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Abstract. We study universality problems in Banach space theory. We show

that if A is an analytic class, in the Effros–Borel structure of subspaces of

C[0, 1], of non-universal separable Banach spaces, then there exists a non-

universal separable Banach space Y , with a Schauder basis, that contains iso-

morphic copies of each member of A with the bounded approximation property.

The proof is based on the amalgamation technique of a class C of separable

Banach spaces, introduced in the paper. We show, among others, that there

exists a separable Banach space R not containing L1(0, 1) such that the in-

dices β and rND are unbounded on the set of Baire-1 elements of the ball of

the double dual R∗∗ of R. This answers two questions of Rosenthal.

We also introduce the concept of a strongly bounded class of separable

Banach spaces. A class C of separable Banach spaces is strongly bounded if

for every analytic subset A of C there exists Y ∈ C that contains all members

of A up to isomorphism. We show that several natural classes of separable

Banach spaces are strongly bounded, among them the class of non-universal

spaces with a Schauder basis, the class of reflexive spaces with a Schauder

basis, the class of spaces with a shrinking Schauder basis and the class of

spaces with Schauder basis not containing a minimal Banach space X.
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1. Introduction

1.1. Problems concerning the structure of a separable Banach space X containing

a class C of separable Banach spaces have attracted the attention of researchers

for more than forty years. Indeed after the classical Mazur theorem that C[0, 1]

is universal for all separable Banach spaces, Pelczynski [P] presented two universal

spaces for the classes of spaces with a Schauder basis and an unconditional basis

respectively. In 1968, Szlenk in his pioneering paper [Sz] showed that there does

not exist a Banach space with separable dual that contains isomorphically every

separable reflexive space. His proof was based on a transfinite analysis of every

separable dual space, leading to the famous Szlenk index. In 1980, in two seminal

papers [B1, B3], Bourgain proved that every separable Banach space containing

either all separable reflexive Banach spaces or all C(K) with K countable com-

pact, is universal for all separable Banach spaces. For the case of reflexive spaces

Bourgain’s idea was to consider a representability tree of a given Banach space

X into a Banach space Y . The complexity of this tree provides an index of the

embedability of X into Y . The Kunen–Martin theorem and an appropriate trans-

finite sequence 〈Rξ : ξ < ω1〉 of separable reflexive Banach spaces yield the result.

(Actually, the version of the Kunen–Martin theorem needed for Bourgain’s appli-

cation was known to the Russian and Polish set theorists.) Bourgain’s approach

is simple, efficient and it is essentially the unique method for showing that a given

class C of separable Banach spaces is universal. In both results, Bourgain engaged

results from descriptive set theory in his study. In the middle of 1990’s Bossard

[Bo1, Bo2, Bo3] considered universality problems in a pure descriptive set theoretic

context. He showed that every analytic subset, in the Effros–Borel structure of

subspaces of C[0, 1], that contains all separable reflexive spaces must also contain a

universal space. To proceed with our discussion let us state the following definitions

motivated by the corresponding results of Bourgain and Bossard.

Definition A. Let C be an isomorphic invariant class of separable Banach spaces

such that every X ∈ C is not universal.

(1) We say that the class C is Bourgain generic if every separable Banach space

Y that contains all members of C, must be universal.

(2) We say that the class C is Bossard generic if every analytic subset A that

contains all members of C up to isomorphism, must also contain Y ∈ A

which is universal.

We recall that a separable Banach space X is said to be universal if it contains all

separable Banach spaces up to isomorphism.

It is clear that Bourgain genericity is what Banach space theory specialists are

interested in. A glance at the definition of Bossard genericity gives the impression

that it is related to descriptive set theory rather than Banach space theory. In the
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opposite, Godefroy [AGR, Go] has repeatedly stated that Bossard’s approach pro-

vides the appropriate frame for studying several problems of Banach space theory.

One of the goals of the present work is to support Godefroy’s thesis for problems

related to generic classes of separable Banach spaces. We believe that in the next

few lines we will convince the reader for the importance of Bossard genericity. The

following problem is central in our approach.

Problem B. Is it true that a class C of separable Banach spaces is Bourgain

generic if and only if it is Bossard generic?

We have been informed that Kechris several years ago, motivated by the results

of [KW2], had also posed a similar problem.

It is easy to see that Bossard genericity implies the Bourgain one. Therefore,

the real problem concerns the converse implication. We conjecture that the above

problem has an affirmative answer. Our optimism is based on the following theorem

which is one of the main results of the paper.

Theorem C. Let C be an analytic class of separable Banach spaces such that every

X ∈ C is not universal. Then there exists a non-universal Banach space Y with

a Schauder basis that contains isomorphic copies of each member of C with the

bounded approximation property.

The importance of a possible positive answer to Problem B arises from the fact

that it provides an efficient tool in order to check the non-universality of certain

classes of separable Banach spaces. Simply compute the complexity of the class

in question. If it is analytic, then the class is not universal. For instance, let Cuc

be the class of all separable uniformly convex Banach spaces. Bourgain in [B1]

had asked if there exists a reflexive Banach space universal for the class Cuc. Prus

[Pr1, Pr2] answered affirmatively Bourgain’s question for the subclass of uniformly

convex spaces with the approximation property. We have been informed [OS1] that

very recently Odell and Schlumprecht have succeeded to give a complete affirmative

answer to the question [OS2]. Under our point of view the class Cuc is Borel, and so

a positive answer to Problem B would immediately imply that there exists a non-

universal separable Banach space containing all members of Cuc. Other examples

are the classes Ctype and Ccotype of all separable spaces with non-trivial type and

non-trivial cotype respectively. Both are Borel, and so Theorem C provides a non-

universal separable Banach space Y containing all members of Ctype (respectively,

Ccotype) with the bounded approximation property.

We proceed to discuss the proof of Theorem C. A basic ingredient in its proof is

the HI-amalgamation (respectively, p-amalgamation for 1 < p <∞) of a family C of

separable Banach spaces with a bimonotone Schauder basis. Roughly speaking the

HI-amalgamation (respectively, p-amalgamation) of a class C is a Banach space AChi

(respectively, ACp) with a Schauder basis with the following properties.
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(P1) Every X ∈ C is isomorphic to a complemented subspace of AChi (respec-

tively, ACp).

(P2) Every subspace Y of AChi (respectively, ACp) either contains a HI subspace

(respectively, a subspace isomorphic to `p), or there exists a finite sequence

(X1, . . . , Xn) in C such that Y is isomorphic to a subspace of
∑n
i=1⊕Xi.

We prove the following theorem related to the above concept.

Theorem D. Let C be an analytic class of separable Banach spaces, and set

Cb = {X ∈ C : X has a Schauder basis}. Then there exists a HI-amalgamation ACbhi

(respectively, p-amalgamation ACbp for 1 < p < ∞) of the class Cb. Moreover, the

following hold.

(a) If every X ∈ Cb is reflexive, then ACbhi (respectively, ACbp ) is reflexive.

(b) If C does not contain a universal member, then neither ACbhi (respectively,

ACbp ) does.

To prove Theorem C from Theorem D we employ a result of Lusky [Lu] which

asserts that for every Banach space X with the bounded approximation property,

the spaceX⊕C0 has a Schauder basis. Here C0 denotes the corresponding Johnson’s

space. Let us notice that results, similar to Theorem D, can also be obtained for

the class CFDD = {X ∈ C : X has a Schauder FDD}.
It does not seem easy to pass from Theorem C to a complete answer of Problem B,

even for specific classes. A possible approach is the following. Starting from a class

C as in Theorem C, to pass to a class C′ which is also analytic, does not contain

universal members and satisfies the following. For every X ∈ C there exists X ′ ∈ C′

such that X ′ has a Schauder basis and X is isomorphic to a subspace of X ′. In this

direction the following is open for us.

Problem E. Assume that X has non-trivial type (respectively, cotype). Does there

exist a Banach space Y with a Schauder basis (or even Schauder FDD) with asymp-

totic non-trivial type (respectively, cotype) such that X is isomorphic to a subspace

of Y ?

An affirmative answer to this problem would yield that the classes Ctype and

Ccotype are not universal. (The definitions of asymptotic non-trivial type and cotype

are given in Section 9, Definition 9.11.)

A second approach is related to a deep result due to Zippin [Z]. A consequence of

it and the interpolation theorem [DFJP], is that every separable reflexive Banach

space is contained in a reflexive Banach space with a Schauder basis. However,

in order to apply this result, one needs to know that such a selection is done in a

uniform way. Zippin’s approach does not appear to be able to provide this selection

and it seems necessary to further understand the relation between the initial and

the final space.

Next we extend the concepts of Bourgain and Bossard genericity for every sep-

arable Banach space X. A deep theorem of Rosenthal [Ro3] yields that when X is
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a universal space, then the X-genericities introduced below are equivalent to the

ones defined above. There are examples showing that the additional assumptions

are necessary. One of them was indicated to us by Rosendal and Schlumprecht.

Definition F. Let X be a separable Banach space and let C be an isomorphic

invariant class of separable Banach spaces such that X is not contained in any

finite direct sum of members of C.

(1) We say that the class C is Bourgain X-generic if for every separable Banach

space Y that contains all members of C, X is isomorphic to a subspace of

a finite direct sum of Y .

(2) We say that the class C is Bossard X-generic if for every analytic subset A

that contains all members of C up to isomorphism, X is isomorphic to a

subspace of a finite direct sum of members of A.

As we mentioned above for X universal these definitions coincide with the pre-

vious ones and if X is a minimal separable Banach space (e.g., an `p space), then

the above definitions can be reduced to the corresponding analogue of Definition A.

The following problem extends Problem B.

Problem G. Let X be a separable Banach space and let C be an isomorphic in-

variant class of separable Banach spaces such that X is not contained in any finite

direct sum of members of C. Is it true C is Bourgain X-generic if and only if it is

Bossard X-generic?

It is open for us if the analogue of Theorem C is valid for an arbitrary separable

Banach space X. However, there are several classes of Banach spaces (for instance,

if X is unconditionally saturated, or HI saturated, or minimal) where the following

analogue is proved.

Theorem H. Let X be either an unconditional saturated, or HI saturated, or

minimal separable Banach space. Also let A be an analytic class of separable Banach

spaces such that X is not contained in any finite sum of members of A. Then there

exists a separable Banach space Y that contains all members of A with a Schauder

basis and X is not contained in any finite sum of Y .

As a consequence we obtain that the subspaces with a Schauder basis of a Banach

space X do not necessarily define a Bourgain X-generic class.

Corollary I. Let X be a HI separable Banach space without a Schauder basis. Then

the class C of all subspaces of X with a Schauder basis is not Bourgain X-generic

and, consequently, not Bossard X-generic either.

The existence of separable HI Banach spaces without a Schauder basis (even

without a Schauder FDD) follows from a result of Allexandrov, Kutzarova and

Plichko [AKP].
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Now we shall present two other applications of amalgamations of classes of sepa-

rable Banach spaces. The first one concerns two problems due to Rosenthal stated

in [AGR, Problems 1 and 2, page 1043]. Following Rosenthal’s notation, let us

denote by X∗∗B1
the set of all x∗∗ ∈ X∗∗ which are the weak* limit of a sequence

(xn) of X. This is equivalent to saying that x∗∗ : (BX∗ , w
∗) → R is a Baire-1

function (see [OR]). As it is well known, for every real-valued Baire-1 function

f on a compact metrizable space K several indices (scaled on countable ordinals)

have been defined measuring the discontinuities of f . We refer to [AGR, KL2]

for a detailed exposition. Rosenthal’s problems concern the indices β(x∗∗|K) and

rND(x∗∗|K) where X is a separable Banach space, x∗∗ ∈ X∗∗B1
and K = (BX∗ , w

∗).

Before we state the problems let us mention two known results related to these

indices. The first one is due to Bourgain [B2] and asserts that if X is separable

and sup{β(x∗∗|K) : x∗∗ ∈ X∗∗B1
} = ω1, then `1 is isomorphic to a subspace of X.

The second result is the c0-index theorem [AK] asserting that if X is separable and

sup{rND(x∗∗|K) : x∗∗ ∈ X∗∗B1
} = ω1, then c0 embeds into X. In his problems Rosen-

thal expresses the belief that if the two indices β and rND are unbounded, then the

structure of X must be richer than the above two results indicate. Bossard [Bo4]

has also pointed out that the only known examples of separable Banach spaces with

unbounded β are the universal ones. Rosenthal’s problems state the following.

Problem. (1) Assume that for every countable ordinal ξ there exists x∗∗ ∈ X∗∗B1

such that ξ 6 rND(x∗∗|K) < ω1. Is the space X universal?

(2) Assume that β is unbounded on X∗∗B1
. Does L1(0, 1) embed into X?

In Section 10, we present a separable Banach space R which answers negatively

both problems.

Theorem J. There exists a separable Banach space R such both β and rND are

unbounded on R∗∗B1
and neither L1(0, 1) nor C

(
ωω

2)
embeds into R.

As both indices are unbounded on R, clearly `1 and c0 embed into R. Actually,

we show that every subspace Y of R either contains a reflexive subspace, or `1,

or c0. The space R is obtained either as the HI-amalgamation, or p-amalgamation

for 2 < p < ∞, of the class C = {JX : X has an 1-unconditional basis} where JX

denotes the Bellenot–Haydon–Odell Jamesfication of X [BHO].

The second application of the amalgamations technique concerns a separable

Banach space A`1hi which is the HI-amalgamation of `1, and where the HI and `1

structures co-exist in the following manner.

Theorem K. There is a separable Banach space A`1hi with the following properties.

(1) A subspace of A`1hi is reflexive if and only if it is HI.

(2) The class C = {X : X is a reflexive subspace of A`1hi} is `1-Bossard generic.

(3) Every non-reflexive subspace of A`1hi contains a complemented copy of `1.

(4) If A`1hi = Z ⊕W , then either Z or W is isomorphic to a subspace of `1.
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1.2. The paper is organized as follows. The second section contains preliminary

notations and definitions for trees. Let us point out that trees are the central

combinatorial tool for both the descriptive set theoretic as well as the Banach

space theoretic part of the present work.

The third section is of descriptive set theoretic nature. We deal with the classes

of hereditarily indecomposable, and indecomposable separable Banach spaces, as

well as with the class of spaces not containing an unconditional sequence. It turns

out that all these classes are co-analytic non-Borel (actually, they are co-analytic

complete). Moreover, we provide some natural co-analytic ranks on these sets.

The notion of a co-analytic rank is due to Moschovakis. It is an ordinal index

on a co-analytic set A which satisfies some further definability assumptions. One

of the important properties of co-analytic ranks is that they satisfy boundedness.

This means that the rank is uniformly bounded below ω1 for every analytic subset

of the set A. Of particular importance is the embedability index introduced by

Bourgain [B1] and further studied by Bossard [Bo3]. It is defined on a separable

Banach space X and gives a quantitative estimate of how much a separable Banach

space Z with a Schauder basis (en) embeds into X. The definition of the rank

depends on the choice of the basis (en). Using the parameterized version of Lusin’s

classical theorem we show that there exists a co-analytic rank which dominates the

embedability rank of X for every choice of the Schauder basis of Z. Similar results

hold if the Banach space Z does not necessarily have a Schauder basis.

Sections 4 and 5 are devoted to the `2 Baire sum of a Schauder tree basis (xt)t∈T .

By a Schauder tree basis we mean a bounded sequence (xt)t∈T indexed by a count-

able tree of height ω and satisfying the property that for every branch σ of T

the sequence {xt : t @ σ} is a bimonotone basic sequence. The `2 Baire sum of

(xt)t∈T , denoted by T X2 , is a new norm defined on (xt)t∈T similar to norms con-

sidered by Bourgain [B1] and Bossard [Bo3]. It follows easily from the definition

that, for every branch σ of T the initial norm and the new one are isometric on

the space Xσ = span{xt : t @ σ}. Furthermore, for every σ the space Xσ is an

1-complemented subspace of T X2 by a natural projection Pσ. Our investigation is

focused on the X-singular subspaces on T X2 , that is, on the subspaces Y of T X2 for

which the operator Pσ : Y → T X2 is strictly singular for every σ ∈ [T ]. It is shown

that every X-singular subspace does not contain `1. On the other hand for every

(xt)t∈T with T perfect, the space c0 is isomorphic to an X-singular subspace of T X2 .

Next, we consider the set WX = conv
{⋃

σ∈[T ]BXσ
}

where BXσ denotes the unit

ball of Xσ. On the pair (T X2 ,WX) we apply the Davis–Figiel–Johnson–Pelczynski

p-interpolation method (for 1 < p <∞), or its variant, the HI interpolation which

is presented in this paper and it is a modification of the corresponding one in [AF].

The resulting spaces AXp and, respectively, AXhi are the amalgamation spaces men-

tioned before. There is a key property of the set WX , permitting us to establish
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the properties of the amalgamation of a class C, which is related to the notion of

thin sets (see [N1, AF]).

Theorem L. For every X-singular subspace Y of T X2 the set WX is thin on Y .

Theorem L requires several steps and uses some techniques from [AF].

Sections 6 and 7 are devoted to a brief presentation of the HI interpolation

mentioned above. In Section 8, we establish the properties of AXhi and we pro-

vide some applications. Sections 9 and 10 include the proofs of the results men-

tioned in the first part of the introduction. In an appendix, we have included

the study of the structure of the dual of T X2 . More precisely, we show that

(T X2 )∗ = span
{⋃

σ∈[T ]X
∗
σ

}
.

We also define the concept of a strongly bounded class of separable Banach spaces

and we provide some examples of such classes. This notion is a strengthening of

the classical property of boundedness of co-analytic ranks. Kechris had also asked

for the existence of non-trivial strongly bounded classes of Banach spaces.

Definition M. Let C be an isomorphic invariant class of separable Banach spaces.

We say that C is strongly bounded if for every analytic subset A of C there exists

Y ∈ C that contains all members of A up to isomorphism.

Under the terminology of the above definition, Theorem C states that the class of

non-universal separable Banach spaces with a Schauder basis is strongly bounded.

The following theorem provides other examples of strongly bounded classes.

Theorem N. Let C denote one of the following classes of Banach spaces.

(1) The reflexive spaces with a Schauder basis.

(2) The spaces with a shrinking Schauder basis.

(3) The `p-saturated for some 1 6 p < ∞, or c0-saturated spaces with a

Schauder basis.

(4) The unconditionally saturated spaces with a Schauder basis.

(5) The HI saturated spaces with a Schauder basis.

Then C is strongly bounded.

We close this introduction by pointing out that all the results related to classes C
of separable Banach spaces with a Schauder basis, remain valid for the wider class

of spaces with a Schauder FDD.
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Bill Johnson, Vassilis Kanellopoulos, Alekos Kechris, Ted Odell, Christian Rosendal

and Thomas Schlumprecht. We extend our warm thanks to all of them. Also we

are grateful to Haris Raikoftsalis for pointing out to us a gap in an earlier version
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Addendum. Recently, Valentin Ferenczi and the second named author have shown

that the classes of separable reflexive spaces and of spaces with separable dual are

strongly bounded.

2. Trees

2.1. Let N = {1, 2, . . . } denote the set of positive integers. By [N]∞ we denote the

set of all infinite subsets on N. If L ∈ [N]∞, then by [L]∞ we denote the set of all

infinite subsets of L. As it is common in Ramsey theory, for every L ∈ [N]∞ by

[L]2 we denote the set of all pairs (i, j) such that i, j ∈ L and i < j.

2.2. Let Λ be a countable set. By Λ<N we denote the set of all nonempty finite

sequences of Λ (we do not include the empty sequence for purely technical reasons).

We view Λ<N as a tree under the strict partial order @ of extension. Notice that

Λ<N has infinitely many roots.

2.2. We use the letter t to denote the nodes of Λ<N.

2.3. If t1, t2 ∈ Λ<N with t1 v t2, then the set {t : t1 v t v t2} is called a segment

of Λ<N (in particular, nodes are segments). The sets of the form {t′ : t′ v t} are

called initial segments while the sets of the form {t′ : t v t′} final segments. All

segments will be denoted by s.

2.4. If t ∈ Λ<N, then the length of t is defined to be the cardinality of the set

{t′ : t′ v t}. It is denoted by |t|. Observe that if t = (l1, l2, . . . , lk), then |t| = k. If

n ∈ N, then the n-level of Λ<N is defined to be the set {t : |t| = n}.

2.5. We identify the branches of (Λ<N,@) with the elements of the space ΛN. If we

equip Λ with the discrete topology, then ΛN is homeomorphic to the Baire space NN,

denoted by N . For every σ ∈ ΛN and every n ∈ N we set σ|n =
(
σ(1), . . . , σ(n)

)
.

Notice that
∣∣σ|n∣∣ = n for every n ∈ N and every σ ∈ ΛN.

2.6. Two nodes t1, t2 ∈ Λ<N are called comparable if either t1 v t2 or t2 v t1. More

generally, if A1, A2 ⊆ Λ<N, then A1 and A2 are called comparable if there exist

t1 ∈ A1 and t2 ∈ A2 with t1, t2 comparable; otherwise, they are called incomparable.

Notice that if A1 and A2 are incomparable, then they are disjoint.

2.7. If t ∈ Λ<N, then by Lt we denote the set of all segments s of Λ<N for which

there exists t′ ∈ s with t v t′. Observe that the family {Lt : t ∈ Λ<N} restricted to

the branches of Λ<N forms the usual sub-basis of the topology of ΛN.

2.8. If s is a segment of Λ<N and A ⊆ ΛN, then we write s ∩ A = ∅ to denote the

fact that the sets s and {t : ∃σ ∈ A with t @ σ} are disjoint. More generally, if s is

a segment of Λ<N and A ⊆ Λ<N, then we write s ∩ A = ∅ to denote the fact that

the sets s and {t : t ∈ A} are disjoint.

2.9. Let A be a subset of Λ<N. We say that A is segment complete if for every

t1, t2, t3 ∈ Λ<N with t1 v t2 v t3 and t1, t3 ∈ A, we have that t2 ∈ A.
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2.10. By Tr(Λ) we denote the set of all downward closed subtrees of Λ<N, that is,

T ∈ Tr(Λ)⇔ ∀t, t′ ∈ Λ<N (t′ v t and t ∈ T ⇒ t′ ∈ T ).

(By convention, the empty set is a tree.) By identifying every T ∈ Tr(Λ) with

its characteristic function, we see that Tr(Λ) is a closed subspace of 2Λ<N
. A tree

T ∈ Tr(Λ) is said to be well-founded if for every σ ∈ ΛN there exists n ∈ N such

that σ|n /∈ T . The set of all well-founded trees is denoted by WF(Λ). A tree

T ∈ Tr(Λ) \WF(Λ) is called ill-founded. The set of all ill-founded trees is denoted

by IF(Λ). If Λ = N, then the set of trees on N is simply denoted by Tr.

2.11. For every T ∈ WF(Λ) we set T ′ := {t ∈ T : ∃t′ ∈ T with t @ t′}. By

transfinite recursion, for every ξ < ω1 we define T (0) = T , T (ξ+1) =
(
T (ξ)

)′
and

T (ζ) =
⋂
ξ<ζ T

(ξ) if ζ is a limit ordinal. The order of T is defined to be the least

ordinal ξ such that T (ξ) = ∅. It is denoted by o(T ).

2.12. A (downward closed) subtree T of Λ<N is said to be pruned if for every t ∈ T
there exists t′ ∈ T such that t @ t′. Given a pruned tree T one defines the body [T ]

of T to be the set

[T ] := {σ ∈ ΛN : σ|n ∈ T for every n ∈ N}.

Notice that [T ] is a closed subset of ΛN. Actually the pruned subtrees of Λ<N are in

one-to-one correspondence with the closed subsets of ΛN via the bijection T 7→ [T ]

(see [K, page 7]). There is a canonical way to assign to every tree T its pruned part

Tpr. This is done using the derivative operation T 7→ T ′ defined above. Specifically,

for every T ∈ Tr(Λ) set T ′ := {t ∈ T : ∃t′ ∈ T with t @ t′}, and notice that T

is pruned if and only if T ′ = T . By transfinite recursion, we define the iterated

derivatives T (ξ) of T for every ξ < ω1. Finally, we set Tpr = T (∞). Observe that

T ∈WF(Λ) if and only if Tpr = ∅.

3. Complexity and ranks

We shall briefly review some basic concepts of descriptive set theory.

3.1. Standard Borel spaces. Let (X,Σ) be a measurable space. Then (X,Σ)

is said to be a standard Borel space if there exists a Polish topology τ on X such

that Σ = B(X, τ), that is, the Borel σ-algebra of (X, τ) coincides with Σ. Using

the classical fact that for every Borel subset B of a Polish space X, there exists a

finer Polish topology on X (with the same Borel sets) making B clopen (see [K,

Theorem 13.1]) we see that if (X,Σ) is a standard Borel space and B ∈ Σ, then B

equipped with the relative σ-algebra is a standard Borel space too.

An important example of a standard Borel space is the Effros–Borel structure.

Let X be a Polish space and denote by F (X) the set of all closed subsets of X. We

endow F (X) with the σ-algebra generated by the sets {F ∈ F (X) : F ∩ U 6= ∅}
where U ranges over all open subsets of X. The space F (X) equipped with this
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σ-algebra is called the Effros-Borel space of F (X). The basic fact is the following

(see [K, Theorem 12.6]).

Theorem 3.1. If X is Polish, then the Effros–Borel space of F (X) is standard.

The fact that a standard Borel space is just the Borel σ-algebra of a Polish space,

allows us to speak about analytic, co-analytic and projective, in general, subsets of

a standard Borel space. We will use the modern logical notation to denote these

classes. Hence, Σ1
1 stands for the analytic sets while Π1

1 stands for the co-analytic

ones. For more information we refer to [K].

3.2. The standard Borel space of separable Banach spaces. Let X be a

separable Banach space, and set

Subs(X) := {F ∈ F (X) : F is a closed linear subspace of X}.

Then Subs(X) is a Borel set in F (X) (see [K, page 79]) and so a standard Borel

space on its own right. If X = C(2N), then the space Subs
(
C(2N)

)
is the standard

Borel space of all separable Banach spaces and we denote it simply by SB. We

recall some basic properties of SB.

3.2.1. If X ∈ SB, then Subs(X) is a Borel subset of SB (see [K, page 76]).

3.2.2. The set of all infinite-dimensional separable Banach spaces is a Borel subset

of SB. More generally, this holds for the infinite-dimensional subspaces of a fixed

infinite-dimensional X ∈ SB (see [K, page 79]).

3.2.3. The relation {(Y,X) : Y is a closed subspace of X} is Borel in SB× SB (see

[K, page 76]).

3.2.4. A simple application of the Kuratowski–Ryll-Nardzewski selection theorem

(see [K, page 76]) yields that there exists a sequence dn : SB → C(2N) (n ∈ N)

of Borel functions such that {dn(X) : n ∈ N} = X for every X ∈ SB. As these

functions can be chosen so that dn(X) 6= 0 for every n ∈ N and every X ∈ SB, this

shows that there also exists a sequence Sn : SB→ C(2N) (n ∈ N) of Borel functions

such that {Sn(X) : n ∈ N} = SX for every X ∈ SB. Clearly all these facts can be

relativized to Subs(X) for any X ∈ SB.

3.2.5. The equivalence relation ∼= of isomorphism is analytic, that is, the set

{(X,Y ) : X is linearly isomorphic to Y }

is Σ1
1 in SB× SB (see [Bo3, page 127]).

As we are mainly interested in infinite-dimensional Banach spaces we will follow

the convention that SB consists of all infinite-dimensional separable Banach spaces

(the same also holds for Subs(X) of any infinite-dimensional X ∈ SB). This causes

no problems since, by 3.2.2, these are standard Borel spaces.
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3.3. The method of completeness. Let X,Y be standard Borel spaces, A ⊆ X
and B ⊆ Y . We say that A is reducible to B, in symbols A 6 B, if there exists a

Borel map f : X → Y such that

x ∈ A⇔ f(x) ∈ B.

Notice that if A 6 B and B 6 C, then A 6 C. Also observe that if A 6 B, then

X \A 6 Y \B. Now let Γ be any class of sets in Polish spaces (such as Σ1
1, or Π1

1)

and let Γ̌ be its dual class, that is, Γ̌ = {A : X \A ∈ Γ}.

Definition 3.2. A subset B of a standard Borel space X is said to be Γ-hard if

for any standard Borel space Y and any A ⊆ Y which is in Γ(Y ) we have that A

is reducible to B. If, in addition, B is in Γ(X), then B is said to be Γ-complete.

Notice that if Γ is closed under pre-images of Borel maps and not self-dual, that

is, Γ 6= Γ̌, then no Γ-hard set is in Γ̌. In particular, any Π1
1-complete set is not

analytic (whether the converse is true is one of the most fascinating questions in

descriptive set theory). This gives us a method (which goes back to the beginnings

of descriptive set theory) of proving that a subset B of a standard Borel space is not

analytic. Select an already known Π1
1-complete set and show that it is reducible

to B. A basic example of a Π1
1-complete set is the set WF of all well-founded trees

on N. In particular, we have the following theorem (see [K, page 243]).

Theorem 3.3. The set WF is Π1
1-complete.

Clearly, the above theorem yields that the set IF is Σ1
1-complete.

3.4. Co-analytic ranks. Let X be standard Borel space and let A ⊆ X be a

Π1
1 set. A map φ : A → Ord is said to be a Π1

1-rank on A if there are relations

6Σ,6Π⊆ X ×X in Σ1
1 and Π1

1 respectively, such that for any y ∈ A we have

φ(x) 6 φ(y)⇔ x 6Σ y ⇔ x 6Π y.

The notion of a Π1
1-rank is due to Moschovakis (although its present form is due to

Kechris). It is a fundamental fact of the structural theory of Π1
1 sets that every Π1

1

set admits a Π1
1-rank (see [Mo, K]). For our purposes the most important property

of a Π1
1-rank φ is that it must satisfy boundedness. That is, if φ : A → ω1 is a

Π1
1-rank on A and B ⊆ A is Σ1

1, then we have (see [K, Theorem 35.23])

sup{φ(x) : x ∈ B} < ω1.

On the Π1
1-complete set WF, a canonical Π1

1-rank is the map which assigns to every

well-founded tree T its order o(T ), which is of course a countable ordinal (see [K,

page 269]).

Notice that if X and Y are standard Borel spaces, A ⊆ X is reducible to B ⊆ Y
via a Borel map f and φ is a Π1

1-rank on B, then the map ψ : A→ Ord defined by

ψ(x) = φ
(
f(x)

)
for every x ∈ A, is a Π1

1-rank on A. This provides us a canonical

way for producing natural Π1
1-ranks on Π1

1 sets. Simply find a natural reduction of
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the set in question to WF (which of course a priori exists, but may be artificial in

some sense), and then assign to every point in our set the order of the well-founded

tree to which the point is reduced. For more on Π1
1-ranks as well as applications of

rank theory in analysis we refer to [K, KL1, KW1].

3.5. Classes of separable Banach spaces. In this subsection we will treat

some classes of separable Banach spaces. We will give an upper bound for their

complexity and provide natural ranks on them.

3.5.1. Hereditarily indecomposable spaces. Let HI be the set of all separable hered-

itarily indecomposable Banach spaces. Notice that

X ∈ HI ⇔ ∀Y,Z ↪→ X d(SY , SZ) = 0

⇔ ∀Y,Z ↪→ X ∀k ∃n,m such that ‖Sn(Y )− Sm(Z)‖ 6 1

k
.

(Here, (Sn) stands for the sequence of Borel functions defined in 3.2.4.) This shows

that HI is Π1
1. For the convenience of the reader not familiar with descriptive set-

theoretic calculations we will briefly describe a more detailed argument. Indeed,

let A1 =
⋃
k∈N

⋂
n,m∈N{(Y,Z) : ‖Sn(Y )− Sm(Z)‖ > 1

k}. Since for every n ∈ N the

function Sn : SB → C(2N) is Borel, we see that A1 is Borel in SB × SB. Now set

A = {(X,Y, Z) : Y, Z ↪→ X} ∩ (SB×A1). The relation {(X,Y ) : Y ↪→ X} is Borel

in SB× SB. Therefore, the set A is Borel in SB3. Moreover,

X /∈ HI⇔ X ∈ projSBA

where projSB denotes the projection in the first coordinate. This implies that SB\HI

is analytic, as desired.

We proceed to find a reduction of HI to the set of all well-founded trees on N×N.

To this end let Tr(N × N) be the set of all downward closed trees on N × N. We

identify every T ∈ Tr(N × N) with the set of all pairs (t1, t2) ∈ N<N × N<N with

|t1| = |t2| = l and such that((
t1(1), t2(1)

)
, . . . ,

(
t1(l), t2(l)

))
∈ T.

Before we describe the reduction let us introduce some terminology. For every

t ∈ N<N with t = (n1, . . . , nl) and every X ∈ SB set

Xt := span
{
dn1(X), . . . , dnl(X)

}
.

Observe that Xt is a finite-dimensional subspace of X. Moreover, notice that the

vectors dn1(X), . . . , dnl(X) are linearly independent if and only if dimXt = l = |t|.
We say that t is X-independent if dimXt = |t|. Note that, for every t ∈ N<N the

set It = {X ∈ SB : t is X-independent} is Borel. To see this observe that

X /∈ It ⇔ ∃a1, . . . , al ∈ R ∃i ∈ {1, . . . , l} such that ai 6= 0 and

a1dn1
(X) + · · ·+ aldnl(X) = 0.



14 SPIROS A. ARGYROS AND PANDELIS DODOS

Now let X ∈ SB and k ∈ N. We introduce a tree on N×N, denoted by THI(X, k),

as follows. We set

(t1, t2) ∈ T ⇔ |t1| = |t2|, t1, t2 are X-independent and d(SXt1 , SXt2 ) >
1

k
.

Next, we “glue” the trees THI(X, k) in a natural way to build a tree THI(X) on

N× N defined by the rule

(t1, t2) ∈ THI(X) ⇔ ∃k ∈ N such that t1(1) = t2(1) = k and

either |t1| = |t2| = 1 or

t1 = kat′1, t2 = kat′2 and (t′1, t
′
2) ∈ THI(X, k).

Clearly, the tree THI(X) describes all our attempts to produce a decomposable

subspace of X. Moreover, we have the following lemma.

Lemma 3.4. The map SB 3 X 7→ THI(X) ∈ Tr(N×N) is a Borel reduction of HI

to WF(N× N).

Proof. First we check the Borel measurability of the map. Fix (t1, t2) ∈ N<N×N<N

with |t1| = |t2|. Using the Borel measurability of the functions (Sn), for every

k ∈ N it is easy to see that the set {X : d(SXt1 , SXt2 ) > 1
k} is Borel. Moreover,

by the discussion before the lemma, the set {X : t1 and t2 are X-independent} is

Borel too. It follows that for any (t1, t2) ∈ N<N×N<N with |t1| = |t2| the pre-image

of the set {T ∈ Tr(N × N) : (t1, t2) ∈ T} is Borel in SB. As this family forms a

sub-basis of the topology of Tr(N× N), the Borel measurability is clear.

Now we claim that

X ∈ HI⇔ ∀k THI(X, k) ∈WF(N× N)⇔ THI(X) ∈WF(N× N).

To see this notice that if X /∈ HI, then a standard perturbation argument yields

that there exists a k ∈ N such that THI(X, k) is not well-founded. Clearly, in this

case THI(X) is not well-founded either. Conversely, if THI(X) is not well-founded,

then there exists a k ∈ N such that THI(X, k) is not well-founded either (actually,

this will also be the case for every m > k). The definition of THI(X, k) easily yields

the existence of a decomposable subspace of X (here we made crucial use of the

fact that the nodes of THI(X, k) correspond to linearly independent vectors). The

proof is completed. �

By Lemma 3.4, we see that the Borel map X 7→ THI(X) is a reduction of HI

to WF(N × N). Since the map T 7→ o(T ) is a Π1
1-rank on WF(N × N), it follows

that the map X 7→ o
(
THI(X)

)
is a Π1

1-rank on HI. We will see, later on, that HI is

Π1
1-complete, and so this rank is unbounded on HI.

3.5.2. Spaces with no unconditional sequence. Let NUC be the set of all separable

Banach spaces with no unconditional sequence. We will show that NUC is Π1
1.

Actually instead of calculating the complexity of NUC we will find a reduction of
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NUC to WF. Not only this will show that NUC is Π1
1, but also, as in the case of

HI spaces, it will provide a natural Π1
1-rank on NUC.

For every k ∈ N let TNUC(X, k) be the tree on N defined by the rule

t = (n1, . . . , nl) ∈ TNUC(X, k) ⇔ the sequence dn1
(X), . . . , dnl(X)

is k-unconditional

where, as usual, a finite sequence (xi)
l
i=1 is said to be k-unconditional if for every

a1, . . . , al ∈ R and F ⊆ {1, . . . , l} we have ‖
∑
i∈F aixi‖ 6 k‖

∑l
i=1 aixi‖. This

tree has been considered by Tomczak-Jaegermann in [TJ] (see also [BL, page 337]).

As in the previous paragraph, we “glue” the trees TNUC(X, k) and we produce a

tree TNUC(X). It is easy to check that the map SB 3 X 7→ TNUC(X) ∈ Tr is Borel

and, moreover,

X ∈ NUC⇔ ∀k TNUC(X, k) ∈WF⇔ TNUC(X) ∈WF.

This is the desired reduction.

3.5.3. Indecomposable spaces. Let I be the set of all separable indecomposable

Banach spaces. We claim that it is Π1
1. Indeed,

X ∈ I ⇔ ∀Y, Z ↪→ X (Y + Z is dense in X ⇒ d(SY , SZ) = 0)

⇔ ∀Y,Z ↪→ X
[(
∀n ∀i ∃m, k with ‖dn(X)− dm(Y )− dk(Z)‖ 6 1

i

)
⇒(

∀l ∃m′, k′ with ‖Sm′(Y )− Sk′(Z)‖ 6 1

l

)]
.

Counting quantifiers and using the Borel measurability of the functions involved

in the above expression we see that the class of indecomposable spaces is Π1
1.

Using similar ideas as in the case of HI spaces, one may construct a Π1
1-rank on

I (although in this case the construction is more involved). Instead of describing

such a construction, we will take the opportunity to propose a natural Π1
1-rank on

the set of all separable reflexive Banach spaces.

3.5.4. Reflexive spaces. Let REFL be the set of all separable reflexive Banach

spaces. Bossard has shown in [Bo3] that the set REFL is Π1
1-complete. We will

give a natural Π1
1-rank on REFL by finding a reduction of it to WF. To this end,

for every X ∈ SB and every k, n ∈ N we define a tree TREFL(X, k, n) on X by

(xi)
l
i=1 ∈ TREFL(X, k, n) ⇔ the finite sequence (xi)

l
i=1 is k-Schauder, and

∀a1, . . . , al ∈ R+ with

l∑
i=1

ai = 1 we have

∥∥ l∑
i=1

aixi
∥∥ > 1

n

where the finite sequence (xi)
l
i=1 is said to be k-Schauder if for every b1, . . . , bl ∈ R

and every 1 6 m1 6 m2 6 l we have ‖
∑m1

i=1 bixi‖ 6 k‖
∑m2

i=1 bixi‖. Clearly, the
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tree TREFL(X, k, n) describes all our attempts to build a basic sequence in X with

no weakly null subsequence. We have the following lemma.

Lemma 3.5. Let X ∈ SB. Then X ∈ REFL if and only if for every k, n ∈ N the

tree TREFL(X, k, n) is well-founded.

Proof. First assume that there exist k, n ∈ N such that the tree TREFL(X, k, n) is

not well-founded. Let (xi) be an infinite branch of TREFL(X, k, n). By Rosenthal’s

theorem [Ro1], there exists L ∈ [N]∞ such that either the sequence (xi)i∈L is

equivalent to the `1 basis, or the sequence (xi)i∈L is weakly Cauchy. In the first case,

we immediately obtain that X is not reflexive. In the second case, we distinguish

the following subcases. Either the sequence (xi)i∈L is weakly convergent, or there

exists x∗∗ ∈ X∗∗ \X such that w∗ − limi∈L xi = x∗∗. Clearly, the second subcase

implies that X is not reflexive. So we only have to deal with the case when (xi)i∈L is

weakly convergent. By the definition of the tree TREFL(X, k, n), we see that (xi)i∈L

is a basic sequence. Hence, (xi)i∈L must be weakly null. By Mazur’s theorem, there

exist a finite convex combination z of (xi)i∈L such that ‖z‖ < 1
n . But this is clearly

impossible by the definition of the tree. Hence, in any case we have that X is not

reflexive.

Now assume that X is not reflexive. We must show that there exist k, n ∈ N such

that TREFL(X, k, n) is not well-founded. If `1 embeds into X, then this is clearly

possible. If not, then there exist x∗∗ ∈ X∗∗ \ X with ‖x∗∗‖ = 1 and a sequence

(xi) such that w∗ − limxi = x∗∗. We select x∗ ∈ X∗ with ‖x∗‖ 6 1 such that

x∗(xi) > 1
2 for every i ∈ N. There exists L ∈ [N]∞ such that the sequence (xi)i∈L

is basic with basis constant, say, k ∈ N (see [D, page 41]). Let {l1 < l2 < · · · }
denote the increasing enumeration of L. Since x∗(xl) > 1

2 for every l ∈ L, we see

that (xli)
m
i=1 ∈ TREFL(X, k, 2) for every m ∈ N. The proof is completed. �

Now we consider the following tree TREFL(X, k, n) on N defined by

t ∈ TREFL(X, k, n)⇔ t = (n1, . . . , nl) and dn1
(X), . . . , dnl(X) ∈ TREFL(X, k, n).

The tree TREFL(X, k, n) corresponds to a subtree of TREFL(X, k, n). Moreover, by

Lemma 3.5, and a standard perturbation argument we obtain that

X ∈ REFL⇔ ∀k, n TREFL(X, k, n) is well-founded⇔ ∀k, n TREFL(X, k, n) ∈WF.

By “gluing” the trees TREFL(X, k, n) in the obvious way, we construct a Borel map

SB 3 X 7→ TREFL(X) ∈ Tr such that

X ∈ REFL⇔ TREFL(X) ∈WF.

This is the desired reduction.

3.5.5. Spaces with non-trivial type, or non-trivial cotype. All the classes presented

so far, as well as the classes presented in [Bo3], are actually Π1
1-complete. The
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following classes are important families of separable Banach spaces which are of

low complexity.

Let 1 < p 6 2 and 2 6 q < ∞. Let Type(p) and Cotype(q) be the sets of all

separable Banach spaces with type p and co-type q respectively. Both Type(p) and

Cotype(q) are Borel in SB. To see this observe that

X ∈ Type(p) ⇔ ∃C > 0 such that ∀(xi)ki=1 in X∫ 1

0

∥∥ k∑
i=1

ri(t)xi
∥∥ dt 6 C( k∑

i=1

‖xi‖p
)1/p

⇔ ∃C > 0 such that ∀F = {n1, . . . , nk} ⊆ N finite∫ 1

0

∥∥ k∑
i=1

ri(t)dni(X)
∥∥ dt 6 C( k∑

i=1

‖dni(X)‖p
)1/p

.

(Here, (ri) denotes the sequence of Rademacher functions—see [LT]). This shows

that Type(p) is Borel. Similarly we verify that Cotype(q) is Borel. As a separable

Banach space X has non-trivial type (respectively, non-trivial cotype) if and only

if there exists p ∈ Q with 1 < p 6 2 (respectively, q ∈ Q with 2 6 q < ∞) such

that X ∈ Type(p) (respectively, X ∈ Cotype(q)), this also shows that the class

of separable Banach space with non-trivial type (respectively, cotype) is a Borel

subset of SB.

3.6. Applications. Our first application is the following theorem.

Theorem 3.6. Let A be an analytic subset of SB that contains, up to isomorphism,

all separable reflexive HI spaces. Then there exists X ∈ A which is universal.

We will see, later on, that a stronger version of Theorem 3.6 holds true. We will

give a proof of this result which is based on the results in [Ar] and will illustrate

the use of boundedness of Π1
1-ranks on this kind of results.

First we discuss some results presented by Bossard in [Bo3]. Let Z be a separable

Banach space with a Schauder basis. Let (en) be a basis of Z, and let C > 0 be

the basis constant of (en).

Let X ∈ SB and k ∈ N. We construct a tree T(X,Z, (en), k) on X, sometimes

called the embeddability tree of Z in X, as follows. Let

(xi)
l
i=1 ∈ T(X,Z, (en), k)⇔ (xi)

l
i=1 is k-equivalent to (ei)

l
i=1

where, as usual, (xi)
l
i=1 is said to be k-equivalent to (ei)

l
i=1 if for every a1, . . . , al ∈ R

we have

1

k

∥∥ l∑
i=1

aiei
∥∥
Z
6
∥∥ l∑
i=1

aixi
∥∥
X
6 k

∥∥ l∑
i=1

aiei
∥∥
Z
.

The above defined tree was first consider by Bourgain (see [B1]). Notice that Z is

isomorphic to a subspace of X if and only if there exists k ∈ N such that the tree
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T(X,Z, (en), k) is not well-founded. We also construct a tree T (X,Z, (en), k) on N
as follows. We set

t ∈ T (X,Z, (en), k)⇔ t = (n1, . . . , nl) and (dni(X))li=1 ∈ T(X,Z, (en), k).

Then, T (X,Z, (en), k) corresponds to a subtree of T(X,Z, (en), k). We need the

following lemma (see also [Bo3]).

Lemma 3.7. For every X ∈ SB we have

sup
{
o
(
T(X,Z, (en), k)

)
: k ∈ N

}
= sup

{
o
(
T (X,Z, (en), k)

)
: k ∈ N

}
.

Proof. It is clear that

sup
{
o
(
T(X,Z, (en), k)

)
: k ∈ N

}
> sup

{
o
(
T (X,Z, (en), k)

)
: k ∈ N

}
.

Conversely, fix X ∈ SB and k ∈ N. We have the following claim.

Claim. We set T = T(X,Z, (en), k) and T = T (X,Z, (en), 2k). Let ξ < ω1,

(xi)
l
i=1 ∈ T(ξ) and t = (n1, . . . , nl) ∈ N<N such that ‖xi − dni(X)‖ 6 1

2kC ·
1

2i+1 for

every i ∈ {1, . . . , l}. Then we have t ∈ T (ξ).

To prove the claim we use the classical fact (see, e.g., [LT]) that if (xi)
l
i=1 is

k-equivalent to (ei)
l
i=1, and (yi)

l
i=1 is such that ‖xi − yi‖ 6 1

2kC ·
1

2i+1 for every

i ∈ {1, . . . , l}, then (yi)
l
i=1 is 2k-equivalent to (ei)

l
i=1. Since the sequence

(
dn(X)

)
is

dense inX, the claim follows easily by induction on countable ordinals. We conclude

that o
(
T(X,Z, (en), k)

)
6 o
(
T (X,Z, (en), 2k)

)
, and the proof is completed. �

We “glue” the trees T (X,Z, (en), k) and we obtain a tree T
(
X,Z, (en)

)
on N

with the following properties.

(P1) Z is not isomorphic to a subspace of X if and only if T
(
X,Z, (en)

)
is

well-founded.

(P2) For every k ∈ N we have o
(
T (X,Z, (en))

)
> o
(
T(X,Z, (en), k)

)
.

It is easy to see that the map SB 3 X 7→ T
(
X,Z, (en)

)
∈ Tr is Borel and so, by

property (P1), it is a reduction of the set NCZ of all separable Banach spaces not

containing Z to WF. It follows that the map X 7→ o
(
T (X,Z, (en))

)
is a Π1

1-rank

on NCZ . We are ready to give the proof of Theorem 3.6.

Proof of Theorem 3.6. Let A be as in the statement of the theorem. Let A∼= be the

isomorphic saturation of A, that is, A∼= := {Y ∈ SB : ∃X ∈ A such that Y ∼= X}.
Notice that A∼= is analytic, since the equivalence relation of isomorphism is Σ1

1 in

SB× SB.

Let Z be an arbitrary separable Banach space with a Schauder basis (en). If there

does not exist X ∈ A∼= with Z isomorphic to a subspace of X, then A∼= ⊆ NCZ .

Since the map X 7→ o
(
T (X,Z, (en))

)
is a Π1

1-rank on NCZ and A∼= is Σ1
1, by

boundedness, we obtain that

(3.1) sup
{
o
(
T (X,Z, (en))

)
: X ∈ A∼=

}
< ω1.
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However, as it has been shown in [Ar], for every separable Banach space Z with a

Schauder basis (en) one can construct a transfinite sequence 〈Hξ(Z) : ξ < ω1〉 of

separable reflexive HI spaces such that for every ξ < ω1 we have that

sup
{
o
(
T(Hξ(Z), Z, (en), k)

)
: k ∈ N

}
> ξ.

Since the family 〈Hξ(Z) : ξ < ω1〉 is clearly a subset of A∼= (recall that A contains

all separable reflexive HI spaces up to isomorphism), by Lemma 3.7, we obtain that

the rank must be unbounded on A∼=, a contradiction by (3.1). Therefore, there

exists X ∈ A∼= such that Z is isomorphic to a subspace of X. Applying the above

for Z = C[0, 1] we obtain the result. �

Remark 1. (a) Using the results of Bourgain in [B1] instead of the results in [Ar],

one can use the above argument to derive the following result of Bossard (see

[Bo3, AGR]).

Theorem 3.8. Let A be an analytic subset of SB that contains, up to isomorphism,

all separable reflexive Banach spaces. Then there exists X ∈ A which is universal.

This is a typical use of techniques of rank theory in order to prove universality,

and more generally existential, results (see [K, page 290]).

(b) Notice that, by Theorem 3.6, we have the following corollary.

Corollary 3.9. If A is an analytic subset of SB with HI ⊆ A, then there exists

X ∈ A which is universal.

Since no HI space (respectively, no indecomposable space, nor a space with no

unconditional sequence) is universal, the above corollary implies that the class HI

(respectively, I and NUC) is co-analytic non-Borel (the fact that no indecomposable

separable Banach is universal follows from the classical fact that c0 is separably

injective [LT]). However, this does not show that HI is actually Π1
1-complete, the

proof of which requires more elaborate techniques. This is a typical phenomenon

in descriptive set theory.

Our second application concerns the embeddability rank of a separable Banach

space Z with a Schauder basis. As we have seen the map X 7→ o
(
T (X,Z, (en))

)
is a

Π1
1-rank on NCZ for every Schauder basis (en) of Z. However, it appears that this

rank depends on the choice of the Schauder basis. We will show that it is actually

independent of such a choice in a very strong sense.

Theorem 3.10. Let Z be a separable Banach space with Schauder basis. Then

there exists a map φZ : SB→ Ord such that

X ∈ NCZ ⇔ φZ(X) < ω1

and the map φZ : NCZ → ω1 is a Π1
1-rank on NCZ . Moreover, for every Schauder

basis (en) of Z, every k ∈ N and every separable Banach space X we have

o
(
T(X,Z, (en), k)

)
6 φZ(X).
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For the proof of Theorem 3.10 we need the following parameterized version of

Lusin’s classical theorem.

Theorem 3.11 (parameterized Lusin). Let X be a standard Borel space and let

A ⊆ X ×Tr be analytic. Then there is a Borel map f : X → Tr such that for every

x ∈ X, if the section Ax = {T : (x, T ) ∈ A} is a subset of WF, then f(x) ∈ WF

and o
(
f(x)

)
> sup

{
o(T ) : T ∈ Ax

}
, while if Ax ∩ IF 6= ∅, then f(x) ∈ IF.

Theorem 3.11 is certainly well-known among people working in descriptive set

theory. However, we have not been able to find a reference (although it appears as

a statement in [K, page 365]). For the sake of completeness we include a proof.

Proof of Theorem 3.11. Since any two uncountable standard Borel spaces are Borel

isomorphic, we may assume that X = N . In this case we will show that the map

f is actually continuous. So let A ⊆ N × Tr be analytic and let F ⊆ N × Tr×N
be closed such that A = projN×TrF . For every x ∈ N define Tx ∈ Tr(N× N) by

Tx :=
{

(t1, t2) : ∃n with |t1| = |t2| = n and ∃(y, T, z) ∈ F

with x|n = y|n, t1 ∈ T and t2 = z|n
}
.

The map h : N → Tr(N× N) defined by h(x) = Tx is clearly continuous.

Claim. For every x ∈ N we have Tx ∈WF(N× N) if and only if Ax ⊆WF.

Proof of the claim. Fix x ∈ N . Assume that Tx is well-founded. For every T ∈ Ax
we select z ∈ N such that (x, T, z) ∈ F . Define φ : T → Tx by φ(t) = (t, z|n) where

n = |t|. Then φ is a well-defined monotone map (that is, t1 @ t2 in T implies that

φ(t1) @ φ(t2) in Tx). Since Tx ∈ WF(N × N), we obtain that T ∈ WF and that

o(T ) 6 o(Tx).

Conversely, assume that Tx is ill-founded. Let
(
(t1n, t

2
n)
)

be an infinite branch

of Tx. For every n ∈ N we select yn ∈ N , Tn ∈ Tr and zn ∈ N such that

(yn, Tn, zn) ∈ F and yn|n = x|n, t1n ∈ Tn and zn|n = t2n. Then yn → x and

zn → z where z =
⋃
n t

2
n. Moreover, by passing to subsequences if necessary, we

may assume that Tn → T in Tr(N× N) (the space Tr(N× N) is compact). By the

fact that F is closed, we obtain that (x, T, z) ∈ F , and so T ∈ Ax. As the space

Tr(N × N) consists of downward closed trees and (t1n) is a branch of N<N, we see

that t1n ∈ Ti for every n 6 i, and so t1n ∈ T for every n ∈ N. Therefore, T ∈ IF. �

Notice that, by the proof of the above claim, we also have that if Ax ⊆ WF,

then sup
{
o(T ) : T ∈ Ax} 6 o(Tx). Now let g : Tr(N× N)→ Tr be any continuous

map such that

(i) T ∈WF(N× N) if and only if g(T ) ∈WF, and

(ii) o(T ) 6 o
(
g(T )

)
for every T ∈ Tr(N×N) (with the usual convention that if

T is ill-founded, then o(T ) = ω1).

Finally, define f : N → Tr by setting f(x) = g(Tx). Clearly f is as desired. �
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We continue with the proof of Theorem 3.10.

Proof of Theorem 3.10. Let Z be a separable Banach space with a Schauder basis,

and set

S :=
{

(en) ∈ ZN : (en) is a Schauder basis of Z
}
.

Then S is Borel in ZN. Indeed, the set B of all basic sequences of Z is Fσ in ZN,

while the set D of all sequences (zn) with dense linear span is Borel since

(zn) ∈ D ⇔ ∀k ∀m ∃l ∃a1, . . . , al ∈ R such that
∥∥dk − l∑

n=1

anzn
∥∥ 6 1

m

where (dk) is a fixed dense sequence in Z. Therefore, D is Π0
3 (Fσδ in the classical

notation). As S = B ∩ D, we conclude that S is Borel, and so a standard Borel

space. Observe that the set

C :=
{

((en), X, T ) ∈ S × SB× Tr : T = T
(
X,Z, (en)

)}
is Borel where T

(
X,Z, (en)

)
denotes the tree on N defined in the beginning of this

subsection by considering as Schauder basis of Z the sequence (en). It follows that

the set

A :=
{

(X,T ) ∈ SB× Tr : ∃(en) ∈ S with ((en), X, T ) ∈ C
}

is analytic. Moreover, by Lemma 3.7, we have that

(1) X ∈ NCZ if and only if AX = {T ∈ Tr : (X,T ) ∈ A} ⊆WF, and

(2) for every X ∈ NCZ , every Schauder basis (en) of Z and every k ∈ N we

have o
(
T(X,Z, (en), k)

)
6 sup{o(T ) : T ∈ AX}.

We apply the parameterized Lusin theorem (Theorem 3.11) and we obtain a Borel

function f : SB→ Tr such that

(3) X ∈ NCZ if and only if f(X) ∈ WF (that is, f is a reduction of NCZ to

WF), and

(4) for every X ∈ NCZ we have sup{o(T ) : T ∈ AX} 6 o
(
f(X)

)
.

We set φZ(X) = o
(
f(X)

)
with the standard convention that o(T ) = ω1 if T is

ill-founded. Clearly, φZ is as desired. �

Remark 2. Although the Π1
1-rank φZ obtained by Theorem 3.10 may be consid-

ered as a universal embeddability rank for Z, we note that it is equivalent to the

rank X 7→ o
(
T (X,Z, (en))

)
for every Schauder basis (en) of Z in the sense that

for every A ⊆ SB we have sup{o
(
T (X,Z, (en))

)
: X ∈ A} = ω1 if and only if

sup{φZ(X) : X ∈ A} = ω1. To see this notice, first, that the “only if” part is an

immediate consequence of Theorem 3.10. Conversely, observe that if

sup{o
(
T (X,Z, (en))

)
: X ∈ A} = ξ < ω1,

then A ⊆ Bξ := {X ∈ SB : o
(
T (X,Z, (en))

)
6 ξ}. Since the map

X 7→ o
(
T (X,Z, (en))

)
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is a Π1
1-rank on NCZ , we see that Bξ is Borel. Hence, as φZ is a Π1

1-rank on NCZ , by

boundedness, we obtain that sup{φZ(X) : X ∈ A} 6 sup{φZ(X) : X ∈ Bξ} < ω1.

Bossard has extended the embeddability rank for the general case of a separable

Banach space Z which does not necessarily have a Schauder basis (see [Bo2, The-

orem 4.8] or [Bo3, Theorem 4.9]). We recall his definition taken from [Bo3]. Let Z

be a separable Banach space and fix a sequence (zn) of linearly independent vectors

with dense linear span in Z. For every X ∈ SB and every k ∈ N we define a tree

T(X,Z, (zn), k) on X<N as follows. A sequence
(
(x1

1), (x2
1, x

2
2), . . . , (xn1 , . . . , x

n
n)
)

belongs to T(X,Z, (zn), k) if the following are satisfied.

(i) For every 1 6 i 6 j 6 l 6 n we have ‖xji − xli‖ 6 k
2j .

(ii) For every 1 6 l 6 n the sequence (xli)
l
i=1 is k-equivalent to (zi)

l
i=1.

It is easy to see that Z is isomorphic to a subspace of X if and only if there exists

k ∈ N such that the tree T(X,Z, (zn), k) is not well-founded.

Now we consider a tree on N<N, denoted by T (X,Z, (zn), k), which is defined

as follows. A sequence (t1, t2, . . . , tn) ∈ (N<N)<N belongs to T (X,Z, (zn), k) if the

following are satisfied.

(a) For every i ∈ {1, . . . , n} we have |ti| = i.

(b) For every i ∈ {1, . . . , n} if ti = (li1, . . . , l
i
i), then((

dl11(X)
)
,
(
dl21(X), dl22(X)

)
, . . . ,

(
dln1 (X), . . . , dlnn(X)

))
∈ T(X,Z, (zn), k).

Arguing as in Lemma 3.7, we see that

sup
{
o
(
T(X,Z, (zn), k)

)
: k ∈ N

}
= sup

{
o
(
T (X,Z, (zn), k)

)
: k ∈ N

}
.

Since the set N<N is countable, the tree T (X,Z, (zn), k) may be considered as a

tree on N. By “gluing” the trees 〈T (X,Z, (zn), k) : k ∈ N〉 in a tree T
(
X,Z, (zn)

)
and using the parameterized Lusin theorem, we obtain the following analogue of

Theorem 3.10.

Theorem 3.12. Let Z be a separable Banach space. Then there exists a map

ψZ : SB→ Ord such that

X ∈ NCZ ⇔ ψZ(X) < ω1

and the map ψZ : NCZ → ω1 is a Π1
1-rank on NCZ . Moreover, for every sequence

(zn) of linearly independent vectors with dense linear span in Z, every k ∈ N and

every separable Banach space X we have o
(
T(X,Z, (zn), k)

)
6 ψZ(X).

4. The `2 Baire sum of a Schauder tree basis

In this section we define the Schauder tree basis (xt)t∈T of a separable Banach

space X and the `2 Baire sum of a Schauder tree basis. Similar norms have been

considered by Bourgain [B1] and Bossard [Bo3]. We study the structure of `2
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Baire sums. The second and the third subsections are devoted to some prepara-

tory lemmas. Most of these lemmas are of combinatorial nature and are based

on applications of the classical Ramsey theorem. The central notion is that of an

X-singular subspace of T X2 . We show that any such subspace does not contain `1.

We also show that for every tree basis (xt)t∈N<N the corresponding `2 Baire sum

contains c0.

4.1. Definitions. Let (X, ‖ · ‖X) be a Banach space, let Λ be a countable set, let

T be a (downwards closed) pruned subtree of Λ<N and let (xt)t∈T be a sequence

(with possible repetitions) in X which is indexed by T . For every σ ∈ [T ] we set

Xσ := span{xt : t @ σ}.

Definition 4.1. We say that a normalized sequence (xt)t∈T is a bimonotone

Schauder tree basis of X if the following are satisfied.

(1) We have X = span{xt : t ∈ T}.
(2) For every σ ∈ [T ] the sequence (xσ|n) is a bimonotone Schauder basis of Xσ.

Let us present some examples of Schauder tree bases.

Example 1. Let X be a Banach space with a normalized bimonotone Schauder

basis (xn). For every t ∈ N<N set xt := x|t|. Then (xt)t∈N<N is a Schauder tree

basis of X. Observe that, in this case, we have X = Xσ for every σ ∈ N .

Example 2. As above, let X be a Banach space with a normalized bimonotone

Schauder basis (xn). Fix a bijection h : N<N → N such that t1 @ t2 implies that

h(t1) < h(t2). For every t ∈ N<N set xt := xh(t). Then (xt)t∈N<N is a Schauder tree

basis of X. In this case, notice that for every σ ∈ N the space Xσ is the space

span{xn : n ∈ Lσ} where Lσ := {h(σ|n) : n ∈ N} ∈ [N]∞.

Example 3. It is a refinement of Example 2. In particular, notice that in Example 2

for every σ ∈ N the space Xσ is a subspace of X spanned by a subsequence of the

basis. In this example we show that, by a more careful enumeration, the converse

may also be true. That is, for every L ∈ [N]∞ there exists σL ∈ N such that

XσL = span{xn : n ∈ L}. To define this enumeration let [N]<N be the downward

closed subtree of N<N consisting of all nonempty, increasing finite sequences. Notice

that every t ∈ [N]<N has infinitely many immediate successors in [N]<N. Hence,

there exists a bijection g : N<N → [N]<N such that

(1) |g(t)| = |t| for every t ∈ N<N, and

(2) if t1, t2 ∈ N<N, then t1 @ t2 if and only if g(t1) @ g(t2).

Next, let π : [N]<N → N be defined by setting π(t) = nk if t = (n1, . . . , nk). (Notice

that, since t ∈ [N]<N, we have n1 < · · · < nk.) Finally, define f : N<N → N by the

rule f(t) = π
(
g(t)

)
, and set xt := xf(t). It is clear that (xt)t∈N<N is a Schauder tree

basis of X and, moreover, for every σ ∈ N the space Xσ is the space spanned by

the sequence (xn)n∈Lσ where Lσ := {f(σ|n) : n ∈ N}. Conversely, let L ∈ [N]∞



24 SPIROS A. ARGYROS AND PANDELIS DODOS

and let {l1 < l2 < · · · } denote its increasing enumeration. For every n ∈ N set

tn := g−1
(
(l1, . . . , ln)

)
and σL :=

⋃
n∈L tn ∈ N . Then the space XσL is the space

spanned by the subsequence (xn)n∈L. The above construction is motivated by a

construction of Schechtman [Sch] (see also [LT, page 93]).

We proceed with the main definition in this section. Let (X, ‖ · ‖X) be a Banach

space, let Λ be a countable set, let T be a pruned subtree of Λ<N and let (xt)t∈T

be a normalized bimonotone Schauder tree basis of X. We define the `2 Baire sum

of (xt)t∈T , denoted by T X2 , to be the completion of c00(T ) with the norm

‖z‖T X2 := sup
{( l∑

i=1

∥∥∑
t∈si

z(t)xt
∥∥2

X

) 1
2

: (si)
l
i=1 are incomparable segments of T

}
.

If T = N<N and the Schauder tree basis (xt)t∈N<N is as in Example 1, then we call

this space the Schauder tree space associated with X and we denote it by NX
2 .

We denote by (et)t∈T the standard Hamel basis of c00(T ). We fix a bijection

h : T → N such that t1 @ t2 implies that h(t1) < h(t2), and we enumerate T

as (tn) using h. The sequence (etn) is a normalized Schauder basis of T X2 . We

notice the following important property. If (xn) is block sequence in T X2 and s is

a segment of T , then for every n1 < n2, every t1 ∈ supp(xn1) ∩ s and every

t2 ∈ supp(xn2) ∩ s we have that t1 @ t2.

For every σ ∈ [T ] we set Xσ := span{et : t @ σ}. Note that Xσ is isometric to Xσ

(thus, if we deal with NX
2 , the space Xσ is isometric to X). Let Pσ : T X2 → Xσ

be defined by Pσ(x) =
∑
t@σ x(t)et and observe that Pσ is a norm-one projection.

Also notice that if (xn) is a block sequence in T X2 such that σ ∩ supp(xn) 6= ∅ for

every n ∈ N, then
(
Pσ(xn)

)
is also a block sequence in Xσ (this is a consequence

of the enumeration of T ). More generally, if A ⊆ T is segment complete, then it is

easy to see that the operator PA : T X2 → XA defined by PA(x) =
∑
t∈A x(t)et is a

norm-one projection onto the subspace XA := span{et : t ∈ A}.

Definition 4.2. Let Y be a closed infinite-dimensional subspace of T X2 .

(1) Y is said to be X-singular if for every σ ∈ [T ] the operator Pσ : Y → Xσ is

strictly singular.

(2) Y is said to be X-compact if for every σ ∈ [T ] the operator Pσ : Y → Xσ
is compact.

Remark 3. It is well-known (see [LT]) that for every strictly singular opera-

tor T : Y → Z there exists an infinite-dimensional subspace W of Y such that

T |W : W → Z is compact. It is open if for every X-singular subspace Y of T X2
there exists an infinite-dimensional subspace W of Y which is X-compact.

4.2. General lemmas. In what follows let X be a Banach space, let Λ be a

countable set, let T be a pruned subtree of Λ<N and let (xt)t∈T be a normalized

bimonotone Schauder tree basis of X. We start with the following lemma.
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Lemma 4.3. Let (xn) be a bounded block sequence in T X2 . Also let ε > 0 and

L ∈ [N]∞. Then there exist finite A ⊆ [T ] and M ∈ [L]∞ such that for every

σ ∈ [T ] \A we have lim supn∈M ‖Pσ(xn)‖ < ε.

Proof. Assume not. Then we may select, recursively, a decreasing sequence (Li) of

infinite subsets of L and a sequence (σi) in [T ] such that

(4.1) ‖Pσi(xn)‖ > ε

3
for every n ∈ Li and every i ∈ N.

Set C := sup{‖xn‖ : n ∈ N} < ∞. We select k0 ∈ N such that k0 >
9C2

ε2 . Since

σ1, . . . , σk0
are different elements of [T ], we may select n0 ∈ N such that the σi’s

restricted after the n0-level become pairwise incomparable.

Now let l0 ∈ Lk0
such that for every l > l0 with l ∈ Lk0

and every t ∈ supp(xl)

we have that if t ∈ σi for some i ∈ {1, . . . , k0}, then |t| > n0; this is possible since

the sequence (xn) is block. As the sequence (Li) is decreasing, we have that l0 ∈ Li
for every 1 6 i 6 k0. Notice that, by (4.1), for every i ∈ {1, . . . , k0} there exists a

segment si ⊆ σi such that ‖
∑
t∈si xl0(t)xt‖ > ε

3 . By the choice of l0, we see that

the si’s can be selected to be pairwise incomparable. Hence,

C > ‖xl0‖ >
( k0∑
i=1

∥∥∑
t∈si

xl0(t)xt
∥∥2

X

)1/2

>

√
k0
ε2

9
> C

a contradiction. The lemma is proved. �

We will need the following slight variant of Lemma 4.3.

Lemma 4.4. Let (xn) be a bounded block sequence in T X2 . Also let ε > 0 and

L ∈ [N]∞. Then there exist finite A ⊆ [T ] and M ∈ [L]∞ such that for every

segment s of T with s ∩A = ∅ we have lim supn∈M ‖Ps(xn)‖ < ε.

The proof of Lemma 4.4 is identical to that of Lemma 4.3 and so we omit it. We

proceed with the following lemma.

Lemma 4.5. Let (xn) be a bounded block sequence in T X2 . Also let ε > 0 such that

for every σ ∈ [T ] we have lim sup ‖Pσ(xn)‖ < ε. Then there exists L ∈ [N]∞ such

that for every σ ∈ [T ] we have |{n ∈ L : ‖Pσ(xn)‖ > ε}| 6 1.

Proof. Assume not. Then for every L ∈ [N]∞ there exist (n1, n2) ∈ [L]2 and σ ∈ [T ]

with ‖Pσ(xni)‖ > ε for i ∈ {1, 2}. By Ramsey’s theorem [R], there exists L ∈ [N]∞

such that for every (n1, n2) ∈ [L]2 there exists σ ∈ [T ] with ‖Pσ(xni)‖ > ε for

i ∈ {1, 2}. Hence, by passing to a subsequence, we may assume that for every

n < k there exists σn,k ∈ [T ] such that ‖Pσn,k(xn)‖ > ε and ‖Pσn,k(xk)‖ > ε.
Let k ∈ N be arbitrary. For every n < k set on := min{|t| : t ∈ supp(xk) ∩ σn,k}

and sn,k := {t ∈ σn,k : 1 6 |t| < on}. Then sn,k is an initial segment of T

and sn,k ⊆ σn,k. Also notice that supp(xn) ∩ σn,k ⊆ sn,k as the sequence (xn) is

block. Hence, ‖Psn,k(xn)‖ > ε. Moreover, sn,k ∩
(
supp(xk) ∩ σn,k

)
= ∅; actually,
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sn,k is the maximal initial segment of σn,k which does not intersect supp(xk). Set

C := sup{‖xn‖ : n ∈ N} <∞.

Claim. For every k > 2 we have |{sn,k : n < k}| 6 dC2/ε2e.

Proof of the claim. Let {s1, . . . , sl} be an enumeration of the set {sn,k : n < k};
thus, for every i ∈ {1, . . . , l} there exists ni < k such that si = sni,k. Set

s′i := {t ∈ σni,k : |t| > oni}, and notice that s′i is a final segment of T and, more-

over, σni,k ∩ supp(xk) ⊆ s′i. By our assumptions, this implies that ‖Ps′i(xk)‖ > ε.

Therefore, for every i ∈ {1, . . . , l} we have ‖
∑
t∈s′i

xk(t)xt‖ > ε. Next notice that,

since the segments (si)
l
i=1 are mutually different, the segments (s′i)

l
i=1 are pairwise

incomparable. Indeed, for every i ∈ {1, . . . , l} let ti be the @-least element of s′i.

Observe that ti ∈ supp(xk). Also notice that if i 6= j, then neither ti @ tj nor

tj @ ti holds true. Suppose, on the contrary, that ti @ tj (the argument is sym-

metric). Then ti ∈ σnj ,k and so onj 6 |ti| < |tj | = onj which is a contradiction.

Finally, note that ti 6= tj . Indeed, if ti = tj , then, by the definition of the segments

(si)
l
i=1, we would have that si = sj and again we derive a contradiction. It follows

that the segments (s′i)
l
i=1 are pairwise incomparable and, consequently,

C > ‖xk‖ >
( l∑
i=1

∥∥∑
t∈s′i

xk(t)xt
∥∥2
)1/2

> ε
√
l

which yields the desired estimate. The proof of the claim is completed. �

Set M := dC2/ε2e. By the above claim, for every n < k there exists a family{
si,k : i ∈ {1, . . . ,M}

}
of initial segments of T such that for every n ∈ {1, . . . , k−1}

there exists i ∈ {1, . . . ,M} with ‖Psi,k(xn)‖ > ε. By passing to subsequences, we

may assume that si,k → si in 2Λ<N
for every i ∈ {1, . . . ,M}. Notice that each si, if

nonempty, is an initial segment of T (but it might be finite, of course).

For every n ∈ N and every i ∈ {1, . . . ,M} let us say that a positive integer k

is i-good for n if k > n and ‖Psi,k(xn)‖ > ε. Notice that for every n ∈ N there

exists i ∈ {1, . . . ,M} such that the set Hi
n := {k : k > n and k is i-good for n} is

an infinite subset of N. Hence, there exists i0 ∈ {1, . . . ,M} and L ∈ [N]∞ such

that for every n ∈ L the set Hi0
n is infinite. It follows that for every n ∈ L we

have ‖Psi0,k(xn)‖ > ε for infinitely many k. Since si0,k → si0 , this yields that

‖Psi0 (xn)‖ > ε for every n ∈ L. Next recall that the sequence (xn) is block,

and that si0 is an initial segment of T . Therefore, we have si0 ∈ [T ]. But then

lim sup ‖Psi0 (xn)‖ > lim supn∈L ‖Psi0 (xn)‖ > ε which is a contradiction. �

Using Lemma 4.5, we obtain the following lemma.

Lemma 4.6. Let (xn) be a bounded block sequence in T X2 . Also let ε > 0 such that

for every σ ∈ [T ] we have lim sup ‖Pσ(xn)‖ < ε. Then for every L ∈ [N]∞ there

exists a finite convex combination w of (xn)n∈L such that for every σ ∈ [T ] we have

‖Pσ(w)‖ 6 2ε.
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Proof. We Lemma 4.5 for the sequence (xn)n∈L and obtain M ∈ [L]∞ such that for

every σ ∈ [T ] we have |{n ∈M : ‖Pσ(xn)‖ > ε}| 6 1. Let {m1 < m2 < · · · } be the

increasing enumeration of M . We set C := sup{‖xn‖ : n ∈ N} < ∞ and we select

k0 ∈ N such that
(
C+ε(k0−1)

)
/k0 6 2ε. We define w = 1

k0
(xm1

+xm2
+· · ·+xmk0

).

Then for every σ ∈ [T ] we have

‖Pσ(w)‖ 6
∑k0

i=1 ‖Pσ(xmi)‖
k0

6
C + ε(k0 − 1)

k0
6 2ε

as desired. �

We will also need the following two variants of Lemmas 4.5 and 4.6.

Lemma 4.7. Let (xn) be a bounded block sequence in T X2 . Also let ε > 0 and

finite A ⊆ [T ] such that for every s segment of T with s ∩ A = ∅ we have

lim sup ‖Ps(xn)‖ < ε. Then there exists L ∈ [N]∞ such that for every s segment of

T with s ∩A = ∅ we have |{n ∈ L : ‖Ps(xn)‖ > ε}| 6 1.

Proof. It is very similar to the proof of Lemma 4.5, and so we shall only indicate the

necessary changes. Again, arguing by contradiction and using Ramsey’s theorem,

we may assume that for every n < k there exist a segment sn,k of T which is disjoint

from A and is such that ‖Psn,k(xn)‖, ‖Psn,k(xk)‖ > ε. Define the quantity on as in

the proof of Lemma 4.5, and for every n < k let in,k be the maximal segment of T

which contains sn,k ∩ supp(xn) and does not intersect neither supp(xk) nor A. It

is easy to see that the estimate obtained in the claim in the proof of Lemma 4.5

is also valid for the family {in,k : n < k}. Next observe that if (sn) is a sequence

of segments of T each of which is disjoint from A, and sn → s in 2Λ<N
, then s is

a segment of T which is also disjoint from A. Using this observation, the rest of

proof is identical to that in Lemma 4.5. �

Lemma 4.8. Let (xn), ε and A be as in Lemma 4.7. Then for every L ∈ [N]∞

there exists a finite convex combination w of (xn)n∈L such that for every s segment

of T with s ∩A = ∅ we have ‖Ps(w)‖ 6 2ε.

Proof. It is identical to the proof of Lemma 4.6, using Lemma 4.7 instead of

Lemma 4.5. �

4.3. Sequences satisfying an upper `2 estimate. Our first goal is to prove the

following proposition.

Proposition 4.9. Let (xn) be a bounded block sequence in T X2 such that for every

σ ∈ [T ] we have that lim ‖Pσ(xn)‖ = 0. Then there exists a block sequence (wn)

of finite convex combinations of (xn) satisfying an upper `2 estimate. That is,

there exists C > 0 such that for every k ∈ N and every a1, . . . , ak ∈ R we have

‖
∑k
n=1 anwn‖ 6 C

(∑k
n=1 a

2
n

)1/2
.
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Proof. Recursively and using Lemma 4.6, we select a block sequence (wn) of finite

convex combinations of (xn) such that for every n > 2 and every σ ∈ [T ] we have

‖Pσ(wn)‖ 6 1∑n−1
i=1 |supp(wi)|1/2

1

22n
.

We will show that (wn) is as desired. Set M := sup{‖xn‖ : n ∈ N} <∞ and notice

that ‖wn‖ 6 M for every n. Let k ∈ N and a1, . . . , ak ∈ R with
∑k
i=1 a

2
i = 1. We

will show that ‖
∑k
i=1 aiwi‖ 6

√
2M2 + 2. This will finish the proof.

Let (sj)
l
j=1 be an arbitrary family of pairwise incomparable segments of T . We

define a partition of {1, . . . , l} by setting

I1 =
{
j ∈ {1, . . . , l} : sj ∩ supp(w1) 6= ∅

}
I2 =

{
j ∈ {1, . . . , l} \ I1 : sj ∩ supp(w2) 6= ∅

}
...

Ik =
{
j ∈ {1, . . . , l} \

( k−1⋃
i=1

Ii
)

: sj ∩ supp(wk) 6= ∅
}
.

Since the segments (sj)
l
j=1 are pairwise incomparable, we see that

(4.2) |Ii| 6 |supp(wi)| for every i ∈ {1, . . . , k}.

Also we observe that for every 1 6 m < i 6 k we have

(4.3)
∑
j∈Ii

‖Psj (wm)‖ = 0.

Let i ∈ {1, . . . , k} and j ∈ Ii. We will estimate the quantity

‖Psj (a1w1 + · · ·+ anwn)‖ (4.3)
= ‖Psj (aiwi + · · ·+ anwn)‖

6 ai‖Psj (wi)‖+

n∑
k=i+1

ak‖Psj (wk)‖.

Since the Schauder tree basis (xt)t∈T of X is bimonotone, by the choice of the

sequence (wn), we see that for every k ∈ {i+ 1, . . . , n} we have

‖Psj (wk)‖ 6 1

|supp(wi)|1/2
1

22k
.

Therefore,

‖Psj (a1w1 + a2w2 + · · ·+ anwn)‖ 6 ai‖Psj (wi)‖+
1

|supp(wi)|1/2
n∑

k=i+1

1

22k

(4.2)

6 ai‖Psj (wi)‖+
1

|Ii|1/2
1

2i
.
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Notice that for every i ∈ {1, . . . , k} we have
∑
j∈Ii ‖Psj (wi)‖

2 6 ‖wi‖2 6 M2 as

the segments (sj)j∈Ii are pairwise incomparable. Hence,∑
j∈Ii

‖Psj (a1w1 + · · ·+ anwn)‖2 6
∑
j∈Ii

(
ai‖Psj (wi)‖+

1

|Ii|1/2
1

2i

)2

6 2a2
i

∑
j∈Ii

‖Psj (wi)‖2 + 2
∑
j∈Ii

1

|Ii|
1

2i

6 2a2
iM

2 +
2

2i
.

By the above, we obtain that

k∑
i=1

∑
j∈Ii

‖Psj (a1w1 + · · ·+ anwn)‖2 6
k∑
i=1

2a2
iM

2 +
k∑
i=1

2

2i
6 2M2 + 2.

The segments (sj)
l
j=1 were arbitrary, and so ‖

∑k
i=1 aiwi‖2 6 2M2 + 2. The proof

is completed. �

By Proposition 4.9, we obtain the following criterion for checking that a block

sequence (xn) is weakly null.

Proposition 4.10. Let (xn) be a bounded block sequence in T X2 . Assume that for

every σ ∈ [T ] we have w − limPσ(xn) = 0 in Xσ. Then (xn) is weakly null.

Proof. Assume not. Then there exist L ∈ [N]∞, ε > 0 and x∗ ∈ (T X2 )∗ with

‖x∗‖ = 1 such that x∗(xn) > ε for every n ∈ L. By repeated applications of

Lemma 4.3, we obtain a decreasing sequence (Mk) of infinite subsets of L and an

increasing sequence (Ak) of finite subsets of [T ] such that for every k ∈ N we have

that lim supn∈Mk
‖Pσ(xn)‖ < 1

k for every σ ∈ [T ] \ Ak. Thus, if M∞ denotes the

infinite diagonal set of (Mk) and A =
⋃
k∈NAk, then for every σ ∈ [T ] \A we have

lim supn∈M∞ ‖Pσ(xn)‖ = 0. Notice that A is countable. Moreover, observe that

for every convex block sequence (yn) of (xn)n∈M∞ and every σ ∈ [T ] \ A we also

have that lim sup ‖Pσ(yn)‖ = 0. Since convex combinations of convex combinations

are convex combinations, using our assumption, a diagonal argument and Mazur’s

theorem, we obtain a convex block sequence (yn) of (xn)n∈M∞ such that for every

σ ∈ [T ] we have

(4.4) lim ‖Pσ(yn)‖ = 0

and, moreover, x∗(yn) > ε for every n ∈ N. The sequence (yn) is bounded and block

and so, by (4.4), we may apply Proposition 4.9 and we obtain a further convex block

sequence (zn) of (yn) (and, consequently, of (xn)n∈L) which satisfies an upper `2

estimate. Since for the sequence (zn) we still have that x∗(zn) > ε for every n ∈ N,

this yields to a contradiction. �
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4.4. Subspaces of T X2 . Our first goal in this subsection is to show that every

X-singular subspace of T X2 does not contain `1. To this end we need the following

lemma.

Lemma 4.11. Let (xn) be a normalized block sequence in T X2 such that for every

σ ∈ [T ], the sequence (Pσ(xn)) is weak Cauchy saturated, that is, for every L ∈ [N]∞

there exists M ∈ [L]∞ such that the sequence (Pσ(xn))n∈M is weakly Cauchy. Then

(xn) has a weakly Cauchy subsequence.

Proof. Arguing as in the proof of Proposition 4.10, by repeated applications of

Lemma 4.3, we obtain M ∈ [N]∞ and a countable subset A of [T ] such that for

every σ ∈ [T ] \A we have limn∈M ‖Pσ(xn)‖ = 0. Using another diagonal argument

and our assumptions, we obtain N ∈ [M ]∞ such that for every σ ∈ A the sequence

(Pσ(xn))n∈N is weak Cauchy. Let {n1 < n2 < · · · } be the increasing enumeration

of N , and set yk := xn2k
− xn2k−1

for every k ∈ N. Then for every σ ∈ [T ] the

sequence (Pσ(yk)) is weakly null. By Proposition 4.10, we obtain that the sequence

(yk) is also weakly null. Therefore, the (xn)n∈N is weakly Cauchy, as desired. �

Theorem 4.12. Let Y be an X-singular subspace of T X2 . Then Y does not contain

a copy of `1.

Proof. Let (xn) be a normalized block sequence in Y . By our assumptions and

Rosenthal’s theorem, we see that for every σ ∈ [T ] the sequence (Pσ(xn)) is weak

Cauchy saturated. Lemma 4.11 yields that (xn) contains a weakly Cauchy subse-

quence. By Rosenthal’s theorem, we conclude that Y does not contain `1. �

We proceed with the following theorem.

Theorem 4.13. Let X be a Banach space, Λ a countable set and (xt)t∈Λ<N a

normalized bimonotone Schauder tree basis of X. Then the space T X2 contains c0.

Proof. Let T be a downward closed, uniquely rooted, subtree of Λ<N such that every

node of T has four immediate successors in T . Therefore, for every n ∈ N the n-level

of T has 4n−1 nodes; let Tn denote the n-level of T , and set yn :=
∑
t∈Tn

1
2n−1 et.

The set Tn consists of pairwise incomparable nodes, and this is easily seen to imply

that ‖yn‖ = 1 for every n ∈ N. It is also easy to see that (yn) is a basic sequence.

We will show that the subspace Y := span{yn : n ∈ N} contains a copy

of c0. By a result of Johnson (see, e.g., [D, page 245]), it is enough to show

that sup{‖
∑
i∈F yi‖ : ∅ 6= F ⊆ N is finite} < ∞. To this end, we start with the

following observation. Let s be a segment of Λ<N and set os := min{|t| : t ∈ s}.
Then for every nonempty finite F ⊆ N we have∥∥Ps(∑

i∈F
yi

)∥∥ 6 ∞∑
i=os

‖Ps(yi)‖ 6
∞∑
i=os

1

2i−1
= 4

1

2os
.

Now let (sj)
l
j=1 be an arbitrary family of mutually incomparable segments. For

every j ∈ {1, . . . , l} set oj := min{|t| : t ∈ sj}, and write all these (oj)
l
j=1 in
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increasing order as o1 < · · · < om (notice that m 6 l). For every n ∈ {1, . . . ,m}
set In :=

{
j ∈ {1, . . . , l} : oj = on

}
. The family (In)mn=1 is a partition of {1, . . . , l}.

We claim that

(4.5)
|I1|
4o1

+
|I2|
4o2

+ · · ·+ |Im|
4om

6
1

4
.

Indeed, notice that every node t in Ton has precisely 4om−on successors in Tom .

Since the family (sj)
l
j=1 consists of pairwise incomparable segments, we see that

4om−o1 |I1|+ 4om−o2 |I2|+ · · ·+ 4om−om−1 |Im−1|+ |Im| 6 4om−1

which gives the desired estimate.

Thus, if F is a nonempty finite subset of N finite, then we have( l∑
j=1

∥∥Psj(∑
i∈F

yi
)∥∥2
)1/2

6 4
( l∑
j=1

1

4oj

)1/2

= 4
( m∑
n=1

|In|
4on

)1/2

6 2

where the last inequality follows by (4.5). The proof is completed. �

Remark 4. It is easy to see that for every k ∈ N and every a1, . . . , ak ∈ R we have

sup
{
|ai| : i ∈ {1, . . . , k}

}
6 ‖

∑k
i=1 aiyi‖T X2 6 2 sup

{
|ai| : i ∈ {1, . . . , k}

}
where

(yn) is the sequence constructed in proof of Theorem 4.13. Thus, the sequence (yn)

is actually 2-equivalent to the standard unit vector basis of c0.

We close this subsection with the following (essentially known) result concerning

the subspaces of T X2 generated by well-founded trees (see, e.g., [Ar, Bo3, B1]).

Proposition 4.14. Let (xt)t∈N<N be a Schauder tree basis of X. Then for every

well-founded tree T with infinitely many nodes, the space XT := span{et : t ∈ T} is

reflexive and `2-saturated.

Proof. Both properties are proved by induction on the order of the tree T . We

shall only sketch the argument that the space XT is `2-saturated. So let T ∈ WF

with o(T ) = ξ. Assume that the result has been proved for every T ′ ∈ WF with

o(T ′) < ξ. (If o(T ) = 1, then the result is straightforward as in this case XT
is isometric to `2.) For every n ∈ N set Tn := {t : nat ∈ T} ∈ Tr. Let Y be an

arbitrary subspace of XT . Then, either for every n ∈ N the operator PTn : Y → XTn
is strictly singular, or there exist n ∈ N and a subspace Y ′ of Y such that the

operator PTn : Y ′ → XTn is an isomorphic embedding. In the first case, we see

that `2 is contained in Y . In the second case, since o(Tn) < o(T ), the inductive

assumption yields that `2 is contained in Y ′, as desired. �

We isolate, for future use, the following corollary of Proposition 4.14.

Corollary 4.15. Let Z be a separable Banach space with a Schauder basis (en).

Then for every countable ordinal ξ there exists a reflexive and `2-saturated separable

Banach space X such that o
(
T (X,Z, (en))

)
> ξ.
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5. Thin sets

The main notion in this section (and, actually, of the whole paper) is that of a

thin set. For every Schauder tree basis (xt)t∈T we consider the set WX defined in

Definition 5.3 below. Our goal is to show that the setWX is thin on everyX-singular

subspace of the `2 Baire sum T X2 of (xt)t∈T . The proof of this fact requires several

steps. The key ingredient is Proposition 5.10. Although the conclusion is similar

to the corresponding results in [AF], the proof requires a new approach which is

based on the definition of the norm of the `2 Baire sum. Theorems 5.15 and 5.16

have a central role in establishing the properties of the amalgamations. As we have

mentioned in the introduction, the amalgamation spaces will be the interpolation

spaces ∆hi
(X,WX) or ∆p

(X,WX). The thinness of WX will permit us to understand the

structure of the subspaces of the interpolation spaces by studying the geometric

relation between their natural image in T X2 and WX .

5.1. Definitions and preliminary results. First we recall some definitions.

Definition 5.1. Let X be a Banach space, let A,B ⊆ X and let ε > 0.

(a) We say that A ε-absorbs B if B ⊆ λA+ εBX for some λ > 0.

(b) we say that A almost absorbs B if A ε-absorbs B for every ε > 0.

We proceed to introduce the following slight variant of the notion of a thin set

defined by Neidinger [N1].

Definition 5.2. Let X be a Banach space and let W be a closed, bounded, convex

and symmetric subset of X. Also let Y be a closed infinite-dimensional subspace

of X. We say that W is thin on Y if W does not almost absorb the ball BZ of

any infinite-dimensional subspace Z of Y , that is, for every subspace Z of Y there

exists ε > 0 such that for every λ > 0 we have BZ * λW + εBZ . The set W is said

to be thin if it is thin on X.

Definition 5.3. Let X be a Banach space, let Λ be a countable set, let T be a

pruned subtree of Λ<N and let (xt)t∈T be a normalized bimonotone Schauder tree

basis of X. We set

W 0
X := conv

{ ⋃
σ∈[T ]

BXσ

}
and WX := conv

{ ⋃
σ∈[T ]

BXσ

}
.

Notice that WX is a closed, bounded, convex and symmetric subset of T X2 .

Next we introduce the following definition.

Definition 5.4. We say that a sequence (xn) in T X2 is pointwise-null provided that

lim e∗t (xn) = 0 for every t ∈ T .

Remark 5. Related to Definition 5.4 the following hold.

(a) Every block sequence in T X2 is pointwise-null.
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(b) Every infinite-dimensional subspace Y of T X2 contains a pointwise-null se-

quence.

(c) If (xn) is a pointwise-null sequence in T X2 , then for every ε > 0 there exist

L ∈ [N]∞ and a block sequence (yn)n∈L such that
∑
n∈L ‖xn − yn‖ < ε.

Parts (a) and (b) are straightforward. Part (c) follows by a sliding-hump argument.

We also need the following weaker version of the notion of X-singularity.

Definition 5.5. A subspace Y of T X2 is said to be weakly X-singular if for ev-

ery finite-codimensional subspace Z of Y and every finite A ⊆ [T ] the operator

PA : Z → XA is not an isomorphism.

Remark 6. The following hold.

(a) If Y is X-singular, then Y is weakly X-singular.

(b) If Y is weakly X-singular and Z is a finite-codimensional subspace of Y ,

then Z is also weakly X-singular.

(c) For every finite A ⊆ [T ] there exists a normalized, pointwise-null sequence

(yn) in Y such that lim ‖Pσ(yn)‖ = 0 for every σ ∈ A. If, in addition, Y is

a block subspace, then the sequence (yn) can be selected to be block.

We have the following proposition.

Proposition 5.6. Let Y be a weakly X-singular subspace of T X2 . Then for every

ε > 0 there exists a normalized pointwise-null sequence (yn) in Y such that for

every σ ∈ [T ] we have lim sup ‖Pσ(yn)‖ < ε.

Proof. We will give the proof under the additional assumption that Y is a block

subspace. The proof for the general case is identical and follows by part (c) of

Remark 5 and a standard sliding-hump argument.

So, let Y be a block weakly X-singular subspace of T X2 and assume, towards a

contradiction, that there exists ε > 0 such that for every normalized block sequence

(yn) in Y there exists σ ∈ [T ] such that lim sup ‖Pσ(yn)‖ > ε. We select k0 ∈ N
and r > 0 to be determined later. We start with a normalized block sequence (y1

n)

in Y . Our assumption yields that there exists (at least one) σ1 ∈ [T ] such that

lim sup ‖Pσ1(y1
n)‖ > ε. Hence, there exists L1 ∈ [N]∞ such that ‖Pσ1(y1

n)‖ > ε/2

for every n ∈ L1. Next, we apply Lemma 4.4 and we obtain M1 ∈ [L1]∞ and

finite A1 ⊆ [T ] such that for every segment s of T with s ∩ A1 = ∅ we have

lim supn∈M1
‖Ps(y1

n)‖ < r. By Lemma 4.7, there exists N1 ∈ [M1]∞ such that for

every segment s of T with s ∩ A1 = ∅ we have |{n ∈ N1 : ‖Ps(y1
n)‖ > r}| 6 1.

Summing up, we obtain σ1 ∈ [T ], finite A1 ⊆ [T ] and N1 ∈ [N]∞ such that

(P1) ‖Pσ1
(y1
n)‖ > ε/2 for every n ∈ N1, and

(P2) |{n ∈ N1 : ‖Ps(y1
n)‖ > r}| 6 1 for every segment s of T with s ∩A1 = ∅.
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Since Y is weakly X-singular, by part (c) of Remark 6, we select a normalized block

sequence (y2
n) in Y such that for every σ ∈ A1 ∪ {σ1} we have

(5.1) lim ‖Pσ(y2
n)‖ = 0.

As before, we select σ2 ∈ [T ] and L2 ∈ [N]∞ such that ‖Pσ2
(y2
n)‖ > ε

2 for every

n ∈ L2. Notice that, by (5.1), we have that σ2 /∈ (A1 ∪{σ1}). Next, we select finite

A2 ⊆ [T ] and N2 ∈ [L2]∞ such that for every segment s of T with s ∩ A2 = ∅ we

have |{n ∈ N2 : ‖Ps(y2
n)‖ > r}| 6 1. Once again, we remark that, by (5.1), the set

A2 can be selected so that A2 ∩ (A1 ∪ {σ1}) = ∅. We proceed inductively up to k0.

For every i ∈ {1, . . . , k0} we enumerate the sequence (yin)n∈Ni as (zin), and we

set Gi := Ai ∪ {σi}. By the above selection, the sets G1, . . . , Gk0
are finite and

mutually disjoint. Therefore, there exists l0 ∈ N such that if we restrict every

σ ∈ G1 ∪ · · · ∪ Gk0
after the l0-level of T , then these final segments of T are

mutually incomparable. Also set Ti := {t : ∃σ ∈ Gi with t @ σ and |t| = l0} and

notice that, by the choice of l0, for every i, j ∈ {1, . . . , k0} with i 6= j and every

t1 ∈ Ti and t2 ∈ Tj the nodes t1 and t2 are incomparable.

As the sequences (zin) (1 6 i 6 k0) are block, we may assume that for every

n ∈ N and every i ∈ {1, . . . , k0} we have that

(5.2) if t ∈ supp(zin) ∩ σ for some σ ∈ Gi, then |t| > l0.

For every i ∈ {1, . . . , k0} we set si := {t ∈ σi : |t| > l0}, that is, si is the final

segment of T obtained by restricting σi after the l0-level of T . By (5.2) and (P1),

we see that

(5.3) ‖Psi(zin)‖ > ε

2
for every n ∈ N and every i ∈ {1, . . . , k0}.

Also notice that the segments (si)
k0
i=1 are mutually incomparable.

We set wn := z1
n + · · ·+ zk0

n . Then we have

(5.4) ‖wn‖ >
( k0∑
i=1

‖Psi(zin)‖2
)1/2

>
ε

2

√
k0.

Moreover, by passing to a common subsequence of each (zin) if necessary, we may

assume that the sequence (wn) is block. Finally, we define yn := wn
‖wn‖ for every

n ∈ N. Clearly, (yn) is a normalized block sequence in Y . We will show that for

appropriate choices of k0 and r we have that lim sup ‖Pσ(yn)‖ 6 ε
2 for every σ ∈ [T ].

This, clearly, leads to a contradiction.

To this end, let σ ∈ [T ] be arbitrary. Notice that there exists at most one

j ∈ {1, . . . , k0} with the following property. There exists t ∈ Tj with t @ σ.

For this j we have the trivial estimate ‖Pσ(zjn)‖ 6 1 for every n ∈ N. Next, fix

i ∈ {1, . . . , k0} with i 6= j. Then for every t ∈ Ti the node t is not an initial segment

of σ. We set si := {t : t @ σ and t /∈ σ′ for every σ′ ∈ Gi}, that is, si is the unique

maximal final segment of σ which is disjoint from each Gi. Note that, by the choice

of l0, we have min{|t| : t ∈ si} 6 l0 and so, by (5.2), we have ‖Pσ(zin)‖ = ‖Psi(zin)‖
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for every n ∈ N. On the other hand, the definition of si yields that si ∩Ai = ∅ and

so, by (P2), there exists ni ∈ N (clearly depending on σ) such that ‖Psi(zin)‖ < r

for every n > ni. Setting nσ := max
{
ni : i ∈ {1, . . . , k0} with i 6= j

}
, we see that

‖Pσ(zin)‖ < r for every n > nσ and every i ∈ {1, . . . , k0} with i 6= j. If follows that

for every n > nσ we have

(5.5) ‖Pσ(wn)‖ = ‖Pσ(z1
n + · · ·+ zk0

n )‖ 6 1 + (k0 − 1)r.

Combining inequalities (5.4) and (5.5), we obtain that

‖Pσ(yn)‖ =
∥∥Pσ( wn

‖wn‖

)∥∥ 6 2
1 + (k0 − 1)r

ε
√
k0

for every n > nσ. Hence, for every σ ∈ [T ] we have

lim sup ‖Pσ(yn)‖ 6 2
1 + (k0 − 1)r

ε
√
k0

.

Thus, it k0 >
36
ε4 and r < 1

2(k0−1) , then we have lim sup ‖Pσ(yn)‖ 6 ε
2 for every

σ ∈ [T ] which is a contradiction. �

Lemma 5.7. Let (xn) be a bounded block sequence in T X2 and let (εn) be a sequence

of positive real numbers with lim εn = 0. Assume that for every n ∈ N and every

σ ∈ [T ] we have ‖Pσ(xn)‖ 6 εn. Then (xn) has a subsequence satisfying an upper

`2 estimate.

Proof. Since lim εn = 0, recursively we select a subsequence (wn) of (xn) such that

for every n > 2 and every σ ∈ [T ] we have ‖Pσ(wn)‖ 6 1∑n−1
i=1 |supp(wi)|

1
22n . The

rest of the proof is identical to that of Proposition 4.9. �

We introduce the following definition.

Definition 5.8. Let Z be a subspace of T X2 . We say that Z satisfies property (∗) if

there exist ε > 0 and δ > 0 such that for every normalized pointwise-null sequence

(zn) in Z with

lim sup ‖Pσ(zn)‖ < δ

for every σ ∈ [T ], there exists L ∈ [N]∞ such that the sequence (zn)n∈L satisfies

an ε-lower `2 estimate, that is, if {l1 < l2 < · · · } denotes the increasing enumer-

ation of the set L, then for every k ∈ N and every a1, . . . , ak ∈ R we have that

ε
(∑k

i=1 a
2
i

)1/2
6 ‖

∑k
i=1 aizli‖.

The importance of property (∗) is illustrated in the following proposition.

Proposition 5.9. Let Y be a weakly X-singular subspace of T X2 which satisfies

property (∗). Then there exists a normalized pointwise-null sequence (yn) in Y with

the following properties.

(i) For every σ ∈ [T ] we have lim ‖Pσ(yn)‖ = 0.

(ii) The sequence (yn) is equivalent to the standard unit vector basis of `2.
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Proof. As in Proposition 5.6, we will present the proof for block subspaces; the

general case follows by identical arguments. So, let Y be a block weakly X-singular

subspace of T X2 . First we remark that if Z is a block, finite-codimensional subspace

of Y , then Z is also weakly X-singular and satisfies property (∗) with the same

constants ε and δ. We continue with the following claim.

Claim. For every block, finite-codimensional subspace Z of Y and every r > 0

there exists z ∈ Z with ‖z‖ = 1 such that ‖Pσ(z)‖ < r for every σ ∈ [T ].

Proof of the claim. Let r′ > 0 with r′ < min{r, δ} whose exact value will be de-

termined later. Since Z is weakly X-singular, by Proposition 5.6, there exists a

normalized block sequence (wn) in Z such that for every σ ∈ [T ] we have

(5.6) lim sup ‖Pσ(wn)‖ 6 r′.

By Lemma 4.5, there exists L ∈ [N]∞ such that

(5.7) |{n ∈ L : ‖Pσ(wn)‖ > r′}| 6 1

for every σ ∈ [T ]. In particular, by (5.6) and the choice of r′, for every σ ∈ [T ] we

have lim supn∈L ‖Pσ(wn)‖ 6 lim sup ‖Pσ(wn)‖ 6 r′ < δ. Applying property (∗) for

the sequence (wn)n∈L, we select M ∈ [L]∞ such that the sequence (wn)n∈M satisfies

an ε-lower `2 estimate. Let {m1 < m2 < · · · } be the increasing enumeration of M .

Let k ∈ N be arbitrary. Since (wn)n∈M satisfies an ε-lower `2 estimate, we see

that ‖
∑k
i=1 wmi‖ > ε

√
k. Next, let σ ∈ [T ] be arbitrary. By (5.7), we have that

‖Pσ
(∑k

i=1 wmi
)
‖ 6 1 + r′(k − 1). Hence, setting

zk :=
wm1 + · · ·+ wmk
‖wm1

+ · · ·+ wmk‖
,

we conclude that ‖zk‖ = 1 and ‖Pσ(zk)‖ 6 1+r′(k−1)

ε
√
k

for every k ∈ N and every

σ ∈ [T ]. Thus, if k0 and r′ satisfy k0 > 4
ε2r2 and r′ < 1

k0−1 , then the vector zk0
is

as desired. The claim is proved. �

By the above claim, there exists a normalized block sequence (yn) in Y such that

for every n ∈ N and every σ ∈ [T ] we have ‖Pσ(yn)‖ 6 1
n . By Lemma 5.7, there

exists L ∈ [N]∞ such that the sequence (yn)n∈L satisfies an upper `2 estimate.

Invoking property (∗) once again, we select M ∈ [L]∞ such that the sequence

(yn)n∈M satisfies a lower `2 estimate. The sequence (yn)n∈M is as desired. �

5.2. Finding incomparable sets of nodes. For every finitely supported vector

z of T X2 we denote by range(z) the minimal interval of N that contains supp(z). It

is an immediate consequence of the enumeration of the basis of T X2 that range(z),

considered as a subset of T , is segment complete. (Recall that we enumerate T using

a fixed bijection h : T → N which satisfies that h(t1) < h(t2) for every t1, t2 ∈ T
with t1 @ t2.) Our next goal is to prove the following proposition.
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Proposition 5.10. Let (zn) be a normalized block sequence in T X2 and let λ > 0

such that

{zn : n ∈ N} ⊆ λWX +
1

200
BT X2 .

Also let r 6 1
1003·λ and assume that

lim sup ‖Pσ(zn)‖ < r

for every σ ∈ [T ]. Then there exist L ∈ [N]∞ and for every n ∈ L a segment

complete subset An of T such that the following are satisfied.

(I) For every n ∈ L we have An ⊆ range(zn).

(II) If n,m ∈ L with n 6= m, then An is incomparable with Am.

(III) For every n ∈ L we have ‖PAn(zn)‖ > 2/3.

Proof. Let n ∈ N. By our assumptions, there exist wn ∈ W 0
X and xn ∈ T X2

such that ‖xn‖ 6 1/100 and zn = λwn + xn. Hence, ‖zn − λwn‖ 6 1/100. Set

Rn := range(zn), and notice that we may assume that supp(wn) ⊆ Rn for every

n ∈ N. Indeed, since Rn is segment complete, PRn is a norm-one projection, and

so PRn(WX) ⊆WX and PRn(BT X2 ) ⊆ BT X2 for every n ∈ N. Thus, in what follows,

we will assume that supp(wn) ⊆ Rn; this implies, in particular, that the sequence

(wn) is block.

For every n ∈ N let {s1,n, . . . , sdn,n} be a collection of pairwise incomparable

segments of T such that si,n ⊆ range(wn) ⊆ Rn and

‖λwn‖ =
( dn∑
i=1

‖Psi,n(λwn)‖2
)1/2

.

Since ‖zn‖ = 1 and ‖zn − λwn‖ 6 1/100, we have 99/100 6 ‖λwn‖ 6 101/100.

Next, set θ := 82/(1002λ2) and notice that λ
√
θ = 8/100. We define

Gn :=
{
i ∈ {1, . . . , dn} : ‖Psi,n(wn)‖ > θ

}
.

Claim 1. For every n ∈ N the following hold.

(a) We have |Gn| 6 4/(λ2θ2).

(b) We have
(∑

i∈Gn ‖Psi,n(zn)‖2
)1/2
> 9/10.

Proof of the claim. (a) Notice that

2 > ‖λwn‖ >
( ∑
i∈Gn

‖Psi,n(λwn)‖2
)1/2

> λ
( ∑
i∈Gn

θ2
)1/2

= λ θ
√
|Gn|

which implies that |Gn| 6 4/(λ2θ2).

(b) Since wn ∈ W 0
X , we have that wn =

∑kn
j=1 a

n
j x

n
j where

∑kn
j=1 a

n
j = 1, anj > 0

and xnj ∈ BXσn
j

for some σnj ∈ [T ]. For every i ∈ {1, . . . , dn} set βi,n := ‖Psi,n(wn)‖.

We claim that
∑dn
i=1 βi,n 6 1. Indeed, for every i ∈ {1, . . . , dn} set

Hi :=
{
j ∈ {1, . . . , kn} : supp(xnj ) ∩ si,n 6= ∅}.
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Since supp(xnj ) is a chain and the family {s1,n, . . . , sdn,n} consists of pairwise in-

comparable segments, we see that Hi1 ∩Hi2 = ∅ if i1 6= i2. Moreover,

βi,n = ‖Psi,n(wn)‖ =
∥∥Psi,n( kn∑

j=1

anj x
n
j

)∥∥ =
∥∥Psi,n( ∑

j∈Hi

anj x
n
j

)∥∥ 6 ∑
j∈Hi

anj

and so
dn∑
i=1

βi,n 6
dn∑
i=1

∑
j∈Hi

anj 6
kn∑
j=1

anj = 1

which yields the desired estimate. By the definition of Gn, we see that if i /∈ Gn,

then βi,n < θ. By the choice of θ, it follows that( ∑
i/∈Gn

‖Psi,n(λwn)‖2
)1/2

= λ
( ∑
i/∈Gn

β2
i,n

)1/2

< λ
( ∑
i/∈Gn

βi,nθ
)1/2

= λ
√
θ
( ∑
i/∈Gn

βi,n

)1/2

6 λ
√
θ =

8

100
.

Also notice that

99

100
6 ‖λwn‖ =

( ∑
i∈Gn

‖Psi,n(λwn)‖2 +
∑
i/∈Gn

‖Psi,n(λwn)‖2
)1/2

6
( ∑
i∈Gn

‖Psi,n(λwn)‖2
)1/2

+
( ∑
i/∈Gn

‖Psi,n(λwn)‖2
)1/2

.

Therefore,
(∑

i∈Gn ‖Psi,n(λwn)‖2
)1/2
> 91/100. Finally, observe that

91

100
6

( ∑
i∈Gn

‖Psi,n(λwn)‖2
)1/2

6
( ∑
i∈Gn

‖Psi,n(zn)‖2
)1/2

+
( ∑
i∈Gn

‖Psi,n(λwn − zn)‖2
)1/2

6
( ∑
i∈Gn

‖Psi,n(zn)‖2
)1/2

+ ‖zn − λwn‖

6
( ∑
i∈Gn

‖Psi,n(zn)‖2
)1/2

+
1

100

which yields the desired estimate. The claim is proved. �

By part (a) of Claim 1, the choice of θ and by passing to a subsequence of (zn) if

necessary, we may assume that |Gn| = k for every n ∈ N where k 6 ( 4·1004

84 )λ2. For

every n ∈ N we re-enumerate the family {si,n : i ∈ Gn} of incomparable segments

of T as {s1,n, . . . , sk,n}.

Claim 2. Let i ∈ {1, . . . , k} and let Mi ∈ [N]∞. Then there exists Ni ∈ [Mi]
∞ and

for every n ∈ Ni disjoint segments gi,n and bi,n such that the following are satisfied.
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(i) For every n ∈ Ni we have si,n = gi,n ∪ bi,n (that is, the segments gi,n and

bi,n form a partition of si,n) and, moreover, if t ∈ bi,n and t′ ∈ gi,n, then

we have t @ t′.

(ii) For every n ∈ Ni we have ‖Pbi,n(zn)‖ < r.

(iii) For every n,m ∈ Ni with n 6= m, if gi,n and gi,m are nonempty, then gi,n

is incomparable with gi,m.

Proof of the claim. For every n ∈ Mi let tn denote the @-minimum of si,n. By

Ramsey’s theorem, there exists I ∈ [Mi]
∞ such that either the sequence (tn)n∈I

consists of pairwise incomparable nodes, or the nodes (tn)n∈I are mutually com-

parable. In the first case, we set Ni := I, and gi,n := si,n and bi,n := ∅ for

every n ∈ Ni. So, assume that the nodes (tn)n∈I are pairwise comparable. Since

tn ∈ si,n ⊆ range(wn) ⊆ range(zn) and the sequence (zn) is block, we see that if

n,m ∈ I with n < m, then tn @ tm. Set σi :=
⋃
n∈I{t ∈ T : t v tn} ∈ [T ]. By our

assumptions for the sequence (zn), we have

lim sup
n∈I

‖Pσi(zn)‖ 6 lim sup ‖Pσi(zn)‖ < r.

Hence, there exists Ni ∈ [I]∞ such that ‖Pσi(zn)‖ < r for every n ∈ Ni. For every

n ∈ Ni set bi,n := si,n ∩ σi and gi,n := si,n \ bi,n. Since si,n is a segment and σi is

a branch, we see that both bi,n and gi,n are segments; consequently, part (i) of the

claim is satisfied. The Schauder tree basis (xt)t∈T of X is bimonotone, and so for

every n ∈ Ni we have ‖Pbi,n(zn)‖ 6 ‖Pσi(zn)‖ < r; that is, part (ii) is satisfied. We

will verify part (iii). To this end let n,m ∈ Ni with n < m and assume, towards

a contradiction, that gi,n and gi,m are nonempty and comparable. The sequence

(zn) is block and n < m. Therefore, there exists t ∈ gi,n with t @ tm. (Recall that

tm is the @-minimum node of si,m.) It follows that t @ σi which contradicts the

definition of gi,n. The claim is proved. �

Applying Claim 2 recursively for every i ∈ {i, . . . , k}, we obtain N ∈ [N]∞ and

for every n ∈ N and every i ∈ {1, . . . , k} disjoint segments gi,n and bi,n such that

the following are satisfied.

(P1) For every n ∈ N and every i ∈ {1, . . . , k} we have si,n = gi,n ∪ bi,n (that

is, the segments gi,n and bi,n form a partition of si,n), and if t ∈ bi,n and

t′ ∈ gi,n, then t @ t′.

(P2) For every n ∈ N and every i ∈ {1, . . . , k} we have ‖Pbi,n(zn)‖ < r.

(P3) For every i ∈ {1, . . . , k} and every n,m ∈ N with n 6= m if gi,n and gi,m

are nonempty, then gi,n is incomparable with gi,m.

For every i, j ∈ {1, . . . , k} we set

Ci,j :=
{

(n,m) ∈ [N ]2 : gi,n and gj,m are nonempty and comparable
}
.

and

B := [N ]2 \
( ⋃
i,j∈{1,...,k}

Ci,j

)
.
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By Ramsey’s theorem, there exists L ∈ [N ]∞ which is monochromatic. We claim

that [L]2 ⊆ B. Assume not. Then there exist i, j ∈ {1, . . . , k} such that [L]2 ⊆ Ci,j .
Let {l1 < l2 < l3 < · · · } denote the increasing enumeration of L. Notice that both

gi,l1 and gi,l2 are comparable with gj,l3 . Let t1, t2 and t3 be the @-minimum nodes

of gi,l1 , gi,l2 and gj,l3 respectively. Since l1 < l2 < l3 and the sequence (zn) is block,

we see that t1 @ t3 and t2 @ t3. But then t1 must be comparable with t2, which

implies that gi,l1 is comparable with gi,l2 . This contradicts property (P3), since

l1, l2 ∈ L and L ∈ [N ]∞. Therefore, [L]2 ⊆ B.

For every n ∈ L we set An :=
⋃
i∈{1,...,k} gi,n. The fact that [L]2 ⊆ B implies

that if n,m ∈ L with n 6= m, then An is incomparable with Am. Also notice that

for every n ∈ L we have An ⊆
⋃
i∈{1,...,k} si,n ⊆ range(wn) ⊆ range(zn). It remains

to estimate the quantity ‖PAn(zn)‖ for every n ∈ L. Fix n ∈ L. By our hypotheses

on r and the estimate on k, we have

r
√
k 6

( 1

1003 · λ

)
·
(2 · 1002 · λ

82

)
6

1

10
.

By property (P1), we have ‖Psi,n(zn)‖ 6 ‖Pgi,n(zn)‖ + ‖Pbi,n(zn)‖. Therefore, by

property (P2), we obtain that( k∑
i=1

‖Psi,n(zn)‖2
)1/2

6
( k∑
i=1

‖Pgi,n(zn)‖2
)1/2

+
( k∑
i=1

‖Pbi,n(zn)‖2
)1/2

6
( k∑
i=1

‖Pgi,n(zn)‖2
)1/2

+ r
√
k

6
( k∑
i=1

‖Pgi,n(zn)‖2
)1/2

+
1

10
.

By part (b) of Claim 1, we conclude that

‖PAn(zn)‖ >
( k∑
i=1

‖Pgi,n(zn)‖2
)1/2

>
( k∑
i=1

‖Psi,n(zn)‖2
)1/2

− 1

10

>
9

10
− 1

10
>

2

3

and the proof is completed. �

5.3. Singularity and thinness. We start with the following lemma.

Lemma 5.11. Let Z be a subspace of T X2 and let λ > 0 such that

BZ ⊆ λWX +
1

200
BT X2 .

Then Z satisfies property (∗) for δ = 1
1003·λ and ε = 1

2 .

Proof. As in Proposition 5.6, we will give the proof under the assumption that Z is

a block subspace, and we will work with block sequences instead of pointwise-null

sequences; the general case follows using identical arguments. By Definition 5.8,
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in order to verify that Z has property (∗) for δ = 1
1003·λ and ε = 1

2 , let (zn) be a

normalized block sequence in Z such that for every σ ∈ [T ] we have

lim sup ‖Pσ(zn)‖ < 1

1003 · λ
.

By our assumptions on Z, we may apply Proposition 5.10 for the sequence (zn) and

r = 1
1003λ , and we obtain L ∈ [N]∞ and for every n ∈ L a segment complete set An

such that the following are satisfied.

(I) For every n ∈ L we have An ⊆ range(zn).

(II) If n,m ∈ L with n 6= m, then An is incomparable with Am.

(III) For every n ∈ L we have ‖PAn(zn)‖ > 2/3.

We select a sequence (z∗n)n∈L in (T X2 )∗ with the following properties.

(a) For every n ∈ L we have ‖z∗n‖ 6 1 and z∗n(zn) > 1/2.

(b) For every n ∈ L we have that supp(z∗n) ⊆ An.

Let {l1 < l2 < · · · } be the increasing enumeration of L, and observe that the

following hold.

(i) For every k ∈ N, if a1, . . . , ak ∈ R with
∑k
i=1 a

2
i = 1, then the functional∑k

i=1 aiz
∗
li

has norm at most one.

(ii) By (I) and (b), for every i, n ∈ L with i 6= n we have z∗n(zi) = 0.

Using (i) and (ii), it is easy to verify that the sequence (zn)n∈L satisfies an 1
2 -lower

`2 estimate. The proof is completed. �

Lemma 5.12. Let Z be a weakly X-singular subspace of T X2 . Assume that WX

almost absorbs BZ . Then there exist a sequence (zn) in Z, a sequence (An) of

subsets of T and a sequence (z∗n) in (T X2 )∗ such that the following are satisfied.

(1) (zn) is normalized, pointwise-null and equivalent to the `2 basis.

(2) For every n ∈ N we have that An is segment complete, and if n 6= m, then

An is incomparable with Am. Moreover, if n < m, then h(An) < h(Am)

where h : T → N is the fixed enumeration of T .

(3) For every n ∈ N we have supp(z∗n) ⊆ An, ‖z∗n‖ 6 1 and z∗n(zn) > 1/2.

Proof. Again, we will assume that Z is a block subspace and we will work with

block sequences. Since WX almost absorbs BZ , there exists λ > 0 such that

BZ ⊆ λWX + 1
200BT X2 . By Lemma 5.11, we see that Z has property (∗) for

δ = 1
1003·λ and ε = 1

2 . By Proposition 5.9 (and its proof), there exists a normalized

block sequence (zn) in Z such that the following are satisfied.

(I) There exists C > 0 such that for every k ∈ N and a1, . . . , ak ∈ R we have

1

2

( k∑
i=1

a2
i

)1/2
6
∥∥ k∑
i=1

aizi
∥∥ 6 C( k∑

i=1

a2
i

)1/2
.

(II) For every σ ∈ [T ] we have lim ‖Pσ(zn)‖ = 0.
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Using (II), the fact that BZ ⊆ λWX + 1
200BT X2 and arguing as in the proof of

Lemma 5.11 for the sequence (zn), we obtain L ∈ [N]∞ and for every n ∈ L a

segment complete set An ⊆ range(zn) and z∗n ∈ (T X2 )∗ such that (2) and (3) in the

statement of the lemma are satisfied. The proof is completed. �

Proposition 5.13. Let Z be a weakly X-singular subspace of T X2 . Then the set

WX does not almost absorb BZ .

Proof. As in the previous two lemmas, we will assume that Z is a block subspace.

Assume, towards a contradiction, that WX almost absorbs BZ . Since Z is weakly

X-singular, we obtain sequences (zn), (An) and (z∗n) as described in Lemma 5.12.

We set Ω := span{zn : n ∈ N} and we define P : T X2 → Ω by P (x) =
∑
n∈N

z∗n(x)
z∗n(zn)zn.

Using the fact that the sequence (zn) is equivalent to the `2 basis and that the

vectors (z∗n) are supported in incomparable sets of nodes, we see that P is a bounded

projection. We set C := ‖P‖ <∞. (Actually, it is easy to see that C 6 2.)

Claim. We have P (WX) ⊆ conv{±2zn : n ∈ N}.

Proof of the claim. Let w ∈W 0
X be arbitrary. Then w is of the form w =

∑l
i=1 aixi

where
∑l
i=1 ai = 1 with ai > 0 and xi ∈ BXσi for some σi ∈ [T ]. For every

i ∈ {1, . . . , l} let si be the unique minimal segment of T that contains supp(xi).

For every n ∈ N we set Fn :=
{
i ∈ {1, . . . , l} : si ∩ An 6= ∅

}
. The sets (An) are

pairwise incomparable, and so Fn ∩ Fm = ∅ if n 6= m. Moreover,

z∗n(w) = z∗n
( ∑
i∈Fn

aixi
)

=
∑
i∈Fn

aiz
∗
n(xi) 6

∑
i∈Fn

ai.

Thus, setting θn :=
z∗n(w)
z∗n(zn) , we see that

∑
n∈N |θn| 6 2. By the definition of P , this

yields that P (W 0
X) ⊆ conv{±2zn : n ∈ N} and the proof is completed. �

Since Ω is a subspace of Z and WX almost absorbs BZ , we see that WX must

also almost absorb BΩ. Thus, there exists r > 0 such that BΩ ⊆ rWX + 1
2CBT X2 .

Consequently, we have BΩ ⊆ rP (WX)+ 1
2BΩ, since P is a projection with ‖P‖ = C.

By standard arguments (see, e.g., [AF, Lemma 4.8]), we obtain thatBΩ ⊆ 2rP (WX)

and so, by the previous claim, we conclude that

(5.8) BΩ ⊆ 2r conv{±2zn : n ∈ N}.

This is a contradiction, since (5.8) implies that the `2 norm is equivalent to the

`1 norm. The proof is completed. �

The following proposition is the analogue of Proposition 5.13 for sequences.

Proposition 5.14. Let (vk) be a bounded block sequence in T X2 and let ε > 0 such

that the following hold.

(I) For every k ∈ N we have ‖vk‖ > ε.

(II) For every σ ∈ [T ] we have lim ‖Pσ(vk)‖ = 0.

(III) The set WX almost absorbs the set {vk : k ∈ N}.
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Then there exists L ∈ [N]∞ and for every k ∈ L a segment complete subset Ak of T

and a vector z∗k ∈ (T X2 )∗ such that the following hold.

(a) The sets (Ak)k∈L are pairwise incomparable.

(b) For every k ∈ L we have ‖z∗k‖ 6 1 and supp(z∗k) ⊆ Ak ⊆ range(vk).

(c) For every k ∈ L we have z∗k(vk) > ε
2 .

Proof. We set C := sup{‖vk‖ : k ∈ N} < ∞ and zk := vk
‖vk‖ for every k ∈ N.

Then (zk) is a normalized block sequence and, moreover, lim ‖Pσ(zk)‖ = 0 for

every σ ∈ [T ]. The set WX almost absorbs the set {vk : k ∈ N}, and so there exists

λ′ > 0 such that {vk : k ∈ N} ⊆ λ′WX + ε
200BT X2 . Set λ := λ′/ε and notice that

zk =
vk
‖vk‖

∈ λ′

‖vk‖
WX +

ε

200 ‖vk‖
BT X2 ⊆ λWX +

1

200
BT X2

for every k ∈ N. By Proposition 5.10 applied for (zk) and r = 1
1003·λ , we obtain

L ∈ [N]∞ and for every k ∈ L a segment complete subset Ak of T such that the

following are satisfied.

(I) For every k ∈ L we have Ak ⊆ range(zk).

(II) If n,m ∈ L with n 6= m, then An is incomparable with Am.

(III) For every k ∈ L we have ‖PAk(zk)‖ > 2/3.

Next, as in the proof of Lemma 5.11, we select a sequence (z∗k)k∈L in (T X2 )∗ such

that the following are satisfied.

(a) For every k ∈ L we have ‖z∗k‖ 6 1 and supp(z∗k) ⊆ Ak ⊆ range(vk).

(b) For every k ∈ L we have z∗k(zk) > 1
2 and, consequently, z∗k(vk) > ‖vk‖2 > ε

2 .

The proof is completed. �

We are ready to state the main results in this subsection.

Theorem 5.15. Let Y be an X-singular subspace of T X2 . Then WX is thin on Y .

Proof. Assume, towards a contradiction, that WX is not thin on Y . Thus, there

exists a subspace Z of Y such that WX almost absorbs BZ . Clearly Z is X-singular

and so, by part (a) of Remark 6, Z is weakly X-singular. By Proposition 5.13, we

derive a contradiction. �

We also need the following slightly stronger version of Theorem 5.15.

Theorem 5.16. Let Y be a subspace of T X2 . If WX almost absorbs BY , then

there exists finite A ⊆ [T ] such that the operator PA : Y → XA is an isomorphic

embedding.

Proof. Assume not, that is, for every finite A ⊆ [T ] the operator PA : Y → XA is

not an isomorphic embedding. According to our terminology, this is equivalent to

saying that Y is weakly X-singular. By Proposition 5.13, we see that WX does not

almost absorb BY and we derive a contradiction. �
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6. HI Schauder sums

In Sections 6 and 7 we present, briefly, the definition and the main properties

of HI interpolations. Our definition is similar to the one introduced in [AF]. In

the present setting the interpolation space has a Schauder basis under some mild

assumptions on the set W . Furthermore, the HI Schauder sums are defined with the

use of the
(
Anl , 1

ml

)
-saturation families. We note that the reader who is interested

exclusively in p-amalgamations can skip Sections 6 and 7, and proceed directly to

Section 8.

6.1. We start by introducing some pieces of notation.

Notation. We define j, π : N×N→ N by setting j
(
(n, k)

)
= n and π

(
(n, k)

)
= k.

Moreover, for every x ∈ c00(N×N) by range(x) we denote the rectangle I × J with

I, J intervals of N, and which is the minimal rectangle of this form that contains

the support supp(x) of the vector x.

Notation. Let A,B ⊆ N × N. We write A ≺π B provided that π(A) < π(B)

(that is, max{k : k ∈ π(A)} < min{k : π(B)}); respectively, we write A ≺j B if

j(A) < j(B). Finally, we write A ≺(j,π) B if A ≺j B and A ≺π B.

More generally, given x, y ∈ c00(N×N) we write x ≺j y (respectively, x ≺π y and

x ≺(j,π) y) provided that supp(x) ≺j supp(y) (respectively, supp(x) ≺π supp(y)

and supp(x) ≺(j,π) supp(y)).

Definition 6.1. We say that a sequence (xn) in c00(N×N) is j-block (respectively,

π-block) if xn ≺j xn+1 (respectively, xn ≺π xn+1) for every n ∈ N. We say that

(xn) is diagonally block if xn ≺(j,π) xn+1 for every n ∈ N.

Definition 6.2. Let (Xn) be a sequence of separable Banach spaces. An HI

Schauder sum of (Xn) is a Banach space X = (
∑
n∈N⊕Xn)hi with the following

properties.

(i) The sequence (Xn) defines a Schauder decomposition of X (that is, every

x ∈ X has a unique representation of the form x =
∑
n xn with xn ∈ Xn

for every n ∈ N).

(ii) Every subspace Y of X either contains a HI subspace, or there exists n ∈ N
such that the natural projection jn : Y → Xn is not strictly singular.

Remark 7. In [AF], it was shown that for every sequence (Xn) of separable Banach

spaces there exists a HI Schauder sum of (Xn). The purpose of this section is to

provide a variant of the construction presented in [AF] in the special case where

each Xn has a bimonotone Schauder basis (xn,k)k∈N. This variant satisfies the

additional property that the HI Schauder sum X admits an alternative Schauder

decomposition X = (
∑
k∈N⊕Zk)# where Zk = span{xn,k : n ∈ N} for every k ∈ N.

This property (together with some additional hypotheses) will be used that the

interpolation space ∆X has a Schauder basis.
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Definition 6.3. Let X be a Banach space with a bimonotone basis (xn). We define

the subset GX of c00(N) by the rule

GX :=
{ n∑
i=1

aix
∗
i : n ∈ N, a1, . . . , an ∈ Q and

∥∥ n∑
i=1

aix
∗
i

∥∥ 6 1
}
.

Observe that the following hold.

(i) The Banach space X is isometric (in the natural way) with the completion

of c00(N) with the norm ‖ · ‖GX where, as usual, for every x ∈ c00(N) we

set ‖x‖GX := sup{φ(x) : φ ∈ GX}.
(ii) The set GX is countable, symmetric, closed in the restrictions on intervals

(since the basis (xn) is bimonotone) and contains the sequence (x∗n).

Definition 6.4. Let (Xn) be a sequence of Banach spaces each of which has a

bimonotone Schauder basis (xn,k)k∈N. For every n ∈ N we denote by Gn the set

GXn described in Definition 6.3, and we view Gn as a subset of c00({n} × N) in

the natural way. In particular,
⋃
nGn is a (well-defined) subset of c00(N× N).

6.2. For the rest of this section let (Xn) denote a sequence of Banach spaces each of

which has a bimonotone Schauder basis (xn,k)k∈N, and let Gn denote the subsets of

c00(N× N) described in Definition 6.4. We fix two sequence (ml) and (nl) defined

recursively by setting m1 := 2,ml+1 := m5
l , and n1 := 4, nl+1 := (5nl)

sl where

sl := log2ml+1. We define the set G to be the minimal subset of c00(N × N) with

the following properties.

(I) We have
⋃
nGn ⊆ G; moreover, G is closed under the projection on rect-

angles of the form I × J where I, J are intervals of N (that is, if f ∈ G and

I, J are intervals of N, then (I × J) · f := 1I×J · f ∈ G).

(II) For every l ∈ N the set G is closed in the
(
An2l

, 1
m2l

)
-operation on j-block

sequences; that is, if f1 ≺j · · · ≺j fn2l
, then 1

m2l

∑n2l

i=1 fi ∈ G.

(III) For every l ∈ N the set G is closed in the
(
An2l−1

, 1
m2l−1

)
-operation on

(n2l−1)-special sequences.

(IV) The set G is rationally convex.

Of course, we need to determine the (n2l−1)-special sequences; they are defined

using a coding function σ. Before we proceed to the details, we introduce some

terminology. For every l ∈ N if f ∈ G is the result of the
(
Anl , 1

ml

)
-operation, then

we denote the positive integer ml by w(f) and we call it the weight w(f) of f . Note

that w(f) is not uniquely defined.

6.3. The coding function σ. First we consider a set S of finite sequences in

c00(N× N) defined by the rule

S :=
{

(φ1, . . . , φd) : φ1 ≺j · · · ≺j φd, and φi(n, k) ∈ Q for every (n, k) ∈ N× N

and every i ∈ {1, . . . , d}
}
.
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We fix a pair Ω1,Ω2 of disjoint infinite subsets of N. Since S is countable, we may

also fix an injection σ : S → {2l : l ∈ Ω2} such that

mσ(φ1,...,φd) > max
{ 1

|φi(n, k)|
: (n, k) ∈ supp(φi) and i ∈ {1, . . . , d}

}
×

× max{k : (n, k) ∈ supp(φd)}.

We say that a finite sequence (fi)
n2l−1

i=1 is (n2l−1)-special provided that

(a) (f1, . . . , fn2l−1
) ∈ S and fi ∈ G for every i ∈ {1, . . . , n2l−1}, and

(b) w(f1) = m2k with k ∈ Ω1, m
1/2
2k > n2l−1, and w(fi) = mσ(f1,...,fi−1) for

every i ∈ {2, . . . , n2l−1}.

Remark 8. As we have already pointed out, the weight w(f) of a functional f is

not unique. However, if (f1, . . . , fn2l−1
) is a (n2l−1)-special sequence, then for every

i ∈ {2, . . . , n2l−1} we set w(fi) := mσ(f1,...,fi−1).

6.4. We define

XG := T
[
(Gn),

(
Anl ,

1

ml

)
, σ
]

to be the completion of c00(N×N) with the norm ‖ · ‖G where G is the set defined

in Subsection 6.2.

Remark 9. The following hold.

(1) For every n ∈ N the space Xn is isometric to span{xn,k : k ∈ N} ↪→ XG .

(2) For every pair I, J of (finite or infinite) intervals of N the projection

PI×J : XG → XI×J := span{xn,k : n ∈ I, k ∈ J}

has norm one. Consequently, the following are satisfied.

(a) The sequence (Xn) defines a Schauder decomposition of XG.

(b) Setting Zk = span{xn,k : n ∈ N} for every k ∈ N, the sequence (Zk)

also defines a Schauder decomposition of XG.

(3) Every j-block, and every π-block, sequence is a bimonotone basic sequence.

In particular, every diagonally block sequence is bimonotone basic sequence.

6.5. We proceed to present the basic ingredients which are needed for the proof of

the fact that certain block sequences in XG generate HI spaces. We start with the

following definition.

Definition 6.5. Let x ∈ c00(N×N) and C > 1. We say that x is a C− `1k average

if there exists a j-block sequence x1 ≺j · · · ≺j xk such that x = 1
k (x1 + · · · + xk),

‖xi‖G 6 C for every i ∈ {1, . . . , k}, and ‖x‖G = 1.

We have the following lemma; see, e.g., [ATo, Lemma 2.22] or [AM, Lemma 4.6]

for a proof.

Lemma 6.6. For every j-block sequence (yn) and every k ∈ N there exists a 2− `1k
average in span{yn : n ∈ N}.
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The following result has its roots in Schlumprecht’s paper [Schl].

Lemma 6.7. Let (xq) be a j-block sequence such that each xq is a C− `1kq average,

where C > 1 and the sequence (kq) is increasing to infinity. Then for every l ∈ N
there exists q1 < · · · < qn2l

such that∥∥ 1

n2l
(xq1 + · · ·+ xqn2l

)
∥∥ 6 3C

m2l
.

The proof of Lemma 6.7 (which is based on the concept of an R.I.S. sequence

and the basic inequality) is identical to the proof of [ATo, Subsection 2.2].

Definition 6.8 (exact pair). Let x ∈ c00(N × N) and let φ ∈ G. Also let C > 0

and l ∈ N. We say that (x, φ) is (C, l)-exact pair if the following are satisfied.

(1) We have 1 6 ‖x‖G 6 C; moreover, for every f ∈ G with w(f) = mq and

q 6= l we have |f(x)| 6 3C/mq if q < l, while |f(x)| 6 C/m2
l if q > l.

(2) The functional φ is the result of the
(
Anl , 1

ml

)
-operation; thus, w(φ) = ml.

(3) We have that φ(x) = 1 and range(x) = range(φ). (Recall that the range of

a vector in c00(N×N) is the minimal rectangle generated by intervals which

contains its support.)

The following proposition is a consequence of Lemmas 6.6 and 6.7.

Proposition 6.9. If (xq) is a j-block sequence, then for every l ∈ N there exists

an (6, 2l)-exact pair (x, φ) where x ∈ span{xq : q ∈ N} and φ ∈ G.

We need to introduce some terminology. We say that a (possibly finite) j-block

sequence in c00(N × N) is special j-block if either it is diagonally block, or there

exists k ∈ N such that its members are all supported in N× {k}.

Definition 6.10 (dependent sequences). Let C > 0 and l ∈ N. Let (xk)
n2l−1

k=1 be a

special j-block sequence, and for every k ∈ {1, . . . , n2l−1} let φk ∈ G. We say that

(xk, φk)
n2l−1

k=1 is (C, 2l − 1)-dependent sequence if there exists a sequence (2lk)
n2l−1

k=1

of even integers such that the following hold.

(i) We have that (φk)
n2l−1

k=1 is a (n2l−1)-special sequence with w(φk) = m2lk for

every k ∈ {1, . . . , n2l−1}.
(ii) Each (xk, φk) is a (C, 2lk)-exact par.

We have the following proposition.

Proposition 6.11. Let (xk, φk)
n2l−1

k=1 be a (C, 2l − 1)-dependent sequence. Then

(6.1)
∥∥ 1

n2l−1

n2l−1∑
k=1

xk
∥∥ > 1

m2l−1

and

(6.2)
∥∥ 1

n2l−1

n2l−1∑
k=1

(−1)kxk
∥∥ 6 8C

m2
2l−1

.
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We notice that inequality (6.1) is straightforward, since the special functional
1

m2l−1

∑n2l−1

k=1 φk belongs to G. However, the estimate (6.2) is not easy. It follows

arguing precisely as in [ATo, Proposition 3.6].

Remark 10. Proposition 6.11 is the main tool for showing the HI property of

certain subspaces of XG; we present the precise statement below. At this point

we want to comment on the role of special j-block sequences in the definition of

dependent sequences. A key ingredient needed for the proof of (6.2) is a “tree-like”

property satisfied by all (n2l−1)-special sequences—see, e.g., [ATo, Proposition 3.3].

When we deal with norms on c00(N), then this “tree-like” property is also satisfied

by all restrictions of the special sequences on intervals of N. On the other hand,

when we deal with c00(N×N) and we consider restrictions on rectangles generated

by intervals of N, then this is no longer valid. However, this problem can be resolved

if we work with special j-block sequences. This is the reason why we introduced

this concept.

The following proposition is an easy consequence of the previous results.

Proposition 6.12. Let (xn) and (yn) be diagonally block sequences. Then for

every n ∈ N there exists a (6, 2l − 1)-dependent sequence (zk, φk)
n2l−1

k=1 such that

z2k−1 ∈ span{xn : n ∈ N} and z2k ∈ span{yn : n ∈ N}. The same result also holds

true provided that (xn) and (yn) are both j-block sequences in Zk for some k ∈ N.

We proceed with the following proposition.

Proposition 6.13. If Y is a subspace of XG, then one of the following is satisfied.

(a) There exists n ∈ N such that jn : Y → Xn is not strictly singular.

(b) There exists k ∈ N such that πk : Y → Zk is not strictly singular.

(c) For every r > 0 there exists a normalized sequence (yn) in Y and a diago-

nally block sequence (wn) such that
∑
n∈N ‖yn − wn‖ < r.

Proof. Assume that neither (a) nor (b) is satisfied. Then for every n ∈ N and

every subspace Y ′ of Y there exists a subspace Y ′′ of Y ′ such that the operator

j{1,...,n} : Y ′′ →
∑n
i=1⊕Xn is strictly singular (see, e.g., [Ar, Lemma 3.7]). Note

that the same also holds for the projections π{1,...,m} (m ∈ N). Hence, for every

ε > 0 and every n,m ∈ N there exists a subspace Y ′ of Y such that ‖j{1,...,n}|Y ′‖ < ε

and ‖π{1,...,m}|Y ′‖ < ε. Using this fact and a standard sliding hump argument, we

easily verify that (c) is satisfied. �

By Propositions 6.12 and 6.13, we obtain the following corollary.

Corollary 6.14. The following hold.

(a) For every k ∈ N the space Zk is HI.

(b) If (yn) is diagonally block, then the space span{yn : n ∈ N} is HI.

(c) If Y is a subspace of XG such that jn : Y → Xn and πk : Y → Zk are

strictly singular for every n, k ∈ N, then Y is HI.
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Proof. Parts (a) and (b) follow by Proposition 6.12. For part (c) let Y be an

arbitrary subspace of XG such that the operators jn : Y → Xn and πk : Y → Zk

are strictly singular for every n, k ∈ N. Let Y1, Y2 be subspaces of Y , and let ε > 0.

By Proposition 6.13, there exist two normalized block sequences (y1
n), (y2

n) and a

diagonally block sequence (wn) such that the following are satisfied.

(1) For every n ∈ N we have y1
n ∈ Y1 and y2

n ∈ Y2.

(2) We have
∑
n∈N ‖w2n−1 − y1

n‖ < ε and
∑
n∈N ‖w2n − y2

n‖ < ε.

By part (b), the space W := span{wn : n ∈ N} is HI. Since ε was arbitrary, it

follows that d(SY1
, SY2

) = 0; but the subspaces Y1, Y2 of Y were also arbitrary, and

so Y is HI. �

6.6. We close this section with the following two properties of XG (see also [AM]).

Proposition 6.15. Every j-block sequence (xn) in XG is boundedly complete.

Proof. If not, then there exist a sequence (an) in R and ε > 0 such that for every

n ∈ N we have ‖
∑n
k=1 akxk‖ 6 1 and ‖

∑∞
k=n+1 akxk‖ > ε. Thus, there exists

a sequence (In) of successive intervals of N such that for every d ∈ N, setting

wd =
∑
k∈Id akxk, we have ‖wd‖ > ε. We select φd ∈ G with range(φd) = range(wd)

and φd(wd) > ε. Notice that nl/ml →∞ as l→∞. Hence, for appropriate l, n ∈ N,

we obtain that
(

1
m2l

∑n2l

d=1 φd
)(∑n

k=1 akxk
)
> 1 which yields a contradiction. �

Proposition 6.16. We have X∗G = span
{⋃

n∈NX
∗
n

}
.

Proof. Assume not. Then there exist x∗∗ ∈ X∗∗G and x∗ ∈ BX∗G
such that ‖x∗∗‖ = 1,

x∗∗(x∗) > 1/2 and
⋃
nX

∗
n ⊆ Ker(x∗∗). We select a net (xi)i∈I in BXG with

w∗ − limi∈I xi = x∗∗. Clearly, we may assume that

(6.3) x∗(xi) >
1

2
for every i ∈ I.

Observe that w− limi∈I j{1,...,n}(xi) = 0. Hence, by Mazur’s theorem and a sliding

hump argument, we may select two sequences (yn) and (zn) such that the following

are satisfied.

(i) For every n ∈ N we have yn ∈ conv{xi : i ∈ I}.
(ii) We have that (zn) is a j-block sequence.

(iii) We have
∑
n ‖yn − zn‖ < 1/8.

Notice that for every k ∈ N and every n1 < · · · < nk we have

(6.4)
∥∥zn1

+ · · ·+ znk
k

∥∥ > 1

4
.

Indeed, by (i) and (6.3), we have that x∗(yn) > 1/2 for every n ∈ N. Hence, by (iii),

we obtain that x∗(zn) > 1/4 for every n ∈ N which clearly implies (6.4). Thus, we

may select a j-block sequence (wk) with wk = 1
k

∑
n∈Fk zn where (Fk) is a sequence
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of successive intervals of N. Since (wk) is a j-block sequence of 4− `1k averages, by

Lemma 6.7, we have that for every l ∈ N there exist k1 < · · · < kn2l
such that

(6.5)
∥∥ 1

n2l

n2l∑
i=1

wki
∥∥ 6 12

m2l
.

Set vl := 1
n2l

∑n2l

i=1 wki and notice that vl is a convex combination of zk’s. Let v′l be

the corresponding convex combination of yn’s. By (i) and (6.3), we have ‖v′l‖ > 1/2.

On the other hand, by (iii), we see that ‖vl − v′l‖ < 1/8. Since ml →∞ as l→∞,

by (6.5), we obtain that ‖vl‖ → 0 which is clearly a contradiction. �

7. HI interpolations

Let X be a Banach space with a bimonotone Schauder basis (xk). Also let

W ⊆ X be closed, bounded, convex and symmetric. For every n ∈ N let ‖·‖n denote

the equivalent norm on X defined by the Minkowski gauge of the set 2nW + 1
2nBX .

We will assume that (xk) remains a bimonotone Schauder basis of Xn := (X, ‖·‖n).

By X(X,W ) we denote the HI Schauder sum of the sequence (Xn) as described in

the previous section.

Definition 7.1. The HI interpolation space ∆(X,W ) is the (closed) subspace of

X(X,W ) consisting of the vectors (x, x, . . . ) ∈ X(X,W ) with x ∈ X.

Remark 11. This definition is a variant of the corresponding definition in [AF],

which in turn follows the general scheme of the classical Davis–Figiel–Johnson–

Pelczynski interpolation method [DFJP]. As we have already pointed out in the

previous section, the present variant will allow us to obtain HI amalgamations with

a Schauder basis.

We proceed to present some general results concerning the structure of ∆(X,W ).

We start with the following lemma which provides a general condition for the exis-

tence of HI interpolations.

Lemma 7.2. Let (xk) be a bimonotone Schauder basis of X, and let W ⊆ X

be closed, bounded, convex and symmetric. Assume that PI(W ) ⊆ W for every

interval I of N where PI : X → span{xk : k ∈ I} is the natural projection. Then

for every n ∈ N the basis (xk) remains bimonotone in Xn.

Proof. Let n ∈ N and x ∈ Xn. Let λ > 0 such that x ∈ λ(2nW + 1
2nBX). By our

assumptions, for every interval I of N we have

PI(x) ∈ λ
(
2nPI(W ) +

1

2n
PI(BX)

)
⊆ λ

(
2nW +

1

2n
BX
)
.

This implies that ‖PI(x)‖n 6 ‖x‖n, as desired. �

Remark 12. Note that the `2 Baire sum T X2 of a normalized bimonotone Schauder

tree basis (xt)t∈T and the set WX defined in Definition 5.3 satisfy the assumptions
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of Lemma 7.2. Consequently, the space ∆(T X2 ,WX) is well defined. We will need

this observation later on.

Proposition 7.3. Let X, (xk) and W be as in Lemma 7.2, and assume that xk ∈W
for every k ∈ N. Then x̄k := (xk, xk, . . . ) ∈ ∆(X,W ) for every k ∈ N and, moreover,

the sequence (x̄k) defines a bimonotone Schauder basis of ∆(X,W ).

Proof. Notice, first, that ‖xk‖n 6 1
2n for every n, k ∈ N. Therefore, x̄k ∈ ∆(X,W ) for

every k ∈ N. Next, let x̄ = (x, x, . . . ) ∈ ∆(X,W ) with x =
∑
k akxk. Let k ∈ N and

consider the projection πk : ∆(X,W ) → Zk. We claim that πk(x̄) = akx̄k. Indeed,

observe that the sequence (xn,k)n∈N is a Schauder basis of Zk (not normalized) and

x∗n,k
(
πk(x̄)

)
= x∗n,k(x) = ak for every n ∈ N. Hence, πk(x̄) =

∑
n∈N akxn,k = akx̄k.

This is easily seen to imply that for every (nonempty) finite interval I of N we

have πI(∆(X,W )) = span{x̄k : k ∈ I}, and so πI(x̄) =
∑
k∈I akx̄k where, as before,

x̄ = (x, x, . . . ) and x =
∑
k akxk.

The above argument and the fact that ‖πI‖ = 1 for every finite interval I ⊆ N,

yield that the sequence (x̄k) is a bimonotone Schauder basis of span{x̄k : k ∈ N}.
Thus, it suffices to show that the space span{x̄k : k ∈ N} coincides with ∆(X,W ). To

this end let x̄ = (x, x, . . . ) with x =
∑
k akxk. We will show that the partial sums∑d

k=1 akx̄k converge weakly to x̄; clearly, this is enough to complete the proof. First

observe that
∑d
k=1 akx̄k = π{1,...,d}(x̄), and so ‖

∑d
k=1 akx̄k‖ 6 ‖x̄‖. Moreover, for

every x∗ ∈
⋃
n∈NBX∗n we have that x∗

(∑d
k=1 akx̄k

)
→ x∗(x̄). On the other hand,

by Proposition 6.16, the vector space span
{⋃

n∈NBX∗n
}

is norm dense in X∗(X,W ).

Therefore, the partial sums
∑d
k=1 akx̄k must converge weakly to x̄, and the proof

is completed. �

Proposition 7.3 justifies the following definition.

Definition 7.4. Let X be a Banach space and W ⊆ X. We say that the pair

(X,W ) admits a HI interpolation if X has a bimonotone Schauder basis (xk),

W is closed, bounded, convex and symmetric, xk ∈ W for every k ∈ N, and for

every interval I of N we have PI(W ) ⊆W .

Notation. In what follows J : ∆(X,W ) → X we denote the one-to-one linear oper-

ator defined by J(x̄) = x for every x̄ = (x, x, . . . ) ∈ ∆(X,W ).

Proposition 7.5. Assume that the pair (X,W ) admits a HI interpolation.

(a) If Y is a subspace of ∆(X,W ) such that J : Y → X is strictly singular, then

Y is HI.

(b) If Y,Z are subspaces of ∆(X,W ) such that both J |Y and J |Z are strictly

singular, then d(SY , SZ) = 0.

Proof. (a) Note that for every k ∈ N the image of the operator πk : ∆(X,W ) → Zk

has dimension 1; therefore, this operator is strictly singular. Also observe that

for every x̄ ∈ ∆(X,W ) and every n ∈ N we have jn(x̄) = J(x̄). Since every Xn is
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isomorphic to X, we conclude that jn|Y is strictly singular. By part (c) of Corollary

6.14, the result follows.

(b) As in part (a), we first observe that for every k ∈ N the operators πk|Y and πk|Z
are strictly singular. Moreover, by our assumptions, for every n ∈ N the operators

jn|Y and jn|Z are also strictly singular. Let ε > 0 be arbitrary. Arguing as in the

proof of part (c) of Corollary 6.14, we may select two normalized sequences (yn)

and (zn), and a diagonally block sequence (wn) such that the following hold.

(i) For every n ∈ N we have yn ∈ Y and zn ∈ Z.

(ii) We have
∑
n ‖w2n−1 − yn‖ < ε and

∑
n ‖w2n − zn‖ < ε.

By part (c) of Corollary 6.14, the space W := span{wn : n ∈ N} is HI. Hence,

setting W1 := span{w2n−1 : n ∈ N} and W2 := span{w2n : n ∈ N}, we see

that d(SW1
, SW2

) = 0. Since ε was arbitrary, by (ii) above, we conclude that

d(SY , SZ) = 0, as desired. �

Remark 13. Although Y and Z in part (b) of Proposition 7.5 are HI and satisfy

d(SY , SZ) = 0, the space Y + Z may not be HI subspace. Actually, there are

examples of such pairs Y,Z with Y + Z = ∆(X,W ) and ∆(X,W ) not HI.

Theorem 7.6. Assume that the pair (X,W ) admits a HI interpolation. Let Y be a

(closed) subspace of X and assume that W is thin on Y . Then J−1(Y ) is either HI,

or finite-dimensional.

Proof. Set Z := J−1(Y ), and assume that Z is infinite-dimensional. We will show

that the operator J : Z → X is strictly singular. Indeed, if not, then there exists

Z1 ↪→ Z such that J : Z1 → X is an isomorphic embedding. Then J(Z1) is a

closed subspace of Y and there exists C > 0 such that for every x ∈ J(Z1) with

‖x‖ 6 1 we have that ‖x̄‖ 6 C. It follows that ‖x‖n 6 C and, consequently,

BJ(Z1) ⊆ C2nW + C
2nBX for every n ∈ N; that is, the set W almost absorbs BJ(Z1).

This is a contradiction since W is thin on Y . Therefore, J : Z → X is strictly

singular, and the result follows by part (a) of Proposition 7.5. �

We proceed with the following (essentially known) proposition which establishes

an important property of the operator J .

Proposition 7.7. The operator J : ∆(X,W ) → X is Tauberian; that is, for every

x∗∗ ∈ ∆∗∗(X,W ) \∆(X,W ) we have J∗∗(x∗∗) ∈ X∗∗ \X.

Proof. We have the following claim.

Claim. For every x̄∗∗ ∈ ∆∗∗(X,W ) there exists y∗∗ ∈ X∗∗ such that, setting

(7.1) ȳ∗∗n := (y∗∗, y∗∗, . . . , y∗∗︸ ︷︷ ︸
n-times

, 0, . . . )

for every n ∈ N, we have x̄∗∗ = w∗ − lim ȳ∗∗n .
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Proof of the claim. By Proposition 6.16, we have (
∑
n⊕Xn)∗hi = span

{⋃
n∈NX

∗
n

}
and, consequently,(∑

n

⊕Xn

)∗∗
hi

=
{
w∗ −

∞∑
n=1

x∗∗n : x∗∗n ∈ X∗∗n for every n ∈ N, and

∃C > 0 with
∥∥ k∑
n=1

x∗∗n
∥∥ 6 C for every k ∈ N

}
.

Let x̄∗∗ ∈ ∆∗∗(X,W ) and select a net (x̄i)i∈I in ∆(X,W ) such that w∗− limi∈I x̄i = x̄∗∗.

By the previous discussion, it follows that x̄∗∗ = w∗ − lim ȳ∗∗n where each ȳ∗∗n is as

in (7.1) for the vector y∗∗ := w∗ − limi∈I J
∗∗(x̄i) ∈ X∗∗. The claim is proved. �

Now let x̄∗∗ ∈ ∆∗∗(X,W ) \ ∆(X,W ) be arbitrary, and let y∗∗ ∈ X∗∗ be such that

x̄∗∗ = w∗ − lim ȳ∗∗n where the sequence (ȳ∗∗n ) is as in (7.1). It is enough to show

that y∗∗ ∈ X∗∗ \ X. Suppose, towards a contradiction, that y∗∗ ∈ X and note

that the sequence (ȳ∗∗n ) is norm bounded by ‖x∗∗‖. By Proposition 6.15, the space

(
∑
n⊕Xn)hi is j-block boundedly complete. Therefore, the sequence (ȳ∗∗n ) is norm

convergent to x∗∗ which in turn implies that x̄∗∗ ∈ ∆(X,W ), a contradiction. The

proof is completed. �

Corollary 7.8. If X is reflexive and the pair (X,W ) admits a HI interpolation,

then ∆(X,W ) is reflexive.

Our last result in this section is the following strengthening of Corollary 7.8 (see

also [DFJP]).

Proposition 7.9. If the pair (X,W ) admits a HI interpolation and W ⊆ X is

weakly compact, then ∆(X,W ) is reflexive.

Proof. Recall that if T : X → Y is a Tauberian operator and W ⊆ X, then W is

relatively weakly compact if and only if T (W ) is relatively weakly compact (see,

e.g., [N2]). Also recall that, by a classical result of Grothendieck [Gr], a set K ⊆ X
is relatively weakly compact if for every ε > 0 there exists a weakly compact set

Kε ⊆ X such that K ⊆ Kε + εBX .

Now assume that W is weakly compact. It is easy to see that the set W almost

absorbs the set J(B∆(X,W )
), that is, for every ε > 0 there exists λ > 0 such that

J(B∆(X,W )
) ⊆ λW + εBX . By Grothendieck’s criterion, it follows that J(B∆(X,W )

)

is relatively weakly compact. By Proposition 7.7, J is a Tauberian operator. Hence,

B∆(X,W )
is also relatively weakly compact, which is equivalent to saying that ∆(X,W )

is reflexive. �

8. Amalgamations of Schauder tree bases

8.1. Existence of HI-amalgamations and p-amalgamations. Let X be a

Banach space, let Λ be a countable set, let T be a pruned subtree of Λ<N and let

(xt)t∈T be a normalized bimonotone Schauder tree basis of X.
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Definition 8.1. A Banach space AXhi is said to be a HI-amalgamation of (xt)t∈T

if the following are satisfied.

(1) The space AXhi has a Schauder basis (en) which can be written as (et)t∈T

where et = eh(t) for every t ∈ T and h : T → N denotes the fixed enumera-

tion of T described in Section 4.

(2) Setting X̃σ := span{et : t @ σ} for every σ ∈ [T ] and letting P̃σ : AXhi → X̃σ
denote the natural projection, we have that {‖P̃σ‖ : σ ∈ [T ]} is bounded.

(3) For every σ ∈ [T ] the space X̃σ is isomorphic to Xσ = span{xt : t @ σ}
with constant independent of σ.

(4) The following hold.

(a) Every X-singular subspace Y of AXhi (that is, for every σ ∈ [T ] the

operator P̃σ : Y → X̃σ is strictly singular) is HI.

(b) If Y and Z are X-singular subspaces of AXhi , then d(SY , SZ) = 0.

(5) Every X-compact subspace Y of AXhi (that is, for every σ ∈ [T ] the operator

P̃σ : Y → X̃σ is compact) is reflexive and HI.

(6) If Y is a subspace of AXhi not containing an X-singular subspace, then there

exists finite A ⊆ [T ] such that the operator

P̃A : Y → X̃A := span{et : t ∈ A}

is an isomorphic embedding.

Definition 8.2. A Banach space AXp is said to be a p-amalgamation of (xt)t∈T ,

where 1 < p < ∞, if (1), (2), (3) and (6) in Definition 8.1 are satisfied, and (4)

and (5) are replaced with the following.

(4)′ Every X-singular subspace Y of AXp contains a copy of `p.

(5)′ Every X-compact subspace Y of AXp is reflexive and contains a copy of `p.

Our goal in this section is to prove the following theorem.

Theorem 8.3. For every normalized bimonotone Schauder tree basis (xt)t∈T there

exists a HI-amalgamation space AXhi of (xt)t∈T . Respectively, for any 1 < p < ∞
there exists a p-amalgamation space AXp of (xt)t∈T .

The proof of the existence of HI-amalgamations is almost identical to the proof

of the existence of p-amalgamations; the first proof uses the HI interpolation, while

the second proof uses the classical Davis–Figiel–Johnson–Pelczynski interpolation

scheme [DFJP]. We will present the proof simultaneously for both cases indicating

the differences in the arguments whenever it is necessary.

First, we consider the `2 Baire sum T X2 of (xt)t∈T as constructed in Section

3. Also let WX be as in Definition 5.3 in Section 5. The HI-amalgamation space

AXhi of (xt)t∈T is the HI interpolation space ∆hi
(T X2 ,WX)

. (Note that, by Remark

12, this space is well-defined.) Respectively, the p-amalgamation space AXp is the

p interpolation space ∆p

(T X2 ,WX)
in the sense of [DFJP]. It remains to show that

these spaces satisfy the properties in Definitions 8.1 and 8.2 respectively.
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Proposition 7.3 and Remark 12 yield that (ēt)t∈T defines (after an appropriate

enumeration) a bimonotone Schauder basis of AXhi . Also observe that ‖ȳ‖ 6 1 for

every y ∈ BXσ . Hence, setting X̃σ := span{ēt : t @ σ}, we see that the operator

J : X̃σ → Xσ is an onto isomorphism and, moreover, ‖(J |X̃σ )−1‖ 6 2. Thus, the

operator P̃σ = (J |X̃σ )−1 ◦ Pσ ◦ J is a projection from AXhi onto X̃σ which satisfies

P̃σ(ēt) = 0 for every t /∈ σ. Since the space Xσ is isometric to Xσ for every σ ∈ [T ],

we see that properties (1), (2) and (3) are satisfied. We argue similarly for AXp .

We proceed to verify property (4) for the HI-amalgamation space AXhi . For

part (4.a), first we observe that, by Proposition 7.5, if J : Y → T X2 is strictly

singular, then property (4.a) is satisfied. So assume, towards a contradiction, that

the operator J : Y → T X2 is not strictly singular, or equivalently, that there exists a

subspace Z1 of Y such that the operator J : Z1 → T X2 is an isomorphic embedding.

It follows that the set WX almost absorbs BJ(Z1). On the other hand, we have

that J(Z1) is an X-singular subspace of T X2 . Theorem 5.15 yields a contradiction.

Using similar arguments, we verify property (4.b). For the corresponding property

(4)′ of AXp notice that if Y is any X-singular subspace of AXp , then (as before) the

operator J : Y → T X2 is strictly singular. Hence, by standard arguments, we see

that Y contains a copy of `p.

Next, we show that property (6) is satisfied. Let Y be a subspace of AXhi not

containing an X-singular subspace. We claim that the operator J : Y → T X2 is

an isomorphic embedding. Indeed, if not, then there exists a subspace Z of Y

such that the operator J : Z → T X2 is compact. It follows that for every σ ∈ [T ]

the operator P̃σ : Z → X̃σ is also compact, a contradiction. Thus, J : Y → T X2
is an isomorphic embedding and, consequently, the set WX almost absorbs BJ(Y ).

By Theorem 5.16, there exists finite A ⊆ [T ] such that PA : J(Y ) → XA is an

isomorphic embedding. This is easily seen to imply that the operator P̃A : Y → X̃A
is also an isomorphic embedding, as required. The proof of the corresponding

property for the p-amalgamation space is identical.

Finally, properties (5) and (5)′ follow from the following theorem.

Theorem 8.4. Let Y be an X-compact subspace of AXhi (respectively, of AXp ).

Then Y is reflexive.

Proof. As we have already proved, if Y is an X-compact subspace of AXhi , then Y

is HI; consequently, `1 does not embed into Y . On the other hand, in the case of

p-amalgamations, we have that Y is `p-saturated, and so `1 also does not embed

into Y . From this point on the arguments for both spaces are identical.

Assume that Y is not reflexive. Since `1 does not embed into Y , there exist a

normalized sequence (ȳn) in Y and ȳ∗∗ ∈ Y ∗∗ \ Y such that w∗ − lim ȳn = ȳ∗∗.

We set y∗∗ := J(ȳ∗∗) and yn := J(ȳn) for every n ∈ N. By Proposition 7.7, J is

a Tauberian operator; therefore, w∗ − lim yn = y∗∗ ∈ (T X2 )∗∗ \ T X2 . Notice that

there exist ε > 0 and y∗ ∈ (T X2 )∗ with ‖y∗‖ 6 1 such that y∗(yn) > ε for every
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n ∈ N. Moreover, by passing to subsequences if necessary, we may assume that

at := lim e∗t (yn) exists for every t ∈ T . Recall that we enumerate the basis of T X2
as (etn). For every d ∈ N set zd :=

∑d
n=1 atnetn and notice that ‖zd‖ 6 ‖y∗∗‖. We

consider the following cases.

Case 1: We have
∑
t∈T atet ∈ T X2 . We set z :=

∑
t∈T atet and wn := yn − z

for every n ∈ N. Observe that lim e∗t (wn) = 0 for every t ∈ T . By passing to a

subsequence of (wn) if necessary, for every r > 0 we may select a block sequence

(bn) in T X2 such that
∑
n∈N ‖bn − wn‖ < r. Let σ ∈ [T ] be arbitrary. Since Y

is a X-compact subspace, the set {Pσ(yn) : n ∈ N} ⊆ Xσ is relatively compact

(indeed, observe that Pσ
(
J(ȳn)

)
= Pσ(yn) for every n ∈ N.) This property and the

fact that the sequence (bn) is block yield that lim ‖Pσ(bn)‖ = 0 for every σ ∈ [T ].

By Proposition 4.10, we see that the sequence (bn) is weakly null. This, in turn,

implies that the sequence (wn) is also weakly null, and so w − lim yn = z. This is

clearly a contradiction.

Case 2: We have
∑
t∈T atet /∈ T X2 . In this case, there exist ε > 0 and a sequence

(Ik) of successive intervals of N such that, setting vk :=
∑
n∈Ik atnetn for all k ∈ N,

the sequence (vk) is bounded and block, and satisfies ‖vk‖ > ε for every k ∈ N.

Claim 1. For every δ > 0 there exists λδ > 0 such that vk ∈ λδWX + δBT X2 for

every k ∈ N.

Proof of the claim. First observe that, since the sequence (ȳn) is normalized, for

every δ > 0 there exists λδ > 0 such that

(8.1) {yn : n ∈ N} ⊆ λδWX + δBT X2 .

On the other hand, by the definition of vk, for every k ∈ N and every δ > 0 there

exists n0 such that ‖PIk(yn)−vk‖ = ‖PIk(yn)−
∑
n∈Ik atnetn‖ < δ for every n > n0.

By (8.1) and the fact that PIk(WX) ⊆WX and PIk(BT X2 ) ⊆ BT X2 , we see that

(8.2) PIk(yn) ⊆ λδWX + δBT X2 .

Hence, for every δ > 0 there exists λδ > 0 such that {vk : k ∈ N} ⊆ λδWX +2δBT X2
as desired. �

Claim 2. For every σ ∈ [T ] we have lim ‖Pσ(vk)‖ = 0.

Proof of the claim. As we have already pointed out, the fact that Y is X-compact

implies that for every σ ∈ [T ] the set {Pσ(yn) : n ∈ N} ⊆ Xσ is relatively compact.

Also note that if L ∈ [N]∞ is such that the sequence (Pσ(yn))n∈L is convergent, then

limn∈L Pσ(yn) =
∑
t@σ atet. It follows that the sequence

(
Pσ(yn)

)
is convergent

for every σ ∈ [T ].

Fix σ ∈ [T ] and let δ > 0 be arbitrary. There exists n0 ∈ N such that for every

n > m > n0 we have

(8.3) ‖Pσ(yn − ym)‖ < δ

3
.
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The sequence (etn) is a Schauder basis of T X2 and so there exists k0 ∈ N such that

for every k > k0,

(8.4) ‖PIk(yn0
)‖ < δ

3
.

By the definition of vk, for every k > k0 there exists mk > n0 such that

(8.5) ‖PIk(ymk)− vk‖ <
δ

3
.

Moreover,

‖Pσ(vk)‖ 6 ‖Pσ
(
PIk(ymk)− vk

)
‖+ ‖Pσ

(
PIk(ymk)− PIk(yn0

)
)
‖+(8.6)

+ ‖Pσ
(
PIk(yn0

)
)
‖.

Since Pσ ◦ PIk = PIk ◦ Pσ, ‖PIk‖ = 1 and mk > n0, by (8.3), we have

(8.7) ‖Pσ
(
PIk(ymk)− PIk(yn0)

)
‖ < δ

3
.

Finally, notice that ‖Pσ‖ = 1, thus combining inequalities (8.4)–(8.7) we obtain

that ‖Pσ(vk)‖ 6 δ for every k > k0. The claim is proved. �

Summarizing, we see that (vk) is a bounded block sequence in T X2 with the

following properties.

(I) For every k ∈ N we have ‖vk‖ > ε.

(II) For every σ ∈ [T ] we have lim ‖Pσ(vk)‖ = 0.

(III) The set WX almost absorbs the set {vk : k ∈ N}.
We apply Proposition 5.14 and we obtain L ∈ [N]∞ and for every k ∈ L a segment

complete set Ak ⊆ T and a vector z∗k ∈ (T X2 )∗ such that the following are satisfied.

(a) The sets (Ak)k∈L are pairwise incomparable.

(b) For every k ∈ L we have ‖z∗k‖ 6 1 and supp(z∗k) ⊆ Ak ⊆ range(vk).

(c) For every k ∈ L we have z∗k(vk) > ε
2 .

Let {k1 < k2 < . . . } denote the increasing enumeration of L. By (a) and (b), for

every ` ∈ N we have ‖ 1√
`

∑`
i=1 z

∗
ki
‖ 6 1. Therefore, by (b) and (c), we see that

(8.8)
∥∥∑̀
i=1

vki
∥∥ > ( 1√

`

∑̀
i=1

z∗ki
) (∑̀

i=1

vki
)
>
√
`
ε

2
.

The functional 1√
`

∑`
i=1 z

∗
ki

is supported in
⋃`
i=1 Iki and so, by (8.8),

lim
d→∞

∥∥ d∑
n=1

atnetn
∥∥ =∞.

But as we have indicated in the beginning of the proof, for every d ∈ N we have∥∥ d∑
n=1

atnetn
∥∥ 6 ‖y∗∗‖

which yields a contradiction. The proof is completed. �
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We proceed to present another important property of the amalgamation spaces.

Proposition 8.5. Let (xt)t∈T be a normalized bimonotone Schauder tree basis such

that Xσ is reflexive for every σ ∈ [T ]. Then there exists a reflexive HI-amalgamation

space (respectively, p-amalgamation space for any 1 < p <∞) of (xt)t∈T .

Proof. Note that it is enough to show that the set WX is weakly compact; in the

case of HI-amalgamations this is a consequence of Proposition 7.9, while in the case

of p-amalgamations this follows from the results in [DFJP]. Set C :=
⋃
σ∈[T ]BXσ .

Claim. The set C is relatively weakly compact.

Proof of the claim. Let (xn) be an arbitrary sequence in C. Clearly, we may assume

that every xn is finitely supported. Let sn be the unique initial segment of T which

contains supp(xn), and let tn denote the @-maximal node of sn. By Ramsey’s

theorem, there exists L ∈ [N]∞ such that the nodes (tn)n∈L are either pairwise

comparable, or pairwise incomparable. In the first case, there exists σ ∈ [T ] such

that supp(xn) ⊆ σ for every n ∈ L. By our assumptions, we obtain M ∈ [L]∞ such

that the sequence (xn)n∈M is weakly convergent.

So assume that the nodes (tn)n∈L are pairwise incomparable. By passing to a

further subsequence, we may additionally assume that limn∈L xn(t) = x(t) for every

t ∈ T . Observe that there exists τ ∈ [T ] such that {t ∈ T : x(t) 6= 0} ⊆ τ and,

moreover, the sequence (Pτ (xn))n∈L converges weakly to the vector x :=
∑
t@σ x(t);

in particular, this yields that x ∈ T X2 . For every n ∈ L we set yn := xn − x. Then

limn∈L yn(t) = 0 for every t ∈ T and so, by a standard sliding hump argument,

we may assume that the sequence (yn)n∈L is block. Notice that limn∈L Pσ(yn) = 0

for every σ ∈ [T ]. By Proposition 4.10, we see that (yn)n∈L is weakly null which

implies that the sequence (xn)n∈L is weakly convergent. The claim is proved. �

Since WX = conv(C), by the Krein–Smulian theorem and the above claim, we

conclude that the set WX is weakly compact. �

We have the following refinement of Proposition 8.5.

Theorem 8.6. Let (xt)t∈T be a normalized bimonotone Schauder tree basis, and let

AXhi (respectively, AXp ) denote the HI-amalgamation (respectively, p-amalgamation

for 1 < p <∞) of (xt)t∈T constructed in the proof of Theorem 8.3.

(1) If for every σ ∈ [T ] the basic sequence (xσ|n) is boundedly complete, then

the basis of AXhi (respectively, AXp ) is boundedly complete.

(2) If for every σ ∈ [T ] the basic sequence (xσ|n) is shrinking, then the basis

of AXhi (respectively, AXp ) is shrinking.

Proof. (1) Let (ētn) be the basis of AXhi , and assume that it is not boundedly

complete. Then there exist a sequence (an) in R, a sequence (Ik) of successive

intervals of N and r > 0 such that, setting ȳd :=
∑d
n=1 anētn for every d ∈ N,
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we have ‖ȳd‖ 6 1 and ‖
∑
n∈Ik anētn‖ > r for every n ∈ N. We set yd := J(ȳd).

By Proposition 7.7, the operator J is Tauberian. This implies that the sequence

(yd) is not Cauchy. Indeed, notice that there exist a subnet (ȳi)i∈I of (ȳd) and

ȳ∗∗ ∈ (AXhi)
∗∗\AXhi such that w∗− limi∈I ȳi = ȳ∗∗. It follows that the corresponding

subnet (yi)i∈I of (yd) must be weak* convergent to a vector y∗∗ ∈ (T X2 )∗∗ \ T X2
which yields that the sequence (yd) is not Cauchy. Thus, there exist ε > 0 and a

subsequence (ydk) of (yd) such that, setting vk := ydk+1
− ydk for every k ∈ N, the

following hold.

(a) The sequence (vk) is bounded and block, and, ‖vk‖ > ε for every k ∈ N.

(b) Since for every σ ∈ [T ] the sequence (xσ|n) is boundedly complete, we have

lim ‖Pσ(vk)‖ = 0 for every σ ∈ [T ].

(c) The set WX almost absorbs the set {vk : k ∈ N}. Indeed, first observe that

the set WX almost absorbs the set {yd : d ∈ N}. Next, notice that for every

k ∈ N there exists an interval Jk of N such that vk = πJk(ydk+1
). Since

WX is closed under projections on intervals, it follows that WX also almost

absorbs the set {vk : k ∈ N}.

By Proposition 5.14 and arguing as in the proof of Theorem 8.4, we see that

lim ‖yd‖ = 0 which is clearly a contradiction. The proof for the case of p-amalga-

mations is identical.

(2) Assume that for every σ ∈ [T ] the basic sequence (xσ|n) is shrinking. By

Theorem A.5, we have that (T X2 )∗ = span
{⋃

σ∈[T ]BX∗σ
}

. It follows that the basis

(etn) of T X2 is also shrinking. First we will deal with the case of HI-amalgamations.

For every n ∈ N let Xn be the space T X2 equipped with the norm defined by the

Minkowski gauge of the set 2nWx+ 1
2nBT X2 , and let Z denote the HI Schauder sum

of (Xn). Also let Id: AXhi → Z be the identity operator, and let Id∗ : Z∗ → (AXhi)
∗

denote the dual onto map. It is easy to verify that for every n ∈ N we have

Id∗(e∗n,t) = λnē
∗
t for some λn ∈ R. On the other hand, by Proposition 6.16, we

see that Z∗ = span
{⋃

nX
∗
n

}
. Since X∗n = span{e∗n,t : t ∈ T}, we obtain that

Z∗ = span{e∗n,t : n ∈ N, t ∈ T}. It follows that (AXhi)
∗ = span{ē∗t : t ∈ T}, and

the proof for the case of HI-amalgamations is completed. The proof for the case of

p-amalgamations is identical (actually it is simpler, since in this case Proposition

6.16 is straightforward). �

We proceed with the following proposition.

Proposition 8.7. Let AXhi be the HI-amalgamation of (xt)t∈T , and assume that

AXhi
∼= Y ⊕W . Then there exists finite A ⊆ [T ] such that either P̃A : Y → X̃A or

P̃A : W → X̃A is an isomorphic embedding.

Proof. First we claim that either Y or W does not contain an X-singular subspace.

Indeed, suppose that there exist a subspace Y ′ of Y and a subspace W ′ of W such

that Y ′ and W ′ are both X-singular. By property (4.b) in Definition 8.1, we see
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that d(SY , SW ) = 0 which is clearly a contradiction. The result then follows by

property (6) in Definition 8.1. �

We introduce the following definition.

Definition 8.8. (1) Let 1 6 p < ∞ and let (xn) denote the standard unit vector

basis of `p. We enumerate the sequence (xn) as (xt)t∈N<N as in Example 1; that is,

for every t ∈ N<N we set xt := x|t|. We denote by A`phi the HI-amalgamation space

of (xt)t∈N<N .

(2) Let U and V denote Pelczynski’s universal spaces for basic sequences and un-

conditional basic sequences respectively (see [P, LT]). Recall that U has a Schauder

basis (un) and for every basic sequence (xk) there exists L ∈ [N]∞ such that (un)n∈L

is equivalent to (xk); respectively, V has an unconditional Schauder basis (vn) and

for every unconditional basic sequence (yk) there exists L ∈ [N]∞ such that (un)n∈L

is equivalent to (yk). Let (ut)t∈N<N and (vt)t∈N<N be the enumerations of (un) and

(vn) as described in Example 3. By AUhi and AVhi we denote the HI-amalgamations

of the Schauder trees bases (ut)t∈N<N and (vt)t∈N<N respectively.

Remark 14. A remarkable feature of the space U is that AUhi, T U2 and U are all

mutually isomorphic.

We have the following theorem.

Theorem 8.9. There exists a separable Banach space X which satisfies the follow-

ing properties.

(i) If Z is a subspace of X, then Z is reflexive if and only if it is HI.

(ii) Every separable Banach space Y which contains all reflexive subspaces of

X must also contain `1; that is, the class C of reflexive subspaces of X is

Bourgain `1-generic.

(iii) Every non-reflexive subspace Z of X contains a complemented copy of `1.

(iv) If X ∼= Y ⊕W , then either Y or W is contained in `1.

Proof. The desired space X is the space A`1hi . Indeed, let Z be a subspace of X.

If Z is reflexive, then, by the lifting property of `1, Z must be `1-singular. By

property (4.a) in Definition 8.1, we obtain that Z is HI. Conversely, assume that Z

is HI. Then, clearly, Z is `1-singular. Invoking the lifting property of `1 once again,

we see that Z must be `1-compact. By property (5) in Definition 8.1, we conclude

that Z is reflexive. Thus, property (i) is satisfied.

We proceed to show that property (ii) is satisfied. Let Y be a separable Banach

space that contains (up to isomorphism) all reflexive subspaces of X. For every

T ∈ Tr set X̃T := span{et : t ∈ T}. Since the sequence (et)t∈T defines (after a re-

enumeration) a Schauder basis of X̃T , it is easy to verify that the map Φ: Tr→ SB

defined by Φ(T ) = X̃T is Borel (see, e.g., [Bo3, Lemma 2.4]). Moreover, notice that

if T ∈ W̃F, then for every σ ∈ N the operator P̃σ : X̃T → `1 is compact. Hence, by
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properties (4.a) and (5) in Definition 8.1, we see that X̃T is either reflexive HI, or

finite-dimensional. Let B ⊆ SB denote the isomorphic saturation of Subs(Y ); it is

analytic. Thus, the set A := Φ−1(B) ⊆ Tr is analytic and, by our assumption, we

have that A ⊇ WF. But the set WF is Π1
1-complete, and so there exists T ∈ IF

such that X̃T is isomorphic to a subspace of Y . Since for every ill-founded tree T

the space X̃T contains `1, we conclude that property (ii) is satisfied.

Next, let Z be a non-reflexive subspace of A`1hi . As we have already mentioned in

the proof of property (i), the non-reflexivity of Z implies that Z is not `1-singular.

It follows that there exists σ ∈ N such that the operator P̃σ : Z → `1 is not strictly

singular. This implies1 that Z must contain a complemented copy of `1, and so

property (iii) is satisfied.

Finally, let Y and W be subspaces of A`1hi such that A`1hi
∼= Y ⊕W . By Propo-

sition 8.7, there exists finite A ⊆ N such that either Y , or W is isomorphic to a

subspace of X̃A. Noticing that for every finite A ⊆ N the space X̃A is isomorphic

to `1, the result follows. �

8.2. Applications. We start by determining the descriptive set theoretic complex-

ity of the classes HI, I and NUC presented in Section 3.

Theorem 8.10. The classes HI, I and NUC are all Π1
1-complete.

Proof. As we have shown in Section 3, all these classes are co-analytic non-Borel.

It remains to prove that they are actually complete. Let T̃r denote the set of all

trees on N which have infinitely many nodes (we need to work with this class of

trees since we are dealing with infinite-dimensional separable Banach spaces). Also

let W̃F denote the set of all well-founded trees in T̃r. It is easy to see that the

set T̃r is Borel in 2N
<N

(thus, a standard Borel space); moreover, the set W̃F is

Π1
1-complete. We will present a reduction of W̃F to HI which is also a reduction

to I and NUC.

To this end, let X = C[0, 1] and let (xn) be a normalized bimonotone Schauder

basis of X. We enumerate the sequence (xn) as (xt)t∈N<N as in Example 1, that

is, for every t ∈ N<N we set xt := x|t|. Then (xt)t∈N<N is a normalized bimonotone

Schauder tree basis of X. Let AXhi be the HI-amalgamation of (xt)t∈N<N , and let

(et)t∈N<N be the Schauder tree basis of AXhi . As in the proof of Theorem 8.9, for

every T ∈ T̃r we set X̃T := span{et : t ∈ T}. The map T̃r 3 T 7→ X̃T ∈ SB is

Borel and, moreover, for every T ∈ W̃F the space X̃T is reflexive and HI. On the

other hand, if T /∈ W̃F, then there exists σ ∈ N such that X̃σ is a subspace of X̃T
and so, by property (3) in Definition 8.1 and the choice of X, we see that C[0, 1] is

isomorphic to a subspace of X̃T . Therefore,

T ∈ W̃F⇔ X̃T ∈ HI⇔ X̃T ∈ I⇔ X̃T ∈ NUC.

1Recall the well-known fact that if X is a Banach space and there exists a non-strictly singular

operator T : X → `p (for 1 6 p <∞), then X contains a complemented copy of `p.
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The proof is completed. �

Remark 15. Note that the above reduction also shows the fact, first proved by

Bossard, that the class REFL of separable reflexive spaces, the class SD of spaces

with separable dual, the class N`1 of separable Banach spaces not containing `1

and the class NU of all non-universal separable Banach spaces are Π1
1-complete.

Moreover, using the result of Tomczak-Jaegermann [TJ] that every HI space is ar-

bitrarily distortable, we see that the class AD of all separable arbitrarily distortable

Banach spaces is Π1
1-hard.

Our second application concerns the existence of universal spaces for certain

classes of separable Banach spaces which are not universal for all separable Banach

spaces. We start with the following definitions.

Definition 8.11. Let (Pn) be a sequence of classes of separable Banach spaces,

and set P :=
⋃
n Pn. We say that the sequence (Pn) is stable if the following are

satisfied.

(1) P is isomorphic invariant, that is, if X ∈ P and Y ∼= X, then Y ∈ P.

(2) P is closed under subspaces, that is, if X ∈ P and Y is a subspace of X,

then Y ∈ P.

(3) P contains all finite-dimensional Banach spaces.

(4) P is closed under finite sums, that is, if k ∈ N and X1, . . . , Xk ∈ P, then∑k
i=1⊕Xi ∈ P.

Definition 8.12. Let (Pn) be a sequence of classes of separable Banach spaces.

We say that the sequence (Pn) is finitely determined if for every separable Banach

space X and every n ∈ N the following holds. If (Fk) is an increasing sequence of

finite-dimensional subspaces of X with
⋃
k Fk dense in X, then we have

X ∈ Pn ⇔ Fk ∈ Pn for every k ∈ N.

We have the following theorem.

Theorem 8.13. Let (Pn) be a stable and finitely determined sequence of classes

of separable Banach spaces, and set P :=
⋃
n Pn. Assume that there exists an

unconditionally saturated separable Banach space X such that X /∈ P. Then there

exists a separable Banach space Y with the following properties.

(1) The space X is not contained in Y .

(2) If Z ∈ P has a Schauder basis, then Z is contained in Y as a complemented

subspace.

We will see, later on, that a stronger version of Theorem 8.13 holds true. At this

point we notice that Theorem 8.13 yields, for instance, that the class of separable

Banach spaces with a Schauder basis and non-trivial type (respectively, non-trivial

cotype) is not universal. More precisely, there exists a separable Banach space Y
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containing all Banach spaces with a Schauder basis and non-trivial type (respec-

tively, non-trivial cotype) and not containing a copy of `1 (respectively, c0).

Proof of Theorem 8.13. Let (uk) be the basis of Pelczynski’s space U which is uni-

versal for all basic sequences. We may assume that (uk) is normalized and bi-

monotone. Let (ut)t∈N<N be the enumeration of (uk) as described in Example 3.

The sequence (ut)t∈N<N is a normalized bimonotone Schauder tree basis of U which

satisfies, additionally, the following properties.

(i) For every L ∈ [N]∞ there exists σ ∈ N such that the sequence (uk)k∈L

coincides with (uσ|m).

(ii) For every σ ∈ N there exists L ∈ [N]∞ such that the sequence (uσ|m)

coincides with (uk)k∈L.

Given σ ∈ N , let Uσ denote the space span{uσ|m : m ∈ N}. For every n ∈ N set

Cn := {σ ∈ N : Uσ ∈ Pn}. Since the sequence (Pn) is finitely determined and

(ut)t∈N<N is a Schauder tree basis of U , we see that Cn is a closed subset of N .

Therefore, the set C :=
⋃
n Cn is Fσ. We select F ⊆ N × N closed such that

C = projNF . As F is closed in N × N , it is the body of a pruned tree T on

N × N. We define (wt)t∈T as follows. Let t ∈ T be arbitrary and set n := |t|.
There exist (σ1, σ2) ∈ F such that t = (σ1|n, σ2|n). (Note that, here, we view the

nodes of T as pairs (t1, t2) ∈ N<N × N<N with |t1| = |t2|.) We set wt := uσ1|n.

Observe that wt is well-defined and independent of the choice of σ1 and σ2, that is,

if (σ′1, σ
′
2) ∈ F are such that t = (σ1|n, σ2|n) = (σ′1|n, σ′2|n), then σ1|n = σ′1|n. Also

set W := span{wt : t ∈ T}. The following properties are immediate consequences

of the above construction.

(I) (wt)t∈T is a normalized bimonotone Schauder tree basis of W .

(II) For every σ ∈ [T ] = F there exists σ1 ∈ C such that Wσ = Uσ1
.

(III) For every σ1 ∈ C there exists σ ∈ [T ] = F such that Uσ1
= Wσ.

The desired space Y is the HI-amalgamation of (wt)t∈T . We proceed to show that

Y satisfies the requirements of the theorem. First notice that property (2) is an

immediate consequence of (III) and property (3) in Definition 8.1. Therefore, we

only need to prove that X is not isomorphic to any subspace of Y . Assume not.

Then we claim that no subspace X ′ of X is W -singular. Indeed, if there existed

an X-singular subspace X ′ of X, then, by property (4.a) in Definition 8.1, we

would have that X ′ is HI, a contradiction since X is unconditionally saturated. By

property (6) in Definition 8.1, there exists finite A ⊆ [T ] such that the operator

P̃A : X → W̃A is an isomorphic embedding. Let {σ1, . . . , σk} be an enumeration

of A. Notice that for every ∈ {1, . . . , k} there exist a final segment si of σi and a

finite dimensional space F such that W̃A = F ⊕
(∑k

i=1⊕P̃si(W̃σi)
)
. Using the fact

that the sequence (Pn) is stable, we conclude that X ∈ P, a contradiction. Thus,

the space X is not contained in Y and the proof is completed. �
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Remark 16. The assumption in Theorem 8.13 of the existence of an unconditional

saturated separable Banach space X with X /∈ P is not really needed. Indeed, as

we shall see, for any class P as in Theorem 8.13 there exists an unconditionally

saturated (in fact, `2-saturated) separable Banach space X with X /∈ P provided,

of course, that every space in P is not universal. The main point, however, in

Theorem 8.13 is that any such space X is not contained in Y .

9. Generic classes of separable Banach spaces

Definition 9.1. Let C be an isomorphic invariant class of separable Banach spaces

such that every X ∈ C is non-universal.

(1) We say that C is Bourgain generic if every separable Banach space Y that

contains all members of C up to isomorphism, must be universal.

(2) We say that C is Bossard generic if every analytic subset A of SB that

contains all members of C up to isomorphism, must also contain a space

Y ∈ A which is universal.

We proceed to discuss the relation between the different notions of genericity. We

notice, first, that a class C is Bossard generic if and only if sup{ψZ(Y ) : Y ∈ C} = ω1

where Z is any universal space and ψZ is the Π1
1-rank on NCZ described in Section 3.

This is easily seen to imply that if C is Bossard generic, then C is Bourgain generic.

Concerning the opposite direction we make the following conjecture.

Conjecture. Bourgain genericity coincides with Bossard genericity.

We proceed to show that within the class of separable Banach spaces with the

bounded approximation property, Bourgain genericity does imply Bossard generic-

ity. To this end we start with the following proposition.

Proposition 9.2. Let A ⊆ SB be analytic such that every X ∈ A is non-universal.

Then there exists a non-universal Banach space Y with a Schauder basis which

contains a complemented copy of every X ∈ A with a Schauder basis.

Proof. We first argue as in the proof of Theorem 8.13. Specifically, let (uk) be

the basis of Pelczynski’s universal space U ; as usual, we may assume that (uk) is

normalized and bimonotone. Let (ut)t∈N<N be the enumeration of (uk) as described

in Example 3. The sequence (ut)t∈N<N is a normalized bimonotone Schauder tree

basis of U which satisfies properties (i) and (ii) described in Theorem 8.13. The

map N 3 σ 7→ Uσ ∈ Subs(U) is easily seen to be Borel. It follows that the set

A1 := {σ ∈ N : Uσ ∈ A∼=}

is analytic where A∼= denotes the isomorphic saturation of A. As in Theorem 8.13,

we select a closed subset F of N×N such that A1 = projNF . Let T be the (unique)

downward closed pruned tree on N × N with [T ] = F . Next, define (wt)t∈T as in

the proof of Theorem 8.13, and set W := span{wt : t ∈ T}. Finally, let Y be the
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HI-amalgamation of (wt)t∈T . We will show that Y satisfies the requirements of the

proposition.

Clearly, every X ∈ A with a Schauder basis is a complemented subspace of Y . It

remains to show is that the space Y is not universal. To this end, for every k ∈ N
and every σ̄ = (σ1, . . . , σk) ∈ [T ]k set Aσ̄ :=

{
σi : i ∈ {1, . . . , k}

}
and observe that

|Aσ̄| 6 k. Also notice that the map

[T ]k 3 σ̄ = (σ1, . . . , σk) 7→ W̃Aσ̄ = span{et : t ∈ Aσ̄} ∈ Subs(Y )

is Borel. Therefore, the set

A2 := {Z ∈ SB : ∃ finite A ⊆ [T ] such that Z ∼= W̃A}

is analytic. Notice that if A = {σ1, . . . , σn} ⊆ [T ], then there exist a finite-

dimensional space F and for every i ∈ {1, . . . , n} a final segment si of σi such

that W̃A = F ⊕
(∑n

i=1⊕P̃si(W̃σi)
)
. For every i ∈ {1, . . . , n} there exists Xi ∈ A

such that Xi
∼= W̃σi . Hence, by our assumptions, for every i ∈ {1, . . . , n} the space

P̃si(W̃σi) is not universal. By a result of Rosenthal (see [Ro2, Theorem 4.10], or

[Ro3]), for every finite A ⊆ [T ] the space W̃A is also non-universal.

Set Z = C[0, 1] and let (en) be a Schauder basis of Z. By the previous discussion,

we see that A2 ⊆ NCZ . Let φZ be the Π1
1-rank on NCZ defined in Theorem 3.10.

Since A2 is analytic, by boundedness, we have sup{φZ(X) : X ∈ A2} = ξ < ω1. By

Corollary 4.15, there exists a reflexive and `2-saturated separable Banach space Xξ

such that o
(
T (Xξ, Z, (en))

)
> ξ. We claim that Xξ is not contained in Y . Indeed,

arguing as in the proof of Theorem 8.13 and using the fact that Xξ is `2-saturated,

we see that if Xξ was contained in Y , then there would existed finite A ⊆ [T ] such

that Xξ is isomorphic to a subspace of W̃A. This implies that

ξ < o
(
T (Xξ, Z, (en))

)
6 o
(
T (W̃A, Z, (en))

)
6 φZ(W̃A) 6 ξ

a contradiction. Therefore, Xξ is not contained in Y and the proof is completed. �

We have the following theorem.

Theorem 9.3. Let A ⊆ SB analytic such that every X ∈ A is not universal. Then

there exists a non-universal separable Banach space Y such that every X ∈ A with

the bounded approximation property is contained in Y as a complemented subspace.

Proof. We start by recalling the definition of the space C0 due to Johnson [J]. Let

(En) be a sequence of finite-dimensional spaces which is dense in the Banach–Mazur

distance in the family of all finite-dimensional spaces, and set

C0 :=
(∑
n∈N
⊕En

)
c0
.

By a result of Lusky (see [C, Proposition 6.10], or [Lu]) for every separable Banach

space with the bounded approximation property the space X ⊕C0 has a Schauder
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basis. The map

SB× SB 3 (X,Y ) 7→ X ⊕ Y ∈ Subs
(
C(2N)⊕ C(2N)

)
is Borel, and so the map SB 3 X 7→ X ⊕ C0 ∈ SB is Borel too. It follows that the

set A1 = {Y ∈ SB : ∃X ∈ A with Y ∼= X ⊕ C0} is Σ1
1. We notice the following

properties of the set A1.

(1) By Rosenthal’s theorem mentioned in the previous proposition and our

assumptions, every Z ∈ A1 is not universal.

(2) If X ∈ A has the bounded approximation property, then there exists

Z ∈ A1 with a Schauder basis such that X is isomorphic to a complem-

ented subspace of Z.

We apply Proposition 9.2 and we obtain a non-universal separable Banach space Y

such that every Z ∈ A1 with a Schauder basis is contained in Y as a complemented

subspace. Invoking (2), we see that Y is the desired space. �

The notions of Bourgain and Bossard genericity can be relativized to any sepa-

rable Banach space X as follows.

Definition 9.4. Let X be a separable Banach space and let C be an isomorphic

invariant class of separable Banach spaces such that X is not contained in any finite

direct sum of members of C.

(1) We say that the class C is Bourgain X-generic if for every separable Banach

space Y which contains all members of C, X is isomorphic to a subspace

of a finite sum of Y .

(2) We say that the class is Bossard X-generic if for every analytic subset A of

SB which contains all members of C up to isomorphism, X is isomorphic

to a subspace of a finite direct sum of members of A.

We make a few comments on the above defined notions of genericity. Assume

that X is a separable Banach space with the following stability property (S).

(S) If (Yi)
n
i=1 is a finite sequence of separable Banach spaces such that X is

isomorphic to a subspace of
∑n
i=1⊕Yi, then there exists i0 ∈ {1, . . . , n}

such that X is isomorphic to a subspace of Yi0 .

It is clear that whenever X has property (S), then the notions of Bossard and

Bourgain X-genericity defined above are reduced to the corresponding analogues of

Definition 9.1. Typical examples of separable Banach spaces with property (S) are

the universal spaces (this is a consequence of the aforementioned result of Rosen-

thal) as well as the minimal spaces (such as c0 and `p for 1 6 p < ∞). Hence,

the notions of Bourgain and Bossard X-genericity are indeed generalizations of the

concepts presented in Definition 9.1. Moreover, if X is a HI space, then the condi-

tion on C can be reduced to the following property: for every finite-codimensional

subspace X ′ of X, the space X ′ is not contained in any member of C. This follows

from the following general fact (see [AT, Proposition 1.2]).
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Proposition 9.5. Let X be a HI space and let T : X → Y be a bounded linear

operator where Y is any Banach space. If T is not strictly singular, then there

exists a finite-codimensional subspace X ′ of X such that the operator T : X ′ → Y

is an isomorphic embedding.

We proceed to present examples showing the necessity of extra “linear” condi-

tions in the definitions of X-genericities in the case of an arbitrary separable Banach

space X.

Example 4. (1) Let A1 and A2 denote the isomorphic classes of `1 and `2 respec-

tively, that is, A1 = {Y ∈ SB : Y ∼= `1} and A2 = {Y ∈ SB : Y ∼= `2}. Both A1 and

A2 are analytic (and, in fact, A2 is Borel). We set C := A1 ∪ A2 and X := `1 ⊕ `2.

Notice that if Y is any separable Banach space containing, up to isomorphism,

all members of C, then Y must contain `1 and `2. Since these spaces are totally

incomparable, we obtain that Y must also contain X. Nevertheless, the class C is

analytic, yet no member of C contains X. (Note, however, that X is contained in

a finite sum of members of C.) This example was communicated to us by Rosendal

and Schlumprecht.

(2) We set Z1 := A`1hi and Z2 := A`2hi (see Definition 8.8). Let (e1
t )t∈N<N and

(e2
t )t∈N<N denote the Schauder bases of Z1 and Z2 respectively. As in the proof

of Theorem 8.10, for every tree T ∈ Tr let Z1
T and Z2

T denote the subspaces of

Z1 and Z2 spanned by the vectors (e1
t )t∈T and (e2

t )t∈T respectively. Next, we set

C1 := {Z1
T : T ∈WF}, C2 := {Z2

T : T ∈WF} and C := C1∪C2. Also set X := `1⊕`2.

Assume that Y is a separable Banach space which contains, up to isomorphism,

all members of C. The maps T 7→ Z1
T and T 7→ Z2

T are Borel, and so there exist

T1, T2 ∈ IF such that Z1
T1

and Z2
T2

are isomorphic to subspaces of Y . Noticing

that `1 (respectively, `2) is contained in Z1
T (respectively, Z2

T ) for any ill-founded

tree T , we see that `1 and `2 are contained in Y . Therefore, as in the previous

example, we conclude that X is contained in Y . Observe that X is not contained

in any finite sum of members of C, since C contains only HI spaces. However, setting

A := {Z1
T : T ∈ Tr}∪{Z2

T : T ∈ Tr}, we see that A is analytic, contains all members

of C up to isomorphism, yet no member of A contains X. (Again note that X is

contained in a finite sum of members of A.)

(3) Our last example shows that if we do not impose extra conditions on the defi-

nition of Bourgain X-genericity, then it becomes incomparable with the notion of

Bossard X-genericity. To this end, let W be any separable HI space. We set

C := {Y : Y is isomorphic to a finite-codimensional subspace of W}

and X := W ⊕W . It is clear that X is contained in a finite sum of members of C,
and so it is Bossard X-generic according to Definition 9.4. On the other hand,

observe that the space W contains all members of C, yet X is not contained in W ,



68 SPIROS A. ARGYROS AND PANDELIS DODOS

since W in HI and X is decomposable. (However, as in the previous examples,

notice that X is contained in a finite sum of members of W .)

It is clear that for any separable Banach space X, if a class C of separable Banach

spaces is Bossard X-generic, then it is also Bourgain X-generic. The problem

concerning the converse implication for an arbitrary separable Banach space X is

open, even if we restrict our attention to the class of spaces with a Schauder basis.

There are, however, a number of cases where we can prove the following analogue

of Proposition 9.2.

Theorem 9.6. Let X be either an unconditionally saturated, or a HI saturated,

or a minimal separable Banach space. Also let A be an analytic class of separable

Banach spaces such that X is not contained in any finite sum of members of A.

Then there exists a separable Banach space Y which contains an isomorphic copy

of every member of A with a Schauder basis and, moreover, X is not contained in

any finite sum of members of Y .

Proof. Let A be as in the statement of the theorem. We argue as in the proof of

Proposition 9.2 and we obtain a downward closed pruned tree T on N×N, a space

Z and a normalized bimonotone Schauder tree basis (zt)t∈T of Z such that the

following are satisfied.

(1) For every σ ∈ [T ] there exists Y ∈ A such that Zσ is isomorphic to Y .

(2) For every Y ∈ A with a Schauder basis there exists σ ∈ [T ] with Y isomor-

phic to Zσ.

First, we will deal with the case when X is a minimal separable Banach space.

Then, by the minimality of X, there exists 1 < p <∞ such that `p is not contained

in X. The desired space Y is the p-amalgamation of (zt)t∈T . Clearly, we only

have to show that X is not contained in any finite sum of Y . Assume not. Since

X is minimal, we see that X must be contained in Y . By the properties of the p-

amalgamation space, the fact that X does not contain `p and arguing as in the proof

of Proposition 9.2, there exists finite A ⊆ [T ] such that the operator PA : X → Z̃A
is an isomorphic embedding. Invoking once again the minimality of X, we obtain

σ ∈ [T ] such that X is contained in Zσ which is a contradiction by property (1)

and our assumptions.

Next, assume that X is an unconditionally saturated space. The desired space

Y is the HI-amalgamation of (zt)t∈T . Again, we only have to show that X is not

contained in any finite sum of Y . If not, then there exists k ∈ N such that X is

contained in
∑k
i=1⊕Yi where Yi = Y for every i ∈ {1, . . . , k}. We set Zi := Z

for every i ∈ {1, . . . , k}, and let T Zi2 be the `2 Baire sum of (zt)t∈T viewed as

a Schauder tree basis of Zi. We define J̄ :
∑k
i=1⊕Yi → (

∑k
i=1⊕T

Zi
2 )`2 by the

rule J̄
(
(y1, . . . , yk)

)
=
(
J(y1), . . . , J(yk)

)
. We claim that J̄ |X is an isomorphic

embedding. Indeed, assume on the contrary that there exists a subspace X ′ of X

such that J̄ |X′ is compact. There exist i0 ∈ {1, . . . , k} and a further subspace X ′′
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of X ′ such that Pi0 |X′′ is an isomorphic embedding where Pi0 :
∑k
i=1⊕Yi → Yi0 is

the natural projection. It follows that X ′′ is a Z-compact subspace of Y and so,

by the properties of the HI-amalgamation space, we conclude that X ′′ is HI which

contradicts the fact that X is unconditionally saturated.

Now set E :=
∑k
i=1⊕Zi. For every i ∈ {1, . . . , k} let Ti be a different copy of

T , and let S denote the disjoint union of the trees (T1, . . . , Tk). Clearly, S may

be considered as a downward closed pruned tree on a countable set. Moreover,

for every t ∈ S there exists unique i ∈ {1, . . . , k} such that t ∈ Ti. We define a

Schauder tree basis (et)t∈S in E as follows. For every t ∈ S let i ∈ {1, . . . , k} be

the unique i such that t ∈ Ti and set et := zt ∈ Zi where we view zt as a vector in

E. Clearly, (et)t∈S is a normalized bimonotone Schauder tree basis E and satisfies

properties (1) and (2) above. Precisely, the following hold.

(3) For every σ ∈ [S] there exists Y ∈ A such that Eσ is isomorphic to Y .

(4) For every Y ∈ A with a Schauder basis there exists σ ∈ [S] such that Y is

isomorphic to Eσ.

Let SE2 denote the `2 Baire sum of (et)t∈S , and note that (
∑k
i=1⊕T

Zi
2 )`2 = SE2 . By

the discussion in the previous paragraph, we see that the operator J̄ : X → SE2 is

an isomorphic embedding. Let WE be the closed, bounded, convex and symmetric

set defined in Definition 5.3 for the Schauder tree basis (et)t∈S . We will show that

the set WE almost absorbs BJ̄(X). To this end notice, first, that

(9.1) WE = conv
{
WZi : i ∈ {1, . . . , k}

}
whereWZi denotes the set defined in Definition 5.3 for the space Zi. (More precisely,

we have WZi = conv
{⋃

σ∈[Ti]
BEσ

}
.) Since the operator J̄ : X →

(∑k
i=1 T Z2

)
2

is an

isomorphic embedding, there exists a constant C > 0 such that if v = J̄(x) ∈ BJ̄(X),

then we have ‖x‖ 6 C. Write x = x1 + · · · + xk with xi ∈ Yi and ‖xi‖Y 6 C for

every i ∈ {1, . . . , k}. For every n ∈ N let ‖ · ‖n be the equivalent norm on T Zi2

which is defined using the Minkowski gauge of the set 2nWZi + 1
2nBT Zi2

. There

exists a constant C ′ > 0 such that for every n ∈ N and every i ∈ {1, . . . , k} we have

J(xi) ∈ C ′2nWZi + C′

2nBT Zi2
, and so

J(x1) + · · ·+ J(xk)

k
∈ (C ′2n) conv

{
WZi : i ∈ {1, . . . , k}

}
+
( C ′
k2n

) k∑
i=1

⊕BT Zi2
.

By (9.1), this yields that for every n ∈ N we have

v = J̄(x) = J(x1) + · · ·+ J(xk) ∈ (kC ′2n)WE +
( C ′
k2n

) k∑
i=1

⊕BT Zi2

which is easily seen to imply that the set WE almost absorbs BJ̄(X). By Theorem

5.16, there exists finite A ⊆ [S] such that the operator PA : X → EA is an isomorphic

embedding. By property (3) of the Schauder tree basis (et)t∈S , we obtain that X
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is contained in a finite sum of members of A which contradicts our assumptions on

A. This shows that X is not contained in any finite sum of Y , as desired.

The proof for the case of a HI saturated space X is similar to the proof of

the previous case; the only difference is that it uses HI-amalgamations instead of

p-amalgamations. The proof of the theorem is completed. �

A consequence of the above theorem is the following result concerning HI Banach

spaces without a Schauder basis. We recall that the existence of such spaces was

established in [AKP].

Corollary 9.7. Let X be a HI separable Banach space without a Schauder basis.

Then the class C consisting of all subspaces of X with a Schauder basis is not

Bourgain X-generic and, consequently, not Bossard X-generic.

For the proof we need the following lemma.

Lemma 9.8. Let X be a HI space without a Schauder basis and let Y1, . . . , Yk be

(not necessarily distinct) subspaces of X with a Schauder basis. Then X does not

embed into
∑k
i=1⊕Yi.

Proof. Assume not. Then, by Proposition 9.5, there exist a finite-codimensional

subspace X ′ of X and i0 ∈ {1, . . . , k} such that X ′ is isomorphic to a subspace

of Yi0 . Observe that X ∼= X ′⊕F for a finite dimensional space F with dim(F ) = l

and, moreover, that the space X/Yi0 is infinite-dimensional. Therefore, there exists

a finite dimensional subspace G of X such that G ∩ Yi0 = {0} and dim(G) = l. It

follows that there exists an isomorphism T : X ∼= X ′ ⊕ F → Yi0 ⊕ G. This yields

to a contradiction since Yi0 ⊕G is a proper subspace of X (see [GM]). �

We continue with the proof of Corollary 9.7.

Proof of Corollary 9.7. We first observe that for any separable Banach space X

the class of all subspaces of X with a Schauder basis is an analytic subset of

SB. To see this notice that the class S of all separable Banach spaces with a

Schauder basis is analytic. Indeed, as we have indicated in Proposition 9.2, the

map N 3 σ 7→ Uσ ∈ SB is Borel, and so the set B := {Uσ : σ ∈ N} is analytic

(actually, it is Borel). Then S = B∼= where B∼= denote, as usual, the isomorphic

saturation of B. Clearly, this implies that S is analytic. Since C = S ∩ Subs(X),

we see that C is analytic. By Theorem 9.6 and Lemma 9.8, the result follows. �

A natural question related to Theorems 9.3 and 9.6 is whether for an analytic

subset A of SB consisting of spaces with a certain property (P), the universal

space also satisfies the same property. The following definition makes this question

precise.

Definition 9.9. Let C be an isomorphic invariant class of separable Banach spaces.

We say that C is strongly bounded if for every analytic subset A of C there exists

Y ∈ C that contains, up to isomorphism, all members of A.
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It is clear that, under the terminology of the above definition, Theorem 9.3 states

that the class of non-universal separable Banach spaces with a Schauder basis is

strongly bounded. The following theorem provides further natural examples of

strongly bounded classes.

Theorem 9.10. Let C denote one of the following classes of Banach spaces.

(1) The reflexive spaces with a Schauder basis.

(2) The spaces with a shrinking Schauder basis.

(3) The `p-saturated for some 1 6 p < ∞, or c0-saturated spaces with a

Schauder basis.

(4) The HI saturated spaces with a Schauder basis.

(5) The unconditionally saturated spaces with a Schauder basis.

Then C is strongly bounded.

Proof. First we will deal with the cases (1), (3), (4) and (5). Let A be an analytic

subset of C (notice that, by definition, every X ∈ A has a Schauder basis). We need

to find a separable Banach space Y ∈ C such that every member of A is contained

in Y . We first observe that there exist a downward closed pruned tree T on N×N
and a space Z with a normalized bimonotone Schauder tree basis (zt)t∈T such that

the following are satisfied.

(1) For every σ ∈ [T ] there exists X ∈ A such that Zσ is isomorphic to Y .

(2) For every X ∈ A there exists σ ∈ [T ] such that X is isomorphic to Zσ.

In cases (1) and (4), the desired space Y is the HI-amalgamation of (zt)t∈T ; indeed,

for the class of reflexive spaces this follows from Proposition 8.5, while for the class

of HI saturated spaces it follows from part (4.a) of Definition 8.1. In the case of

unconditionally saturated spaces, the desired space Y is the p-amalgamation of

(zt)t∈T for any 1 < p < ∞; the fact that Y is unconditionally saturated follows

from property (4)′ of Definition 8.2. The p-amalgamation space can also be used if

C is the class of `p-saturated spaces for some 1 < p < ∞. Finally, if C is the class

of `1-saturated (respectively, c0-saturated) spaces with a Schauder basis, then the

desired space Y is the interpolation space of (T Z2 ,WZ) by considering as external

norm the `1-norm (respectively, the c0-norm). Using the same arguments as in the

proof of the properties of p-amalgamations, it is easy to verify that Y is `1-saturated

(respectively, c0-saturated) and contains all members of A.

Now we consider case (2), that is, the case of spaces with a shrinking Schauder

basis. Fix an analytic class A of spaces with a shrinking Schauder basis. As in

the previous cases, we will obtain a downward closed pruned tree T on N × N
and a space Z with a normalized bimonotone Schauder tree basis (zt)t∈T with the

following properties.

(P1) For every σ ∈ [T ] the sequence (zσ|n) is shrinking.

(P2) For every σ ∈ [T ] there exists X ∈ A such that Zσ is isomorphic to X.

(P3) For every X ∈ A there exists σ ∈ [T ] such that X is isomorphic to Zσ.
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To this end we will need some results from [B2] which we will briefly recall. Let U

denote the universal space of Pelczynski for Schauder basic sequences, and let (uk)

denote the basis of U . Consider the set

S := {L ∈ [N]∞ : (uk)k∈L is shrinking}.

In [B2, Theorem 5.4], it is shown that the set S is co-analytic and that the map

S 3 L 7→ Sz
(
span{uk : k ∈ L}

)
is a co-analytic rank on S where Sz

(
span{uk : k ∈ L}

)
denotes the Szlenk index of

the space span{uk : k ∈ L}. We also recall that the map SD 3 X 7→ Sz(X) is a

Π1
1-rank on SD (see [Bo3]). Since A is an analytic subset of SD, by boundedness,

we obtain that

sup{Sz(X) : X ∈ A} = ξ < ω1.

It follows that the set

Sξ :=
{
L ∈ S : Sz

(
span{uk : k ∈ L}

)
6 ξ
}

is Borel. Let (ut)t∈N<N be the enumeration of (uk) as described in Example 3; in

particular, for every σ ∈ N there exists Lσ = {l1 < l2 < · · · } ∈ [N]∞ such that

(uσ|n) is the subsequence (uln). The map h : N → [N]∞ defined by h(σ) = Lσ is

easily seen to be continuous. It follows that the set

A1 := {σ ∈ N : h(σ) ∈ Sξ and ∃Y ∈ A with Uσ ∼= Y }

is analytic. We notice the following facts which are straightforward consequences

of the universality of U , the choice of ξ and the definition of A1.

(i) For every σ ∈ A1 the sequence (uσ|n) is shrinking.

(ii) For every X ∈ A there exists σ ∈ A1 such that X ∼= Uσ.

(iii) For every σ ∈ A1 there exists X ∈ A such that Uσ ∼= X.

Thus, as usual, we may construct a downwards closed pruned tree T on N × N
and a Banach space Z with a normalized bimonotone Schauder tree basis (zt)t∈T

such that properties (P1)–(P3) are satisfied. The desired space Y is then the

HI-amalgamation of (zt)t∈T ; The fact that this space has a shrinking basis is an

immediate consequence of Theorem 8.6. The proof is completed. �

We proceed to discuss another application of the above results. To this end we

introduce the following definition.

Definition 9.11. Let X be a Banach space with a Schauder basis (en) and let

p > 1. We say that X has asymptotic type p if there exists a constant C > 0 such

that for every k ∈ N we have that

∀x1 ∃n1 ∀x2 ∃n2 . . . ∃nk ∀xk+1

so that if (i) below holds true, then so does (ii).

(i) For every i ∈ {2, . . . , k + 1} we have supp(xi) ⊆ {ni−1, ni−1 + 1, . . . }.
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(ii) We have
∫ 1

0
‖
∑k+1
i=1 ri(t)xi‖ dt 6 C

(∑k+1
i=1 ‖xi‖p

)1/p
.

The notion of asymptotic cotype q, where q <∞, is defined similarly. We say that

X has asymptotic non-trivial type (respectively, asymptotic non-trivial cotype) if

it has asymptotic type for some p > 1 (respectively, some q <∞).

Remark 17. We notice that a Banach space X with a Schauder basis (en) and

with asymptotic non-trivial type does not contain `1. To see this observe that, by a

standard sliding hump argument, if `1 embeds into such a space, then there would

existed a block sequence (xn) equivalent to the `1 basis. It is easy to see, however,

that in this case property (ii) in Definition 9.11 is not satisfied. Similarly we verify

that if X has asymptotic non-trivial cotype, then it does not contain c0.

As in the case of separable Banach spaces with non-trivial type, the class of

Banach spaces with a Schauder basis and asymptotic non-trivial type is of low

complexity.

Lemma 9.12. Let (ut)t∈N<N be the enumeration of the basis of Pelczynski’s uni-

versal space U as described in Proposition 9.2. Then the sets

{σ ∈ N : Uσ has asymptotic non-trivial type}

and

{σ ∈ N : Uσ has asymptotic non-trivial cotype}

are both Borel.

Proof. Fix p > 1 and C > 0. Set

D :=
{∑
t∈s

atut : at ∈ Q and s is a finite segment of N<N
}

and Dl :=
{∑

t∈s atut ∈ D : for every t ∈ s we have |t| > l
}

for every l ∈ N.

Notice that D is countable (hence so is every Dl), and D = D1. For every k ∈ N
and every x1, . . . , xk+1 ∈ D we say that (x1, . . . , xk+1) is admissible if property (ii)

in Definition 9.11 is satisfied for this tuple of vectors and the fixed constant C. Set

A(x1, . . . , xk+1) :=
{
σ ∈ N : ∃i ∈ {1, . . . , k + 1} with supp(xi) * σ

or (x1, . . . , xk+1) is admissible
}
.

Clearly, A(x1, . . . , xk+1) is closed. Now observe that the set of all σ ∈ N such that

Uσ has asymptotic type p with constant C is equal to the set⋂
k∈N

( ⋂
x1∈D

⋃
n1∈N

⋂
x2∈Dn1

· · ·
⋃
nk∈N

⋂
xk+1∈Dnk

A(x1, . . . , xk+1)
)
.

It follows that the set of all σ ∈ N for which Uσ has asymptotic type p is Borel;

for the class of spaces with asymptotic cotype we argue similarly. The proof is

completed. �
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By Proposition 9.2 and its proof, Lemma 9.12 and Remark 17, we obtain the

following corollary.

Corollary 9.13. There exists a non-universal Banach space T (respectively, C)

with a Schauder basis such that every Banach space with a Schauder basis and

asymptotic non-trivial type (respectively, asymptotic non-trivial cotype) is contained

in T (respectively, in C) as a complemented subspace.

We close this section with the following strengthening of Theorem 3.6.

Theorem 9.14. Let X be a separable Banach space with a Schauder basis and let

A be an analytic subset of SB which contains (up to isomorphism) all HI spaces.

Then there exists Y ∈ A containing X as a complemented subspace.

Proof. Let (xn) be a Schauder basis of X. We may assume that (xn) is normalized

and bimonotone. We enumerate this basis as (xt)t∈N<N as we did in Example 1.

Consider the HI-amalgamation AXhi of (xt)t∈N<N . Following the notation in the

proof of Theorem 8.10, for every well-founded tree T with infinitely many nodes

let X̃T be the subspace of AXhi generated by T . Next, let A ⊆ SB be analytic and

let A∼= be the isomorphic saturation of A (which is analytic too). Since the map

Φ: T̃r → SB defined by Φ(T ) = X̃T is Borel, the set Φ−1(A∼=) is analytic and

contains W̃F. It follows that there exists an ill-founded tree T such that X̃T ∈ A∼=.

Noticing that X is a complemented subspace of X̃T , the result follows. �

10. A non-universal space with unbounded β and rND indices

10.1. Jamesfication of a Schauder tree basis. Let X be a separable Banach

space, let Λ be a countable set, let T be a pruned subtree of Λ<N and let (xt)t∈T

be a normalized bimonotone Schauder tree basis of X. We define the Jamesfication

JX of (xt)t∈T to be the completion of c00(T ) with the norm

‖z‖JX := sup
{∥∥ k∑

p=1

(∑
t∈sp

z(t)
)
xtp
∥∥
X

: (sp)
k
p=1 are pairwise disjoint segments of T,

∃σ ∈ [T ] with sp ⊆ σ for all p ∈ {1, . . . , k},

and tp is @ −minimal node of sp

}
.

Notice that (et)t∈T defines a normalized bimonotone Schauder tree basis of JX .

Moreover, observe that for every σ ∈ [T ] the space (JX)σ is isometric to the James-

fication of Xσ defined by Bellenot, Haydon and Odell in [BHO].

10.2. The Banach space R. We will give the definition of the space R for which

both the β and the rND indices are unbounded, yet the space is not universal. We

start with Pelczynski’s space V which is universal for all 1-unconditional bases. Let

(vk) denote the basis of V . We enumerate (vk) as (vt)t∈N<N as we did in Example 3.

Next, we consider the Jamesfication JV of (vt)t∈N<N . Let (et)t∈N<N be the Schauder
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tree basis of JV . The universality of V and the enumeration of the basis yield the

following properties.

(I) For every σ ∈ N the space (JV )σ is isometric to the Jamesfication of Vσ.

(II) For every space X with an unconditional basis there exists σ ∈ N such that

the Jamesfication of X is isomorphic to (JV )σ.

The desired space R is the HI-amalgamation AJVhi of (et)t∈N<N . We verify, first,

that the space R is not universal. To this end, we need the following definition.

Definition 10.1. We say that a Banach space X is sequentially unconditional if

for every seminormalized weakly null sequence (wn) in X there exists L ∈ [N]∞

such that the sequence (wn)n∈L is unconditional.

We need the following result (see [BHO, Proposition 2.1]).

Proposition 10.2. Let X be a Banach space with a Schauder basis (xn). Then

the Jamesfication JX of X is sequentially unconditional.

We proceed with the following lemma.

Lemma 10.3. If (Xi)
d
i=1 are sequentially unconditional, then so is

∑d
i=1⊕Xi.

Proof. Let (wn) be a seminormalized weakly null sequence in
∑d
i=1⊕Xi. By our

assumptions, there exists L ∈ [N]∞ such that the following are satisfied.

(1) For every i ∈ {1, . . . , d} either

(a)
∑
n∈L ‖Pi(wn)‖ < 1, or

(b) the sequence (Pi(wn))n∈L is seminormalized.

(2) If i ∈ {1, . . . , d} is such that (1.b) holds true, then the sequence (Pi(wn))n∈L

is unconditional.

Note that there exists at least one i ∈ {1, . . . , d} such that (1.b) is satisfied. It is

then easy to verify that the sequence (wn)n∈L is unconditional, as desired. �

We have the following proposition.

Proposition 10.4. Neither L1(0, 1) nor C
(
ωω

2)
are contained in R.

Proof. Assume, on the contrary, that L1(0, 1) was contained in R (the argument is

symmetric for both spaces). Since L1(0, 1) is unconditionally saturated, arguing as

the proof of Theorem 8.13, we see that there exist a finite-dimensional space F and

(Yi)
d
i=1 such that L1(0, 1) is isomorphic to a subspace of F ⊕

(∑d
i=1⊕Yi

)
where

for every i ∈ {1, . . . , d} the space Yi is isomorphic to (JV )σi for some σi ∈ N . By

Proposition 10.2, the space (JV )σi is sequentially unconditional, and as this is a

hereditary property, so is the space Yi for every i ∈ {1, . . . , d}. By Lemma 10.3,

it follows that L1(0, 1) is sequentially unconditional which is a contradiction by

a result of Johnson, Maurey and Schechtman [JMS]. (For the case of C
(
ωω

2)
we

invoke the classical Maurey–Rosenthal example [MR].) The proof is completed. �
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We will also need the fact that for every Banach space X with an unconditional

basis, the Jamesfication JX of X is contained in R as a complemented subspace.

Although this is a straightforward consequence of the definition of R, it is important

enough to be stated in a separate proposition.

Proposition 10.5. Let X be a Banach space with an unconditional basis. Then

the Jamesfication of X is contained in R as a complemented subspace.

We proceed to show that the indices β and rND are unbounded on R. (We refer

to [AGR, KL2] for the definitions of β and rND.) To this end, we will introduce a

transfinite sequence of reflexive Banach spaces with an unconditional basis whose

Jamesfications will verify that both indices are unbounded. We should point out

that several authors have provided such examples (see, e.g., [HOR, F]). However,

these examples are rather inconvenient for our purposes.

The aforementioned spaces will be built with the help of the Schreier families

(Sξ)ξ<ω1 . They are compact families of finite subsets of N which satisfy, among

others, the following properties.

(1) Each Sξ is spreading, that is, for every F = {n1 < · · · < nk} ∈ Sξ and every

G = {m1 < · · · < mk} with ni 6 mi for all i ∈ {1, . . . , k} we have G ∈ Sξ.
(2) Each Sξ is hereditary, that is, if F ∈ Sξ and G ⊆ F , then G ∈ Sξ.
(3) The Cantor–Bendixson derivative of Sξ is equal to ωξ.

For the definition of the Schreier families and a discussion of their properties we

refer to [AA, AGR].

Now for every ξ < ω1 let X(Sξ,2) be the completion of c00(N) with the norm

‖z‖X(Sξ,2)
:= sup

{( d∑
i=1

( ∑
n∈Fi

|z(n)|
)2) 1

2 : (Fi)
d
i=1 ∈ Sξ with F1 < F2 < · · · < Fd

}
.

(Here, for every pair F,G of nonempty finite subsets of N we write F < G if

max(F ) < min(G).) We also need to introduce an auxiliary space XSξ which is

defined to be the completion of c00(N) with the norm

‖z‖XSξ := sup
{∑
n∈F
|z(n)| : F ∈ Sξ

}
.

We denote by (xn) the standard basis of both X(Sξ,2) and XSξ (from the context it

will be clear whether we refer to X(Sξ,2), or XSξ). Notice that (xn) is an uncondi-

tional basis of X(Sξ,2). It also easy to verify that the basis in X(Sξ,2) is boundedly

complete and so, by a classical result of James (see [LT]), the space X(Sξ,2) does

not contain c0. On the other hand, observe that the space XSξ can be realized (up

to isomorphism) as a closed subspace of C(Sξ). As the family Sξ is countable and

compact, by a result of Bessaga–Pelczynski, the space C(Sξ) is c0-saturated (see,

e.g., [Ro2, Proposition 3.6]). Hence, so is the space XSξ . By the previous discus-

sion, it follows that the identity operator Id: X(Sξ,2) → XSξ is strictly singular. We

are now ready to state the first result concerning the space X(Sξ,2).
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Proposition 10.6. For every ξ < ω1 the space X(Sξ,2) is reflexive.

Proof. Since the space X(Sξ,2) has a boundedly complete unconditional basis, by

the result of James mentioned above, it is enough to show that the space X(Sξ,2)

does not contain `1. We will show that, actually, the space X(Sξ,2) is `2-saturated.

(Clearly, this will finish the proof.) Let Y be an arbitrary infinite-dimensional

subspace of X(Sξ,2). Since the operator Id: X(Sξ,2) → XSξ is strictly singular, by a

standard sliding hump argument, there exists a normalized block sequence (wk) in

Y such that ‖wk‖XSξ 6 1/2k. We will show that the sequence (wk) is equivalent

to the standard unit vector basis of `2. First we show the lower estimate. For

every k ∈ N set Rk = range(wk). Since ‖wk‖ = 1, we may select (F ki )dki=1 such

that F ki ∈ Sξ, F k1 < · · · < F kdk , F ki ⊆ Rk and ‖wk‖ =
∑dk
i=1(

∑
n∈Fki

|wk(n)|)2 = 1.

Let l ∈ N and let a1, . . . , al ∈ R with
∑l
k=1 a

2
k = 1. Notice that the family

〈F ki : 1 6 k 6 l, 1 6 i 6 dk〉 consists of successive members of Sξ. Therefore,

∥∥ l∑
k=1

akwk
∥∥ >

( l∑
k=1

dk∑
i=1

( ∑
n∈Fki

|akwk(n)|
)2)1/2

=
( l∑
k=1

a2
k

dk∑
i=1

( ∑
n∈Fki

|wk(n)|
)2)1/2

= 1.

Next, we argue for the upper estimate. It is convenient to work with a norming

family of the dual rather than with the definition of the norm. Specifically, for

every F ∈ Sξ let F ∗(x) =
∑
n∈F x(n). Notice that F ∗ ∈ X∗(Sξ,2). We set

F :=
{ d∑
i=1

βiF
∗
i :

d∑
i=1

β2
i 6 1 and (Fi)

d
i=1 are successive members of Sξ

}
.

Since the Schreier family Sξ is hereditary, by the Cauchy–Schwarz inequality, we

see that ‖x‖X(Sξ,2)
6 2 sup

{
φ(x) : φ ∈ F

}
. Also observe that if

∑d
i=1 βiF

∗
i ∈ F ,

then for every k ∈ N we have

(10.1)

d∑
i=1

βiF
∗
i (wk) 6

( d∑
i=1

β2
i

)1/2
.

(If not, then we would have that ‖wk‖ > 1.) Let
∑d
i=1 βiF

∗
i ∈ F be arbitrary. For

every k ∈ {1, . . . , l} set Ik =
{
i ∈ {1, . . . , d} : Fi ∩ Rk 6= ∅

}
. Notice that Ik is an

interval since the set (Fi)
d
i=1 are successive. Let mk and Mk be the minimum and

maximum element of Ik respectively, and set I ′k := Ik \{mk,Mk} (of course, I ′k may

be empty). Observe that I ′k1
∩ I ′k2

= ∅ for every k1, k2 ∈ {1, . . . , l} with k1 6= k2.

We want to estimate the quantity

(10.2)

d∑
i=1

βiF
∗
i

( l∑
k=1

akwk
)

=

l∑
k=1

ak

d∑
i=1

βiF
∗
i (wk) =

l∑
k=1

ak
∑
i∈Ik

βiF
∗
i (wk)
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where, as before, l ∈ N and a1, . . . , al ∈ R with
∑l
k=1 a

2
k = 1. By the selection

of the sequence (wk), we have ‖wk‖XSξ 6 1/2k. Therefore, for every F ∈ Sξ we

have |F ∗(wk)| 6 1/2k, and consequently, by (10.1), for every k ∈ N we see that∑
i∈Ik βiF

∗
i (wk) 6 (

∑
i∈I′k

β2
i )1/2 + 2/2k. By (10.2), we obtain that

d∑
i=1

βiF
∗
i

( l∑
k=1

akwk
)
6

l∑
k=1

ak
(∑
i∈I′k

β2
i

)1/2
+ 2

and so, by the Cauchy–Schwarz inequality, we conclude that

d∑
i=1

βiF
∗
i

( l∑
k=1

akwk
)
6 3.

This implies that ‖
∑l
k=1 akwk‖ 6 6 and the proof is completed. �

We proceed to recall some definitions concerning spreading models.

Definition 10.7. Let ξ < ω1 and let (xn) be a sequence in a Banach space X.

The sequence (xn) is said to be an `ξ1-spreading model (respectively, cξ0-spreading

model) if there exists C > 0 such that for every F ∈ Sξ and every sequence (an) of

scalars we have

C
∑
n∈F
|an| 6

∥∥∑
n∈F

anxn
∥∥

(respectively, ∥∥∑
n∈F

anxn
∥∥ 6 C max{|an| : n ∈ F}).

The sequence (xn) is said to be a ξ-summing spreading model if there exists C > 0

such that for every F = {l1 < · · · < lk} ∈ Sξ and every sequence (an) in R we have

1

C
|||(an)n∈F ||| 6

∥∥∑
n∈F

anxn
∥∥ 6 C |||(an)n∈F |||

where |||(an)n∈F ||| := max
{
|
∑
i∈I ali | : I ⊆ {1, . . . , k} is an interval

}
.

Lemma 10.8. Assume that X is a Banach space with an unconditional basis (xn).

Let (en) be the basis of the Jamesfication of X and let ξ be a countable ordinal.

(a) If (xn) is an `ξ1-spreading model, then so is every convex block sequence

(gn) of (en).

(b) If (xn) is a cξ0-spreading model, then (en) is a ξ-summing spreading model.

Proof. For part (a) let (gn) be a convex block sequence of (en). For every n ∈ N
set In := range(gn) and write gn =

∑
k∈In b

n
k ek where bnk > 0 and

∑
k∈In b

n
k = 1.

Let F ∈ Sξ be arbitrary. For every n ∈ F set tn := min(In). Then tn > n, and so

{tn : n ∈ F} ∈ Sξ as the family Sξ is spreading. Therefore,∥∥∑
n∈F

angn
∥∥ > ∥∥∑

n∈F

( ∑
k∈In

anb
n
k

)
xtn
∥∥
X

=
∥∥∑
n∈F

anxtn
∥∥
X
> C

∑
n∈F
|an|
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where the last inequality follows from the fact that (xn) is an `ξ1-spreading model.

Part (b) is an immediate consequence of the definitions. The proof is completed. �

Lemma 10.9. Let ξ < ω1. Then the following hold.

(a) The basis (xn) of X(Sξ,2) is an `ξ1-spreading model.

(b) The basis (x∗n) of X∗(Sξ,2) is a cξ0-spreading model.

Proof. The first part is an immediate consequence of the definition of X(Sξ,2) and

the fact that the Schreier families are hereditary. For the second part let (x∗n) denote

the basis of X∗(Sξ,2). Notice that for every F ∈ Sξ the functional F ∗ =
∑
n∈F e

∗
n

has norm one. Since (x∗n) is an unconditional basis of X∗(Sξ,2), for every sequence

(an) in R and every F ∈ Sξ we have ‖
∑
n∈F anx

∗
n‖ 6 max{|an| : n ∈ F} and the

lemma is proved. �

Proposition 10.10. Let ξ < ω1. Then the following hold.

(1) The basis of the Jamesfication of X(Sξ,2) is weakly* convergent to an ele-

ment f which satisfies ωξ 6 β(f) < ω1.

(2) The basis of the Jamesfication of X∗(Sξ,2) is weakly* convergent to an ele-

ment g which satisfies ωξ 6 rND(g) < ω1.

Proof. Fix ξ < ω1. In what follows, for notational simplicity, by Jξ and Jdξ we shall

denote the Jamesfications of X(Sξ,2) and X∗(Sξ,2) respectively. Also let (en) and (e∗n)

denote the bases of Jξ and Jdξ . By Proposition 10.6, the spaces X(Sξ,2) and X∗(Sξ,2)

are reflexive. By [BHO, Theorem 4.1], it follows that Jξ and Jdξ are quasi-reflexive.

Moreover, by [BHO, Theorem 2.2], the dual of Jξ (respectively, of Jdξ ) is generated

by the biorthogonals of the basis and the “sum” functional S = (1, 1, . . . ). It is then

clear that both (en) and (e∗n) are weak* convergent, say to f and g respectively. It

is also clear that f is a Baire-1 element, and so β(f) < ω1. On the other hand, we

have rND(g) < ω1 (if not, then c0 would embed into Jdξ ; see [HOR]). It remains to

show the other inequalities.

For part (2) we observe that, by part (b) of Lemma 10.9, the basis (x∗n) of

X∗(Sξ,2) is a cξ0 spreading model. By part (b) of Lemma 10.8, the basis (e∗n) of Jdξ
(the Jamesfication of X∗(Sξ,2)) is a ξ-summing spreading model. By [F, Theorem 9]

(see also [AGR, Theorem II.4.8]), it follows that rND(g) > ωξ, as desired.

In order to show that β(f) > ωξ we need some results from [KL2]. First we recall

the definition of the convergence rank γ. Let K be a compact metrizable space and

let (fn) be a sequence of continuous real-valued functions on K. For every ε > 0

we define a derivative operation on closed subsets of K by setting

F 7→ F ′((fn),ε) :=
{
x ∈ F : ∀U 3 x open and ∀n ∃p > q > n

∃y ∈ U ∩ F with |fp(y)− fq(y)| > ε
}
.

By transfinite recursion, we define the iterated derivatives K
(ζ)
((fn),ε) (ζ < ω1). The

convergent rank γ
(
(fn)

)
of the sequence (fn) is defined in the standard way, using
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the aforementioned derivative operation. We need the following consequence of

[KL2, Theorem 2.3]: Assume that (fn) is a bounded sequence of continuous real-

valued functions on K which is pointwise convergent to f . If for every convex block

sequence (gn) of (fn) we have γ
(
(gn)

)
> ωξ, then β(f) > ωξ.

By the previous discussion, it is enough to prove that for every convex block

sequence (gn) of the basis (en) of Jξ we have γ
(
(gn)

)
> ωξ. Fix such a convex

block sequence (gn). As we have shown in part (a) of Lemma 10.9, the basis (xn)

of X(Sξ,2) is an `ξ1-spreading model and so, by Lemma part (a) of 10.8, the same is

also true for (gn). We have the following claim.

Claim. Let I1 < · · · < Id be intervals of N with
{

min(Ik) : k ∈ {1, . . . , d}
}
∈ Sξ.

Then
∑d
k=1 I

∗
k ∈ BJ∗ξ where J∗ξ denotes the dual of the Jamesfication of X(Sξ,2).

Proof of the claim. For every k ∈ {1, . . . , d} set pk := min(Ik). Let z ∈ Jξ with

‖z‖ 6 1 be arbitrary. Then we have

∣∣ d∑
k=1

I∗k(z)
∣∣ 6 d∑

k=1

∣∣ ∑
n∈Ik

z(n)
∣∣ 6 d∑

k=1

∑
n∈Ik

|z(n)|

6
∥∥ d∑
k=1

( ∑
n∈Ik

|z(n)|
)
xpk
∥∥
X(Sξ,2)

6 ‖z‖Jξ

where we used the fact that
{
pk : k ∈ {1, . . . , d}

}
∈ Sξ and the fact that the basis

(xn) of X(Sξ,2) is an `ξ1-spreading model with constant one. �

For every n ∈ N set In := range(gn). Notice that (In) is a sequence of successive

intervals of N. Denote by K the unit ball of J∗ξ equipped with the weak* topology.

For every F ⊆ Sξ set KF =
{∑

n∈F I
∗
n : F ∈ F

}
. Notice that if F ∈ Sξ, then

for every n ∈ F we have n 6 min(In). Since the family Sξ is spreading, we obtain

that {min(In) : n ∈ F} ∈ Sξ. By the previous claim, it follows that KF is a subset

of K. Denote by Fζ the ζ-th Cantor–Bendixson derivative of Sξ. By induction on

countable ordinals, we will show that

(10.3) KFζ ⊆ K
(ζ)
((gn),1);

this will finish the proof of part (1). To this end notice, first, that

F1 = {F ∈ Sξ : F is not maximal}.

Let G =
∑
n∈F I

∗
n ∈ KF1 be arbitrary (in particular, F is not a maximal element

of Sξ). Also let W be a weak* neighborhood of G. We may assume that there

exists nW ∈ N with the following property. If H ∈ K satisfies H(en) = G(en) for

every n ∈ {1, . . . , nW }, then H ∈ W . Let n ∈ N, and set nF := max{i : i ∈ F}.
We select p > q > max{n, nW , nF }, and we define G′ :=

∑
n∈F I

∗
n + I∗q . Since

F ∪ {q} ∈ Sξ, we see that G′ ∈ K ∩W . Moreover, |gp(G′) − gq(G′)| = 1. This

implies that G ∈ K(1)
((gn),1) and so KF1 ⊆ K(1)

((gn),1). Using similar arguments, we can
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verify (10.3) for all countable ordinals (we leave the details to the interested reader).

This completes the proof of part (1), and so the entire proof is completed. �

By Propositions 10.4, 10.5 and 10.10, we have the following theorem.

Theorem 10.11. There exists a non-universal separable Banach space R for which

both the β and rND indices are unbounded. In particular, the space R contains

neither L1(0, 1) nor C
(
ωω

2)
.

Remark 18. (1) By definition, the space R constructed above contains `1 and c0.

Actually, by a result of Bourgain [B2] and the c0-index theorem [AK], any space

for which both indices are unbounded must contain `1 and c0.

(2) The space R is, in some sense, minimal. Namely, every subspace of R either

contains a further reflexive subspace, or `1, or c0. To see this consider a subspace Y

of R not containing any further reflexive subspace. Since R is the HI-amalgamation

of JV and every JV -singular subspace of R is HI and reflexive saturated, we conclude

that no subspace of Y is JV -singular. Hence, there exist σ ∈ N and a subspace

Y ′ of Y such that the operator Pσ : Y ′ → (JV )σ is an isomorphic embedding. This

yields that (JV )σ is not quasi-reflexive and so, by [BHO, Theorem 2.2], we conclude

that Y either contains `1 or c0.

(3) Instead of using HI-amalgamations, one can obtain the same results using

p-amalgamations for any p > 2. Indeed, one simply observes that `p does not

embed into L1 for any p > 2; the rest of the argument is identical.

Appendix A. The dual of T X2

Let X be a Banach space, let Λ be a countable set, let T be a pruned subtree

o Λ<N and let (xt)t∈T a normalized bimonotone Schauder tree basis of X. Also let

T X2 be the `2 Baire sum of (xt)t∈T , and set

(A.1) W ∗ := span
{ ⋃
σ∈[T ]

BX∗σ

}
.

Our goal in this appendix is to show that W ∗ = (T X2 )∗. To this end we need several

auxiliary results. We start with the following lemma.

Lemma A.1. Let (xi)i∈I be a net in T X2 with the following properties.

(C1) Each xi has finite support and ‖xi‖ = 1.

(C2) For every w∗ ∈W ∗ we have limi∈I w
∗(xi) = 0.

(C3) There exists x∗ ∈ (T X2 )∗ with x∗(xi) > 1
2 for every i ∈ I.

Also let F ⊆ [T ] be finite and let 0 < ε < 1
2 . Then there exist finite A ⊆ [T ], a block

sequence (yn) and a sequence (zn) of convex combinations of (xi)i∈I such that the

following are satisfied.

(1) We have
∑
n∈N ‖yn − zn‖ < ε.

(2) We have A ∩ F = ∅.
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(3) For every segment s of T with s∩A = ∅ we have ‖Ps(yn)‖ 6 ε for all n ∈ N.

Proof. We start with the following observation. Let B ⊆ [T ] be finite. By the defi-

nition of W ∗ and (C2), we see that if J is any cofinal subset of I, then (PB(xj))j∈J

tends weakly to 0. Thus, for every c > 0 we may select a finite convex combination

w of (xj)j∈J such that ‖PB(w)‖ < c.

By the above remarks and a sliding hump argument, we may select a block

sequence (xn) and a sequence (wn) of convex combinations of (xi)i∈I such that

(O1) lim ‖PF (wn)‖ = 0, and

(O2)
∑
n∈N ‖wn − xn‖ < ε.

Notice that (O1) and (O2) yield that ‖PF (xn)‖ → 0. Moreover, since (wn) is

a sequence of convex combinations of (xi)i∈I , by (C1) and (C3), we obtain that
1
2 6 ‖wn‖ 6 1 for every n ∈ N and so, by (O2), we have 1

2 − ε 6 ‖xn‖ 6 1 + ε for

every n ∈ N.

Next, we argue that it cannot be the case that lim ‖Pσ(xn)‖ = 0 for every σ ∈ [T ].

Indeed is the case, by Proposition 4.10, we would have that the sequence (xn) is

weakly null. But this would imply that the sequence (wn) is also weakly null which

contradicts (C3). It follows that there exist L ∈ [N]∞, r > 0 and σ ∈ [T ] such that

‖Pσ(xn)‖ > r for every n ∈ L. Clearly, we may assume that ε > r. Also notice

that, since lim ‖PF (xn)‖ = 0, we may assume that for every segment s of T with

s ⊆ F (in the sense that there exists σ ∈ F with s ⊆ σ) we have that ‖Ps(xn)‖ < r
4 .

Thus, by passing to subsequences, we have the following properties.

(a) If s ⊆ F , then ‖Ps(xn)‖ < r
4 for every n ∈ N.

(b) There exists at least one segment s (in particular, a branch) with s * F

such that ‖Ps(xn)‖ > ε for every n ∈ N.

Claim. There exist finite A ⊆ [T ] with A∩F = ∅ and L ∈ [N]∞ such that for every

segment s of T with s ∩A = ∅ we have lim supn∈L ‖Ps(xn)‖ < ε
2 .

The proof of the above claim is identical to the proof of Lemma 4.3; the only extra

condition is that A ∩ F = ∅, which causes no problem in the argument.

Now applying inductively Lemma 4.8 we obtain a sequence (yn) of block convex

combinations of (xn) such that for every segment s of T with s ∩ A = ∅ we have

‖Ps(yn)‖ 6 ε for every n ∈ N. (Here, A denotes the finite subset of [T ] obtained

by the above claim.) Let (zn) be the corresponding block convex combinations of

(wn)n∈L. Then A, (yn) and (zn) are as desired. �

Lemma A.2. Let (xi)i∈I be a net in T X2 which satisfies (C1), (C2) and (C3)

in Lemma A.1. Then there exist a decreasing sequence (εl) with 0 < εl <
1
2 and

εl → 0, a sequence (Al) of finite subsets of [T ], and for every l ∈ N sequences (yln)

and (zln) with the following properties.

(I) For every l ∈ N the sequence (yln) is block and the sequence (zln) consists of

convex combinations of (xi)i∈I .
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(II) We have
∑
n∈N ‖zln − yln‖ < εl for every l ∈ N.

(III) For every l1, l2 ∈ N with l1 6= l2 we have Al1 ∩Al2 = ∅.
(IV) For every l, n ∈ N if s is a segment of T with s∩Al = ∅, then ‖Ps(yln)‖ 6 εl.

Proof. The selection of (εl), (Al), (yln) and (zln) is done recursively and using

Lemma A.1. Indeed, let k ∈ N and assume that εl, Al, (y
l
n) and (zln) have been

constructed for every l < k. We select εk with εk < min{εk−1, 1/2
k+1}, and we

set F = A1 ∪ · · · ∪ Ak−1. (For the first step of the selection we set F = ∅.) By

Lemma A.1, we obtain Ak, (ykn) and (zkn) satisfying (1)–(3) in Lemma A.1. Clearly,

εk, Ak, (ykn) and (zkn) are as desired. �

We proceed with the following lemma.

Lemma A.3. Let the notation and assumptions be as in Lemma A.2. Then there

exist sequences (lk) and (nk) such that the sequence (ylknk) is block and satisfies

lim ‖Pσ(ylknk)‖ = 0 for every σ ∈ [T ].

In order to select the sequences (lk) and (nk) described in Lemma A.3 we follow

an inductive scheme described in the following sublemma. Before we state it we

recall that if t ∈ Λ<N, then by Lt we denote the set of all segments s of Λ<N

for which there exists t′ ∈ s with t v t′. Once again we remark that the family

{Lt : t ∈ Λ<N} restricted to the branches of Λ<N, is the usual sub-basis of the

topology on ΛN. Next, let T be the pruned subtree of Λ<N which is used to define

the Schauder tree basis of X. For every t ∈ T let Tt denote the subset of Lt
consisting of all segments s which belong to T .

Sublemma A.4. Let L ∈ [N]∞, and for every q ∈ L let Mq ∈ [N]∞. Also let ε > 0.

Then the following hold.

(I) There exist l, n ∈ N with l ∈ L and n ∈Ml.

(II) If Al = {σl1, . . . , σlk} where l is as in (I), then for every i ∈ {1, . . . , k} there

exist ti @ σli and there exists j ∈ N such that for every i1, i2 ∈ {1, . . . , k}
with i1 6= i2 we have that ti1 and ti2 are incomparable and |ti1 | = |ti2 | = j.

(III) There exists L′ ∈ [L]∞ and for every q ∈ L′ there exists M ′q ∈ [Mq]
∞ such

that for every m ∈M ′q the following hold.

(a) We have max{k : k ∈ h
(
supp(yln)

)
} < min{k : k ∈ h

(
supp(yqm)

)
}

where l, n are as in (I) and h : T → N is the fixed enumeration of T .

(b) For every segment s of T with s ∈ Tt1 ∪ Tt2 ∪ · · · ∪ Ttk we have that

‖Ps(yqm)‖ 6 ε.
(IV) If l, n are as in (I), then for every t ∈ supp(yln)∩Al there is i ∈ {1, . . . , k}

with ti @ t where (ti)
k
i=1 are as in (II).

Proof. First recall that for every q, n ∈ N we have ‖yqn‖ 6 1 + εq < 2 since, by

Lemma A.2, we have εq < 1/2 for every q ∈ N. Fix k0 ∈ N with ε
√
k0 > 2. Let

{l1 < l2 < · · · } be the increasing enumeration of L. Consider the set {l1, . . . , lk0
}
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and the corresponding Ali ’s for i ∈ {1, . . . , k0}. Since the sets (Ali)
k0
i=1 are mutually

disjoint finite subsets of [T ], we may select j0 ∈ N such that if we restrict every

branch σ of every Ali (1 6 i 6 k0) after the j0-level of T , then this collection of all

these final segments of T is a collection of mutually incomparable final segments.

Let us denote these final segments by Ci = {Ii1, . . . , Iiwi} (1 6 i 6 k0). Moreover,

for every i ∈ {1, . . . , k0} and every j ∈ {1, . . . , wi} let tij denote the @-least element

of Iij (notice that |tij | = j0).

For every i ∈ {1, . . . , k0} consider the sequence (ylin )n∈Mli
. This is a block

sequence, and so we may select ni ∈Mli such that for every n ∈Mli with n > ni the

following holds. For every t ∈ supp(ylin )∩Ali the length of t is greater than j0, that

is, |t| > |tij | = j0 for every j ∈ {1, . . . , wi}. (Notice that this property corresponds to

property (IV) in the statement of the sublemma.) The desired pair (l, n) described

in (I) will be one of the (li, ni)’s for some i ∈ {1, . . . , k0}. For notational simplicity

we set Ui = Tti1 ∪ · · · ∪ Ttiwi . Observe that if s1 ∈ Ui1 , s2 ∈ Ui2 and i1 6= i2, then s1

and s2 are mutually incomparable provided that for every t1 ∈ s1 and t2 ∈ s2 we

have |t1|, |t2| > j0.

For every q ∈ L with q > lk0
we select nq ∈Mq such that for every i ∈ {1, . . . , k0}

and every n ∈Mq with n > nq we have that

(i) if t ∈ supp(yqn) and {t} ∈ Ui, then |t| > j0, and

(ii) max
{
k : k ∈ h

(
supp(ylini)

)
, 1 6 i 6 k0

}
< min{k : k ∈ h

(
supp(yqn)

)
}.

This is possible as the sequence (yqn)n∈Mq
is block. Set M∗q := {n ∈Mq : n > nq}.

Claim. For every q ∈ L with q > lk0
and every n ∈M∗q there exists i ∈ {1, . . . , k0}

such that for every segment s with s ∈ Ui we have ‖Ps(yqn)‖ 6 ε.

Proof of the claim. If not, then there exist q ∈ L with q > lk0 and n ∈M∗q such that

for every i ∈ {1, . . . , k} there exists a segment si with si ∈ Ui and ‖Psi(yqn)‖ > ε.

By the choice of M∗q —in particular, by (i) above—we may assume that for every

i ∈ {1, . . . , k0} and every t ∈ si we have |t| > j0 (this is our usual restriction

argument). So the si’s can be selected to be mutually incomparable. Therefore,

2 > ‖yqn‖ >
( k0∑
i=1

∥∥∑
t∈si

yqn(t)xt
∥∥2

X

)1/2
=
( k0∑
i=1

‖Psi(yqn)‖2
)1/2

>
√
ε2k0 > 2

which yields a contradiction. The claim is proved. �

By the above claim, it follows that for every q ∈ L with q > lk0
there exist

i ∈ {1, . . . , k0} and M∗∗q ∈ [M∗q ]∞ ⊆ [Mq]
∞ such that for every n ∈M∗∗q and every

segment s with s ∈ Ui we have ‖Ps(yqn)‖ 6 ε. Hence, we may select i0 ∈ {1, . . . , k0}
and L1 ∈ [L]∞ such that for every q ∈ L1 there exists M∗∗q ∈ [Mq]

∞ with the

property that for every n ∈ M∗∗q and every segment s with s ∈ Ui0 we have

‖Ps(yqn)‖ 6 ε. The sublemma follows by setting l := li0 , n := ni0 , {ti01 , . . . , ti0wi0 },
j := j0, L′ := L1 and M ′q := M∗∗q for every q ∈ L′. �
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We proceed to the proof of Lemma A.3.

Proof of Lemma A.3. The sequences (lk) and (nk) will be selected recursively with

the help of Sublemma A.4. We start by applying Sublemma A.4 for L = N, Mq = N
for every q ∈ N and ε = 1/2. The sublemma provides us with a pair l, n ∈ N which

will be our l1 and n1 respectively. Also, under the notation of its proof, it provides

us with a set U1 and L′ ∈ [L]∞ = [N]∞, which we denote by L1, such that for

every q ∈ L1 there exists M1
q := M ′q ∈ [Mq]

∞ = [N]∞ with the following property.

If s is a segment with s ∈ U1, then for every q ∈ L1 and every n ∈ M1
q we have

‖Ps(yqn)‖ 6 1
2 = ε.

Next, we apply Sublemma A.4 for L = L1, Mq = M1
q for every q ∈ L1 and

ε = 1/22, and we proceed recursively mutatis mutandis. This completes the

recursive selection.

We isolate the following crucial property established by this selection. Let s be

an arbitrary segment of T (it might be a branch, of course) and let k0 ∈ N. Then

one of the following mutually exclusive cases must occur.

Case 1: We have s ∈ Uk0
In this case we have ‖Ps(ylknk)‖ 6 1/2k0 for every k > k0.

This is a consequence of part (III.b) of Sublemma A.4.

Case 2: We have s /∈ Uk0
. Consider the set Alk0

obtained by Lemma A.2, and

set s′ := {t : t ∈ s and t /∈ σ for every σ ∈ Alk0
}. Notice that s′ is a subsegment

of s and, clearly, s′ ∩ Alk0
= ∅. Invoking part (IV) of Sublemma A.4, we see that

‖Ps(y
lk0
nk0

)‖ = ‖Ps′(y
lk0
nk0

)‖. Therefore, by part (IV) of Lemma A.2, it follows that∥∥Ps(ylk0
nk0

)
∥∥ 6 εlk0

.

Now let σ ∈ [T ] be arbitrary. Then either the set {k ∈ N : σ ∈ Uk} is infinite, or

the set {k ∈ N : σ ∈ Uk} is finite. If the set {k ∈ N : σ ∈ Uk} is infinite, then, by

Case 1, we have

lim ‖Pσ(ylknk)‖ = 0.

On the other hand, if the set {k ∈ N : σ ∈ Uk} is finite, then, by Case 2 and the

choice of the sequence (εl) in Lemma A.2,

lim ‖Pσ(ylknk)‖ = lim εlk = 0.

The proof is completed. �

We are finally in a position to describe the dual of T X2 .

Theorem A.5. We have (T X2 )∗ = span
{⋃

σ∈[T ]BX∗σ
}

.

Proof. Assume not. Recall that W ∗ = span
{⋃

σ∈[T ]BX∗σ
}

. By the Hahn–Banach

theorem, there exists x∗∗ ∈ (T X2 )∗∗ such that ‖x∗∗‖ = 1 and x∗∗|W∗ = 0. We select

a net (xi)i∈I in T X2 such that w∗ − limi∈I xi = x∗∗ and ‖xi‖ = 1 for every i ∈ I.

Notice that there exists x∗ ∈ (T X2 )∗ such that x∗(xi) > 1/2 for every i ∈ I; in

particular, if w is a convex combination of (xi)i∈I , then we have ‖w‖ > 1/2.
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By Lemma A.3, there exists a block sequence (ylknk) such that lim ‖Pσ(ylknk)‖ = 0

for every σ ∈ [T ]. By Proposition 4.10, the sequence (ylknk) is weakly null. Hence

so is the corresponding sequence (zlknk) of convex combination of (xi)i∈ obtained by

Lemma A.2. By Mazur’s theorem, we obtain a further convex combination of (zlknk)

with arbitrarily small norm. Since this is also a convex combination of (xi)i∈I , we

derive a contradiction. �
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