta], t1,t2 are X-independent and d(Sth , SX,:Q) >

Next, we “glue” the trees Tr(X, k) in a natural way to build a tree Tyi(X) on
N x N defined by the rule

(tl,tg) S THI(X) < dk € N such that tl(l) = tg(l) =k and
either |t;| = |[ta| =1 or
t1 = k7t), to = k7t and (#),t5) € Tur(X, k).

Clearly, the tree Thr(X) describes all our attempts to produce a decomposable
subspace of X. Moreover, we have the following lemma.

Lemma 3.4. The map SB 3 X — Tyi(X) € Tr(N x N) is a Borel reduction of HI
to WF(N x N).

Proof. First we check the Borel measurability of the map. Fix (t1,t;) € N<N x N<N
with |t1| = |t2]. Using the Borel measurability of the functions (S, ), for every
k € N it is easy to see that the set {X : d(Sx, ,Sx,,) = 1} is Borel. Moreover,
by the discussion before the lemma, the set {X : ¢; and ¢2 are X-independent} is
Borel too. It follows that for any (¢1,t2) € N<N x N<N with [t;| = [t2| the pre-image
of the set {T' € Tr(N x N) : (t1,t2) € T} is Borel in SB. As this family forms a
sub-basis of the topology of Tr(N x N), the Borel measurability is clear.
Now we claim that

To see this notice that if X ¢ HI, then a standard perturbation argument yields
that there exists a k € N such that Tyi(X, k) is not well-founded. Clearly, in this
case Ty1(X) is not well-founded either. Conversely, if Tyi(X) is not well-founded,
then there exists a k € N such that (X, k) is not well-founded either (actually,
this will also be the case for every m > k). The definition of Ty(X, k) easily yields
the existence of a decomposable subspace of X (here we made crucial use of the
fact that the nodes of Ty (X, k) correspond to linearly independent vectors). The
proof is completed. O

By Lemma 3.4, we see that the Borel map X — Tyi(X) is a reduction of HI
to WF(N x N). Since the map T + o(T) is a ITj-rank on WF(N x N), it follows
that the map X — o(Tu1(X)) is a II{-rank on HI. We will see, later on, that HI is
IT}-complete, and so this rank is unbounded on HI.

3.5.2. Spaces with no unconditional sequence. Let NUC be the set of all separable
Banach spaces with no unconditional sequence. We will show that NUC is II1.
Actually instead of calculating the complexity of NUC we will find a reduction of
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NUC to WF. Not only this will show that NUC is IT}, but also, as in the case of
HI spaces, it will provide a natural IT}-rank on NUC.
For every k € N let Tnuc(X, k) be the tree on N defined by the rule

t=(ny,...,n) € Tnuc(X,k) < the sequence dy, (X),...,dn, (X)
is k-unconditional

where, as usual, a finite sequence (z;)!_; is said to be k-unconditional if for every
ai,...,a; € Rand F C {1,...,1} we have ||}, pajz;| < K| 22:1 a;z;||. This
tree has been considered by Tomczak-Jaegermann in [TJ] (see also [BL, page 337]).
As in the previous paragraph, we “glue” the trees Tnuc(X, k) and we produce a
tree Tnuc(X). It is easy to check that the map SB 3 X +— Tyxuc(X) € Tr is Borel
and, moreover,

X € NUC & VE TNUC(X; k) € WF & TNUC(X) € WF.
This is the desired reduction.

3.5.3. Indecomposable spaces. Let I be the set of all separable indecomposable
Banach spaces. We claim that it is II}. Indeed,

Xel & VY,Z<s X (Y + Z is dense in X = d(Sy, Sz) = 0)
& W, Z X [(Vn Vi 3m, k with [|dn(X) — dm(Y) — di(2)]| <

1
(V2 3m’, K with [[Sr(¥) = S (2)] < 7)].

Counting quantifiers and using the Borel measurability of the functions involved

S| =

) =

in the above expression we see that the class of indecomposable spaces is TI3.
Using similar ideas as in the case of HI spaces, one may construct a IT}-rank on
I (although in this case the construction is more involved). Instead of describing
such a construction, we will take the opportunity to propose a natural IT}-rank on
the set of all separable reflexive Banach spaces.

3.5.4. Reflexive spaces. Let REFL be the set of all separable reflexive Banach
spaces. Bossard has shown in [Bo3] that the set REFL is ITi-complete. We will
give a natural IT{-rank on REFL by finding a reduction of it to WF. To this end,
for every X € SB and every k,n € N we define a tree Trgrr, (X, k,n) on X by

(z:)'_, € TrerL(X,k,n) < the finite sequence (z;)!_, is k-Schauder, and
!
Yai,...,a; € RT with Zai =1 we have
i=1

! 1
13 e >
=1 n
l

where the finite sequence (x;);_; is said to be k-Schauder if for every by,..., b € R
and every 1 < my < mg < I we have || >0 biay|| < k| D017 biail|. Clearly, the
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tree Trerr (X, k,n) describes all our attempts to build a basic sequence in X with
no weakly null subsequence. We have the following lemma.

Lemma 3.5. Let X € SB. Then X € REFL if and only if for every k,n € N the
tree TrerL (X, k,n) is well-founded.

Proof. First assume that there exist k,n € N such that the tree Trerr (X, k,n) is
not well-founded. Let (z;) be an infinite branch of Trerr (X, k,n). By Rosenthal’s
theorem [Rol], there exists L € [N]> such that either the sequence (x;);cr, is
equivalent to the £ basis, or the sequence (z;);c is weakly Cauchy. In the first case,
we immediately obtain that X is not reflexive. In the second case, we distinguish
the following subcases. Either the sequence (z;);cr, is weakly convergent, or there
exists ©** € X** \ X such that w* — lim;ecy, #; = «**. Clearly, the second subcase
implies that X is not reflexive. So we only have to deal with the case when (z;);cr, is
weakly convergent. By the definition of the tree Trgrr, (X, k,n), we see that (z;);cr,
is a basic sequence. Hence, (x;);cr, must be weakly null. By Mazur’s theorem, there
exist a finite convex combination z of (z;);cr, such that [|z|| < 1. But this is clearly
impossible by the definition of the tree. Hence, in any case we have that X is not
reflexive.

Now assume that X is not reflexive. We must show that there exist k,n € N such
that Trerr (X, k,n) is not well-founded. If ¢; embeds into X, then this is clearly
possible. If not, then there exist ** € X**\ X with ||**|| = 1 and a sequence
(x;) such that w* — limx; = z**. We select * € X* with [|z*|| < 1 such that
a*(x;) > 5 for every i € N. There exists L € [N]* such that the sequence (z;)icr
is basic with basis constant, say, & € N (see [D, page 41]). Let {l; <l < ---}
denote the increasing enumeration of L. Since z*(z;) > £ for every | € L, we see
that (x;,)™, € TrerL(X, k,2) for every m € N. The proof is completed. O

Now we consider the following tree Trgrr (X, k,n) on N defined by
te TREFL(X7 k,n) St= (77,1, e ,m) and dn1 (X), ceey dm(X) S TREFL(X» k,n)

The tree TrerL (X, k, n) corresponds to a subtree of Trrrr (X, k,n). Moreover, by
Lemma 3.5, and a standard perturbation argument we obtain that

X € REFL & Vk,n TREFL(Xa k, TL) is well-founded < Vk,n TrerL (AX7 k, ’/l) € WF.

By “gluing” the trees TrerL(X, k,n) in the obvious way, we construct a Borel map
SB 3 X — TrerL(X) € Tr such that

X € REFL & TREFL(X) € WF.
This is the desired reduction.

3.5.5. Spaces with non-trivial type, or non-trivial cotype. All the classes presented
so far, as well as the classes presented in [Bo3|, are actually IT}-complete. The
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following classes are important families of separable Banach spaces which are of
low complexity.

Let 1 < p < 2and?2 < g < oco. Let Type(p) and Cotype(q) be the sets of all
separable Banach spaces with type p and co-type ¢ respectively. Both Type(p) and
Cotype(q) are Borel in SB. To see this observe that

X € Type(p) < 3C > 0 such that V(z;)F_ | in X

S k 1/p
LI rtma < o3 o)
=1 i=1

< 3C > 0 such that VF = {nq,...,nt} C N finite

1k k
/0 1> rite)dn, (X)]] dt < C(Z I, (X)||”)

(Here, (r;) denotes the sequence of Rademacher functions—see [LT]). This shows

1/p

that Type(p) is Borel. Similarly we verify that Cotype(q) is Borel. As a separable
Banach space X has non-trivial type (respectively, non-trivial cotype) if and only
if there exists p € Q with 1 < p < 2 (respectively, ¢ € Q with 2 < ¢ < o0) such
that X € Type(p) (respectively, X € Cotype(q)), this also shows that the class
of separable Banach space with non-trivial type (respectively, cotype) is a Borel
subset of SB.

3.6. Applications. Our first application is the following theorem.

Theorem 3.6. Let A be an analytic subset of SB that contains, up to isomorphism,
all separable reflerive HI spaces. Then there exists X € A which is universal.

We will see, later on, that a stronger version of Theorem 3.6 holds true. We will
give a proof of this result which is based on the results in [Ar] and will illustrate
the use of boundedness of II}-ranks on this kind of results.

First we discuss some results presented by Bossard in [Bo3|. Let Z be a separable
Banach space with a Schauder basis. Let (e,) be a basis of Z, and let C' > 0 be
the basis constant of (e,,).

Let X € SB and k € N. We construct a tree T(X, Z, (e,), k) on X, sometimes
called the embeddability tree of Z in X, as follows. Let

(z:)l_, € T(X, Z, (en), k) & (z;)l_, is k-equivalent to (e;)!_,

where, as usual, (z;)!_; is said to be k-equivalent to (e;)!_; if for every as,...,a; € R

we have

1 1 l 1
IS, < ISl < KIS aiei],
=1 =1 =1

The above defined tree was first consider by Bourgain (see [B1]). Notice that Z is
isomorphic to a subspace of X if and only if there exists & € N such that the tree
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T (X, Z, (en), k) is not well-founded. We also construct a tree T'(X, Z, (e,), k) on N
as follows. We set

teT(X,Z, (en), k) &t=(ny,...,n) and (dn, (X)), € T(X, Z, (en), k).

Then, T(X, Z, (e,), k) corresponds to a subtree of T(X, Z, (e,), k). We need the
following lemma (see also [Bo3]).

Lemma 3.7. For every X € SB we have

sup {O(T(X, Z, (en),k;)) ke N} = sup {O(T(X7 Z, (en),k‘)) ke N}.
Proof. Tt is clear that

sup {O(T(X, Z, (en),k;)) ke N} > sup {O(T(X7 Z, (en),k‘)) ke N}.
Conversely, fix X € SB and k € N. We have the following claim.

Claim. We set T = T(X,Z,(e,), k) and T = T(X, Z, (en)
(i), € T® and t = (ny,...,n;) € NN such that ||lz; — d, (
every i € {1,...,1}. Then we have t € T,

,2k). Let £ < wy,
)

| < 52g - gt for

To prove the claim we use the classical fact (see, e.g., [LT]) that if (z;)!_; is
k-equivalent to (e;)!_;, and (y;)!_; is such that ||z; — ys|| < 555 - 5t for every
i€{1,...,1}, then (y;)!_, is 2k-equivalent to (e;)!_,. Since the sequence (d,, (X)) is
dense in X, the claim follows easily by induction on countable ordinals. We conclude

that o(T(X, Z, (e5), k)) < o(T(X, Z, (en), 2k)), and the proof is completed. O

We “glue” the trees T(X, Z, (e,), k) and we obtain a tree T'(X, Z, (e,)) on N
with the following properties.

(P1) Z is not isomorphic to a subspace of X if and only if T(X,Z, (e,)) is

well-founded.

(P2) For every k € N we have o(T(X, Z, (e,))) = o(T(X, Z, (en), k)).
It is easy to see that the map SB 3 X T(X7 Z, (en)) € Tr is Borel and so, by
property (P1), it is a reduction of the set NCy of all separable Banach spaces not
containing Z to WF. It follows that the map X — o(T(X, Z, (e,))) is a II{-rank
on NCz. We are ready to give the proof of Theorem 3.6.

Proof of Theorem 3.6. Let A be as in the statement of the theorem. Let A~ be the
isomorphic saturation of A, that is, A~ == {Y € SB: 3X € A such that Y & X}.
Notice that A~ is analytic, since the equivalence relation of isomorphism is X1 in
SB x SB.

Let Z be an arbitrary separable Banach space with a Schauder basis (e,,). If there
does not exist X € A~ with Z isomorphic to a subspace of X, then A~ C NCy.
Since the map X — o(T(X, Z, (e,))) is a II}-rank on NCz and A~ is 3, by
boundedness, we obtain that

(3.1) sup {O(T(X, Z,(en))): X € AE} < wi.
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However, as it has been shown in [Ar], for every separable Banach space Z with a
Schauder basis (e,,) one can construct a transfinite sequence (H¢(Z) : € < wq) of
separable reflexive HI spaces such that for every & < w; we have that

sup {o(T(Hg(Z), Z,(en),k)) 1 k € N} > €.

Since the family (H¢(Z) : £ < wq) is clearly a subset of A~ (recall that A contains
all separable reflexive HI spaces up to isomorphism), by Lemma 3.7, we obtain that
the rank must be unbounded on A~, a contradiction by (3.1). Therefore, there
exists X € A~ such that Z is isomorphic to a subspace of X. Applying the above
for Z = C[0,1] we obtain the result. O

Remark 1. (a) Using the results of Bourgain in [B1] instead of the results in [Ar],
one can use the above argument to derive the following result of Bossard (see
[Bo3, AGR)).

Theorem 3.8. Let A be an analytic subset of SB that contains, up to isomorphism,
all separable reflerive Banach spaces. Then there exists X € A which is universal.

This is a typical use of techniques of rank theory in order to prove universality,
and more generally existential, results (see [K, page 290]).

(b) Notice that, by Theorem 3.6, we have the following corollary.

Corollary 3.9. If A is an analytic subset of SB with HI C A, then there exists
X € A which is universal.

Since no HI space (respectively, no indecomposable space, nor a space with no
unconditional sequence) is universal, the above corollary implies that the class HI
(respectively, I and NUC) is co-analytic non-Borel (the fact that no indecomposable
separable Banach is universal follows from the classical fact that cq is separably
injective [LT]). However, this does not show that HI is actually IT{-complete, the
proof of which requires more elaborate techniques. This is a typical phenomenon
in descriptive set theory.

Our second application concerns the embeddability rank of a separable Banach
space Z with a Schauder basis. As we have seen the map X — o(T(X, Z, (e,))) is a
IT}-rank on NCy for every Schauder basis (e,) of Z. However, it appears that this
rank depends on the choice of the Schauder basis. We will show that it is actually
independent of such a choice in a very strong sense.

Theorem 3.10. Let Z be a separable Banach space with Schauder basis. Then
there exists a map ¢z: SB — Ord such that

X eNCz & ¢dz(X) < wy

and the map ¢z: NCz — wy is a H%—mnk on NCgz. Moreover, for every Schauder
basis (en,) of Z, every k € N and every separable Banach space X we have

o(T(X,Z,(en), k) < dpz(X).
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For the proof of Theorem 3.10 we need the following parameterized version of
Lusin’s classical theorem.

Theorem 3.11 (parameterized Lusin). Let X be a standard Borel space and let
A C X x Tr be analytic. Then there is a Borel map f: X — Tr such that for every
x € X, if the section Ay = {T : (x,T) € A} is a subset of WF, then f(x) € WF
and o(f(z)) = sup{o(T) : T € A, }, while if A, NIF # 0, then f(x) € IF.

Theorem 3.11 is certainly well-known among people working in descriptive set
theory. However, we have not been able to find a reference (although it appears as
a statement in [K, page 365]). For the sake of completeness we include a proof.

Proof of Theorem 3.11. Since any two uncountable standard Borel spaces are Borel
isomorphic, we may assume that X = A. In this case we will show that the map
f is actually continuous. So let A C N x Tr be analytic and let F C N x Tr x A/
be closed such that A = proj pF. For every x € N define T, € Tr(N x N) by

Ty = {(t1,t2) : In with [t;| = |[to] =n and I(y,T,z2) € F
with zjn = y|n, t1 € T and t3 = z|n}
The map h: N — Tr(N x N) defined by h(z) = T, is clearly continuous.
Claim. For every x € N we have T, € WF(N x N) if and only if A, C WF.

Proof of the claim. Fix x € N. Assume that T}, is well-founded. For every T' € A,
we select z € N such that (z,T,z) € F. Define ¢: T — T, by ¢(t) = (¢, z|n) where
n = |t|. Then ¢ is a well-defined monotone map (that is, ¢; C t5 in T implies that
¢(t1) C ¢(t2) in Ty). Since T, € WF(N x N), we obtain that T € WF and that
o(T) < o(Ty).

Conversely, assume that T}, is ill-founded. Let ((¢,,t2)) be an infinite branch
of T,. For every n € N we select y, € N, T,, € Tr and 2, € N such that
(Yn,Tny2zn) € F and yu|n = x|n, tL € T, and z,|n = t3. Then y, — x and
Zp — z where z = |, t2. Moreover, by passing to subsequences if necessary, we
may assume that 7,, — T in Tr(N x N) (the space Tr(N x N) is compact). By the
fact that F' is closed, we obtain that (z,7T,2) € F, and so T € A,. As the space
Tr(N x N) consists of downward closed trees and (t.) is a branch of NN we see
that t1 € T; for every n < i, and so t} € T for every n € N. Therefore, T € IF. [

Notice that, by the proof of the above claim, we also have that if A, C WF,
then sup {o(T) : T € A} < o(T}). Now let g: Tr(N x N) — Tr be any continuous
map such that

(i) T € WF(N x N) if and only if ¢(T) € WF, and
(ii) o(T) < o(g(T)) for every T € Tr(N x N) (with the usual convention that if
T is ill-founded, then o(T) = wy).
Finally, define f: N — Tr by setting f(x) = g(T%). Clearly f is as desired. O
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We continue with the proof of Theorem 3.10.

Proof of Theorem 3.10. Let Z be a separable Banach space with a Schauder basis,
and set

S :={(en) € Z" : (e,) is a Schauder basis of Z}.
Then S is Borel in ZY. Indeed, the set B of all basic sequences of Z is F, in Z,
while the set D of all sequences (z,) with dense linear span is Borel since

l
(2n) € D Vk Vm 3 Jay, ..., a1 € R such that ||dx — Y anza|| <

1
m
n=1

where (dj) is a fixed dense sequence in Z. Therefore, D is II (F,s in the classical

notation). As & = BN D, we conclude that S is Borel, and so a standard Borel
space. Observe that the set

C:={((en), X, T) €S xSBxTr: T =T(X,Z(en)) }

is Borel where T'(X, Z, (e,,)) denotes the tree on N defined in the beginning of this
subsection by considering as Schauder basis of Z the sequence (e,). It follows that
the set
A={(X,T) €SB x Tr:3(e,) €S with ((e,),X,T) € C}
is analytic. Moreover, by Lemma 3.7, we have that
(1) X eNCgz ifand only if Ay ={T € Tr: (X,T) € A} C WF, and
(2) for every X € NCg, every Schauder basis (e,) of Z and every k € N we
have o(T(X, Z, (en), k)) < sup{o(T): T € Ax}.
We apply the parameterized Lusin theorem (Theorem 3.11) and we obtain a Borel
function f: SB — Tr such that
(3) X € NCyz if and only if f(X) € WF (that is, f is a reduction of NCy to
WF), and
(4) for every X € NCy we have sup{o(T) : T € Ax} < o(f(X)).
We set ¢z(X) = o(f(X)) with the standard convention that o(T) = wy if T is
ill-founded. Clearly, ¢~ is as desired. O

Remark 2. Although the ITi-rank ¢z obtained by Theorem 3.10 may be consid-
ered as a universal embeddability rank for Z, we note that it is equivalent to the
rank X +— o(T(X,Z, (e,))) for every Schauder basis (e,) of Z in the sense that
for every A C SB we have sup{o(T(X, Z, (en))) : X € A} = w; if and only if
sup{pz(X) : X € A} = wy. To see this notice, first, that the “only if” part is an
immediate consequence of Theorem 3.10. Conversely, observe that if
sup{o(T(X, Z, (e,))) : X € A} = £ < wy,
then A C Be == {X € SB: 0(T(X, Z, (es))) < &}. Since the map

X o(T(X, Z, (en)))
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is a IT{-rank on NCy, we see that By is Borel. Hence, as ¢ is a IT}-rank on NC, by
boundedness, we obtain that sup{¢z(X) : X € A} <sup{oz(X): X € Be} <ws.

Bossard has extended the embeddability rank for the general case of a separable
Banach space Z which does not necessarily have a Schauder basis (see [Bo2, The-
orem 4.8] or [Bo3, Theorem 4.9]). We recall his definition taken from [Bo3]. Let Z
be a separable Banach space and fix a sequence (z,,) of linearly independent vectors
with dense linear span in Z. For every X € SB and every k € N we define a tree
T(X,Z,(z),k) on X<N as follows. A sequence ((z1),(x},23),...,(z},...,a%))
belongs to T(X, Z, (2,,), k) if the following are satisfied.

(i) For every 1 <i<j <1< nwehave |2/ — ] < £.
(ii) For every 1 <1 < n the sequence (z})!_; is k-equivalent to (2;)!_;.

It is easy to see that Z is isomorphic to a subspace of X if and only if there exists
k € N such that the tree T(X, Z, (2,,), k) is not well-founded.

Now we consider a tree on N<N, denoted by T(X, Z, (z,), k), which is defined
as follows. A sequence (t1,ta,...,t,) € (N<N)<N belongs to T(X, Z, (2,), k) if the
following are satisfied.

(a) For every i € {1,...,n} we have |t;| = 1.
(b) For every i € {1,...,n} if t; = (I¢,...,1}), then

((dli(X)), (2 (X),dz (X)), (dig (X),..., diy (X))) e T(X, Z, (z2), k).
Arguing as in Lemma 3.7, we see that
sup {O(T(X, Z, (zn),k;)) ke N} = sup {O(T(X7 Z, (zn),k‘)) ke N}.

Since the set N<N is countable, the tree T(X, Z, (z,), k) may be considered as a
tree on N. By “gluing” the trees (T'(X, Z, (zn), k) : k € N) in a tree T(X, Z, (z,))
and using the parameterized Lusin theorem, we obtain the following analogue of
Theorem 3.10.

Theorem 3.12. Let Z be a separable Banach space. Then there exists a map
1z SB — Ord such that

X eNCz & Yz(X) <w;

and the map 1z: NCz — wy is a II}-rank on NCyz. Moreover, for every sequence
(zn) of linearly independent vectors with dense linear span in Z, every k € N and
every separable Banach space X we have o(T(X, Z, (zn),k)) < ¢z(X).

4. THE /5 BAIRE SUM OF A SCHAUDER TREE BASIS

In this section we define the Schauder tree basis (x¢):er of a separable Banach
space X and the f5 Baire sum of a Schauder tree basis. Similar norms have been
considered by Bourgain [B1] and Bossard [Bo3]. We study the structure of ¢,
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Baire sums. The second and the third subsections are devoted to some prepara-
tory lemmas. Most of these lemmas are of combinatorial nature and are based
on applications of the classical Ramsey theorem. The central notion is that of an
X-singular subspace of 7;X. We show that any such subspace does not contain /.
We also show that for every tree basis (zt)scn<rv the corresponding f2 Baire sum

contains cgp.

4.1. Definitions. Let (X, | - ||x) be a Banach space, let A be a countable set, let
T be a (downwards closed) pruned subtree of A<N and let (x;);e7 be a sequence
(with possible repetitions) in X which is indexed by T. For every o € [T] we set
X, =span{x, :tC o}.

Definition 4.1. We say that a normalized sequence (x4)ier is a bimonotone
Schauder tree basis of X if the following are satisfied.

(1) We have X =span{z; :t € T}.

(2) For every o € [T] the sequence (To)y,) is a bimonotone Schauder basis of X,

Let us present some examples of Schauder tree bases.

Example 1. Let X be a Banach space with a normalized bimonotone Schauder
basis (z,,). For every t € N<N set @y := x;;. Then (2;)ien<n is a Schauder tree
basis of X. Observe that, in this case, we have X = X, for every o € N.

Example 2. As above, let X be a Banach space with a normalized bimonotone
Schauder basis (). Fix a bijection h: NN — N such that #; C ¢, implies that
h(t1) < h(tz). For every t € N<N set @, := x,(4). Then (2¢);en<v is a Schauder tree
basis of X. In this case, notice that for every ¢ € N the space X, is the space
span{x, : n € L, } where L, := {h(c|n) : n € N} € [N]>°.

Example 3. It is a refinement of Example 2. In particular, notice that in Example 2
for every o € N the space X, is a subspace of X spanned by a subsequence of the
basis. In this example we show that, by a more careful enumeration, the converse
may also be true. That is, for every L € [N]* there exists o, € N such that
X,, = span{wz, : n € L}. To define this enumeration let [N]<N be the downward
closed subtree of N<N consisting of all nonempty, increasing finite sequences. Notice
that every ¢t € [N]<N has infinitely many immediate successors in [N]<N. Hence,
there exists a bijection g: N<N — [N]<N such that

(1) |g(t)| = |t| for every t € N<N and

(2) if t1,t2 € N<N then t; C ty if and only if g(t;) C g(ta).
Next, let 7: [N]<N — N be defined by setting 7(t) = ny, if t = (n1,...,n:). (Notice
that, since t € [N]<N, we have n; < --- < ng.) Finally, define f: N<N — N by the
rule f(t) = m(g(t)), and set @y := @ ¢(4). It is clear that (z;);en<n is a Schauder tree
basis of X and, moreover, for every ¢ € N the space X, is the space spanned by
the sequence (z,)ner, where L, = {f(c|n) : n € N}. Conversely, let L € [N]*®
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and let {l; < lo < ---} denote its increasing enumeration. For every n € N set
t, = g’l((ll, .. ,ln)) and oy = U, cp tn € N. Then the space X,, is the space
spanned by the subsequence (z,)ner. The above construction is motivated by a
construction of Schechtman [Sch] (see also [LT, page 93]).

We proceed with the main definition in this section. Let (X, || -||x) be a Banach
space, let A be a countable set, let T' be a pruned subtree of A<N and let (z4)ier
be a normalized bimonotone Schauder tree basis of X. We define the ¢5 Baire sum
of (2¢)ter, denoted by 73X, to be the completion of coo(T) with the norm

[[2[l7x = sup { ( Z H Z xt”x) - (s;)!_, are incomparable segments of T}

=1 teEs;

If T = N<N and the Schauder tree basis (7;);cy<n is as in Example 1, then we call
this space the Schauder tree space associated with X and we denote it by N3X.

We denote by (et)icr the standard Hamel basis of coo(T). We fix a bijection
h: T — N such that ¢; C to implies that h(t;) < h(t2), and we enumerate T
as (t,) using h. The sequence (e;,) is a normalized Schauder basis of T5X. We
notice the following important property. If (z,,) is block sequence in 75X and s is
a segment of T, then for every ny < mng, every t1 € supp(z,,) N s and every
to € supp(zn,) N s we have that ¢; C to.

For every o € [T] we set X, := span{e; : t C o}. Note that X, is isometric to X,
(thus, if we deal with N5X, the space X,, is isometric to X). Let P,: T;X — X,
be defined by P,(x) = Y, z(t)e; and observe that P, is a norm-one projection.
Also notice that if (z,,) is a block sequence in 73 such that o N supp(z,,) # () for
every n € N, then (P,(x,)) is also a block sequence in X, (this is a consequence
of the enumeration of T'). More generally, if A C T is segment complete, then it is
easy to see that the operator Pa: T;¥ — X4 defined by Pa(z) = Y,c 4 z(t)e; is a
norm-one projection onto the subspace X4 :=span{e; : t € A}.

Definition 4.2. Let Y be a closed infinite-dimensional subspace of T3~ .

(1) Y is said to be X-singular if for every o € [T] the operator P,: Y — X, is
strictly singular.
(2) Y is said to be X-compact if for every o € [T] the operator Py: Y — X,

18 compact.

Remark 3. It is well-known (see [LT]) that for every strictly singular opera-
tor T:Y — Z there exists an infinite-dimensional subspace W of Y such that
T|w: W — Z is compact. It is open if for every X-singular subspace Y of T5*
there exists an infinite-dimensional subspace W of Y which is X-compact.

4.2. General lemmas. In what follows let X be a Banach space, let A be a
countable set, let T be a pruned subtree of A<N and let (z;);er be a normalized
bimonotone Schauder tree basis of X. We start with the following lemma.
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Lemma 4.3. Let (x,) be a bounded block sequence in T;X. Also let € > 0 and
L € [N|*®. Then there exist finite A C [T] and M € [L]>* such that for every
o € [T|\ A we have limsup,, ¢,/ || Po(z,)|| < €.

Proof. Assume not. Then we may select, recursively, a decreasing sequence (L;) of
infinite subsets of L and a sequence (o;) in [T such that

(4.1) |25, (z0)] > % for every n € L; and every ¢ € N.

Set C' = sup{||zn| : » € N} < co. We select kg € N such that ky > 95%2. Since
O1,...,0k, are different elements of [T'], we may select ng € N such that the o;’s
restricted after the ng-level become pairwise incomparable.

Now let Iy € Ly, such that for every | > lp with [ € Ly, and every t € supp(x;)
we have that if ¢t € o; for some i € {1,...,ko}, then |t| > no; this is possible since
the sequence (x,,) is block. As the sequence (L;) is decreasing, we have that ly € L;
for every 1 < i < ko. Notice that, by (4.1), for every ¢ € {1,...,ko} there exists a
segment s; C o; such that || Y, . 21, (t)z| > §. By the choice of Iy, we see that
the s;’s can be selected to be pairwise incomparable. Hence,

ko 1/2 2
C > ||z, = (Z I leo(t)wtni) > \/ko% > C

=1 t€s;

a contradiction. The lemma is proved. ([
We will need the following slight variant of Lemma 4.3.

Lemma 4.4. Let (x,) be a bounded block sequence in T5X. Also let € > 0 and
L € [N]*°. Then there exist finite A C [T] and M € [L]>* such that for every
segment s of T with sN A =0 we have limsup,, ¢, || Ps(z,)| < €.

The proof of Lemma 4.4 is identical to that of Lemma 4.3 and so we omit it. We
proceed with the following lemma.

Lemma 4.5. Let (x,,) be a bounded block sequence in T5%. Also let € > 0 such that
for every o € [T] we have limsup ||Py(zy)|| < €. Then there exists L € [N]*® such
that for every o € [T] we have [{n € L : |Py(zy,)| > ¢} < 1.

Proof. Assume not. Then for every L € [N]* there exist (n1,n2) € [L]? and o € [T
with || Py (2y,)|| = € for i € {1,2}. By Ramsey’s theorem [R], there exists L € [N]*
such that for every (ni,n2) € [L]? there exists o € [T] with || P, (xp,)| > € for
i € {1,2}. Hence, by passing to a subsequence, we may assume that for every
n < k there exists o, & € [T] such that || Py, , (z,)|| > € and || P,, , (zx)| > €.

Let k € N be arbitrary. For every n < k set o, := min{|¢| : t € supp(zx) N on i}

and s, = {t € opr : 1 < [t| < o,}. Then s, is an initial segment of T
and s, r C 0y k. Also notice that supp(z,) Nopk C spk as the sequence (z,,) is
block. Hence, ||Ps, ,(z,)| > . Moreover, s, N (supp(zy) Nonk) = 0; actually,
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S,k 1s the maximal initial segment of o, ; which does not intersect supp(xy). Set
C = sup{||z,|| : n € N} < o0.

Claim. For every k > 2 we have |{s, 1 : n < k}| < [C?/e?].

Proof of the claim. Let {s1,...,s;} be an enumeration of the set {s,, : n < k};
thus, for every ¢ € {1,...,l} there exists n; < k such that s; = s,, 5. Set
sj == {t € on, & : |t| > on,}, and notice that s} is a final segment of T and, more-
over, oy, ;N supp(zx) C si. By our assumptions, this implies that || Py ()| >
Therefore, for every i € {1,...,1} we have || Ztes, x(t) z|| = e. Next notice that
since the segments (s;)!_; are mutually different, the segments (s})!_; are pairwise
incomparable. Indeed, for every i € {1,...,1} let ¢; be the C-least element of s}.
Observe that t; € supp(xy). Also notice that if ¢ # j, then neither ¢; C t; nor
t; C t; holds true. Suppose, on the contrary, that ¢; C ¢; (the argument is sym-
metric). Then ¢; € 0y, and so 0,; < [t;| < |t;| = 0n; which is a contradiction.
Finally, note that ¢; # t;. Indeed, if ¢t; = ¢;, then, by the definition of the segments
(s;)!_;, we would have that s; = s; and again we derive a contradiction. It follows
that the segments (s})!_, are pairwise incomparable and, consequently,

2 |lzk] = (Z | Zwk xtHQ)l/Q >eVl

=1 tes)

which yields the desired estimate. The proof of the claim is completed. O

Set M = [C?/e?]. By the above claim, for every n < k there exists a family
{sir i€ {l,...,M}} of initial segments of T such that for every n € {1,...,k—1}
there exists ¢ € {1,..., M} with HPS #(@n)|| = e. By passing to subsequences we
may assume that s;  — s; in 22 for every i € {1,..., M}. Notice that each s, if
nonempty, is an initial segment of T (but it might be finite, of course).

For every n € N and every ¢ € {1,..., M} let us say that a positive integer k
is i-good for n if k& > n and ||P,, , (zn)|| > €. Notice that for every n € N there
exists i € {1,..., M} such that the set H’ := {k : k > n and k is i-good for n} is
an infinite subset of N. Hence, there exists ig € {1,...,M} and L € [N]* such
that for every n € L the set H is infinite. It follows that for every n € L we
have || Py, ,(zn)l| > ¢ for infinitely many k. Since s;,x — s;,, this yields that
[ Ps;, (zn)|| > € for every n € L. Next recall that the sequence (z,) is block,
and that s;, is an initial segment of T. Therefore, we have s;, € [T]. But then
limsup || Py, (zn)[| = limsup,,cp, ||Ps,, (#5)|| > € which is a contradiction. O

Using Lemma 4.5, we obtain the following lemma.

Lemma 4.6. Let (x,,) be a bounded block sequence in T5%. Also let € > 0 such that
for every o € [T| we have limsup ||P,(z,)|| < €. Then for every L € [N]* there
exists a finite convex combination w of (xy)ner such that for every o € [T] we have

[1Po (w)]| < 22
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Proof. We Lemma 4.5 for the sequence (x,,)ner, and obtain M € [L]* such that for
every o € [T] we have |[{n € M : |Py(x,)|| = €}| < 1. Let {m; <mg < ---} be the
increasing enumeration of M. We set C' := sup{||z,| : n € N} < 0o and we select
ko € N such that (C+e(ko—1))/ko < 2e. We define w = k—lo(xml F Tyt Ty )-
Then for every o € [T] we have

Sy I1Po (@) _ O+ elho — 1)
ko = ko
as desired. (I

[1Po (w)]] < <2

We will also need the following two variants of Lemmas 4.5 and 4.6.

Lemma 4.7. Let (z,) be a bounded block sequence in T5~. Also let ¢ > 0 and
finite A C [T] such that for every s segment of T with sN A = 0 we have
limsup || Ps(zy)|| < e. Then there exists L € [N]*° such that for every s segment of
T with sNA =0 we have |{n € L : ||Ps(z,)| = e} < 1.

Proof. 1t is very similar to the proof of Lemma 4.5, and so we shall only indicate the
necessary changes. Again, arguing by contradiction and using Ramsey’s theorem,
we may assume that for every n < k there exist a segment s,, j, of T" which is disjoint
from A and is such that || P, , (z,)|, || Ps, . (zx)|| = €. Define the quantity o, as in
the proof of Lemma 4.5, and for every n < k let i, ; be the maximal segment of T’
which contains s, , N supp(z,) and does not intersect neither supp(zy) nor A. It
is easy to see that the estimate obtained in the claim in the proof of Lemma 4.5
is also valid for the family {4, : n < k}. Next observe that if (s,) is a sequence
of segments of T' each of which is disjoint from A, and s, — s in 2A<N, then s is
a segment of T which is also disjoint from A. Using this observation, the rest of
proof is identical to that in Lemma 4.5. ([l

Lemma 4.8. Let (x,), € and A be as in Lemma 4.7. Then for every L € [N]*®
there exists a finite convex combination w of (x,)ner such that for every s segment
of T with s N A = we have ||Ps(w)]| < 2e.

Proof. Tt is identical to the proof of Lemma 4.6, using Lemma 4.7 instead of
Lemma 4.5. O

4.3. Sequences satisfying an upper /; estimate. Our first goal is to prove the
following proposition.

Proposition 4.9. Let (x,,) be a bounded block sequence in T3X such that for every
o € [T] we have that lim || Py (x,,)|| = 0. Then there exists a block sequence (w.,)
of finite conver combinations of (x,) satisfying an upper {5 estimate. That is,
there exists C' > 0 such that for every k € N and every aq,...,ar € R we have

k k 1/2
|| ZnZI anwnH g C( ZnZI a%) .
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Proof. Recursively and using Lemma 4.6, we select a block sequence (w,,) of finite
convex combinations of (z,) such that for every n > 2 and every o € [T] we have

1 1
DTin [supp(wi)|/2 22
We will show that (w,,) is as desired. Set M = sup{||z,|| : » € N} < co and notice
that ||w,| < M for every n. Let k € N and ai,...,ax € R with E _,a?=1. We

will show that || Zi:l a;w; | < V2 . This will finish the proof.
Let (Sj)é‘:l be an arbitrary family of pairwise incomparable segments of T'. We

[[1Po (wn) || <

define a partition of {1,...,l} by setting

L, = {j6{1,...,[}:sjﬂsupp(w1)7é@}

I, = {je{l,...,l}\h:sjﬂsupp(wg)#@}
k—1

I, = {je{l,...,l}\(UIi):sjﬂsupp(wk);é@}.
i=1

Since the segments (sj)é»zl are pairwise incomparable, we see that
(4.2) |I;] < |supp(w;)| for every i e {1,...,k}.
Also we observe that for every 1 < m < i < k we have

(4.3) S 1P (wn) | = 0.

J€EL;
Let i € {1,...,k} and j € I;. We will estimate the quantity

(4.3)
||st(a1w1 + o agwy)|| = ”st(aiwi""""'anwn)”

n

< @l Pywil+ Y anllP (w)].
k=i+1

Since the Schauder tree basis (2¢)ier of X is bimonotone, by the choice of the

sequence (wy,), we see that for every k € {i +1,...,n} we have
1 1
P, {— —.
1P (o)l S i 2

Therefore,

| Py, (arwy + agwa + -+ 4+ aqwy)|| < agl|[Ps, (wy)|| +

|1/2 Z 22k

\Supp el

(4.2) 1 1
< ai”Ps (wz)H+ ‘I|1/2 22
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Notice that for every i € {1,...,k} we have 3., [|Ps;(wi)[|* < [Jwil|* < M? as
the segments (s;);cr, are pairwise incomparable. Hence,

1 142
2
S IP (wn + ot anwa)? < 3 (all Py )+ 1 )

Jjel; JEL
1 1
2 2
< BT
jel; JEL;
2052, 2
< 2alM + E.
By the above, we obtain that
k k kg
SN TP (arwr + -+ agwy)|? <Y 20202 +Z? <2M? 4+ 2.
i=1jel; i=1 i=1

The segments (s;);_, were arbitrary, and so || ¥ aiwi]|? < 2M2 + 2. The proof
is completed. ([l

By Proposition 4.9, we obtain the following criterion for checking that a block
sequence (x,,) is weakly null.

Proposition 4.10. Let (x,,) be a bounded block sequence in T5X. Assume that for
every o € [T] we have w — lim Py (x,) =0 in X,. Then (z,) is weakly null.

Proof. Assume not. Then there exist L € [N]*, ¢ > 0 and z* € (75X)* with
lz*]] = 1 such that z*(z,) > ¢ for every n € L. By repeated applications of
Lemma 4.3, we obtain a decreasing sequence (M},) of infinite subsets of L and an
increasing sequence (Ay) of finite subsets of [T] such that for every k € N we have
that limsup,,cp;, |[Pr(2n)|| < 7 for every o € [T]\ Aj. Thus, if M., denotes the
infinite diagonal set of (M}) and A = (J, oy Ak, then for every o € [T]\ A we have
limsup,,car_ [|Ps(2n)| = 0. Notice that A is countable. Moreover, observe that
for every convex block sequence (y,) of (2, )nen.. and every o € [T]\ A we also
have that lim sup || P, (y»)|| = 0. Since convex combinations of convex combinations
are convex combinations, using our assumption, a diagonal argument and Mazur’s
theorem, we obtain a convex block sequence (y,,) of (5 )nen., such that for every
o € [T] we have

(4.4) lim || P (yn )| = 0

and, moreover, £*(y,,) > ¢ for every n € N. The sequence (y,,) is bounded and block
and so, by (4.4), we may apply Proposition 4.9 and we obtain a further convex block
sequence (z,) of (y,) (and, consequently, of (z,)ner) which satisfies an upper /5
estimate. Since for the sequence (z,) we still have that z*(z,) > ¢ for every n € N,
this yields to a contradiction. [
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4.4. Subspaces of 7,;X. Our first goal in this subsection is to show that every
X-singular subspace of 75X does not contain ¢;. To this end we need the following
lemma.

Lemma 4.11. Let (x,,) be a normalized block sequence in T;X such that for every
o € [T, the sequence (P, (xy,)) is weak Cauchy saturated, that is, for every L € [N]*°
there exists M € [L]>° such that the sequence (Py(2y))nem s weakly Cauchy. Then
(zr,) has a weakly Cauchy subsequence.

Proof. Arguing as in the proof of Proposition 4.10, by repeated applications of
Lemma 4.3, we obtain M € [N]* and a countable subset A of [T] such that for
every o € [T]\ A we have lim, e || Py(z5)]| = 0. Using another diagonal argument
and our assumptions, we obtain N € [M]* such that for every o € A the sequence
(Py(zn))nen is weak Cauchy. Let {n; < ng < ---} be the increasing enumeration
of N, and set yi = Tp,, — Tn,,_, for every k € N. Then for every o € [T] the
sequence (P, (yg)) is weakly null. By Proposition 4.10, we obtain that the sequence
(yx) is also weakly null. Therefore, the (x,),ecn is weakly Cauchy, as desired. O

Theorem 4.12. Let Y be an X -singular subspace of T;X. Then'Y does not contain
a copy of £7.

Proof. Let (x,) be a normalized block sequence in Y. By our assumptions and
Rosenthal’s theorem, we see that for every o € [T] the sequence (P,(z,)) is weak
Cauchy saturated. Lemma 4.11 yields that (x,,) contains a weakly Cauchy subse-
quence. By Rosenthal’s theorem, we conclude that Y does not contain /. [

We proceed with the following theorem.

Theorem 4.13. Let X be a Banach space, A a countable set and (xi)icp<v a

normalized bimonotone Schauder tree basis of X. Then the space T3* contains co.

Proof. Let T be a downward closed, uniquely rooted, subtree of A<N such that every
node of T" has four immediate successors in T'. Therefore, for every n € N the n-level
of T has 4"~ ! nodes; let T}, denote the n-level of T, and set y,, = ZteTn 2,1%1 €.
The set T;, consists of pairwise incomparable nodes, and this is easily seen to imply
that ||y, || =1 for every n € N. It is also easy to see that (y,) is a basic sequence.

We will show that the subspace Y := Span{y, : n € N} contains a copy
of ¢y. By a result of Johnson (see, e.g., [D, page 245]), it is enough to show
that sup{|| > ;cp vl : 0 # F C N is finite} < oo. To this end, we start with the
following observation. Let s be a segment of A<N and set oy := min{[t| : t € s}.
Then for every nonempty finite /' C N we have

12wl < S 1Pl < 3 5y =45

1eF i=0g i=04

Now let (sj)é-zl be an arbitrary family of mutually incomparable segments. For
every j € {1,...,l} set o; := min{|t| : ¢ € s;}, and write all these (Oj)é‘:l in
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increasing order as 01 < -+ < 0y, (notice that m < 1). For every n € {1,...,m}
set I, .= {j € {1,...,1} : 0; = 0, }. The family (I,)", is a partition of {1,...,1}.
We claim that

1] | |I [Im| 1
4.5 Lkl coog b2
(45) 1o T go fom S

Indeed, notice that every node ¢ in 7, has precisely 4°~~°" successors in T, .

Since the family (sj)é»zl consists of pairwise incomparable segments, we see that
4om701|11‘ + 4om702|12‘ 4+ 4 407n707n71|]m_1| 4 |Im‘ < gom—1

which gives the desired estimate.
Thus, if F is a nonempty finite subset of N finite, then we have

l l "
(;“Psg-(;yi)\hyﬂ < 4(2 4;)1/2 :4(2 Ll{):‘)uz <

j=1 n=1
where the last inequality follows by (4.5). The proof is completed. (Il
Remark 4. It is easy to see that for every k € N and every aq,...,a;r € R we have

sup {la;| : i € {1,...,k}} < Zle aiyillx < 2sup {|a;| : i € {1,...,k}} where
(yn) is the sequence constructed in proof of Theorem 4.13. Thus, the sequence (y;,)
is actually 2-equivalent to the standard unit vector basis of cg.

We close this subsection with the following (essentially known) result concerning
the subspaces of T;% generated by well-founded trees (see, e.g., [Ar, Bo3, B1]).

Proposition 4.14. Let (24)en<v be a Schauder tree basis of X. Then for every
well-founded tree T with infinitely many nodes, the space Xr = Span{e; : t € T'} is
reflexive and {s-saturated.

Proof. Both properties are proved by induction on the order of the tree T. We
shall only sketch the argument that the space X7 is ¢y-saturated. So let T € WF
with o(T) = £. Assume that the result has been proved for every 7" € WF with
o(T") < & (If o(T) = 1, then the result is straightforward as in this case Xr
is isometric to ¢3.) For every n € N set T,, := {t : n~t € T} € Tr. Let Y be an
arbitrary subspace of Xp. Then, either for every n € N the operator Pr, : Y — X1,
is strictly singular, or there exist n € N and a subspace Y’ of Y such that the
operator Pr,: Y’ — Xr is an isomorphic embedding. In the first case, we see
that ¢ is contained in Y. In the second case, since o(T},,) < o(T), the inductive
assumption yields that ¢5 is contained in Y, as desired. ([l

We isolate, for future use, the following corollary of Proposition 4.14.

Corollary 4.15. Let Z be a separable Banach space with a Schauder basis (ey,).
Then for every countable ordinal £ there exists a reflexive and {5-saturated separable
Banach space X such that o(T(X, Z, (e,))) = €.



32 SPIROS A. ARGYROS AND PANDELIS DODOS

5. THIN SETS

The main notion in this section (and, actually, of the whole paper) is that of a
thin set. For every Schauder tree basis (x¢)ier we consider the set Wx defined in
Definition 5.3 below. Our goal is to show that the set Wx is thin on every X-singular
subspace of the £5 Baire sum 75X of (24)scr. The proof of this fact requires several
steps. The key ingredient is Proposition 5.10. Although the conclusion is similar
to the corresponding results in [AF], the proof requires a new approach which is
based on the definition of the norm of the ¢ Baire sum. Theorems 5.15 and 5.16
have a central role in establishing the properties of the amalgamations. As we have
mentioned in the introduction, the amalgamation spaces will be the interpolation
spaces A?}(7WX) or A](DX,WX)' The thinness of Wx will permit us to understand the
structure of the subspaces of the interpolation spaces by studying the geometric
relation between their natural image in 75X and W.

5.1. Definitions and preliminary results. First we recall some definitions.

Definition 5.1. Let X be a Banach space, let A, B C X and let € > 0.

(a) We say that A e-absorbs B if B C AMA+eBx for some X > 0.
(b) we say that A almost absorbs B if A e-absorbs B for every € > 0.

We proceed to introduce the following slight variant of the notion of a thin set
defined by Neidinger [N1].

Definition 5.2. Let X be a Banach space and let W be a closed, bounded, convex
and symmetric subset of X. Also let Y be a closed infinite-dimensional subspace
of X. We say that W is thin on Y if W does not almost absorb the ball Bz of
any infinite-dimensional subspace Z of Y, that is, for every subspace Z of Y there
exists € > 0 such that for every X > 0 we have By & A\W +eBy. The set W is said
to be thin if it is thin on X.

Definition 5.3. Let X be a Banach space, let A be a countable set, let T be a
pruned subtree of A<N and let (z¢)icr be a normalized bimonotone Schauder tree
basis of X. We set

WY = conv{ U BXU} and Wx ::m{ U BXU}.
o€[T] o€[T]

Notice that W is a closed, bounded, convex and symmetric subset of TyX.

Next we introduce the following definition.

Definition 5.4. We say that a sequence (z,,) in Ty~ is pointwise-null provided that
lime}(z,) =0 for every t € T.

Remark 5. Related to Definition 5.4 the following hold.

(a) Every block sequence in 75% is pointwise-null.
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(b) Every infinite-dimensional subspace Y of 75X contains a pointwise-null se-
quence.

(c) If (z,) is a pointwise-null sequence in 75", then for every e > 0 there exist
L € [N]*> and a block sequence (yn)ner such that >° /[, —ynl < e

Parts (a) and (b) are straightforward. Part (c) follows by a sliding-hump argument.
We also need the following weaker version of the notion of X-singularity.

Definition 5.5. A subspace Y of T;X is said to be weakly X-singular if for ev-
ery finite-codimensional subspace Z of Y and every finite A C [T] the operator
Py: Z — X4 is not an isomorphism.

Remark 6. The following hold.

(a) If Y is X-singular, then Y is weakly X-singular.

(b) If Y is weakly X-singular and Z is a finite-codimensional subspace of Y,
then Z is also weakly X-singular.

(c) For every finite A C [T] there exists a normalized, pointwise-null sequence
(yn) in Y such that lim || Py (y,)|| = 0 for every o € A. If, in addition, Y is
a block subspace, then the sequence (y,) can be selected to be block.

We have the following proposition.

Proposition 5.6. Let Y be a weakly X -singular subspace of T;X. Then for every
e > 0 there exists a normalized pointwise-null sequence (y,) in'Y such that for
every o € [T] we have limsup || Py (y,)|| < €.

Proof. We will give the proof under the additional assumption that Y is a block
subspace. The proof for the general case is identical and follows by part (c) of
Remark 5 and a standard sliding-hump argument.

So, let Y be a block weakly X-singular subspace of 75X and assume, towards a
contradiction, that there exists € > 0 such that for every normalized block sequence
(yn) in Y there exists o € [T] such that limsup || Py(yn)|| = €. We select kg € N
and r > 0 to be determined later. We start with a normalized block sequence (y.)
in Y. Our assumption yields that there exists (at least one) oy € [T] such that
limsup || P, (y})|| = e. Hence, there exists L; € [N]* such that ||P,, (y.)| = /2
for every n € L;. Next, we apply Lemma 4.4 and we obtain M; € [L;]* and
finite Ay C [T] such that for every segment s of T with s N A; = () we have
limsup,,cps, [|Ps(yn)|| < 7. By Lemma 4.7, there exists Ny € [M;]> such that for
every segment s of T with s N A; = () we have [{n € Ny : |Ps(yl)| = r}| < 1.
Summing up, we obtain o7 € [T, finite A; C [T] and Ny € [N]* such that

(P1) || P, (yL)]| = &/2 for every n € Ny, and
(P2) [{n € Ny : | Ps(yl)|| = r}| < 1 for every segment s of T with s N A; = (.
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Since Y is weakly X-singular, by part (¢) of Remark 6, we select a normalized block
sequence (y2) in Y such that for every o € A; U {0} we have

(5.1) lim || P (y;)|| = 0.

As before, we select o3 € [T] and Ly € [N]* such that ||P,(y2)| > § for every
n € Ly. Notice that, by (5.1), we have that o2 ¢ (A3 U{0o1}). Next, we select finite
Ay C [T] and Ny € [L2]™ such that for every segment s of T with s N Az = ) we
have [{n € Na : ||Ps(y2)|| = r}| < 1. Once again, we remark that, by (5.1), the set
As can be selected so that Ay N (41 U{o1}) = 0. We proceed inductively up to k.

For every i € {1,...,ko} we enumerate the sequence (¥ )nen, as (2%), and we
set G; = A; U {o;}. By the above selection, the sets G1,...,Gj, are finite and
mutually disjoint. Therefore, there exists [ € N such that if we restrict every
o € G1 U--- UGy, after the lp-level of T, then these final segments of 1" are
mutually incomparable. Also set T; == {t : Jo € G; with ¢t C o and [t| = Iy} and
notice that, by the choice of ly, for every i,5 € {1,...,ko} with i # j and every
t1 € T; and ty € T; the nodes t; and ¢y are incomparable.

7
n

n € N and every i € {1,...,ko} we have that

As the sequences (z%) (1 < i < ko) are block, we may assume that for every

(5.2) if ¢ € supp(z,,) N o for some o € G;, then |t| > lo.

For every i € {1,...,ko} we set s; := {t € oy : |t| = lo}, that is, s; is the final
segment of T obtained by restricting o; after the lyp-level of T. By (5.2) and (P1),
we see that

(5.3) | Ps, (1) = % for every n € N and every i € {1,...,ko}.

Also notice that the segments (si)fil are mutually incomparable.

We set wy, == 2L + -+ + 2%, Then we have

ko _ 1/2
(5.4) lwall = (D IPGIZ) > 5o,
=1

i

) if necessary, we may

Moreover, by passing to a common subsequence of each (z
w

assume that the sequence (w,,) is block. Finally, we define y,, = oo for every
n € N. Clearly, (y,) is a normalized block sequence in Y. We will show that for
appropriate choices of ky and r we have that limsup || Py (y,)|| < § for every o € [T7.
This, clearly, leads to a contradiction.

To this end, let ¢ € [T] be arbitrary. Notice that there exists at most one
j € {1,...,ko} with the following property. There exists ¢ € T; with ¢t T o.
For this j we have the trivial estimate ||P,(z%)|| < 1 for every n € N. Next, fix
i€{l,...,ko} with i # j. Then for every t € T; the node ¢ is not an initial segment
of 0. We set s' .= {t:t C o and t ¢ o’ for every o’ € G;}, that is, s* is the unique
maximal final segment of o which is disjoint from each G;. Note that, by the choice

of Iy, we have min{|¢| : ¢ € s} < Iy and so, by (5.2), we have || P, (2%)]| = || Pi (25|
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for every n € N. On the other hand, the definition of s’ yields that s N A; = () and
so, by (P2), there exists n; € N (clearly depending on o) such that ||P,i(z%)| < r
for every n > n;. Setting n, = max {n; : i € {1,...,ko} with i # j}, we see that
| Py(28)|| < r for every n > n, and every i € {1,...,ko} with i # j. If follows that
for every n > n, we have

(5:5) 1P (wn) | = |1 Po (2 + -+ 232) | < 1+ (ko — D
Combining inequalities (5.4) and (5.5), we obtain that

)H 1+(k‘0—1)r
X E\/R

1Pl = 1B (7t

for every n > n,. Hence, for every o € [T] we have
1+ (/{?0 — 1)’1"
[SRVA ko '

Thus, it ko > 3¢ and r < 2(k —y, then we have limsup || Py (yn)|| < § for every

lim sup || P, (g | < 2

o € [T] which is a contradiction. O

Lemma 5.7. Let (x,,) be a bounded block sequence in T;X and let (£,,) be a sequence
of positive real numbers with lime,, = 0. Assume that for every n € N and every
o € [T] we have ||Py(xy)| < €n. Then (x,) has a subsequence satisfying an upper
{5 estimate.

Proof. Since lime,, = 0, recursively we select a subsequence (wy,) of (x,) such that
1 1

for every n > 2 and every o € [T] we have || P, (wy,)| < ST upn(a)] 2 The

rest of the proof is identical to that of Proposition 4.9. (]

We introduce the following definition.

Definition 5.8. Let Z be a subspace of T;X. We say that Z satisfies property (x) if
there exist € > 0 and 6 > 0 such that for every normalized pointwise-null sequence
(zn) in Z with

limsup || Py (2z,)| < 6
for every o € [T, there exists L € [N]* such that the sequence (zy)ner Ssatisfies
an e-lower Uy estimate, that is, if {ly < ls < ---} denotes the increasing enumer-
ation of the set L, then for every k € N and every ay,...,ar € R we have that

k 1 /2
6(21 1@ ) <l Zz 1 @iz |-
The importance of property (x) is illustrated in the following proposition.

Proposition 5.9. Let Y be a weakly X -singular subspace of T3~ which satisfies
property (). Then there exists a normalized pointwise-null sequence (y,) in'Y with
the following properties.

(i) For every o € [T] we have lim || P, (y,)| = 0.

(ii) The sequence (yn) is equivalent to the standard unit vector basis of {s.
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Proof. As in Proposition 5.6, we will present the proof for block subspaces; the
general case follows by identical arguments. So, let Y be a block weakly X-singular
subspace of 73X . First we remark that if Z is a block, finite-codimensional subspace
of Y, then Z is also weakly X-singular and satisfies property (*) with the same
constants € and §. We continue with the following claim.

Claim. For every block, finite-codimensional subspace Z of Y and every r > 0
there exists z € Z with ||z|| = 1 such that | Py(2)|| < for every o € [T].

Proof of the claim. Let v’ > 0 with v/ < min{r,0} whose exact value will be de-
termined later. Since Z is weakly X-singular, by Proposition 5.6, there exists a
normalized block sequence (w,,) in Z such that for every o € [T] we have

(5.6) lim sup || Py (wy,)]| < 7'
By Lemma 4.5, there exists L € [N]* such that
(5.7) {n € L:||Po(wa)] =7} <1

for every o € [T]. In particular, by (5.6) and the choice of r/, for every o € [T'] we
have limsup,,¢;, | Py (wy)|| < limsup || Py (wy)|| < 7" < §. Applying property (*) for
the sequence (wy, )ner, we select M € [L]*° such that the sequence (wy,)nens satisfies
an e-lower {o estimate. Let {m; < mg < ---} be the increasing enumeration of M.

Let k € N be arbitrary. Since (wy,)nenm satisfies an e-lower /5 estimate, we see
that || Zle Wy, || = eVk. Next, let o € [T] be arbitrary. By (5.7), we have that
||PU(Ef:1 Wy, )|| <1+ 7'(k —1). Hence, setting

wm1+...+wmk

Zk = s
mel +ooe Tt wmk”
we conclude that ||zx]| = 1 and ||Py(2k)] < %\/’%—1) for every k € N and every

o € [T]. Thus, if ko and 1’ satisfy ko > =tz and ' < ﬁ, then the vector zy, is
as desired. The claim is proved. ([l

By the above claim, there exists a normalized block sequence (y,,) in Y such that

for every n € N and every o € [T] we have ||P,(y,)|| < 2. By Lemma 5.7, there
exists L € [N]* such that the sequence (y,)ner satisfies an upper fo estimate.
Invoking property (%) once again, we select M € [L]* such that the sequence

(yn)nenr satisfies a lower ¢y estimate. The sequence (yp)near is as desired. O

5.2. Finding incomparable sets of nodes. For every finitely supported vector
z of 77X we denote by range(z) the minimal interval of N that contains supp(z). It
is an immediate consequence of the enumeration of the basis of 75X that range(z),
considered as a subset of T', is segment complete. (Recall that we enumerate T using
a fixed bijection h: T — N which satisfies that h(t1) < h(t2) for every t1,t2 € T
with ¢; C t2.) Our next goal is to prove the following proposition.
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Proposition 5.10. Let (z,) be a normalized block sequence in Ty~ and let A > 0
such that

{20 :n €N} C AWy + — Box.

200 '2

Also let r < 03 Y and assume that

10
limsup || Py (2z,)|| < r

for every o € [T]. Then there exist L € [N]* and for every n € L a segment

complete subset A, of T such that the following are satisfied.

(I) For every n € L we have A,, C range(zy).
(1) If n,m € L with n # m, then A, is incomparable with A,,
(IIT) For every n € L we have ||Pa, (z,)| = 2/3.

Proof. Let n € N. By our assumptions, there exist w, € W% and z, € T;X
such that ||z,] < 1/100 and z, = Aw, + x,. Hence, ||z, — Aw,| < 1/100. Set
R, = range(z,), and notice that we may assume that supp(w,) C R, for every
n € N. Indeed, since R,, is segment complete, Pr,_ is a norm-one projection, and
so Pr,(Wx) € Wx and Pg, (Brx) € Byx for every n € N. Thus, in what follows,
we will assume that supp(w,) C R,; this implies, in particular, that the sequence
(wy,) is block.

For every n € N let {s1,,...,84, n} be a collection of pairwise incomparable
segments of T" such that s; , C range(w,) C R,, and

n 1/2
Il = (D2 1Py, wn)?)
=1

Since ||z,]| = 1 and ||z, — Awy,|| < 1/100, we have 99/100 < ||Aw,| < 101/100.
Next, set 6 := 82/(1002)?) and notice that A\v/0 = 8/100. We define

Gn={ic{l,....dp}: P, (w)] =6}

Claim 1. For every n € N the following hold.
(a) We have |G,| < 4/(N\26?).
(b) We have (YXicq, 1P, (2n)]%)

Proof of the claim. (a) Notice that

2> | > (3 1P, e ) 2 A( 30 62) = 20

25 9/10.

i€Gy i€Gy,
which implies that |G,,| < 4/(A\26?).
(b) Since w, € W%, we have that w,, = Zf L ajal where Ej 1af =14} >0
and z} € By, , for some o7 € [T]. Foreveryi € {1,...,d,} set i n = || P, , (wn)||

We claim that 2?21 Bin < 1. Indeed, for every i € {1,...,d,} set

Hi={je{l,....kn} :supp(z}) Nsip # 0}
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Since supp(x7}) is a chain and the family {s1,...,84,n} consists of pairwise in-
comparable segments, we see that H;, N H;, = 0 if 41 # i5. Moreover,

= 1P, (wa)] = ||, ,L(Za I=1P. (X @)l < X o

JEH; JEH;
and so
dp dn kn
E 67, n < § a;'l < g G,;L =1
i=1 i=1 j€H,; j=1

which yields the desired estimate. By the definition of G,,, we see that if i ¢ G,,
then B3; , < 0. By the choice of 0, it follows that

(3 1n0m)”™ = 252 )" A5 50)

igGn i¢€Gy i¢Gyp
1/2 8
= W Bin <MW0=—.
(Z&ZGn ) 100

Also notice that

99 1/2
el = (3 1P, Qw4 3 1P, ) )
i€Ghn, igéGn
< (Z Hpsln (Awy) || ) (Z Hps“l (Awy) || )
i€Gp i¢G,

Therefore, (Y cq. ||Psm()\wn)||2)1/2 > 91/100. Finally, observe that

91 1/2
TAn < S; )\ n )
o (;G 1P, )|
1/2 1/2
< (P ll?) T (X 1P, O = 20 2)
1€Gy i€Gy
1/2
< (P EIP) T+l = Al
i€Gp
< Py, (2n )
(ZH ion () 100
i€Gp
which yields the desired estimate. The claim is proved. O

By part (a) of Claim 1, the choice of # and by passing to a subsequence of (z,) if
necessary, we may assume that |G, | = k for every n € N where k < (+43%- 100° ) A2, For
every n € N we re-enumerate the family {s; , : ¢ € G, } of incomparable segments
of T as {S1.ny-+, Sk}

Claim 2. Leti € {1,...,k} and let M; € [N]*°. Then there exists N; € [M;]*° and
for every n € N; disjoint segments g; n, and b; ,, such that the following are satisfied.
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(i) For every n € N; we have $; , = Gin U b (that is, the segments g; n and
b; n form a partition of s; ) and, moreover, if t € by, and t’ € g, n, then
we have t C t'.
(ii) For every n € Ny we have || Py, , (zn)|| <.
(ii) For every n,m € N; with n # m, if g;n and g;,m are nonempty, then g;

is incomparable with g; m,.

Proof of the claim. For every n € M; let t, denote the C-minimum of s;,. By
Ramsey’s theorem, there exists I € [M;]*> such that either the sequence (¢, )ner
consists of pairwise incomparable nodes, or the nodes (t,)ncr are mutually com-
parable. In the first case, we set N; = I, and ¢;, = S;n and b;, = 0 for
every n € N;. So, assume that the nodes (¢,)ner are pairwise comparable. Since
tn € sin C range(w,) C range(z,) and the sequence (z,) is block, we see that if
n,m € I with n < m, then t,, C t,,. Set 0y == J,c;{t € T :tC t,} € [T]. By our
assumptions for the sequence (z,), we have

limsup || Py, (2n)|| < limsup || Py, (z5)]] < 7.
nel

Hence, there exists N; € [I]* such that || Py, (z,)|| < r for every n € N;. For every
n € N; set by = 8;n No; and gin = Sipn \ bin. Since s;, is a segment and o; is
a branch, we see that both b; ,, and g; , are segments; consequently, part (i) of the
claim is satisfied. The Schauder tree basis (x¢)ier of X is bimonotone, and so for
every n € N; we have || Py, (2n)| < ||Ps,(2n)|| < 7; that is, part (ii) is satisfied. We
will verify part (iii). To this end let n,m € N; with n < m and assume, towards
a contradiction, that g¢;, and g;,, are nonempty and comparable. The sequence
(z) is block and n < m. Therefore, there exists ¢ € g; ,, with ¢ T ¢,,,. (Recall that
tm is the C-minimum node of s;,,.) It follows that ¢ T o; which contradicts the
definition of g; . The claim is proved. ([l

Applying Claim 2 recursively for every i € {i,...,k}, we obtain N € [N]>* and
for every n € N and every i € {1,...,k} disjoint segments g; , and b;,, such that
the following are satisfied.
(P1) For every n € N and every i € {1,...,k} we have s;,, = ¢in Ub;,, (that
is, the segments g; ,, and b; ,, form a partition of s;,,), and if ¢ € b; ,, and
t' € g;p, then t T t'.

(P2) For every n € N and every i € {1,...,k} we have || P, , (z,)|| <.

(P3) For every i € {1,...,k} and every n,m € N with n # m if g;,, and g;m
are nonempty, then g; ,, is incomparable with g; p,.

For every ¢,5 € {1,...,k} we set

Ci; = {(n,m) € [N]*: g; » and g;,,», are nonempty and comparable}.

B = [N]2\ ( U oi,j).

i,5€{1,....k}

and
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By Ramsey’s theorem, there exists L € [N]°® which is monochromatic. We claim

that [L]? C B. Assume not. Then there exist 4,5 € {1,...,k} such that [L]? C C; ;
Let {I; <ls <l3 < ---} denote the increasing enumeration of L. Notice that both
gi,1, and g; 1, are comparable with g;;,. Let t1,f2 and ¢3 be the C-minimum nodes
of gi,, gi1, and g, ;, respectively. Since i1 <l < I3 and the sequence (z,) is block,
we see that t; C t3 and to C t3. But then t; must be comparable with to, which
implies that g¢;;, is comparable with g;;,. This contradicts property (P3), since
l1,l5 € L and L € [N]*°. Therefore, [L]*> C B.

For every n € L we set A, == U;cqy, g 9im- The fact that [L]?> C B implies
that if n,m € L with n # m, then A, is incomparable with A,,. Also notice that
for every n € L we have A, C Uie{l,...,k} Si.n C range(wy,) C range(z,). It remains
to estimate the quantity || Pa, (zn)]|| for every n € L. Fix n € L. By our hypotheses
on r and the estimate on k, we have

vk < (1003 A> (2-1222.A) S ;6'

By property (P1), we have || P, , (zn)| < ||Py, .. (2n)|l + [Py, ., (2n)||. Therefore, by
property (P2), we obtain that

S 1P D) < (1P l?) o (P )
=1 =1 =1

< (S ) v

=1

k
/
(1 l?) ™ + 5

By part (b) of Claim 1, we conclude that

|Pa, ( (ZIIszn II) (Z”PMZ” ”) T 10

9 1.2
10 107~ 3
and the proof is completed. ([l

5.3. Singularity and thinness. We start with the following lemma.
Lemma 5.11. Let Z be a subspace of T;X and let A > 0 such that
1
By C A 5o Brx
z Wx + 200
1

Then Z satisfies property (x) for § = y and € = 3.

1003

Proof. As in Proposition 5.6, we will give the proof under the assumption that Z is
a block subspace, and we will work with block sequences instead of pointwise-null
sequences; the general case follows using identical arguments. By Definition 5.8,
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in order to verify that Z has property (x) for § = 1505 and £ = 3, let (2,) be a
normalized block sequence in Z such that for every o € [T] we have

1
1003 - X

By our assumptions on Z, we may apply Proposition 5.10 for the sequence (z,,) and

limsup || Py (2)]] <

r= and we obtain L € [N]* and for every n € L a segment complete set A,

1
003X
such that the following are satisfied.
(I) For every n € L we have A,, C range(zy,).
(I1) If n,m € L with n # m, then A,, is incomparable with A,,.
(III) For every m € L we have ||Pa, (z,)| > 2/3.

We select a sequence (2),ez in (755)* with the following properties.

(a) For every n € L we have ||z}| <1 and z}(z,) > 1/2.

(b) For every n € L we have that supp(z}) C A,
Let {l; < la < ---} be the increasing enumeration of L, and observe that the
following hold.

(i) For every k € N, if aq,...,a; € R with Zle a? = 1, then the functional
Zle a;z}, has norm at most one.
(ii) By (I) and (b), for every i,n € L with i # n we have z;(z;) = 0.
Using (i) and (ii), it is easy to verify that the sequence (z,)ncr satisfies an 3-lower
{5 estimate. The proof is completed. O

Lemma 5.12. Let Z be a weakly X -singular subspace of T5~. Assume that Wx
almost absorbs Bz. Then there exist a sequence (zp) in Z, a sequence (A,) of

subsets of T and a sequence (z) in (T3X)* such that the following are satisfied.

(1) (zn) is normalized, pointwise-null and equivalent to the ly basis.

(2) For every n € N we have that A,, is segment complete, and if n # m, then
A, is incomparable with A,,. Moreover, if n < m, then h(A,) < h(A)
where h: T — N is the fized enumeration of T.

(3) For everyn € N we have supp(z) C Ay, ||25|| <1 and 25 (z,) > 1/2.

Proof. Again, we will assume that Z is a block subspace and we will work with
block sequences. Since Wx almost absorbs Bz, there exists A > 0 such that
B; C \MWx + Q%)OBTZX. By Lemma 5.11, we see that Z has property (x) for

_ 1 1
0 = To05x 2
block sequence (z,) in Z such that the following are satisfied.

and € = =. By Proposition 5.9 (and its proof), there exists a normalized

(I) There exists C' > 0 such that for every k € N and a4, ...,a; € R we have

k

1

S(2a) P < Y| < o(Xar)
=1

i=1 i=1

(IT) For every o € [T] we have lim || P, (2y)| = 0.
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Using (IT), the fact that By C A\Wx + ﬁB,TZX and arguing as in the proof of
Lemma 5.11 for the sequence (z,), we obtain L € [N]*° and for every n € L a
segment complete set A, C range(z,,) and 2} € (73X)* such that (2) and (3) in the
statement of the lemma are satisfied. The proof is completed. O

Proposition 5.13. Let Z be a weakly X -singular subspace of T5<. Then the set

Wx does not almost absorb By .

Proof. As in the previous two lemmas, we will assume that Z is a block subspace.
Assume, towards a contradiction, that Wx almost absorbs Bz. Since Z is weakly
X-singular, we obtain sequences (z,), (4,) and (z;) as described in Lemma 5.12.
We set © := span{z, : n € N} and we define P: T;¥ — Qby P(z) =3, . Z?((ZZ)) Zn-

Using the fact that the sequence (z,) is equivalent to the f5 basis and that the

vectors (z;) are supported in incomparable sets of nodes, we see that P is a bounded
projection. We set C' := || P|| < co. (Actually, it is easy to see that C < 2.)

Claim. We have P(Wx) C conv{+2z, : n € N}.

Proof of the claim. Let w € WY be arbitrary. Then w is of the form w = 22:1 a;T;
where Ziﬁ:l a; = 1 with a; > 0 and z; € By, for some o; € [T]. For every
i € {1,...,1} let s; be the unique minimal segment of T that contains supp(x;).
For every n € N we set F,, = {z e{l,..,l} :;,NA, # (Z)}. The sets (A,) are
pairwise incomparable, and so F,, N F,, = () if n # m. Moreover,

zh(w) = zfl( Z aixi) = Z a;zn () < Z a;.

ek, i€ Fy, i€Fy

Thus, setting 0, = 228 e see that > nen |0n] < 2. By the definition of P, this

yields that P(W$) Qn((:(;zv{:thn :n € N} and the proof is completed. O

Since 2 is a subspace of Z and Wx almost absorbs B, we see that Wx must
also almost absorb Bg. Thus, there exists » > 0 such that B C rWx + %Bsz.
Consequently, we have Bg C rP(Wx )+ %BQ, since P is a projection with || P|| = C.
By standard arguments (see, e.g., [AF, Lemma 4.8]), we obtain that Bg C 2rP(Wx)
and so, by the previous claim, we conclude that

(5.8) Bq C 2rconv{+2z, : n € N}.
This is a contradiction, since (5.8) implies that the ¢ norm is equivalent to the
¢4 norm. The proof is completed. ([l

The following proposition is the analogue of Proposition 5.13 for sequences.

Proposition 5.14. Let (vy,) be a bounded block sequence in TyX and let & > 0 such
that the following hold.
(I) For every k € N we have ||vg] > €.
(IT) For every o € [T] we have lim || P, (vg)|| = 0.
(III) The set Wx almost absorbs the set {vj : k € N}.
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Then there exists L € [N]*° and for every k € L a segment complete subset Ay, of T
and a vector zj € (T3X)* such that the following hold.

(a) The sets (Ag)ker are pairwise incomparable.

(b) For every k € L we have ||z}|| <1 and supp(z;) C Ay C range(vg).

(c) For every k € L we have z;(vy) > 5.
Proof. We set C = sup{||v|| : ¥ € N} < oo and z, = ooy for every k € N.
Then (z;) is a normalized block sequence and, moreover, lim ||P,(zx)|| = 0 for
every o € [T]. The set Wx almost absorbs the set {vy : k € N}, and so there exists
A" > 0 such that {vy : k € N} C N'Wx + 55;Brx. Set A := X' /e and notice that

Vk )\/
2= —— €
okl [l
for every k € N. By Proposition 5.10 applied for (z) and r = ﬁ, we obtain
L € [N]* and for every k € L a segment complete subset A; of T such that the

Wx + TX C \MWx + Bsz

€ 1
200||kaB 200

following are satisfied.

(I) For every k € L we have Ay, C range(zy).
(I1) If n,m € L with n # m, then A,, is incomparable with A,,.
(IIT) For every k € L we have ||Pa, (z1)| = 2/3.

Next, as in the proof of Lemma 5.11, we select a sequence (z})rer in (75%)* such
that the following are satisfied.

(a) For every k € L we have ||z;| < 1 and supp(z}) C Ax C range(vg).

(b) For every k € L we have z}(z;) > 3 and, consequently, z;(v;) > H'U;” >

mi

The proof is completed.
We are ready to state the main results in this subsection.
Theorem 5.15. Let Y be an X -singular subspace of T;X. Then Wy is thin on Y.

Proof. Assume, towards a contradiction, that Wy is not thin on Y. Thus, there
exists a subspace Z of Y such that Wx almost absorbs By. Clearly Z is X-singular
and so, by part (a) of Remark 6, Z is weakly X-singular. By Proposition 5.13, we
derive a contradiction. |

We also need the following slightly stronger version of Theorem 5.15.

Theorem 5.16. Let Y be a subspace of T;X. If Wx almost absorbs By, then
there exists finite A C [T such that the operator Py: Y — X4 is an isomorphic
embedding.

Proof. Assume not, that is, for every finite A C [T] the operator P4: Y — X4 is
not an isomorphic embedding. According to our terminology, this is equivalent to
saying that Y is weakly X-singular. By Proposition 5.13, we see that Wx does not
almost absorb By and we derive a contradiction. O
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6. HI SCHAUDER SUMS

In Sections 6 and 7 we present, briefly, the definition and the main properties
of HI interpolations. Our definition is similar to the one introduced in [AF]. In
the present setting the interpolation space has a Schauder basis under some mild
assumptions on the set W. Furthermore, the HI Schauder sums are defined with the
use of the (Ap,, =

E)—saturation families. We note that the reader who is interested
exclusively in p-amalgamations can skip Sections 6 and 7, and proceed directly to

Section 8.

6.1. We start by introducing some pieces of notation.

Notation. We define j,7: N x N — N by setting j((n,k)) = n and 7 ((n, k)) = k.
Moreover, for every z € coo(N x N) by range(z) we denote the rectangle I x J with
I, J intervals of N, and which is the minimal rectangle of this form that contains
the support supp(x) of the vector x.

Notation. Let A,B C N x N. We write A <, B provided that 7(A4) < w(B)
(that is, max{k : k € w(A)} < min{k : 7(B)}); respectively, we write A <; B if
J(A) < j(B). Finally, we write A <(; ) Bif A <; B and A <, B.

More generally, given z, y € coo(NxN) we write z <; y (respectively, z <. y and
T <(jr) ) provided that supp(z) <; supp(y) (respectively, supp(x) <, supp(y)
and supp(z) <(j x) supp(y)).

Definition 6.1. We say that a sequence (x,,) in coo(NxN) is j-block (respectively,
w-block) if x, < Tpt1 (respectively, x, < Tpy1) for every n € N. We say that
(w,,) is diagonally block if z,, <(jx) Tni1 for every n € N.

Definition 6.2. Let (X,) be a sequence of separable Banach spaces. An HI
Schauder sum of (X,) is a Banach space X = (3, ey DXn)ni with the following
properties.

(i) The sequence (X,,) defines a Schauder decomposition of X (that is, every
x € X has a unique representation of the form x = %" x, with x,, € X,
for every n € N).

(ii) Every subspace Y of X either contains a HI subspace, or there exists n € N
such that the natural projection j,: Y — X, is not strictly singular.

Remark 7. In [AF], it was shown that for every sequence (X,,) of separable Banach
spaces there exists a HI Schauder sum of (X,). The purpose of this section is to
provide a variant of the construction presented in [AF] in the special case where
each X,, has a bimonotone Schauder basis (zni)ren. This variant satisfies the
additional property that the HI Schauder sum X admits an alternative Schauder
decomposition X = (3, .y ©Zk)4 where Z = span{z,  : n € N} for every k € N.
This property (together with some additional hypotheses) will be used that the
interpolation space Ax has a Schauder basis.
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Definition 6.3. Let X be a Banach space with a bimonotone basis (x,). We define
the subset Gx of coo(N) by the rule

n n
Gx = {Zaixf :neN, ay,...,a, € Q and HZ‘WU:H < 1}.
i=1

i=1
Observe that the following hold.

(i) The Banach space X is isometric (in the natural way) with the completion
of coo(N) with the norm || - ||, where, as usual, for every = € coo(N) we
set ||z]lgy = sup{o(z) : ¢ € Gx}.

(ii) The set Gx is countable, symmetric, closed in the restrictions on intervals
(since the basis () is bimonotone) and contains the sequence (z7).

Definition 6.4. Let (X,) be a sequence of Banach spaces each of which has a
bimonotone Schauder basis (. i)ken. For every n € N we denote by G,, the set
Gx, described in Definition 6.3, and we view Gy, as a subset of coo({n} x N) in
the natural way. In particular, |, G, is a (well-defined) subset of coo(N x N).

6.2. For the rest of this section let (X,,) denote a sequence of Banach spaces each of
which has a bimonotone Schauder basis (5 k) ken, and let G, denote the subsets of
coo(N x N) described in Definition 6.4. We fix two sequence (m;) and (n;) defined

St where

recursively by setting m; = 2,mj41 = ml5, and ny = 4, nyy1 = (5ny)
s; = logg mi+1. We define the set G to be the minimal subset of ¢oo(N x N) with

the following properties.

(I) We have |J,, G,, € G; moreover, G is closed under the projection on rect-
angles of the form I x J where I, J are intervals of N (that is, if f € G and
I, J are intervals of N, then (I X J) - f:==174;5- f € G).
(II) For every | € N the set G is closed in the (A,,,, mim)—operation on j-block
sequences; that is, if f1 <; - -+ <j fn,,, then mim Yot fi€G.
(III) For every | € N the set G is closed in the (A

(ng;—1)-special sequences.

1 .
nol_1 m)—operamon on

(IV) The set G is rationally convex.

Of course, we need to determine the (ng_1)-special sequences; they are defined
using a coding function o. Before we proceed to the details, we introduce some
terminology. For every [ € Nif f € GG is the result of the (Am, L

m)—operation, then
we denote the positive integer m; by w(f) and we call it the weight w(f) of f. Note

that w(f) is not uniquely defined.

6.3. The coding function o. First we consider a set S of finite sequences in
coo(N x N) defined by the rule

S = {(¢1,...,¢d) D1 =5 =y ¢q, and ¢;(n, k) € Q for every (n,k) e Nx N
and everyie{l,...,d}}.
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We fix a pair 1, (5 of disjoint infinite subsets of N. Since § is countable, we may
also fix an injection o: & — {21 : 1 € Q2} such that
1 .
Mo (py,....q) > max{m : (n,k) € supp(¢;) and ¢ € {1, ... 7d}} X
x max{k : (n,k) € supp(¢q)}.

nai—1

We say that a finite sequence (f;);2 " is (ng;—1)-special provided that
(a) (f1,---sfny_,) €S and f; € G for every i € {1,...,n9,_1}, and
(b) w(fl) = mg with k£ € Qq, m;£2 > ng_1, and w(fz) = Mo(f1,...,fi—1) for
every i € {2,...,n9-1}.

Remark 8. As we have already pointed out, the weight w(f) of a functional f is
not unique. However, if (f1,..., fn,,_,) 1S a (ng;_1)-special sequence, then for every
i€{2,...,ny_1} weset w(fi) = Mo(s,. 51

6.4. We define 1
Xg = T[(Gn), (An,, E), 0}

to be the completion of coo(N x N) with the norm || - ||¢ where G is the set defined
in Subsection 6.2.

Remark 9. The following hold.
(1) For every n € N the space X, is isometric to span{x, ; : k € N} — Xg .
(2) For every pair I, J of (finite or infinite) intervals of N the projection

Pryj:Xg = Xixg =5pan{z,:n el ke J}

has norm one. Consequently, the following are satisfied.
(a) The sequence (X,,) defines a Schauder decomposition of X.
(b) Setting Zy, = span{z,x : n € N} for every k € N, the sequence (Zy)
also defines a Schauder decomposition of X.
(3) Every j-block, and every m-block, sequence is a bimonotone basic sequence.
In particular, every diagonally block sequence is bimonotone basic sequence.

6.5. We proceed to present the basic ingredients which are needed for the proof of
the fact that certain block sequences in X generate HI spaces. We start with the
following definition.

Definition 6.5. Let x € coo(N x N) and C > 1. We say that z is a C — (), average
if there exists a j-block sequence x1 <j -+ < x) such that x = %(ml + o+ ag),
lz:illc < C for everyi € {1,...,k}, and ||z|c = 1.

We have the following lemma; see, e.g., [ATo, Lemma 2.22] or [AM, Lemma 4.6]
for a proof.

Lemma 6.6. For every j-block sequence (y,,) and every k € N there exists a 2 — (),
average in span{y, : n € N}.
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The following result has its roots in Schlumprecht’s paper [Schl].

Lemma 6.7. Let (z,) be a j-block sequence such that each x4 is a C’—E,lcq average,
where C > 1 and the sequence (k) is increasing to infinity. Then for every l € N
there exists q1 < -+ < qn,, such that

3

1
||@(xq1 + .- +an2z>” < le.

The proof of Lemma 6.7 (which is based on the concept of an R.I.S. sequence
and the basic inequality) is identical to the proof of [ATo, Subsection 2.2].

Definition 6.8 (exact pair). Let x € coo(N x N) and let ¢ € G. Also let C > 0
and l € N. We say that (x, ) is (C,l)-exact pair if the following are satisfied.
(1) We have 1 < ||z||¢ < C; moreover, for every f € G with w(f) = my and
q # 1 we have | f(z)| < 3C/my if ¢ <, while |f(z)] < C/m? if ¢ > .
(2) The functional ¢ is the result of the (Am, %)—opemtion; thus, w(¢) = my.
(3) We have that ¢(z) = 1 and range(x) = range(¢). (Recall that the range of
a vector in coo(N x N) is the minimal rectangle generated by intervals which

contains its support.)
The following proposition is a consequence of Lemmas 6.6 and 6.7.

Proposition 6.9. If (z,) is a j-block sequence, then for every l € N there exists
an (6,20)-ezact pair (x, ) where x € span{zq : ¢ € N} and ¢ € G.

We need to introduce some terminology. We say that a (possibly finite) j-block
sequence in cgo(N x N) is special j-block if either it is diagonally block, or there
exists k € N such that its members are all supported in N x {k}.

Definition 6.10 (dependent sequences). Let C > 0 and | € N. Let (xx);2" be a
special j-block sequence, and for every k € {1,...,ny_1} let ¢, € G. We say that
(z, d1) 27 is (C, 21 — 1)-dependent sequence if there exists a sequence (21y); 21"
of even integers such that the following hold.
(i) We have that (¢x),2 7" is a (ne—1)-special sequence with w(¢y) = may, for
every k € {1,...,n91}.
(ii) Fach (zk, ¢r) is a (C,2l;)-exact par.

We have the following proposition.

Proposition 6.11. Let (zy, ¢x), " be a (C,2] — 1)-dependent sequence. Then

n2r—1

1 1
6.1 >
( ) Hn21—1 ,; ka mai—1
and
. 8C
6.2 —1)Fa| <
(62) ||n21—1 1;( ) wk” m%lfl
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We notice that inequality (6.1) is straightforward, since the special functional
1 noy—
map_1 k2=ll '
arguing precisely as in [ATo, Proposition 3.6].

¢ belongs to G. However, the estimate (6.2) is not easy. It follows

Remark 10. Proposition 6.11 is the main tool for showing the HI property of
certain subspaces of Xg; we present the precise statement below. At this point
we want to comment on the role of special j-block sequences in the definition of
dependent sequences. A key ingredient needed for the proof of (6.2) is a “tree-like”
property satisfied by all (ng;—1)-special sequences—see, e.g., [ATo, Proposition 3.3].
When we deal with norms on ¢pp(N), then this “tree-like” property is also satisfied
by all restrictions of the special sequences on intervals of N. On the other hand,
when we deal with coo(N x N) and we consider restrictions on rectangles generated
by intervals of N, then this is no longer valid. However, this problem can be resolved
if we work with special j-block sequences. This is the reason why we introduced
this concept.

The following proposition is an easy consequence of the previous results.

Proposition 6.12. Let (z,) and (y,) be diagonally block sequences. Then for
every n € N there exists a (6,2l — 1)-dependent sequence (zy,dx),y" such that
zok—1 € span{x, : n € N} and za;, € span{y, : n € N}. The same result also holds
true provided that (x,) and (yy) are both j-block sequences in Zy for some k € N.

We proceed with the following proposition.

Proposition 6.13. If Y is a subspace of X, then one of the following is satisfied.

(a) There exists n € N such that jn,: Y — X, is not strictly singular.
(b) There exists k € N such that m: Y — Zj is not strictly singular.
(¢c) For every r > 0 there exists a normalized sequence (y,) in'Y and a diago-

nally block sequence (wy) such that ), [|yn — wn|| <.

Proof. Assume that neither (a) nor (b) is satisfied. Then for every n € N and
every subspace Y’ of Y there exists a subspace Y of Y’ such that the operator
Ity Y = 300 @X,, is strictly singular (see, e.g., [Ar, Lemma 3.7]). Note
that the same also holds for the projections 7y, ) (m € N). Hence, for every
€ > 0 and every n,m € N there exists a subspace Y of Y such that ||j{1,.. ny|v/|| <€
and ||y, myly’|| < e. Using this fact and a standard sliding hump argument, we
easily verify that (c) is satisfied. O

By Propositions 6.12 and 6.13, we obtain the following corollary.

Corollary 6.14. The following hold.
(a) For every k € N the space Zy, is HI.
(b) If (yn) is diagonally block, then the space Span{y, : n € N} is HIL
(¢) If Y is a subspace of Xg such that j,: Y — X, and 7: Y — Zi are
strictly singular for every n,k € N, then Y is HL
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Proof. Parts (a) and (b) follow by Proposition 6.12. For part (c) let ¥ be an
arbitrary subspace of X such that the operators j,: Y — X, and 7x: Y — Zj
are strictly singular for every n, k € N. Let Y1, Y5 be subspaces of Y, and let € > 0.
By Proposition 6.13, there exist two normalized block sequences (y.), (y2) and a
diagonally block sequence (wy,) such that the following are satisfied.

(1) For every n € N we have y! € ¥} and y2 € Ya.
(2) We have Y-, [lwen—1 —yhll <eand 3, o llwan — y2|| <e.

By part (b), the space W := span{w, : n € N} is HI. Since ¢ was arbitrary, it
follows that d(Sy,, Sy,) = 0; but the subspaces Y1, Y> of Y were also arbitrary, and
so Y is HI. O

6.6. We close this section with the following two properties of X (see also [AM]).
Proposition 6.15. Fuvery j-block sequence (x,,) in X¢g is boundedly complete.

Proof. If not, then there exist a sequence (a,) in R and € > 0 such that for every
n € N we have || 3, apzy < 1 and [ 3772, 1 axzgl| > e Thus, there exists
a sequence (I,) of successive intervals of N such that for every d € N, setting
Wy = Zkeld arxy, we have ||wq|| > €. We select ¢4 € G with range(¢py) = range(wq)
and ¢q(wq) > €. Notice that n;/m; — oo asl — oo. Hence, for appropriate I,n € N,
we obtain that (miw S éa) (Xfh_q arxy) > 1 which yields a contradiction. 0

Proposition 6.16. We have X§ = span{ Unen X;:}

Proof. Assume not. Then there exist 2** € X" and #* € By, such that [lz**[| = 1,
z**(z*) > 1/2 and |, X, C Ker(z**). We select a net (x;)ic;r in Bx, with
w* — lim;ey x; = **. Clearly, we may assume that

1
(6.3) x*(x;) > 5 for every i € 1.

Observe that w —lim;cy jg1,... .ny (2:) = 0. Hence, by Mazur’s theorem and a sliding

.....

hump argument, we may select two sequences (y,,) and (z,) such that the following
are satisfied.

(i) For every n € N we have y,, € conv{z; : i € I'}.
(ii) We have that (z,) is a j-block sequence.
(ili) We have > |lyn — zn| < 1/8.
Notice that for every k € N and every n; < --- < nj we have

[Pt e 5 2
k -
Indeed, by (i) and (6.3), we have that 2*(y,,) > 1/2 for every n € N. Hence, by (iii),
we obtain that x*(z,) > 1/4 for every n € N which clearly implies (6.4). Thus, we

(6.4)

may select a j-block sequence (wy,) with wy, = 1 > ner, #n Where (F) is a sequence
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of successive intervals of N. Since (wy) is a j-block sequence of 4 — ¢}, averages, by
Lemma 6.7, we have that for every | € N there exist k1 < --- < kj,, such that

1 & 12
(6.5) LS < 2
I Sl < 22
Set v; == Tlm >-i2 wy, and notice that vy is a convex combination of zx’s. Let v] be

the corresponding convex combination of y,,’s. By (i) and (6.3), we have ||v;|| > 1/2.
On the other hand, by (iii), we see that ||v; — vj|| < 1/8. Since m; — oo as I — oo,
by (6.5), we obtain that |lv;]] — 0 which is clearly a contradiction. O

7. HI INTERPOLATIONS

Let X be a Banach space with a bimonotone Schauder basis (zj). Also let
W C X be closed, bounded, convex and symmetric. For every n € Nlet ||-|,, denote
the equivalent norm on X defined by the Minkowski gauge of the set 2" W + %B X
We will assume that (zj) remains a bimonotone Schauder basis of X,, := (X, || -||»)-
By X(x,w) we denote the HI Schauder sum of the sequence (X;) as described in
the previous section.

Definition 7.1. The HI interpolation space A x ) is the (closed) subspace of
X(x,w) consisting of the vectors (z,x,...) € X(x,w) with v € X.

Remark 11. This definition is a variant of the corresponding definition in [AF],
which in turn follows the general scheme of the classical Davis—Figiel-Johnson—
Pelczynski interpolation method [DFJP]. As we have already pointed out in the
previous section, the present variant will allow us to obtain HI amalgamations with
a Schauder basis.

We proceed to present some general results concerning the structure of A x w.
We start with the following lemma which provides a general condition for the exis-
tence of HI interpolations.

Lemma 7.2. Let (x) be a bimonotone Schauder basis of X, and let W C X
be closed, bounded, convex and symmetric. Assume that Pr(W) C W for every
interval I of N where Pr: X — Span{xy : k € I} is the natural projection. Then
for every n € N the basis (xy,) remains bimonotone in X,.

Proof. Let n € N and x € X,,. Let A > 0 such that x € A\(2"W + %Bx). By our
assumptions, for every interval I of N we have
1 1
PI(JJ) €A (QHPI(W) + 27P](Bx)) CA (QHW + 27Bx)
This implies that || Pr(2)||n < ||z||n, as desired. O

Remark 12. Note that the £ Baire sum 7% of a normalized bimonotone Schauder
tree basis (2¢)ier and the set Wx defined in Definition 5.3 satisfy the assumptions
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of Lemma 7.2. Consequently, the space A(EX,WX) is well defined. We will need
this observation later on.

Proposition 7.3. Let X, (z1) and W be as in Lemma 7.2, and assume that xy, € W
for every k € N. Then Ty = (wp, T, ...) € Ax,w) for every k € N and, moreover,
the sequence (Ty) defines a bimonotone Schauder basis of A(x w).

Proof. Notice, first, that ||zg|, < 2% for every n, k € N. Therefore, 7, € A(x,w for
every k € N. Next, let 7 = (v,z,...) € Ax,w) with x = >, agzr. Let k € N and
consider the projection 73 : Ax wy) — Zr. We claim that m(Z) = apZ. Indeed,
observe that the sequence (2, 1 )nen is a Schauder basis of Z; (not normalized) and
T, (ﬁk(,f)) = x:k(ac) = ay, for every n € N. Hence, m(T) = > o GhTnk = QrZp.
This is easily seen to imply that for every (nonempty) finite interval I of N we
have w7 (Ax,w)) = span{Zy : k € I}, and so 7;(T) = ), ; axT) where, as before,
T=(x,z,...)and v = ), apwy.

The above argument and the fact that ||7;|| = 1 for every finite interval I C N,
yield that the sequence (Zj) is a bimonotone Schauder basis of span{Zzy : k € N}.
Thus, it suffices to show that the space span{zy : k € N} coincides with A(x ). To
this end let z = (z,,...) with x = ), apxy. We will show that the partial sums
22:1 ar T converge weakly to Z; clearly, this is enough to complete the proof. First
every z* € J, ey Bx» we have that z*( 2221 axZr) — x*(Z). On the other hand,

by Proposition 6.16, the vector space span{ U BX;;} is norm dense in ’%(kX,W)'

neN
Therefore, the partial sums ZZ:I ar T must converge weakly to Z, and the proof

is completed. (I
Proposition 7.3 justifies the following definition.

Definition 7.4. Let X be a Banach space and W C X. We say that the pair
(X,W) admits a HI interpolation if X has a bimonotone Schauder basis (xy),
W is closed, bounded, conver and symmetric, x, € W for every k € N, and for
every interval I of N we have Pr(W) C W.

Notation. In what follows J: A(x, ) — X we denote the one-to-one linear oper-
ator defined by J(Z) = x for every Z = (z,2,...) € Ax,w)-

Proposition 7.5. Assume that the pair (X, W) admits a HI interpolation.
(a) If Y is a subspace of Acx wy such that J:Y — X is strictly singular, then
Y is HL
(b) If Y, Z are subspaces of A(x,wy such that both Jly and J|z are strictly
singular, then d(Sy,Sz) = 0.

Proof. (a) Note that for every k € N the image of the operator m.: Acx w) — Z
has dimension 1; therefore, this operator is strictly singular. Also observe that
for every z € A(x,w) and every n € N we have j,(Z) = J(Z). Since every X, is
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isomorphic to X, we conclude that j,|y is strictly singular. By part (c) of Corollary
6.14, the result follows.

(b) As in part (a), we first observe that for every k € N the operators 7|y and 7|z
are strictly singular. Moreover, by our assumptions, for every n € N the operators
Jnly and j,|z are also strictly singular. Let € > 0 be arbitrary. Arguing as in the
proof of part (c¢) of Corollary 6.14, we may select two normalized sequences (y,)
and (z,), and a diagonally block sequence (w,,) such that the following hold.

(i) For every n € N we have y,, € Y and z, € Z.

(ii) We have Y, [|[wan—1 — yn|l < e and ) ||wa, — 2| < €.
By part (c) of Corollary 6.14, the space W := span{w,, : n € N} is HI. Hence,
setting W, = span{ws,—1 : n € N} and Wy = span{ws, : n € N}, we see
that d(Sw,,Sw,) = 0. Since ¢ was arbitrary, by (ii) above, we conclude that
d(Sy,Sz) =0, as desired. O

Remark 13. Although Y and Z in part (b) of Proposition 7.5 are HI and satisfy
d(Sy,Sz) = 0, the space Y + Z may not be HI subspace. Actually, there are
examples of such pairs Y, Z with Y + Z = A(x w) and A(x ) not HL

Theorem 7.6. Assume that the pair (X, W) admits a HI interpolation. LetY be a
(closed) subspace of X and assume that W is thin on'Y'. Then J=1(Y) is either HI,
or finite-dimensional.

Proof. Set Z := J~(Y), and assume that Z is infinite-dimensional. We will show
that the operator J: Z — X is strictly singular. Indeed, if not, then there exists
Zy < Z such that J: Z; — X is an isomorphic embedding. Then J(Z;) is a
closed subspace of Y and there exists C' > 0 such that for every x € J(Z;) with
lz]] < 1 we have that ||Z]] < C. It follows that ||z||, < C and, consequently,
Bj(z,) € O2"W + %BX for every n € N; that is, the set W almost absorbs Bj(z,).
This is a contradiction since W is thin on Y. Therefore, J: Z — X is strictly
singular, and the result follows by part (a) of Proposition 7.5. (I

We proceed with the following (essentially known) proposition which establishes
an important property of the operator J.

Proposition 7.7. The operator J: Ax wy — X is Tauberian; that is, for every
™€ A%y \ Ax,w) we have J™ (27) € X\ X.

Proof. We have the following claim.

Claim. For every z** € A?;(,W) there exists y** € X** such that, setting

(71) g;i* = (y**ay**w"vy**voa-“)
N— ——

n-times

*

for every n € N, we have ** = w* — limg}*.
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Proof of the claim. By Proposition 6.16, we have (3, ®X,,)f; = span{ U, oy X }
and, consequently,

o0
(Z@X”);T = {w* - mel* cxyt e X for every n € N, and
n n=1

k
3C > 0 with || foﬁ” < C for every k € N}.
n=1
Let 2** € A&,W) and select a net (Z;);cr in A(x,wy such that w* —lim;er z; = 7**.

By the previous discussion, it follows that 2** = w* — lim y* where each g;:* is as
in (7.1) for the vector y** :== w* — lim;e; J**(Z;) € X**. The claim is proved. O

Now let z** € A’(";‘(,W) \ A(x,w) be arbitrary, and let y** € X** be such that
T = w* — limg* where the sequence (g3*) is as in (7.1). It is enough to show
that y** € X** \ X. Suppose, towards a contradiction, that y** € X and note
that the sequence (7*) is norm bounded by ||z**||. By Proposition 6.15, the space
(3=, ®Xpn)ni is j-block boundedly complete. Therefore, the sequence (7*) is norm
convergent to z** which in turn implies that z** € A(x w, a contradiction. The

proof is completed. O

Corollary 7.8. If X is reflexzive and the pair (X, W) admits a HI interpolation,
then A(x,wy is reflerive.

Our last result in this section is the following strengthening of Corollary 7.8 (see
also [DFJP]).

Proposition 7.9. If the pair (X, W) admits a HI interpolation and W C X is

weakly compact, then A(x wy is reflerive.

Proof. Recall that if T: X — Y is a Tauberian operator and W C X, then W is
relatively weakly compact if and only if T'(W) is relatively weakly compact (see,
e.g., [N2]). Also recall that, by a classical result of Grothendieck [Gr], a set K C X
is relatively weakly compact if for every € > 0 there exists a weakly compact set
K. C X such that K C K. +¢Byx.

Now assume that W is weakly compact. It is easy to see that the set W almost
absorbs the set J(Ba y ), that is, for every e > 0 there exists A > 0 such that
J(BAxw)) © AW +¢eBx. By Grothendieck’s criterion, it follows that J(Ba x )
is relatively weakly compact. By Proposition 7.7, J is a Tauberian operator. Hence,
BAa x w, 1s also relatively weakly compact, which is equivalent to saying that Ax,w)
is reflexive. O

8. AMALGAMATIONS OF SCHAUDER TREE BASES

8.1. Existence of HI-amalgamations and p-amalgamations. Let X be a
Banach space, let A be a countable set, let T' be a pruned subtree of A<N and let
(z¢)ter be a normalized bimonotone Schauder tree basis of X.
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Definition 8.1. A Banach space A is said to be a Hl-amalgamation of (z)ier
if the following are satisfied.

(1) The space A has a Schauder basis (e,) which can be written as (e;)ier
where ey = eyyy for everyt € T and h: T — N denotes the fized enumera-
tion of T described in Section 4.

(2) Setting X, = span{e, : t T o} for every o € [T] and letting Py: AY — X,
denote the natural projection, we have that {|P,|| : o € [T]} is bounded.

(3) For every o € [T] the space X, is isomorphic to X, = Span{xz; : t C o}
with constant independent of o.

(4) The following hold.

(a) Every X-singular subspace Y of A% (that is, for every o € [T] the
operator Py: Y — X, is strictly singular) is HI.
(b) If Y and Z are X -singular subspaces of A, then d(Sy,Sz) = 0.

(5) Every X -compact subspace Y of A% (that is, for every o € [T the operator
P,:Y = X, is compact) is reflexive and HI.

(6) If Y is a subspace of Aﬁ not containing an X -singular subspace, then there
exists finite A C [T] such that the operator

PiY — Xy = span{e; : t € A}
s an isomorphic embedding.

Definition 8.2. A Banach space AI))( is said to be a p-amalgamation of (x¢)ier,
where 1 < p < oo, if (1), (2), (3) and (6) in Definition 8.1 are satisfied, and (4)
and (5) are replaced with the following.

(4)" Every X -singular subspace Y of Aff contains a copy of £y.

(5)" Bvery X-compact subspace Y of Aff is reflexive and contains a copy of £,.

Our goal in this section is to prove the following theorem.

Theorem 8.3. For every normalized bimonotone Schauder tree basis (x¢)ier there
ezists a Hl-amalgamation space A% of (1)ier. Respectively, for any 1 < p < oo
there exists a p-amalgamation space Az)f of (x¢)ter-

The proof of the existence of HI-amalgamations is almost identical to the proof
of the existence of p-amalgamations; the first proof uses the HI interpolation, while
the second proof uses the classical Davis—Figiel-Johnson—Pelczynski interpolation
scheme [DFJP]. We will present the proof simultaneously for both cases indicating
the differences in the arguments whenever it is necessary.

First, we consider the {5 Baire sum 7'2X of (z¢)ter as constructed in Section
3. Also let Wx be as in Definition 5.3 in Section 5. The HI-amalgamation space
A of (z¢)ier is the HI interpolation space AEHTQX,WX)' (Note that, by Remark
12, this space is well-defined.) Respectively, the p-amalgamation space .Aff is the
p interpolation space A? in the sense of [DFJP]. It remains to show that

(BX 7WX)
these spaces satisfy the properties in Definitions 8.1 and 8.2 respectively.
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Proposition 7.3 and Remark 12 yield that (&;);cr defines (after an appropriate
enumeration) a bimonotone Schauder basis of A{%. Also observe that ||g]| < 1 for
every y € By,. Hence, setting X, = span{e, : t C o}, we see that the operator
J: X, — X, is an onto isomorphism and, moreover, [(J]5,)7 " < 2. Thus, the

operator P, = (J]5,)7 " o Py oJ is a projection from A onto X, which satisfies

P,(&;) = 0 for every t ¢ o. Since the space X, is isometric to X, for every o € [T],
we see that properties (1), (2) and (3) are satisfied. We argue similarly for A .

We proceed to verify property (4) for the HI-amalgamation space A;X. For
part (4.a), first we observe that, by Proposition 7.5, if J: Y — T5X is strictly
singular, then property (4.a) is satisfied. So assume, towards a contradiction, that
the operator J: Y — T5¥ is not strictly singular, or equivalently, that there exists a
subspace Z; of Y such that the operator J: Z; — T5¥ is an isomorphic embedding.
It follows that the set Wx almost absorbs Bj(z,). On the other hand, we have
that J(Z;) is an X-singular subspace of 75%. Theorem 5.15 yields a contradiction.
Using similar arguments, we verify property (4.b). For the corresponding property
(4)" of A notice that if Y is any X-singular subspace of AX, then (as before) the
operator J: Y — T5¥X is strictly singular. Hence, by standard arguments, we see
that ¥ contains a copy of £,,.

Next, we show that property (6) is satisfied. Let Y be a subspace of A% not
containing an X-singular subspace. We claim that the operator J: Y — T5~X is
an isomorphic embedding. Indeed, if not, then there exists a subspace Z of Y
such that the operator J: Z — T5* is compact. It follows that for every o € [T
the operator P,: Z — X, is also compact, a contradiction. Thus, J: Y — T
is an isomorphic embedding and, consequently, the set W almost absorbs B j(y).
By Theorem 5.16, there exists finite A C [T] such that Ps: J(Y) — X4 is an
isomorphic embedding. This is easily seen to imply that the operator Py: Y — X4
is also an isomorphic embedding, as required. The proof of the corresponding
property for the p-amalgamation space is identical.

Finally, properties (5) and (5)’ follow from the following theorem.

Theorem 8.4. Let Y be an X-compact subspace of A% (respectively, of Aff).
Then Y is reflexive.

Proof. As we have already proved, if Y is an X-compact subspace of A{%, then Y
is HI; consequently, ¢; does not embed into Y. On the other hand, in the case of
p-amalgamations, we have that Y is £,-saturated, and so ¢; also does not embed
into Y. From this point on the arguments for both spaces are identical.

Assume that Y is not reflexive. Since ¢; does not embed into Y, there exist a
normalized sequence (7,) in Y and §** € Y** \ Y such that w* — limg, = §**.
We set y** == J(g**) and y,, .= J(§,) for every n € N. By Proposition 7.7, J is
a Tauberian operator; therefore, w* — limy,, = y** € (73X)** \ T5%. Notice that
there exist ¢ > 0 and y* € (75%)* with ||y*|| < 1 such that y*(y,) > € for every
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n € N. Moreover, by passing to subsequences if necessary, we may assume that
a; = lim e} (y,) exists for every t € T. Recall that we enumerate the basis of 73X
as (eq, ). For every d € N set z4 == Zd

oy ar, e, and notice that ||zq| < [ly**|]. We

consider the following cases.

CASE 1: We have ), paie; € 75X, We set z = Y oier ater and wy, = yp — 2
for every n € N. Observe that lime} (w,) = 0 for every t € T. By passing to a
subsequence of (wy,,) if necessary, for every r > 0 we may select a block sequence
(bn) in 75X such that >, o |lbn — wn|| < r. Let o € [T] be arbitrary. Since Y
is a X-compact subspace, the set {P,(y,) : n € N} C X, is relatively compact
(indeed, observe that P, (J(gn)) = P,(yn) for every n € N.) This property and the
fact that the sequence (b,,) is block yield that lim || P, (b,)|| = 0 for every o € [T].
By Proposition 4.10, we see that the sequence (b,) is weakly null. This, in turn,
implies that the sequence (wy,) is also weakly null, and so w — limy,, = z. This is
clearly a contradiction.

CASE 2: We have ), aze; ¢ 75X. In this case, there exist ¢ > 0 and a sequence

ner,, Ot €, forall k € N,
the sequence (v) is bounded and block, and satisfies ||vg|| > € for every k € N.

(I1) of successive intervals of N such that, setting vy == >

Claim 1. For every 6 > 0 there exists As > 0 such that vy € AsWx + 5B7—2x for
every k € N.

Proof of the claim. First observe that, since the sequence () is normalized, for
every ¢ > 0 there exists As > 0 such that

(8.1) {yn n e N} CMWx + 6B7-2X

On the other hand, by the definition of vy, for every k € N and every § > 0 there
exists ng such that || Pr, (yn)—vk|| = || Pr, (yn)—znelk ag, e, || < 4 for every n > nyg.
By (8.1) and the fact that Pp, (Wx) € Wx and Py, (Byx) C Byx, we see that
(8.2) Pr (yn) C AsWx + 5B7—2x.

Hence, for every 6 > 0 there exists Ay > 0 such that {vy : k € N} C \sWx +25B7-2x
as desired. O

Claim 2. For every o € [T] we have lim || P, (vi)| = 0.

Proof of the claim. As we have already pointed out, the fact that Y is X-compact
implies that for every o € [T] the set {P,(yn) : n € N} C X, is relatively compact.
Also note that if L € [N]* is such that the sequence (P, (yn))ner is convergent, then
limper Po(Yn) = D 4oy asee. It follows that the sequence (Pg(yn)) is convergent
for every o € [T7.

Fix o € [T] and let 6 > 0 be arbitrary. There exists no € N such that for every
n > m = ng we have

4]

(8'3) Hpo(yn - ym)” < 3
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The sequence (e;,) is a Schauder basis of 73X and so there exists kg € N such that
for every k > ko,

0
(8.4) 1Pr, (o)l < 5
By the definition of vy, for every k > kg there exists my > ng such that
0
(8.5) 127, Y ) = vwll < 5
Moreover,

(8.6) [1Ps(vi)ll < 1P (Pr(Ymi) = vi) | + 1P (Pr (Ymy) = Pro(yno))|l +
+1Po (Pr(yno)) Il
Since P, o Py, = Py, o Py, || Pr, || =1 and my > no, by (8.3), we have

)
(87) HP0'<PIk(ymk)_PIk(yn()))” < g
Finally, notice that ||P,|| = 1, thus combining inequalities (8.4)—(8.7) we obtain
that || P,(vg)|| < 0 for every k > ko. The claim is proved. O

Summarizing, we see that (vy) is a bounded block sequence in 75X with the
following properties.

(I) For every k € N we have ||vg|| > .
(IT) For every o € [T] we have lim || P, (vg)|| = 0.
(III) The set Wx almost absorbs the set {vy : k € N}.

We apply Proposition 5.14 and we obtain L € [N]*° and for every k € L a segment
complete set A, C T and a vector z; € (75¥)* such that the following are satisfied.

(a) The sets (Ag)rer are pairwise incomparable.
(b) For every k € L we have ||z|| < 1 and supp(z;) C Ay C range(vy).
(c) For every k € L we have zj(vx) > 5

Let {k1 < ko2 < ...} denote the increasing enumeration of L. By (a) and (b), for
every £ € N we have H% Zle 2;. || < 1. Therefore, by (b) and (c), we see that
¢

14 14
IS G v

The functional L 3% 2% is supported in .: I, and so, by (8.8),
N/ =1 ~“k; =1 "Fi

hm || E at, e, H—

But as we have indicated in the beglnmng of the proof, for every d € N we have

d
1S aren || < lly™|l
n=1

which yields a contradiction. The proof is completed. ([l
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We proceed to present another important property of the amalgamation spaces.

Proposition 8.5. Let (z¢)ier be a normalized bimonotone Schauder tree basis such
that X, is reflexive for every o € [T]. Then there exists a reflexive HI-amalgamation

space (respectively, p-amalgamation space for any 1 < p < 00) of (x¢)ter-

Proof. Note that it is enough to show that the set Wx is weakly compact; in the
case of HI-amalgamations this is a consequence of Proposition 7.9, while in the case
of p-amalgamations this follows from the results in [DFJP]. Set C =, ¢} Ba, -

Claim. The set C is relatively weakly compact.

Proof of the claim. Let (x,) be an arbitrary sequence in C. Clearly, we may assume
that every x,, is finitely supported. Let s,, be the unique initial segment of T" which
contains supp(z, ), and let ¢, denote the C-maximal node of s,. By Ramsey’s
theorem, there exists L € [N]* such that the nodes (t,)necr are either pairwise
comparable, or pairwise incomparable. In the first case, there exists o € [T] such
that supp(z,) C o for every n € L. By our assumptions, we obtain M € [L]*° such
that the sequence (z,)nen is weakly convergent.

So assume that the nodes (t,),cr are pairwise incomparable. By passing to a
further subsequence, we may additionally assume that lim,c, z,(t) = z(t) for every
t € T. Observe that there exists 7 € [T] such that {t € T : z(t) # 0} C 7 and,
moreover, the sequence (P (z,))necr converges weakly to the vector x == ), x(t);
in particular, this yields that 2 € 7,;%. For every n € L we set y, = x,, — . Then
limy,er, yn(t) = 0 for every t € T and so, by a standard sliding hump argument,
we may assume that the sequence (yn)ner is block. Notice that lim,er, Py(y,) =0
for every o € [T]. By Proposition 4.10, we see that (yn)necr is weakly null which
implies that the sequence (x,)ner, is weakly convergent. The claim is proved. O

Since Wx = conv(C'), by the Krein—Smulian theorem and the above claim, we

conclude that the set Wx is weakly compact. (]
We have the following refinement of Proposition 8.5.

Theorem 8.6. Let (z;)ier be a normalized bimonotone Schauder tree basis, and let
Aﬁ (respectively, .Aff ) denote the HI-amalgamation (respectively, p-amalgamation
for 1 < p < o0) of (x¢)ter constructed in the proof of Theorem 8.3.

(1) If for every o € [T] the basic sequence (v,,) is boundedly complete, then
the basis of A% (respectively, Aif) is boundedly complete.

(2) If for every o € [T] the basic sequence (zqn) is shrinking, then the basis
of A (respectively, .Aff ) is shrinking.

Proof. (1) Let (&) be the basis of A, and assume that it is not boundedly
complete. Then there exist a sequence (a,) in R, a sequence (Ij) of successive
intervals of N and r» > 0 such that, setting g4 = Zd

ne1 an€, for every d € N,
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we have [|gql| < 1 and ||>, o7 anéy, || = 7 for every n € N. We set yq = J(ya)-
By Proposition 7.7, the operator J is Tauberian. This implies that the sequence
(yq) is not Cauchy. Indeed, notice that there exist a subnet (;);cr of (94) and
7 € (AX)*™\ A such that w* —lim;e; ; = §**. It follows that the corresponding
subnet (y;)ier of (yq) must be weak* convergent to a vector y** € (T5%)** \ 5%
which yields that the sequence (y4) is not Cauchy. Thus, there exist € > 0 and a
subsequence (yq, ) of (ya) such that, setting vy := yq,,, — ya, for every k € N, the
following hold.

(a) The sequence (vg) is bounded and block, and, ||vg|| > € for every k € N.

(b) Since for every o € [T the sequence (z,/,) is boundedly complete, we have
lim || P, (vg)|| = 0 for every o € [T7.

(¢) The set Wx almost absorbs the set {vy : k € N}. Indeed, first observe that
the set Wx almost absorbs the set {y4 : d € N}. Next, notice that for every
k € N there exists an interval Jp of N such that vy = 7, (ya,,). Since
Wx is closed under projections on intervals, it follows that Wy also almost
absorbs the set {vy : k € N}.

By Proposition 5.14 and arguing as in the proof of Theorem 8.4, we see that
lim |lyq|| = 0 which is clearly a contradiction. The proof for the case of p-amalga-
mations is identical.

(2) Assume that for every o € [T] the basic sequence (7,|,) is shrinking. By
Theorem A.5, we have that (73%)* = span{ Userr Bx: }. It follows that the basis
(es,) of 73X is also shrinking. First we will deal with the case of HI-amalgamations.
For every n € N let X,, be the space 7'2X equipped with the norm defined by the
Minkowski gauge of the set 2" W, + 2%37-2)«, and let Z denote the HI Schauder sum
of (X,,). Also let Id: AX — Z be the identity operator, and let Id* : Z* — (AX)*
denote the dual onto map. It is easy to verify that for every n € N we have
Id* (e}, ;) = Ané; for some A, € R. On the other hand, by Proposition 6.16, we
see that Z* = span{J, X;;}. Since X} = span{e},, : t € T}, we obtain that
Z* =span{e;,, : n € N,;t € T}. It follows that (A{X)* = span{e; : t € T}, and
the proof for the case of HI-amalgamations is completed. The proof for the case of
p-amalgamations is identical (actually it is simpler, since in this case Proposition
6.16 is straightforward). O

We proceed with the following proposition.

Proposition 8.7. Let A{ be the HI-amalgamation of (x;)icr, and assume that
Aﬁ > Y @ W. Then there exists finite A C [T] such that either Pi:Y — X4 or
Pao: W — Xy is an isomorphic embedding.

Proof. First we claim that either Y or W does not contain an X-singular subspace.
Indeed, suppose that there exist a subspace Y’ of Y and a subspace W’ of W such
that Y/ and W’ are both X-singular. By property (4.b) in Definition 8.1, we see
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that d(Sy,Sw) = 0 which is clearly a contradiction. The result then follows by
property (6) in Definition 8.1. O

We introduce the following definition.

Definition 8.8. (1) Let 1 < p < oo and let (z,,) denote the standard unit vector
basis of £,. We enumerate the sequence () as (x)ien<r as in Example 1; that is,
for every t € N<N we set ;== zy. We denote by Afl’; the HI-amalgamation space
of (#t)sen<r.

(2) Let U and V denote Pelczynski’s universal spaces for basic sequences and un-
conditional basic sequences respectively (see [P, LT]). Recall that U has a Schauder
basis (uy,) and for every basic sequence (xy) there exists L € [N]>° such that (upn)ner
is equivalent to (x); respectively, V' has an unconditional Schauder basis (v,) and
for every unconditional basic sequence (yi) there exists L € [N]*° such that (un)nerL
is equivalent to (yx). Let (ut)ien<v and (vt)ien<n be the enumerations of (u,) and
(vn) as described in Example 3. By A}l{i and .AXi we denote the HI-amalgamations
of the Schauder trees bases (ut)ien<n and (vi)gen<n respectively.

Remark 14. A remarkable feature of the space U is that AY, 73V and U are all

mutually isomorphic.
We have the following theorem.

Theorem 8.9. There exists a separable Banach space X which satisfies the follow-
ing properties.
(i) If Z is a subspace of X, then Z is reflexive if and only if it is HI
(ii) Ewvery separable Banach space Y which contains all reflexive subspaces of
X must also contain £1; that is, the class C of reflexive subspaces of X is
Bourgain ¢1-generic.
(iii) Every non-reflexive subspace Z of X contains a complemented copy of £1.
(iv) If X 2Y @ W, then either Y or W is contained in {1.

Proof. The desired space X is the space Aﬁll Indeed, let Z be a subspace of X.
If Z is reflexive, then, by the lifting property of ¢1, Z must be ¢;-singular. By
property (4.a) in Definition 8.1, we obtain that Z is HI. Conversely, assume that Z
is HI. Then, clearly, Z is £1-singular. Invoking the lifting property of ¢; once again,
we see that Z must be £;-compact. By property (5) in Definition 8.1, we conclude
that Z is reflexive. Thus, property (i) is satisfied.

We proceed to show that property (ii) is satisfied. Let Y be a separable Banach
space that contains (up to isomorphism) all reflexive subspaces of X. For every
T € Tr set Xp = span{e; : t € T'}. Since the sequence (e;);er defines (after a re-
enumeration) a Schauder basis of X7, it is easy to verify that the map ®: Tr — SB
defined by ®(T) = Xz is Borel (see, e.g., [Bo3, Lemma 2.4]). Moreover, notice that
if T € WF, then for every o € N the operator P,: X — ¢, is compact. Hence, by
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properties (4.a) and (5) in Definition 8.1, we see that X7 is either reflexive HI, or
finite-dimensional. Let B C SB denote the isomorphic saturation of Subs(Y); it is
analytic. Thus, the set A := ®~!(B) C Tr is analytic and, by our assumption, we
have that A O WF. But the set WF is ITi-complete, and so there exists T € IF
such that Xr is isomorphic to a subspace of Y. Since for every ill-founded tree T
the space Xp contains ¢;, we conclude that property (i) is satisfied.

Next, let Z be a non-reflexive subspace of .Aflli. As we have already mentioned in
the proof of property (i), the non-reflexivity of Z implies that Z is not ¢;-singular.
It follows that there exists ¢ € A such that the operator P,: Z — {1 is not strictly
singular. This implies! that Z must contain a complemented copy of ¢;, and so
property (iii) is satisfied.

Finally, let Y and W be subspaces of Aflli such that .Aﬁli ~2Y @ W. By Propo-
sition 8.7, there exists finite A C A such that either Y, or W is isomorphic to a
subspace of X4. Noticing that for every finite A C N the space X, is isomorphic
to ¢1, the result follows. (I

8.2. Applications. We start by determining the descriptive set theoretic complex-
ity of the classes HI, I and NUC presented in Section 3.

Theorem 8.10. The classes HI, I and NUC are all I} -complete.

Proof. As we have shown in Section 3, all these classes are co-analytic non-Borel.
It remains to prove that they are actually complete. Let Tr denote the set of all
trees on N which have infinitely many nodes (we need to work with this class of
trees since we are dealing with infinite-dimensional separable Banach spaces). Also
let WF denote the set of all well-founded trees in Tr. It is easy to see that the
set Tr is Borel in 287" (thus, a standard Borel space); moreover, the set WF is
IT}-complete. We will present a reduction of WF to HI which is also a reduction
to I and NUC.

To this end, let X = C0,1] and let (z,,) be a normalized bimonotone Schauder
basis of X. We enumerate the sequence (z,,) as (z;);en<y as in Example 1, that
is, for every t € N<N we set x; := x| Then (x;);en<v is a normalized bimonotone
Schauder tree basis of X. Let A{% be the Hl-amalgamation of (z;);en<v, and let
(et)sen<v be the Schauder tree basis of AX. As in the proof of Theorem 8.9, for
every T € Tr we set Xy = span{e; : t € T}. The map Tr > T +— Xp € SB is
Borel and, moreover, for every T € WF the space Xy is reflexive and HI. On the
other hand, if T' ¢ WF, then there exists o € N such that X, is a subspace of Xr
and so, by property (3) in Definition 8.1 and the choice of X, we see that C[0, 1] is
isomorphic to a subspace of Xp. Therefore,

TeWF & XrcHl & Xy €1 e Xy € NUC.

1Recall the well-known fact that if X is a Banach space and there exists a non-strictly singular

operator T': X — £, (for 1 < p < 00), then X contains a complemented copy of £p.
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The proof is completed. O

Remark 15. Note that the above reduction also shows the fact, first proved by
Bossard, that the class REFL of separable reflexive spaces, the class SD of spaces
with separable dual, the class N/; of separable Banach spaces not containing ¢,
and the class NU of all non-universal separable Banach spaces are ITi-complete.
Moreover, using the result of Tomczak-Jaegermann [TJ] that every HI space is ar-
bitrarily distortable, we see that the class AD of all separable arbitrarily distortable
Banach spaces is TTi-hard.

Our second application concerns the existence of universal spaces for certain
classes of separable Banach spaces which are not universal for all separable Banach
spaces. We start with the following definitions.

Definition 8.11. Let (P,) be a sequence of classes of separable Banach spaces,
and set P == J,, Pn. We say that the sequence (Py) is stable if the following are
satisfied.
(1) P is isomorphic invariant, that is, if X € P and Y =2 X, then Y € P.
(2) P is closed under subspaces, that is, if X € P and Y is a subspace of X,
then'Y € P.
(3) P contains all finite-dimensional Banach spaces.
(4) P is closed under finite sums, that is, if k € N and X1,..., Xy € P, then
Sk eX, eP.

Definition 8.12. Let (P,) be a sequence of classes of separable Banach spaces.
We say that the sequence (Py,) is finitely determined if for every separable Banach
space X and every n € N the following holds. If (Fy) is an increasing sequence of
finite-dimensional subspaces of X with |, F) dense in X, then we have

X e P, F, € P, for every k € N.
We have the following theorem.

Theorem 8.13. Let (P,,) be a stable and finitely determined sequence of classes
of separable Banach spaces, and set P = |J,, Pn. Assume that there exists an
unconditionally saturated separable Banach space X such that X ¢ P. Then there
exists a separable Banach space Y with the following properties.

(1) The space X is not contained in'Y .
(2) If Z € P has a Schauder basis, then Z is contained in' Y as a complemented
subspace.

We will see, later on, that a stronger version of Theorem 8.13 holds true. At this
point we notice that Theorem 8.13 yields, for instance, that the class of separable
Banach spaces with a Schauder basis and non-trivial type (respectively, non-trivial
cotype) is not universal. More precisely, there exists a separable Banach space Y
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containing all Banach spaces with a Schauder basis and non-trivial type (respec-
tively, non-trivial cotype) and not containing a copy of ¢; (respectively, ¢p).

Proof of Theorem 8.13. Let (uy) be the basis of Pelczynski’s space U which is uni-
versal for all basic sequences. We may assume that (ug) is normalized and bi-
monotone. Let (u);en<n be the enumeration of (uy) as described in Example 3.
The sequence (u;)yen<v is a normalized bimonotone Schauder tree basis of U which
satisfies, additionally, the following properties.

(i) For every L € [N]* there exists 0 € N such that the sequence (ug)rer
coincides with (tg|y,)-

(ii) For every o € N there exists L € [N]* such that the sequence (uy/y,)
coincides with (ug)ger-

Given 0 € N, let U, denote the space span{uy, : m € N}. For every n € N set
C, ={0c €N :U, € P,}. Since the sequence (P,) is finitely determined and
(ut)ien<v is a Schauder tree basis of U, we see that C,, is a closed subset of N.
Therefore, the set C = J,, Cy is F,. We select I C N x N closed such that
C = projyF. As F is closed in N x N, it is the body of a pruned tree T' on
N x N. We define (wt)ier as follows. Let ¢t € T be arbitrary and set n = [¢|.
There exist (01,02) € F such that ¢t = (o1|n,02|n). (Note that, here, we view the
nodes of T as pairs (t1,t2) € N<N x N<N with [t1] = [t2].) We set wy = ug, |-
Observe that w; is well-defined and independent of the choice of o1 and o3, that is,
if (0, 0%) € F are such that t = (01|n, 02|n) = (o|n, o4|n), then o1|n = of|n. Also
set W = span{w; : t € T'}. The following properties are immediate consequences
of the above construction.

(I) (w¢)ier is a normalized bimonotone Schauder tree basis of W.
(IT) For every o € [T] = F there exists o1 € C such that W, = U,,.
(IT1) For every o1 € C there exists o € [T] = F such that U,, = W,.

The desired space Y is the HI-amalgamation of (w;):er. We proceed to show that
Y satisfies the requirements of the theorem. First notice that property (2) is an
immediate consequence of (III) and property (3) in Definition 8.1. Therefore, we
only need to prove that X is not isomorphic to any subspace of Y. Assume not.
Then we claim that no subspace X’ of X is W-singular. Indeed, if there existed
an X-singular subspace X’ of X, then, by property (4.a) in Definition 8.1, we
would have that X’ is HI, a contradiction since X is unconditionally saturated. By
property (6) in Definition 8.1, there exists finite A C [T] such that the operator
]5A: X — WA is an isomorphic embedding. Let {o1,...,0} be an enumeration
of A. Notice that for every € {1,...,k} there exist a final segment s; of o; and a
finite dimensional space F such that W4 = F @ ( Zle P, (VNVQ)) Using the fact
that the sequence (P,,) is stable, we conclude that X € P, a contradiction. Thus,
the space X is not contained in Y and the proof is completed. O
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Remark 16. The assumption in Theorem 8.13 of the existence of an unconditional
saturated separable Banach space X with X ¢ P is not really needed. Indeed, as
we shall see, for any class P as in Theorem 8.13 there exists an unconditionally
saturated (in fact, ¢3-saturated) separable Banach space X with X ¢ P provided,
of course, that every space in P is not universal. The main point, however, in
Theorem 8.13 is that any such space X is not contained in Y.

9. GENERIC CLASSES OF SEPARABLE BANACH SPACES

Definition 9.1. Let C be an isomorphic invariant class of separable Banach spaces
such that every X € C is non-universal.

(1) We say that C is Bourgain generic if every separable Banach space Y that
contains all members of C up to isomorphism, must be universal.

(2) We say that C is Bossard generic if every analytic subset A of SB that
contains all members of C up to isomorphism, must also contain a space
Y € A which is universal.

We proceed to discuss the relation between the different notions of genericity. We
notice, first, that a class C is Bossard generic if and only if sup{¢z(Y) : Y € C} = w1
where Z is any universal space and 97 is the IT}-rank on NCz described in Section 3.
This is easily seen to imply that if C is Bossard generic, then C is Bourgain generic.

Concerning the opposite direction we make the following conjecture.
Conjecture. Bourgain genericity coincides with Bossard genericity.

We proceed to show that within the class of separable Banach spaces with the
bounded approximation property, Bourgain genericity does imply Bossard generic-
ity. To this end we start with the following proposition.

Proposition 9.2. Let A C SB be analytic such that every X € A is non-universal.
Then there exists a non-universal Banach space Y with a Schauder basis which
contains a complemented copy of every X € A with a Schauder basis.

Proof. We first argue as in the proof of Theorem 8.13. Specifically, let (ug) be
the basis of Pelczynski’s universal space U; as usual, we may assume that (uy) is
normalized and bimonotone. Let (u;);en<n be the enumeration of (uy) as described
in Example 3. The sequence (u;);ecn<n is a normalized bimonotone Schauder tree
basis of U which satisfies properties (i) and (ii) described in Theorem 8.13. The
map N 3 o — U, € Subs(U) is easily seen to be Borel. It follows that the set

Al I:{UENZUUGAE}

is analytic where A~ denotes the isomorphic saturation of A. As in Theorem 8.13,
we select a closed subset F of N'x N such that Ay = proj,-F. Let T be the (unique)
downward closed pruned tree on N x N with [T] = F. Next, define (w;)ier as in
the proof of Theorem 8.13, and set W := span{w; : t € T'}. Finally, let Y be the
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HI-amalgamation of (w;)ier. We will show that Y satisfies the requirements of the
proposition.

Clearly, every X € A with a Schauder basis is a complemented subspace of Y. It
remains to show is that the space Y is not universal. To this end, for every k € N
and every & = (01,...,04) € [T]" set Ay == {o;:i € {1,...,k}} and observe that
|As| < k. Also notice that the map

[T]¥ 56 = (01,...,01) — Wa, =5panfe; : t € Ay} € Subs(Y)
is Borel. Therefore, the set
Ay :={Z € SB : 3 finite A C [T] such that Z = W,}

is analytic. Notice that if A = {o1,...,0,} C [T], then there exist a finite-

dimensional space F' and for every i € {1,...,n} a final segment s; of o; such
that Wa = F @ (>, @]55();\}0)) For every i € {1,...,n} there exists X; € A
such that X; = Wg Hence, by our assumptions, for every i € {1,...,n} the space

P;,(W,,) is not universal. By a result of Rosenthal (see [Ro2, Theorem 4.10], or
[Ro3]), for every finite A C [T the space W, is also non-universal.

Set Z = ([0, 1] and let (e, ) be a Schauder basis of Z. By the previous discussion,
we see that Ay C NCyz. Let ¢z be the ITl-rank on NCz defined in Theorem 3.10.
Since A is analytic, by boundedness, we have sup{¢z(X): X € Az} =& < w;. By
Corollary 4.15, there exists a reflexive and f>-saturated separable Banach space X,
such that o(T(X¢, Z, (en))) > €. We claim that X is not contained in Y. Indeed,
arguing as in the proof of Theorem 8.13 and using the fact that X is £>-saturated,
we see that if X was contained in Y, then there would existed finite A C [T'] such
that X¢ is isomorphic to a subspace of Wa. This implies that

£ <o(T(Xe, Z,(en))) < o(TWa, Z, (en))) < d2(Wa) <€
a contradiction. Therefore, X¢ is not contained in Y and the proof is completed. [
We have the following theorem.

Theorem 9.3. Let A C SB analytic such that every X € A is not universal. Then
there exists a non-universal separable Banach space Y such that every X € A with

the bounded approximation property is contained in'Y as a complemented subspace.

Proof. We start by recalling the definition of the space Cy due to Johnson [J]. Let
(E,) be a sequence of finite-dimensional spaces which is dense in the Banach—-Mazur
distance in the family of all finite-dimensional spaces, and set

C() = (Z @E")co'
neN

By a result of Lusky (see [C, Proposition 6.10], or [Lu]) for every separable Banach
space with the bounded approximation property the space X @ Cy has a Schauder
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basis. The map
SBx SB 3 (X,Y)— X @Y € Subs(C(2") & C(2"))

is Borel, and so the map SB 3 X — X & Cy € SB is Borel too. It follows that the
set A; ={Y € SB:3X € AwithY 2 X & Cp} is £1. We notice the following
properties of the set A;.

(1) By Rosenthal’s theorem mentioned in the previous proposition and our
assumptions, every Z € Aj is not universal.
(2) If X € A has the bounded approximation property, then there exists
Z € Ay with a Schauder basis such that X is isomorphic to a complem-
ented subspace of Z.
We apply Proposition 9.2 and we obtain a non-universal separable Banach space Y
such that every Z € A; with a Schauder basis is contained in Y as a complemented
subspace. Invoking (2), we see that Y is the desired space. O

The notions of Bourgain and Bossard genericity can be relativized to any sepa-
rable Banach space X as follows.

Definition 9.4. Let X be a separable Banach space and let C be an isomorphic
imwvariant class of separable Banach spaces such that X is not contained in any finite
direct sum of members of C.
(1) We say that the class C is Bourgain X-generic if for every separable Banach
space Y which contains all members of C, X is isomorphic to a subspace
of a finite sum of Y.
(2) We say that the class is Bossard X-generic if for every analytic subset A of
SB which contains all members of C up to isomorphism, X is isomorphic

to a subspace of a finite direct sum of members of A.

We make a few comments on the above defined notions of genericity. Assume
that X is a separable Banach space with the following stability property (S).
(S) If (Y;)I, is a finite sequence of separable Banach spaces such that X is
isomorphic to a subspace of Y"1 | ®Y;, then there exists ip € {1,...,n}
such that X is isomorphic to a subspace of Y;,.
It is clear that whenever X has property (S), then the notions of Bossard and
Bourgain X-genericity defined above are reduced to the corresponding analogues of
Definition 9.1. Typical examples of separable Banach spaces with property (S) are
the universal spaces (this is a consequence of the aforementioned result of Rosen-
thal) as well as the minimal spaces (such as ¢y and ¢, for 1 < p < o0). Hence,
the notions of Bourgain and Bossard X-genericity are indeed generalizations of the
concepts presented in Definition 9.1. Moreover, if X is a HI space, then the condi-
tion on C can be reduced to the following property: for every finite-codimensional
subspace X’ of X, the space X' is not contained in any member of C. This follows
from the following general fact (see [AT, Proposition 1.2]).
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Proposition 9.5. Let X be a HI space and let T: X — Y be a bounded linear
operator where Y is any Banach space. If T is not strictly singular, then there
exists a finite-codimensional subspace X' of X such that the operator T: X' — 'Y
is an tsomorphic embedding.

We proceed to present examples showing the necessity of extra “linear” condi-
tions in the definitions of X -genericities in the case of an arbitrary separable Banach
space X.

Example 4. (1) Let 4; and A5 denote the isomorphic classes of ¢; and 5 respec-
tively, that is, 41 ={Y € SB: Y 2 {1} and A, ={Y € SB: Y = /5}. Both A; and
As are analytic (and, in fact, Az is Borel). We set C := A; U A3 and X = {1 & {o.
Notice that if Y is any separable Banach space containing, up to isomorphism,
all members of C, then Y must contain ¢; and ¢5. Since these spaces are totally
incomparable, we obtain that Y must also contain X. Nevertheless, the class C is
analytic, yet no member of C contains X. (Note, however, that X is contained in
a finite sum of members of C.) This example was communicated to us by Rosendal
and Schlumprecht.

(2) We set Z; = A} and Zy == A2 (see Definition 8.8). Let (e})yen<r and
(€2);en<n denote the Schauder bases of Z; and Zy respectively. As in the proof
of Theorem 8.10, for every tree T € Tr let Z} and Z2 denote the subspaces of
Zy and Zy spanned by the vectors (e} )ier and (e?)ier respectively. Next, we set
C={Z+:T € WF},Cy:={Z2:T € WF} and C := C;UCs. Also set X = {1 ®{s.
Assume that Y is a separable Banach space which contains, up to isomorphism,
all members of C. The maps T +— Z}. and T + Z37 are Borel, and so there exist
T1,T5 € IF such that Z}l and Z%z are isomorphic to subspaces of Y. Noticing
that ¢; (respectively, £2) is contained in Z} (respectively, Z2) for any ill-founded
tree T, we see that ¢; and ¢y are contained in Y. Therefore, as in the previous
example, we conclude that X is contained in Y. Observe that X is not contained
in any finite sum of members of C, since C contains only HI spaces. However, setting
A= {ZL:T € Tr}u{Z2 : T € Tr}, we see that A is analytic, contains all members
of C up to isomorphism, yet no member of A contains X. (Again note that X is
contained in a finite sum of members of A.)

(3) Our last example shows that if we do not impose extra conditions on the defi-
nition of Bourgain X-genericity, then it becomes incomparable with the notion of
Bossard X-genericity. To this end, let W be any separable HI space. We set

C ={Y :Y is isomorphic to a finite-codimensional subspace of W}

and X := W @ W. It is clear that X is contained in a finite sum of members of C,
and so it is Bossard X-generic according to Definition 9.4. On the other hand,
observe that the space W contains all members of C, yet X is not contained in W,
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since W in HI and X is decomposable. (However, as in the previous examples,
notice that X is contained in a finite sum of members of W.)

It is clear that for any separable Banach space X, if a class C of separable Banach
spaces is Bossard X-generic, then it is also Bourgain X-generic. The problem
concerning the converse implication for an arbitrary separable Banach space X is
open, even if we restrict our attention to the class of spaces with a Schauder basis.
There are, however, a number of cases where we can prove the following analogue
of Proposition 9.2.

Theorem 9.6. Let X be either an unconditionally saturated, or a HI saturated,
or a minimal separable Banach space. Also let A be an analytic class of separable
Banach spaces such that X is not contained in any finite sum of members of A.
Then there exists a separable Banach space Y which contains an isomorphic copy
of every member of A with a Schauder basis and, moreover, X is not contained in

any finite sum of members of Y.

Proof. Let A be as in the statement of the theorem. We argue as in the proof of
Proposition 9.2 and we obtain a downward closed pruned tree T on N x N, a space
Z and a normalized bimonotone Schauder tree basis (zt)ier of Z such that the
following are satisfied.

(1) For every o € [T] there exists Y € A such that Z, is isomorphic to Y.
(2) For every Y € A with a Schauder basis there exists o € [T'] with ¥ isomor-
phic to Z,.

First, we will deal with the case when X is a minimal separable Banach space.
Then, by the minimality of X, there exists 1 < p < oo such that ¢, is not contained
in X. The desired space Y is the p-amalgamation of (z¢)ier. Clearly, we only
have to show that X is not contained in any finite sum of Y. Assume not. Since
X is minimal, we see that X must be contained in Y. By the properties of the p-
amalgamation space, the fact that X does not contain ¢, and arguing as in the proof
of Proposition 9.2, there exists finite A C [T] such that the operator P4: X — Za
is an isomorphic embedding. Invoking once again the minimality of X, we obtain
o € [T] such that X is contained in Z, which is a contradiction by property (1)
and our assumptions.

Next, assume that X is an unconditionally saturated space. The desired space
Y is the Hl-amalgamation of (z¢)ier. Again, we only have to show that X is not
contained in any finite sum of Y. If not, then there exists £ € N such that X is
contained in Zle ®Y; where YV; =Y for every i € {1,...,k}. Weset Z;, = Z
for every i € {1,...,k}, and let ’TQZi be the ¢5 Baire sum of (z;)ier viewed as
a Schauder tree basis of Z;. We define J: Zle Y, — (Zle ©T7 ), by the
rule J((y1,---,uk)) = (J(1),---,J(yx)). We claim that J|x is an isomorphic
embedding. Indeed, assume on the contrary that there exists a subspace X’ of X
such that J|x/ is compact. There exist ig € {1,...,k} and a further subspace X"’
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of X’ such that P |x~ is an isomorphic embedding where P, : Zle Y; = Y, is
the natural projection. It follows that X" is a Z-compact subspace of Y and so,
by the properties of the HI-amalgamation space, we conclude that X" is HI which
contradicts the fact that X is unconditionally saturated.

Now set E = Zle ®Z;. For every i € {1,...,k} let T; be a different copy of
T, and let S denote the disjoint union of the trees (T1,...,Ty). Clearly, S may
be considered as a downward closed pruned tree on a countable set. Moreover,
for every t € S there exists unique ¢ € {1,...,k} such that ¢ € T;. We define a
Schauder tree basis (e:)tes in E as follows. For every t € S let i € {1,...,k} be
the unique 7 such that ¢t € T; and set e; '= z; € Z; where we view z; as a vector in
E. Clearly, (et)tes is a normalized bimonotone Schauder tree basis E and satisfies

properties (1) and (2) above. Precisely, the following hold.

(3) For every o € [S] there exists Y € A such that E, is isomorphic to Y.
(4) For every Y € A with a Schauder basis there exists o € [S] such that Y is
isomorphic to F,.

Let SF denote the /5 Baire sum of (e;)ses, and note that (Zle ST )e, = S¥. By
the discussion in the previous paragraph, we see that the operator J: X — SF is
an isomorphic embedding. Let Wg be the closed, bounded, convex and symmetric
set defined in Definition 5.3 for the Schauder tree basis (e;)ics. We will show that
the set Wi almost absorbs B x). To this end notice, first, that

(9.1) Wg =conv{Wyg, :ie{l,...,k}}

where W, denotes the set defined in Definition 5.3 for the space Z;. (More precisely,
we have W, = conv{ Userr Be. }.) Since the operator J: X — (Zle 75), is an
isomorphic embedding, there exists a constant C' > 0 such that if v = J(z) € B J(X)
then we have ||z|| < C. Write x = z1 + - -+ + @ with z; € ¥} and ||z;|ly < C for
every i € {1,...,k}. For every n € N let | - ||,, be the equivalent norm on 77

which is defined using the Minkowski gauge of the set 2"Wj, + LBTzi . There
2

2’L
exists a constant C’ > 0 such that for every n € N and every i € {1,...,k} we have

J(z;) € C'2"W 4, + %BTZ“ and so
2

2 conv b (503
€ (C2M)conv{Wyg, i e {1,...,k}} + — ®B._ 7.
k2 L

i=

J(xy) + -+ J(xg)
k

By (9.1), this yields that for every n € N we have
'\ &
— 7 — lon
v=J@) = J(@) + o+ I(z) € (RC'2Y) Wi + (@) ;@BTQ@
which is easily seen to imply that the set Wg almost absorbs B xy. By Theorem

5.16, there exists finite A C [S] such that the operator Ps: X — €4 is an isomorphic
embedding. By property (3) of the Schauder tree basis (e;)ics, we obtain that X
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is contained in a finite sum of members of A which contradicts our assumptions on
A. This shows that X is not contained in any finite sum of Y, as desired.

The proof for the case of a HI saturated space X is similar to the proof of
the previous case; the only difference is that it uses HI-amalgamations instead of
p-amalgamations. The proof of the theorem is completed. O

A consequence of the above theorem is the following result concerning HI Banach
spaces without a Schauder basis. We recall that the existence of such spaces was
established in [AKP].

Corollary 9.7. Let X be a HI separable Banach space without a Schauder basis.
Then the class C consisting of all subspaces of X with a Schauder basis is not
Bourgain X -generic and, consequently, not Bossard X -generic.

For the proof we need the following lemma.

Lemma 9.8. Let X be a HI space without a Schauder basis and let Yq,...,Yy be
(not necessarily distinct) subspaces of X with a Schauder basis. Then X does not
embed into Zle aY;.

Proof. Assume not. Then, by Proposition 9.5, there exist a finite-codimensional
subspace X’ of X and ig € {1,...,k} such that X’ is isomorphic to a subspace
of Y;,. Observe that X = X’ @ F for a finite dimensional space F' with dim(F') =1
and, moreover, that the space X/Yj, is infinite-dimensional. Therefore, there exists
a finite dimensional subspace G of X such that G NY;, = {0} and dim(G) =1. It
follows that there exists an isomorphism 7T: X = X' @ F — Y;, @ G. This yields
to a contradiction since Y;, @ G is a proper subspace of X (see [GM]). O

We continue with the proof of Corollary 9.7.

Proof of Corollary 9.7. We first observe that for any separable Banach space X
the class of all subspaces of X with a Schauder basis is an analytic subset of
SB. To see this notice that the class & of all separable Banach spaces with a
Schauder basis is analytic. Indeed, as we have indicated in Proposition 9.2, the
map N 3 o + U, € SB is Borel, and so the set B := {U, : ¢ € N} is analytic
(actually, it is Borel). Then S = B~ where B~ denote, as usual, the isomorphic
saturation of B. Clearly, this implies that S is analytic. Since C = § N Subs(X),
we see that C is analytic. By Theorem 9.6 and Lemma 9.8, the result follows. [

A natural question related to Theorems 9.3 and 9.6 is whether for an analytic
subset A of SB consisting of spaces with a certain property (P), the universal
space also satisfies the same property. The following definition makes this question
precise.

Definition 9.9. Let C be an isomorphic invariant class of separable Banach spaces.
We say that C is strongly bounded if for every analytic subset A of C there exists
Y € C that contains, up to isomorphism, all members of A.
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It is clear that, under the terminology of the above definition, Theorem 9.3 states
that the class of non-universal separable Banach spaces with a Schauder basis is
strongly bounded. The following theorem provides further natural examples of

strongly bounded classes.

Theorem 9.10. Let C denote one of the following classes of Banach spaces.

(1) The reflexive spaces with a Schauder basis.

(2) The spaces with a shrinking Schauder basis.

(3) The flp-saturated for some 1 < p < oo, or co-saturated spaces with a
Schauder basis.

(4) The HI saturated spaces with a Schauder basis.

(5) The unconditionally saturated spaces with a Schauder basis.

Then C is strongly bounded.

Proof. First we will deal with the cases (1), (3), (4) and (5). Let A be an analytic
subset of C (notice that, by definition, every X € A has a Schauder basis). We need
to find a separable Banach space Y € C such that every member of A is contained
in Y. We first observe that there exist a downward closed pruned tree 7 on N x N
and a space Z with a normalized bimonotone Schauder tree basis (z;)tc7 such that
the following are satisfied.

(1) For every o € [T] there exists X € A such that Z, is isomorphic to Y.
(2) For every X € A there exists o € [T] such that X is isomorphic to Z,.

In cases (1) and (4), the desired space Y is the HI-amalgamation of (z;)er; indeed,
for the class of reflexive spaces this follows from Proposition 8.5, while for the class
of HI saturated spaces it follows from part (4.a) of Definition 8.1. In the case of
unconditionally saturated spaces, the desired space Y is the p-amalgamation of
(z¢)ter for any 1 < p < oo; the fact that Y is unconditionally saturated follows
from property (4)" of Definition 8.2. The p-amalgamation space can also be used if
C is the class of /p-saturated spaces for some 1 < p < oo. Finally, if C is the class
of ¢1-saturated (respectively, cp-saturated) spaces with a Schauder basis, then the
desired space Y is the interpolation space of (757, W) by considering as external
norm the ¢1-norm (respectively, the cop-norm). Using the same arguments as in the
proof of the properties of p-amalgamations, it is easy to verify that Y is ¢;-saturated
(respectively, co-saturated) and contains all members of A.

Now we consider case (2), that is, the case of spaces with a shrinking Schauder
basis. Fix an analytic class A of spaces with a shrinking Schauder basis. As in
the previous cases, we will obtain a downward closed pruned tree T on N x N
and a space Z with a normalized bimonotone Schauder tree basis (2;)ier with the
following properties.

(P1) For every o € [T the sequence (zy|y,) is shrinking.

(P2) For every o € [T] there exists X € A such that Z, is isomorphic to X.

(P3) For every X € A there exists o € [T] such that X is isomorphic to Z,.
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To this end we will need some results from [B2] which we will briefly recall. Let U
denote the universal space of Pelczynski for Schauder basic sequences, and let (ug)
denote the basis of U. Consider the set

S :={L € [N]*°: (ug)ker is shrinking}.
In [B2, Theorem 5.4], it is shown that the set S is co-analytic and that the map
8> L+ Sz(span{uy, : k € L})

is a co-analytic rank on S where Sz(span{uy : k € L}) denotes the Szlenk index of
the space span{uy : k € L}. We also recall that the map SD 3 X — Sz(X) is a
IT{-rank on SD (see [Bo3]). Since A is an analytic subset of SD, by boundedness,
we obtain that
sup{Sz(X): X € A} =¢ < wy.
It follows that the set
Se ={L €S :Sz(spanfuy : k € L}) < ¢}
is Borel. Let (u¢);en<n be the enumeration of (ux) as described in Example 3; in
particular, for every o € N there exists L, = {l; < Iz < ---} € [N]*® such that
(tgn) is the subsequence (uy,). The map h: N — [N]*® defined by h(o) = L, is
easily seen to be continuous. It follows that the set
Ay ={oc €N :h(o) € S¢ and IY € A with U, 2 Y}
is analytic. We notice the following facts which are straightforward consequences
of the universality of U, the choice of ¢ and the definition of A;.
(i) For every o € A; the sequence (u,,) is shrinking.
(ii) For every X € A there exists o € A; such that X =2 U,.
(iii) For every o € A; there exists X € A such that U, = X.

Thus, as usual, we may construct a downwards closed pruned tree T on N x N
and a Banach space Z with a normalized bimonotone Schauder tree basis (z¢):er
such that properties (P1)-(P3) are satisfied. The desired space Y is then the
HI-amalgamation of (z;):cr; The fact that this space has a shrinking basis is an
immediate consequence of Theorem 8.6. The proof is completed. ([

We proceed to discuss another application of the above results. To this end we
introduce the following definition.

Definition 9.11. Let X be a Banach space with a Schauder basis (e,) and let
p > 1. We say that X has asymptotic type p if there exists a constant C > 0 such
that for every k € N we have that

VZ‘1 377,1 V.TQ E"I’LQ . an Va}k+1

so that if (i) below holds true, then so does (ii).
(i) For everyi € {2,...,k+ 1} we have supp(z;) C {ni—1,mi—1 +1,...}.
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(i) We have fy || S5 ri(®)ai]| dt < C(ZE farfi?) "
The notion of asymptotic cotype q, where ¢ < oo, is defined similarly. We say that
X has asymptotic non-trivial type (respectively, asymptotic non-trivial cotype) if
it has asymptotic type for some p > 1 (respectively, some q < o0).

Remark 17. We notice that a Banach space X with a Schauder basis (e,) and
with asymptotic non-trivial type does not contain ¢;. To see this observe that, by a
standard sliding hump argument, if ¢; embeds into such a space, then there would
existed a block sequence (z,,) equivalent to the ¢; basis. It is easy to see, however,
that in this case property (ii) in Definition 9.11 is not satisfied. Similarly we verify
that if X has asymptotic non-trivial cotype, then it does not contain cg.

As in the case of separable Banach spaces with non-trivial type, the class of
Banach spaces with a Schauder basis and asymptotic non-trivial type is of low
complexity.

Lemma 9.12. Let (uy)ien<n be the enumeration of the basis of Pelczynski’s uni-

versal space U as described in Proposition 9.2. Then the sets
{o € N : U, has asymptotic non-trivial type}
and
{0 € N : U, has asymptotic non-trivial cotype}
are both Borel.
Proof. Fix p> 1 and C > 0. Set
D = {Zatut :a; € Q and s is a finite segment of N<N}
tes

and Dy == {Y,c,aruy € D : for every t € s we have [t| > I} for every | € N.
Notice that D is countable (hence so is every D;), and D = D;. For every k € N
and every x1,...,2x+1 € D we say that (21,...,211) is admissible if property (ii)
in Definition 9.11 is satisfied for this tuple of vectors and the fixed constant C. Set

A(zy,...,zp1) ={oc €N : Jie {1,...,k+1} with supp(z;) € o
or (T1,...,Tkr1) 1s admissible}.

Clearly, A(z1,...,2ks1) is closed. Now observe that the set of all ¢ € A/ such that
U, has asymptotic type p with constant C' is equal to the set

NN U N U N Ao)
keN z1€D ni1€N z2€Dp, ngEN Tpy1E€DR,

It follows that the set of all o € N for which U, has asymptotic type p is Borel;
for the class of spaces with asymptotic cotype we argue similarly. The proof is
completed. [
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By Proposition 9.2 and its proof, Lemma 9.12 and Remark 17, we obtain the
following corollary.

Corollary 9.13. There exists a non-universal Banach space T (respectively, C)
with a Schauder basis such that every Banach space with a Schauder basis and
asymptotic non-trivial type (respectively, asymptotic non-trivial cotype) is contained
in T (respectively, in C) as a complemented subspace.

We close this section with the following strengthening of Theorem 3.6.

Theorem 9.14. Let X be a separable Banach space with a Schauder basis and let
A be an analytic subset of SB which contains (up to isomorphism) all HI spaces.
Then there exists Y € A containing X as a complemented subspace.

Proof. Let (z,,) be a Schauder basis of X. We may assume that (x,,) is normalized
and bimonotone. We enumerate this basis as (z;);en<v as we did in Example 1.
Consider the Hl-amalgamation A% of (z;);cy<n. Following the notation in the
proof of Theorem 8.10, for every well-founded tree T" with infinitely many nodes
let X7 be the subspace of A% generated by T. Next, let A C SB be analytic and
let A~ be the isomorphic saturation of A (which is analytic too). Since the map
®: Tr — SB defined by ®(T) = Xy is Borel, the set ®~!(A~) is analytic and
contains WF. It follows that there exists an ill-founded tree T such that Xy € Ax.
Noticing that X is a complemented subspace of Xr, the result follows. O

10. A NON-UNIVERSAL SPACE WITH UNBOUNDED 3 AND rNp INDICES

10.1. Jamesfication of a Schauder tree basis. Let X be a separable Banach
space, let A be a countable set, let 7' be a pruned subtree of A<N and let (z4)er
be a normalized bimonotone Schauder tree basis of X. We define the Jamesfication
Jx of (x¢)ter to be the completion of ¢oo(T") with the norm

k
lIz|l7x = sup {H Z ( Z 2(t))xy, HX : (sp)’;:1 are pairwise disjoint segments of T,
p=1 t€sy,

Jdo € [T] with s, C o for all p € {1,...,k},
and ¢, is C —minimal node of sp}.

Notice that (e¢)ier defines a normalized bimonotone Schauder tree basis of Jx.
Moreover, observe that for every o € [T'] the space (Jx ), is isometric to the James-
fication of X,, defined by Bellenot, Haydon and Odell in [BHO].

10.2. The Banach space R. We will give the definition of the space R for which
both the 8 and the ryp indices are unbounded, yet the space is not universal. We
start with Pelczynski’s space V' which is universal for all 1-unconditional bases. Let
(vg) denote the basis of V. We enumerate (vy) as (vt)sen<r as we did in Example 3.
Next, we consider the Jamesfication Jy of (v;);en<n. Let (e);en<n be the Schauder
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tree basis of Jy . The universality of V and the enumeration of the basis yield the
following properties.

(I) For every o € N the space (Jy ), is isometric to the Jamesfication of V.
(IT) For every space X with an unconditional basis there exists o € A/ such that
the Jamesfication of X is isomorphic to (Jv)e.

The desired space R is the HI-amalgamation Aﬁl" of (et)ien<n. We verify, first,
that the space R is not universal. To this end, we need the following definition.

Definition 10.1. We say that a Banach space X is sequentially unconditional f
for every seminormalized weakly null sequence (wy,) in X there exists L € [N]*®

such that the sequence (wp)ner is unconditional.
We need the following result (see [BHO, Proposition 2.1]).

Proposition 10.2. Let X be a Banach space with a Schauder basis (zy). Then
the Jamesfication Jx of X is sequentially unconditional.

We proceed with the following lemma.
Lemma 10.3. If (X;)%, are sequentially unconditional, then so is Z?Zl DX;.

Proof. Let (w,) be a seminormalized weakly null sequence in ijl @X;. By our
assumptions, there exists L € [N]* such that the following are satisfied.
(1) For every i € {1,...,d} either
(8) Soes IPwn)l| < 1, or
(b) the sequence (P;(wy))ner, is seminormalized.
(2) Ifi € {1,...,d} is such that (1.b) holds true, then the sequence (P;(wn))ner
is unconditional.

Note that there exists at least one ¢ € {1,...,d} such that (1.b) is satisfied. It is
then easy to verify that the sequence (wy,)necr is unconditional, as desired. O

We have the following proposition.
Proposition 10.4. Neither L1(0,1) nor C’(w“’Q) are contained in R.

Proof. Assume, on the contrary, that L;(0,1) was contained in R (the argument is
symmetric for both spaces). Since L;(0, 1) is unconditionally saturated, arguing as
the proof of Theorem 8.13, we see that there exist a finite-dimensional space F' and
(Y;){, such that L;(0,1) is isomorphic to a subspace of F @ (3% @Y;) where
for every ¢ € {1,...,d} the space Y; is isomorphic to (Jy),, for some o; € N. By
Proposition 10.2, the space (Jy ), is sequentially unconditional, and as this is a
hereditary property, so is the space Y; for every ¢« € {1,...,d}. By Lemma 10.3,
it follows that L;(0,1) is sequentially unconditional which is a contradiction by
a result of Johnson, Maurey and Schechtman [JMS]. (For the case of C(w‘*’Q) we
invoke the classical Maurey—Rosenthal example [MR].) The proof is completed. O



76 SPIROS A. ARGYROS AND PANDELIS DODOS

We will also need the fact that for every Banach space X with an unconditional
basis, the Jamesfication Jx of X is contained in R as a complemented subspace.
Although this is a straightforward consequence of the definition of R, it is important

enough to be stated in a separate proposition.

Proposition 10.5. Let X be a Banach space with an unconditional basis. Then

the Jamesfication of X is contained in R as a complemented subspace.

We proceed to show that the indices § and rnp are unbounded on R. (We refer
to [AGR, KL2] for the definitions of 8 and rxp.) To this end, we will introduce a
transfinite sequence of reflexive Banach spaces with an unconditional basis whose
Jamesfications will verify that both indices are unbounded. We should point out
that several authors have provided such examples (see, e.g., [HOR, F]). However,
these examples are rather inconvenient for our purposes.

The aforementioned spaces will be built with the help of the Schreier families
(Se)e<w,- They are compact families of finite subsets of N which satisfy, among
others, the following properties.

(1) Each S is spreading, that is, for every F = {ny < --- < ny} € S¢ and every
G = {mi < - <mg} withn; <m; forallie{l,...,k} we have G € ;.
(2) Each S¢ is hereditary, that is, if F' € S¢ and G C F, then G € S¢.
(3) The Cantor-Bendixson derivative of S¢ is equal to w®.
For the definition of the Schreier families and a discussion of their properties we
refer to [AA, AGR].
Now for every § < w let X(s, 2) be the completion of coo(N) with the norm

d
2l = s { (D7 (3 12))*)? : ()L, € S with Fy < Fy < -+ < Fajf.

i=1 neF;
(Here, for every pair F,G of nonempty finite subsets of N we write F' < G if
max(F) < min(G).) We also need to introduce an auxiliary space Xs, which is
defined to be the completion of ¢oo(N) with the norm
2llxs, =sup { D" [=m)] : F e Sc .
ner

We denote by (z,,) the standard basis of both X(s, oy and X, (from the context it
will be clear whether we refer to Xs, 2), or Xs,). Notice that (z,,) is an uncondi-
tional basis of X (s, 2). It also easy to verify that the basis in X(s, o) is boundedly
complete and so, by a classical result of James (see [LT]), the space X(s, 2) does
not contain cp. On the other hand, observe that the space X5, can be realized (up
to isomorphism) as a closed subspace of C(S¢). As the family S¢ is countable and
compact, by a result of BessagaPelczynski, the space C(S¢) is co-saturated (see,
e.g., [Ro2, Proposition 3.6]). Hence, so is the space Xs,. By the previous discus-
sion, it follows that the identity operator Id: X(s, 2) = Xs, is strictly singular. We
are now ready to state the first result concerning the space X s, 2)-
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Proposition 10.6. For every § < w the space X(s, 2) is reflexive.

Proof. Since the space X(s, 2) has a boundedly complete unconditional basis, by
the result of James mentioned above, it is enough to show that the space X s, 2
does not contain £;. We will show that, actually, the space X(s, 2) is {2-saturated.
(Clearly, this will finish the proof.) Let Y be an arbitrary infinite-dimensional
subspace of X(s, 2). Since the operator Id: X(s, 2) — Xs, is strictly singular, by a
standard sliding hump argument, there exists a normalized block sequence (wy) in
Y such that ||wk||X$E < 1/2%. We will show that the sequence (wy) is equivalent
to the standard unit vector basis of /5. First we show the lower estimate. For
every k € N set Rj, = range(wy). Since ||lwy| = 1, we may select (FF)%, such
that Ff € Se, Ff < - < F}, FF C Ry and wg]| = 30, (X, [wr(n)])? = 1.
Let | € N and let al,.. ,a; € R with ZZ 1ai = 1. Notice that the family
(FF:1<k<1,1<i<dg) consists of successive members of S¢. Therefore,

dy,

! !
HzakwkH P (ZZ Z lagwy(n 1/2
k=1

=1i=1 neF¥

S
S8
e

Next, we argue for the upper estimate. It is convenient to work with a norming
family of the dual rather than with the definition of the norm. Specifically, for
every ' € S¢ let F*(x) = .px(n). Notice that F™* € X{se,2)- We set

d
{ Z BG:F} Z B? <1 and (F;)%, are successive members of Sf}

Since the Schreier family S¢ is hereditary, by the Cauchy—Schwarz inequality, we
see that ||$HX(55,2> < 2sup {¢(z) : ¢ € F}. Also observe that if Zj’zl GiFr e F,
then for every k € N we have

d d
(10.1) > B () < (X892
=1 1=1

(If not, then we would have that ||wg| > 1.) Let Z?Zl B:F} € F be arbitrary. For
every k € {1,...,1} set I, = {i € {1,...,d} : F; N Ry, # 0}. Notice that I, is an
interval since the set (F;)L, are successive. Let my and M}, be the minimum and
maximum element of Ij, respectively, and set I}, :== Iy, \ {my, My} (of course, I, may
be empty). Observe that I; N1I; =0 for every ki, ko € {1,...,1} with ki # k.
We want to estimate the quantity

l d

(10.2) Zﬁz Zakwk => ar Y BiF; (wy Zak > BiF;
k=1 i=1

= i i€l
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where, as before, | € N and aq,...,a; € R with 22:1 ai = 1. By the selection
of the sequence (wy), we have ||wk||X5§ < 1/2%. Therefore, for every F € S¢ we
have |F*(wg)| < 1/2%, and consequently, by (10.1), for every k € N we see that
Y ier, Bl (wi) < (Zie% B2)1/2 1+ 2/2F. By (10.2), we obtain that

!
Zﬁz Zakwk <Zak(253)1/2+2
k=1 k=1 i€l

and so, by the Cauchy—Schwarz inequality, we conclude that

Zﬁz Zakwk <

This implies that || Zk 1 apwg|| < 6 and the proof is completed. O
We proceed to recall some definitions concerning spreading models.

Definition 10.7. Let £ < wy and let (x,) be a sequence in a Banach space X.
The sequence (x,) is said to be an Ef—spreading model (respectively, cg—spreading
model) if there exists C' > 0 such that for every F' € S¢ and every sequence (ar) of

C an| <[ D anaa|

ner neF

scalars we have

(respectively,
H Zanan Cmax{|a,|:n € F}).
neF
The sequence (xy,) is said to be a £&-summing spreading model if there exists C > 0
such that for every F = {l; < --- <} € S¢ and every sequence (ay) in R we have

||| an)nerll < || Y anwall < Cll(@n)nerll
nekl
where |[[(an)nep|| = max {|>;c;a,|: I C{1,...,k} is an interval}.

Lemma 10.8. Assume that X is a Banach space with an unconditional basis (x,).
Let (ey,) be the basis of the Jamesfication of X and let £ be a countable ordinal.

(a) If (zy) is an €4-spreading model, then so is every convex block sequence

(gn) of (en)-

(b) If (z,) is a cg—sp'readmg model, then (ey,) is a &-summing spreading model.

Proof. For part (a) let (g,) be a convex block sequence of (e,). For every n € N
set I,, = range(g,) and write g, = Zkeln by e, where b > 0 and Zkeln by = 1.
Let F' € S¢ be arbitrary. For every n € F set t,, == min([,,). Then ¢, > n, and so
{t, :n € F} € S as the family S¢ is spreading. Therefore,

137 angall 2 132 (32 anti)an |l = [ 3 anee, ||y 2 €Y lal

ner neF keI, neF neF
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where the last inequality follows from the fact that (x,,) is an ¢3-spreading model.
Part (b) is an immediate consequence of the definitions. The proof is completed. O

Lemma 10.9. Let £ < wy. Then the following hold.
(a) The basis (zn) of X(s,,2) is an (4 -spreading model.

n

(b) The basis (x) of X{s2) s a cg—sp'readz'ng model.

Proof. The first part is an immediate consequence of the definition of X(s, o) and
the fact that the Schreier families are hereditary. For the second part let (7)) denote
the basis of X(*S&Q). Notice that for every F' € S¢ the functional F* = " _.en

*

has norm one. Since (z,) is an unconditional basis of X (s¢,2) for every sequence

n

(an) in R and every F' € S¢ we have ||}, . pan;,|| < max{|a,|: n € F} and the
lemma is proved. ([l

Proposition 10.10. Let £ < wy. Then the following hold.

(1) The basis of the Jamesfication of X(s, 2) is weakly™ convergent to an ele-
ment f which satisfies w¢ < B(f) < wy.

(2) The basis of the Jamesfication of X{s,2) s weakly* convergent to an ele-
ment g which satisfies ws < rp(g) < wi.

Proof. Fix £ < w;. In what follows, for notational simplicity, by J¢ and Jg we shall
denote the Jamesfications of X (s, o) and X{s, 2) respectively. Also let (e,,) and (ef)
denote the bases of J¢ and Jg. By Proposition 10.6, the spaces X s, 2) and X;S&,Q)
are reflexive. By [BHO, Theorem 4.1], it follows that Je and Jg are quasi-reflexive.
Moreover, by [BHO, Theorem 2.2], the dual of J¢ (respectively, of Jg) is generated
by the biorthogonals of the basis and the “sum” functional S = (1,1,...). It is then
clear that both (e,,) and (e}) are weak™ convergent, say to f and g respectively. It
is also clear that f is a Baire-1 element, and so 8(f) < wy. On the other hand, we
have rNp(g) < wy (if not, then ¢y would embed into Jg; see [HOR]). It remains to
show the other inequalities.

For part (2) we observe that, by part (b) of Lemma 10.9, the basis (x}) of
X{s, 2 is a cg spreading model. By part (b) of Lemma 10.8, the basis (e}) of Jg
(the Jamesfication of X 55572)) is a &-summing spreading model. By [F, Theorem 9]
(see also [AGR, Theorem I1.4.8]), it follows that rxp(g) > w¢, as desired.

In order to show that 5(f) > w® we need some results from [KL2]. First we recall
the definition of the convergence rank ~y. Let K be a compact metrizable space and
let (f.) be a sequence of continuous real-valued functions on K. For every € > 0
we define a derivative operation on closed subsets of K by setting

F'—>F(/(fn)’€) = {xeF : VU3 xopenand Vn dp > g > n
Sy € UNF with [£,(y) — f,()] > e}.

By transfinite recursion, we define the iterated derivatives K (((C} ).6) (¢ < wi). The
convergent rank ’y(( fn)) of the sequence (f,) is defined in the standard way, using
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the aforementioned derivative operation. We need the following consequence of
[KL2, Theorem 2.3]: Assume that (fy) is a bounded sequence of continuous real-
valued functions on K which is pointwise convergent to f. If for every convez block
sequence (gn) of (fn) we have ¥((gn)) = ws, then B(f) = wt.

By the previous discussion, it is enough to prove that for every convex block
sequence (g,) of the basis (e,) of J¢ we have v((g,)) > w®. Fix such a convex
block sequence (g,). As we have shown in part (a) of Lemma 10.9, the basis (z,)
of X(s,,2) is an Ef—spreading model and so, by Lemma part (a) of 10.8, the same is
also true for (g,). We have the following claim.

Claim. Let I < --- < I be intervals of N with { min(I},) : k € {1,...,d}} € S.
Then ZZ:1 Iy € B]g where J; denotes the dual of the Jamesfication of X (s, 2)-

Proof of the claim. For every k € {1,...,d} set py := min(I;). Let z € J¢ with
Iz|l < 1 be arbitrary. Then we have

d d d
1> nEl < DD <D0 Y =)
k=1 k=1 n€ly k=1n€ely
d
< H Z ( Z |Z(”)|) kaHX(Sé’Q) < HZHJg
k=1 nely

where we used the fact that {ps : k € {1,...,d}} € S¢ and the fact that the basis
(zn) of X(s, 2 is an Ef—spreading model with constant one. O

For every n € N set I,, := range(g, ). Notice that (I,,) is a sequence of successive
intervals of N. Denote by K the unit ball of J¢ equipped with the weak* topology.
For every F C S¢ set Kr = { Y., cp I : F € F}. Notice that if F € S¢, then
for every n € F' we have n < min(l,,). Since the family S is spreading, we obtain
that {min(I,,) : n € F'} € S¢. By the previous claim, it follows that K r is a subset
of K. Denote by F¢ the (-th Cantor-Bendixson derivative of S¢. By induction on
countable ordinals, we will show that

© .
(10.3) Kre € Ky,

this will finish the proof of part (1). To this end notice, first, that
F'={F € & : F is not maximal}.

Let G =), cpI; € Kz be arbitrary (in particular, F' is not a maximal element
of S¢). Also let W be a weak* neighborhood of G. We may assume that there
exists ny € N with the following property. If H € K satisfies H(e,) = G(e,) for
every n € {1,...,nw}, then H € W. Let n € N, and set np = max{i : i € F'}.
We select p > ¢ > max{n,nw,nr}, and we define G' == > I+ + I. Since
FU{q} € S, we see that G’ € KN W. Moreover, |g,(G") — g4(G’)] = 1. This

implies that G € K(((1; 1) and so Kr1 C K(((lg )1 Using similar arguments, we can
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verify (10.3) for all countable ordinals (we leave the details to the interested reader).
This completes the proof of part (1), and so the entire proof is completed. [

By Propositions 10.4, 10.5 and 10.10, we have the following theorem.

Theorem 10.11. There exists a non-universal separable Banach space R for which
both the B and rnp indices are unbounded. In particular, the space R contains
neither L1(0,1) nor C(w‘*’Q).

Remark 18. (1) By definition, the space R constructed above contains ¢; and cy.
Actually, by a result of Bourgain [B2] and the c¢p-index theorem [AK], any space
for which both indices are unbounded must contain ¢; and cy.

(2) The space R is, in some sense, minimal. Namely, every subspace of R either
contains a further reflexive subspace, or ¢1, or ¢y. To see this consider a subspace Y
of R not containing any further reflexive subspace. Since R is the HI-amalgamation
of Jy and every Jy-singular subspace of R is HI and reflexive saturated, we conclude
that no subspace of Y is Jy-singular. Hence, there exist ¢ € N and a subspace
Y’ of Y such that the operator P,: Y’ — (Jy ), is an isomorphic embedding. This
yields that (Jy ), is not quasi-reflexive and so, by [BHO, Theorem 2.2], we conclude
that Y either contains #; or c¢g.

(3) Instead of using HI-amalgamations, one can obtain the same results using
p-amalgamations for any p > 2. Indeed, one simply observes that ¢, does not
embed into L; for any p > 2; the rest of the argument is identical.

APPENDIX A. THE DUAL OF T3¥

Let X be a Banach space, let A be a countable set, let T' be a pruned subtree
o A<N and let (z¢)ter a normalized bimonotone Schauder tree basis of X. Also let
75X be the £y Baire sum of (x4)e7, and set
(A1) W* = m{ U B }
o€[T)
Our goal in this appendix is to show that W* = (75X)*. To this end we need several
auxiliary results. We start with the following lemma.

Lemma A.1. Let (z;)ier be a net in T3X with the following properties.

(C1) Each z; has finite support and ||x;|| = 1.

(C2) For every w* € W* we have lim;e; w*(z;) = 0.

(C3) There exists x* € (T3%)* with x*(x;) > 5 for everyi € I.
Also let F C [T) be finite and let 0 < e < . Then there exist finite A C [T, a block
sequence (yn) and a sequence (zp) of convex combinations of (x;)icr such that the
following are satisfied.

(1) We have 3, ey lyn — znll <e.
(2) We have ANF = .
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(3) For every segment s of T with sNA = () we have || Ps(yn)|| < € for alln € N.

Proof. We start with the following observation. Let B C [T] be finite. By the defi-
nition of W* and (C2), we see that if J is any cofinal subset of I, then (Pg(z;)) e
tends weakly to 0. Thus, for every ¢ > 0 we may select a finite convex combination
w of (z;);es such that |Pp(w)| < c.

By the above remarks and a sliding hump argument, we may select a block
sequence (x,) and a sequence (wy) of convex combinations of (x;);c; such that

(O1) lim || Pp(wy,)|| = 0, and

(02) >, en llwn — 20| <e.

Notice that (O1) and (O2) yield that ||Pr(x,)|| — 0. Moreover, since (w,) is
a sequence of convex combinations of (x;);er, by (C1) and (C3), we obtain that
1 < |lwy|| <1 for every n € N and so, by (02), we have 3 — & < |2,/ < 1+¢ for
every n € N.

Next, we argue that it cannot be the case that lim || P, (x,,)|| = 0 for every o € [T].
Indeed is the case, by Proposition 4.10, we would have that the sequence (x,) is
weakly null. But this would imply that the sequence (w,,) is also weakly null which
contradicts (C3). It follows that there exist L € [N]*°, r > 0 and o € [T] such that
| Py(xy)|| > 7 for every n € L. Clearly, we may assume that € > r. Also notice
that, since lim | Pr(x,)|| = 0, we may assume that for every segment s of T' with
s C F (in the sense that there exists 0 € F with s C o) we have that || Ps(x,,)|| < §.
Thus, by passing to subsequences, we have the following properties.

(a) If s C F, then || Py(x,)|| < § for every n € N.
(b) There exists at least one segment s (in particular, a branch) with s ¢ F
such that || Ps(zy)| > € for every n € N.

Claim. There exist finite A C [T with ANF = Q) and L € [N]* such that for every
segment s of T with s A = 0 we have limsup,,c || Ps(xn)| < 5.

The proof of the above claim is identical to the proof of Lemma 4.3; the only extra
condition is that A N F' = ), which causes no problem in the argument.

Now applying inductively Lemma 4.8 we obtain a sequence (y,,) of block convex
combinations of (z,) such that for every segment s of T' with s N A = ) we have
| Ps(yn)|| < € for every n € N. (Here, A denotes the finite subset of [T'] obtained
by the above claim.) Let (z,) be the corresponding block convex combinations of
(wn)ner- Then A, (y,) and (z,) are as desired. O

Lemma A.2. Let (7;)icr be a net in T5* which satisfies (C1), (C2) and (C3)
in Lemma A.1. Then there exist a decreasing sequence () with 0 < g < % and
e; — 0, a sequence (A;) of finite subsets of [T], and for every |l € N sequences (y;,)

!
n
and (L) with the following properties.

l
n

(I) For everyl € N the sequence (y',) is block and the sequence (zl) consists of

convex combinations of (z;)icr.
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(II) We have Y, oy 2L — 94|l < e for every I € N.
(III) For every ly,ly € N with Iy # ly we have A;, N Ay, = (.
(IV) For everyl,n € N if s is a segment of T with sNA; = 0, then ||Ps(y})|| < &1

Proof. The selection of (g7), (4;), (3%) and (z) is done recursively and using
Lemma A.1. Indeed, let k£ € N and assume that ¢;, 4, (y},) and (z}) have been
constructed for every [ < k. We select ¢ with &, < min{e,_y,1/2*"1}, and we
set = A U---UAg_1. (For the first step of the selection we set F' = ().) By
Lemma A.1, we obtain Ay, (y¥) and (2F) satisfying (1)-(3) in Lemma A.1. Clearly,
ek, Ak, (yF) and (2F) are as desired. O

We proceed with the following lemma.

Lemma A.3. Let the notation and assumptions be as in Lemma A.2. Then there
exist sequences (1) and (ny) such that the sequence (ylk ) is block and satisfies
lim || P, (y%: )| = 0 for every o € [T].

In order to select the sequences (I) and (ng) described in Lemma A.3 we follow
an inductive scheme described in the following sublemma. Before we state it we
recall that if £ € A<N, then by £; we denote the set of all segments s of A<N
for which there exists ¢ € s with ¢ £ ¢. Once again we remark that the family
{L£; : t € A<N} restricted to the branches of A<N| is the usual sub-basis of the
topology on AN. Next, let T be the pruned subtree of A< which is used to define
the Schauder tree basis of X. For every t € T let T; denote the subset of L;
consisting of all segments s which belong to T

Sublemma A.4. Let L € [N]*°, and for every q € L let M, € [N]>. Also lete > 0.
Then the following hold.

(I) There exist l,n € N withl € L and n € M;.
(I1) If Ay ={ot,..., 0oL} wherel is as in (1), then for everyi € {1,...,k} there
exist t; C ol and there exists j € N such that for every iy, is € {1,...,k}
with iy # i2 we have that t;, and t;, are incomparable and |t;,| = |t;,| = J.
(IIT) There exists L' € [L]*° and for every q € L' there exists M, € [M,]* such
that for every m € M(; the following hold.
(a) We have max{k : k € h(supp(y}))} < min{k : k € h(supp(y%,))}
where [,n are as in (I) and h: T — N is the fived enumeration of T.
(b) For every segment s of T with s € Ty, U T, U--- U Ty, we have that
1Ps(ym)ll <e.
(IV) If I,n are as in (1), then for every t € supp(y,,) N A; there isi € {1,...,k}
with t; T t where (t;)_, are as in (I1).

Proof. First recall that for every ¢,n € N we have |[y?| < 14 ¢, < 2 since, by
Lemma A.2, we have ¢, < 1/2 for every ¢ € N. Fix ky € N with ev/ky > 2. Let
{li <3 < ---} be the increasing enumeration of L. Consider the set {l1,...,lx,}
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and the corresponding A;,’s for i € {1,...,ko}. Since the sets (A;,)F, are mutually
disjoint finite subsets of [T], we may select jo € N such that if we restrict every
branch o of every A;, (1 <14 < ko) after the jo-level of T, then this collection of all
these final segments of T is a collection of mutually incomparable final segments.
Let us denote these final segments by C; = {I{,..., I} } (1 < i < ko). Moreover,
for every i € {1,...,ko} and every j € {1,...,w;} let t; denote the C-least element
of I} (notice that [t;| = jo).

For every i € {1,...,ko} consider the sequence (yﬁ{)neM,i. This is a block
sequence, and so we may select n; € M;, such that for every n € M;, with n > n; the
following holds. For every ¢ € supp(yX )N A;, the length of ¢ is greater than jg, that
is, [t| > |t3| = jo forevery j € {1,...,w;}. (Notice that this property corresponds to
property (IV) in the statement of the sublemma.) The desired pair (I,n) described
in (I) will be one of the (I;,n;)’s for some i € {1,...,kq}. For notational simplicity
we set U; = T’i U---uU va{ Observe that if s; € U;,, s2 € U;, and 41 # 42, then s;
and s, are mutually incomparable provided that for every t; € s; and t5 € s5 we
have |t1], |t2| = jo

For every q € L with ¢ > I, we select n, € M, such that for every i € {1,...,ko}
and every n € M, with n > n, we have that

(i) if t € supp(y?) and {t} € U;, then |t| > jo, and
(ii) max {k:k € h(supp(y% )),1 <i < ko} < min{k : k € h(supp(y?))}.
This is possible as the sequence (yi)nens, is block. Set My = {n € M, :n = ny}.

Claim. For every q € L with ¢ > Iy, and every n € M there exists i € {1,...,ko}
such that for every segment s with s € U; we have ||Ps(y2)|| < €

Proof of the claim. If not, then there exist ¢ € L with ¢ > I, and n € M such that
for every ¢ € {1,...,k} there exists a segment s; with s; € U; and || Ps, (y2)]| > €.
By the choice of M;—in particular, by (i) above—we may assume that for every
i € {1,...,ko} and every t € s; we have [t| > jo (this is our usual restriction
argument). So the s;’s can be selected to be mutually incomparable. Therefore,

1/2
i=1 t€s;
which yields a contradiction. The claim is proved. O

By the above claim, it follows that for every ¢ € L with ¢ > [, there exist
i€{l,...,ko} and My* € [M]> C [M,]* such that for every n € M;* and every
segment s with s € U; we have || Ps(y)|| < . Hence, we may select ig € {1,...,ko}
and Ly € [L]* such that for every ¢ € L; there exists My* € [M,]* with the
property that for every n € Mj* and every segment s with s € U;, we have
IPs(y2)|| < e. The sublemma follows by setting 1 == l;,, n == ny,, {t©°, ... tlo },

) /LUZO

J = Jjo, L' = Ly and M := My* for every q € L. O



GENERICITY AND AMALGAMATION OF CLASSES OF BANACH SPACES 85

We proceed to the proof of Lemma A.3.

Proof of Lemma A.3. The sequences (I) and (ny) will be selected recursively with
the help of Sublemma A.4. We start by applying Sublemma A.4 for L =N, M, =N
for every ¢ € N and € = 1/2. The sublemma provides us with a pair I,n € N which
will be our [; and n; respectively. Also, under the notation of its proof, it provides
us with a set Uy and L’ € [L]>° = [N]*°, which we denote by L;, such that for
every q € Ly there exists My = M/ € [My]> = [N|> with the following property.
If s is a segment with s € Uy, then for every ¢ € L; and every n € Mq1 we have
1Pl < 5 =e.

Next, we apply Sublemma A.4 for L = L;, M, = Mq1 for every ¢ € L; and
e = 1/2%2, and we proceed recursively mutatis mutandis. This completes the
recursive selection.

We isolate the following crucial property established by this selection. Let s be
an arbitrary segment of 7' (it might be a branch, of course) and let ky € N. Then
one of the following mutually exclusive cases must occur.

CASE 1: We have s € Uy, In this case we have || Py(yk )|| < 1/2% for every k > ko.
This is a consequence of part (IIL.b) of Sublemma A.4.

Case 2: We have s ¢ Uy,. Consider the set A, ~obtained by Lemma A.2, and
set ' == {t:t € sandt ¢ o for every o € A;, }. Notice that s’ is a subsegment
of s and, clearly, s'N A, = 0. Invoking part (IV) of Sublemma A.4, we see that

||Ps(y£f,fo)\| = || Ps (yif,?o)H Therefore, by part (IV) of Lemma A.2, it follows that
l
1P (i) < ey
Now let o € [T] be arbitrary. Then either the set {k € N: o € Uy} is infinite, or
the set {k € N: o € Uy} is finite. If the set {k € N: o € Uy} is infinite, then, by
CASE 1, we have
lim || P, (y;t )| = 0.

On the other hand, if the set {k € N: o € Uy} is finite, then, by CASE 2 and the
choice of the sequence (g;) in Lemma A.2,

lin || P, (yy2, ) || = limey, = 0.
The proof is completed. O
We are finally in a position to describe the dual of 75X.
Theorem A.5. We have (T;*)* = span{ Userr Bx: }.

Proof. Assume not. Recall that W* = W{ UUG[T] By } By the Hahn-Banach
theorem, there exists ** € (7,5 )** such that ||z**| = 1 and 2** |y~ = 0. We select
a net (z;)ier in 73X such that w* — lim;e; 7; = ** and ||z;|| = 1 for every i € I.
Notice that there exists * € (75%)* such that x*(z;) > 1/2 for every i € I; in
particular, if w is a convex combination of (z;);cs, then we have ||w| > 1/2.
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By Lemma A.3, there exists a block sequence (ylt ) such that lim || P, (yk% )|| = 0
for every o € [T]. By Proposition 4.10, the sequence ( ﬁfk) is weakly null. Hence
so is the corresponding sequence (z[}: ) of convex combination of (z;);c obtained by
Lemma A.2. By Mazur’s theorem, we obtain a further convex combination of (2%} )
with arbitrarily small norm. Since this is also a convex combination of (x;);er, we

derive a contradiction. O
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