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The research presented in this paper was motivated by our aim to study a prob-

lem due to Bourgain [3]. The problem in question concerns the uniform bounded-

ness of the classical separation rank of the elements of a separable compact set of

the first Baire class. In the sequel we shall refer to these sets (separable or non-

separable) as Rosenthal compacta and we shall denote by α(f) the separation rank

of a real-valued function f in B1(X) with X a Polish space. Notice that in [3],

Bourgain has provided a positive answer to this problem in the case of K satisfying

K = K ∩ C(X)
p

with X a compact metric space. The key ingredient in Bourgain’s

approach is that whenever a sequence (fn) of continuous functions converges point-

wise to a function f , then the possible discontinuities of the limit function reflect

a local `1-structure to the sequence (fn). More precisely the complexity of this

`1-structure increases as the complexity of the discontinuities of f does. This fruit-

ful idea was extensively studied by several authors (see, e.g., [5, 7, 8]) and for an

exposition of the related results we refer to [1]. It is worth mentioning that Kechris

and Louveau have invented the rank rND(f) which permits the link between the

c0-structure of a sequence (fn) of uniformly bounded continuous functions and the

discontinuities of its pointwise limit. Rosenthal’s c0-theorem [11] and the c0-index

theorem [2] are consequences of this interaction.

Passing to the case where either (fn) are not continuous or X is a non-compact

Polish space, this nice interaction is completely lost. Easy examples show that there

exist sequences of continuous functions on R pointwise convergent to zero and in the

same time they are equivalent to the `1 basis. Moreover, there are sequences (fn)

of Baire-1 functions, equivalent to the summing basis of c0, pointwise convergent

to a Baire-2 function. Thus if we wish to preserve the main scheme, invented by

Bourgain, namely to pass from the elements of the separable Rosenthal compactum

to a well-founded tree related to the dense sequence (fn), then we have to take into

account not only the finite subsets of (fn) but also the points of the Polish space X.

This is the key observation on which we have based our approach. Thus for every

D subset of RX we associate a tree T
(
(fξ)ξ<θ, a, b

)
where (fξ)ξ<θ is a well-ordering

of D and a < b are reals. The elements of the tree are of the form (u, T ) with u a

finite increasing subsequence of (fξ)ξ<θ and T a finite dyadic tree in X where the
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length of u and the height of T are the same and which share certain properties.

The partial order of this tree is naturally defined. The basic property of this tree

is described in the following proposition.

Proposition A. For every relatively compact subset D of RX the following are

equivalent.

(1) For every well-ordering (fξ)ξ<θ of D and a < b the tree T
(
(fξ)ξ<θ, a, b

)
is

well-founded.

(2) The accumulation points of D in RX are Baire-1 functions.

Motivated by this result, we introduce the class of quasi-Rosenthal compacta

as the compact subsets K of RX for which the set Acc(K) of accumulation points

of K is a subset of B1(X). Naturally defined examples show that this class is

wider than the corresponding class of Rosenthal compacta. We also present some

characterizations and results for quasi-Rosenthal compacta. Next, for a sequence

(fn) in RX and a function f ∈ Acc
(
{fn}

)
∩ B1(X) we compare the quantity

o
(
(fn)

)
= sup

{
o
(
T ((fn), a, b)

)
: a < b

}
with α(f). Specifically, we show the

following theorem which corresponds to Theorem 11 in the main text.

Theorem B. For every sequence (fn) in RX and every f ∈ B1(X) the following

are satisfied.

(1) If f ∈ Acc
(
{fn}

)
, then

o
(
(fn)

)
+ 1 > α(f).

(2) If f = lim fn, then

o
(
(fn)

)
6 ω · 2 · α(f).

Notice that (1) is expected and it holds for all ranks defined on a sequence and

related to a rank of the limit function f . For example similar results hold for the

ranks γ
(
(fn)

)
and α(f) (see [7]) or the ranks ν

(
(fn)

)
and rND(f) (see [2]). However,

part (2) is rather unexpected since usually the ranks defined on sequences do not

recognize possible noise involved in the elements of the sequence. In particular,

γ
(
(fn)

)
or ν

(
(fn)

)
could be arbitrarily larger than α(f) and rND(f) respectively.

From part (1) of the previous theorem, we obtain the following corollary.

Corollary C. Let K = {fn}
p

be a quasi-Rosenthal compactum. Then we have

sup
{
α(f) : f ∈ Acc(K)

}
6 o
(
(fn)

)
+ 1.

This result would yield an affirmative answer to Bourgain’s question provided

that o
(
(fn)

)
< ω1. This is not true in general as the examples show. However,

the Kunen–Martin theorem permits us to prove it under some additional regular-

ity properties of the sequence (fn). Specifically, we show the following theorem

(Theorem 23 in the main text) which answers Bourgain’s problem.
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Theorem D. Let K be a Borel separable quasi-Rosenthal compactum. Then

sup
{
α(f) : f ∈ K ∩ B1(X)

}
< ω1.

Here, Borel separable means that there exists a countable dense subset consisting

of Borel functions. We notice that the above result is sharp. More precisely, we

provide an example of a separable quasi-Rosenthal compactum K containing a

countable dense subset consisting of characteristic functions of analytic sets and

such that sup{α(f) : f ∈ Acc(K)} = ω1.

1. Preliminaries

In what follows let X be a Polish space and let d be a compatible complete metric

for X. By B1(X) (respectively, B(X)) we denote the space of Baire-1 (respectively,

Borel) real-valued functions on X. By N we denote the set of all positive integers

while by ω the set of all nonnegative integers. If L is an infinite subset ω, then

by [L]∞ we denote the set of all infinite subsets of L. For every well-ordered set θ

by [θ]<ω we denote the set of all finite strictly increasing sequences of θ. Given

u, u′ ∈ [θ]<ω, we write u @ u′ if u is a proper initial segment of u′. We follow

the convention that all nonempty u ∈ [θ]<ω have terms indexed by a proper initial

segment of N instead of ω. For notational convenience, for every k ∈ ω we set

Dk = 26k and D = 2<ω. For every s ∈ D by |s| we denote the length of s. For

every D ⊆ RX by Dp we denote the closure of D in RX , while by Acc(D) we denote

the set of all accumulation points of D in RX (that is, the set of all f ∈ RX such

that f belongs to the closure of D\{f} in RX). We recall that the topology in RX

is generated by the sets of the form

U(f, F, ε) = {g ∈ RX : |g(x)− f(x)| < ε ∀x ∈ F}

where f ranges over RX , F ranges over all finite subsets of X and ε > 0. Finally,

for every f ∈ RX and every a ∈ R by [f < a] we denote the set {x ∈ X : f(x) < a}.
The sets [f 6 a], [f > a] and [f > a] have the obvious meaning.

1.1. The separation rank α. The separation rank α(f) of a Baire-1 function

has its roots in the work of Hausdorff, Kuratowski and Lavrentiev. We recall its

definition taken from [7]. Given A,B ⊆ X, one associates with them a derivative

on closed sets by setting

K ′A,B = K ∩A ∩K ∩B.

By recursion, we define the iterated derivatives of K by the rule K
(0)
A,B = K,

K
(ξ+1)
A,B =

(
K

(ξ)
A,B

)′
A,B

and K
(ξ)
A,B =

⋂
ζ<ξK

(ζ)
A,B if ξ is a limit ordinal. We set

α(K,A,B) =

{
least ξ : K

(ξ)
A,B = ∅ if such ξ exists

ω1 : otherwise,
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and α(A,B) = α(X,A,B). It is well-known that α(A,B) < ω1 if and only if one

can separate A from B by a set which is transfinite difference of closed sets (see,

e.g., [6, page 177]).

Now let f : X → R be a function. For every a < b we set

α(f, a, b) = α([f < a], [f > b])

and, finally, we define the separation rank of f by the rule

α(f) = sup{α(f, a, b) : a < b}.

The basic fact is the following (see [7]).

Proposition 1. A function f is Baire-1 if and only if α(f) < ω1.

The above defined rank is sightly different from the rank that Bourgain originally

defined in [3]. As it is shown in [5], the two variants are equivalent. Also observe

that the rank is the same if we have defined α(f, a, b) by α([f 6 a], [f > b]). For

every closed Y ⊆ X, every ξ < ω1 and every a < b by Y
(ξ)
(f,a,b) we denote the

ξ-iterated derivative of Y with respect to [f < a] and [f > b]. For the properties

of α and its relations with other ordinal ranks on B1(X) we refer to [7].

1.2. Trees and well-founded relations. By the term tree we mean a partial

order set (T , <) in the strict sense, such that for every t ∈ T the set {s ∈ T : s < t}
is well-ordered. Now let T be a well-founded tree. As usual, we set

T ′ := {s ∈ T : ∃t ∈ T such that s < t}.

By recursion, we define T (0) = T , T (ξ+1) =
(
T (ξ)

)′
and T (ξ) =

⋂
ζ<ξ T (ζ) if ξ is

a limit ordinal. The order o(T ) of T is defined to be the least ordinal ξ for which

T (ξ) = ∅. If (S, <S) and (T , <T ) are well-founded trees, then a map ϕ : S → T is

called monotone if s1 <S s2 implies that ϕ(s1) <T ϕ(s2). Clearly in this case we

have that o(S) 6 o(T ).

Let X be a set and let ≺ be a strict, well-founded relation on X. By recursion

we define ρ≺ : X → Ord as follows. We set ρ≺(x) = 0 if x is minimal; otherwise,

we set ρ≺(x) = sup{ρ≺(y) + 1 : y ≺ x}. Finally we define the rank of ≺ by setting

ρ(≺) = sup{ρ≺(x) + 1 : x ∈ X}. We will need the following boundedness principle

of analytic well-founded relations which is due to Kunen and Martin (see [6, 9]).

Theorem 2. Let X be a Polish space and let ≺ be a strict and well-founded relation.

If ≺ is analytic (as a subset of X ×X), then ρ(≺) < ω1.

Note that if (T , <) is a well-founded tree, then the relation ≺ on T defined by

t ≺ s if s < t, is strict and well-founded and o(T ) = ρ(≺).
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2. The tree T
(
(fξ)ξ<θ, a, b

)
.

In this section we introduce the tree T
(
(fξ)ξ<θ, a, b

)
and we define the class

of quasi-Rosenthal compacta. We present some results related to the above two

notions as well as examples of quasi-Rosenthal compacta which are not Rosenthal

compacta. We start with the following definition.

Definition 3. Let a < b reals, let θ be an infinite ordinal and let D = (fξ)ξ<θ be a

long sequence of not necessarily distinct elements of RX . We define

T = T
(
(fξ)ξ<θ, a, b

)
⊆
⋃
k∈ω

[θ]k ×XDk

to be the set of all pairs (u, T ) for which the following hold. First, let (∅, t∅) ∈ T
for every t∅ ∈ X. Moreover, if u = (ξ1, . . . , ξk), T = (ts)s∈Dk and k > 1, then

(u, T ) ∈ T if it the following conditions are satisfied.

(C1) Either t0 = t∅ or t1 = t∅.

(C2) For every s ∈ Dk with |s| < k the following hold.

(i) We have d(tsa0, tsa1) 6 1
2|s|+1 .

(ii) We have fξ|s|+1
(tsa0) < a and fξ|s|+1

(tsa1) > b (hence, tsa0 6= tsa1).

(iii) For every s 6= ∅ if fξ|s|(ts) < a, then tsa0 = ts, while if fξ|s|(ts) > b,

then tsa1 = ts.

The set T is a tree under the following partial ordering. If (u1, T1), (u2, T2) ∈ T
with T1 = (t1s)s∈Dk1 and T2 = (t2s)s∈Dk2 , then we set

(u1, T1) < (u2, T2) if u1 @ u2 and T1 C T2

where by T1 C T2 we mean that t1s = t2s for every s ∈ Dk1 .

For every nonempty Y ⊆ X let

T
(
Y, (fξ)ξ<θ, a, b

)
⊆ T

be the set of all (u, T ) ∈ T for which T ∈
⋃
k∈ω Y

Dk . By convention, if Y = ∅,
then we set T

(
Y, (fξ)ξ<θ, a, b

)
= ∅.

Remark 1. Clearly, T
(
Y, (fξ)ξ<θ, a, b

)
equipped with the induced partial order

is a subtree of T . Also notice that if Y ′ ⊆ Y and a′ 6 a < b 6 b′, then

T
(
Y ′, (fξ)ξ<θ, a

′, b′
)

is a subtree of T
(
Y, (fξ)ξ<θ, a, b

)
.

Definition 4. A compact subset K of RX is said to be quasi-Rosenthal if the set

Acc(K) of accumulation points of K is a nonempty subset of B1(X).

Remark 2. Observe that for every sequence (fξ)ξ<θ in K and every function

f ∈ Acc({fξ}ξ<θ) there exist ξf 6 θ and a subnet of (fξ)ξ<ξf converging in RX

to f . Indeed, we set ξf := min
{
ζ 6 θ : f ∈ {fξ}

p

ξ<ζ

}
. It is easy to verify that ξf is

the desired ordinal.
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Lemma 5. Let (fξ)ξ<θ be a pointwise bounded sequence of distinct elements of RX

and assume that the tree T
(
(fξ)ξ<θ, a, b

)
contains an infinite chain

(
(uk, Tk)

)
. We

set N :=
⋃
k uk = {ξ1 < ξ2 < · · · } and T :=

⋃
k Tk. Then there exist L ∈ [N]∞ and

f : T → R with the following properties.

(1) We have limn∈L fξn |T = f .

(2) We have T = A ∪B with A = B, A = [f 6 a] and B = [f > b].

In particular, every g ∈ Acc
(
{fξn}n∈L

)
is not a Baire-1 function.

Proof. We set T :=
⋃
k∈N Tk = (ts)s∈D, and

A := {tsa0 : s ∈ D} and B := {tsa1 : s ∈ D}.

Since T is countable, we may select L ∈ [N]∞ such that (1) is satisfied. The

definition of the tree T
(
(fξ)ξ<θ, a, b

)
yields that A = [f 6 a], B = [f > b] and

A = B. By Proposition 1, for every g ∈ Acc
(
{fξn}n∈L

)
we see that g|T = f which

implies that g is not a Baire-1 function. �

We proceed to discuss characterizations of quasi-Rosenthal compacta.

Theorem 6. Let D be a relatively compact subset of RX . Then the following are

equivalent.

(1) K = Dp is a quasi-Rosenthal compactum.

(2) For every sequence (fξ)ξ<θ of distinct members of D and every a < b the

tree T
(
(fξ)ξ<θ, a, b

)
is well-founded.

(3) For every sequence (fn) of distinct members of D there exists a subsequence

pointwise convergent to a Baire-1 function.

(4) For every infinite subset D′ of D there exists a Baire-1 function f belonging

to Acc(D′).

Proof. (1)⇒(2) Assume, on the contrary, that there exists a sequence (fξ)ξ<θ in D
and a < b such that the tree T

(
(fξ)ξ<θ, a, b

)
is not well-founded. Lemma 5 yields

a contradiction.

(2)⇒(1) Let D = (fξ)ξ<θ be a well-ordering of D. Note that Acc(K) = Acc(D).

Assume, towards a contradiction, that there exists f ∈ Acc(D) such that f is

not a Baire-1 function. Then α(f) = ω1, and so there exist a < b such that

α(f, a, b) = ω1. It follows that there exist countable subsets A,B of X with A = B

such that A ⊆ [f < a] and B ⊆ [f > b]. We construct T = (ts)s∈D ∈ XD such that

for every s ∈ D the following hold.

(i) We have t∅ ∈ A.

(ii) For every s ∈ D we have tsa0 ∈ A and tsa1 ∈ B.

(iii) For every s ∈ D if ts ∈ A, then tsa0 = ts, while if ts ∈ B, then tsa1 = ts.

(iv) We have d(tsa0, tsa1) < 1
2|s|+1 .

We proceed by induction on the length of s. For |s| = 0, we select x ∈ A and we

set t∅ = x. Suppose that ts have been defined for every s ∈ D with |s| 6 k. For
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every s ∈ D with |s| = k and ts ∈ A we set tsa0 = ts and we select ys ∈ B such

that the condition (iv) above is satisfied for tsa1 = ys. The case ts ∈ B is treated

similarly. The construction is completed.

Next, we select an increasing sequence (ξk)k∈N such that ξk < ξf (see Remark 2),

and for every s ∈ D with |s| = k we have

fξk(ts) < a if f(ts) < a, and fξk(ts) > b if f(ts) > b.

We set uk = (ξ1, . . . , ξk) and Tk = (ts)s∈Dk for every k ∈ N. It is easily checked

that
(
(uk, Tk)

)
k

is an infinite chain of T
(
(fξ)ξ<θ, a, b

)
.

(3)⇒(2) It is an immediate consequence of Lemma 5.

(1)⇒(3) Let (fn) be a sequence in D. If (fn) has a pointwise convergent subse-

quence, then the limit function belongs to the accumulation points of K, and so

it is a Baire-1 function. So assume, towards a contradiction, that there exists a

sequence (fn) in D with no pointwise convergent subsequence. Then, Theorem 2

in [10] yields that there exists a subsequence (fnk) of (fn) with no accumulation

point in B1(X) which leads to a contradiction.

(1)⇒(4) It is obvious.

(4)⇒(2) This is also a consequence of Lemma 5. �

In the next proposition we show that quasi-Rosenthal compacta have countable

tightness. This property is known for Rosenthal compacta (see [10]).

Proposition 7. Let D be a subset of RX such that K = Dp is quasi-Rosenthal.

Then for every g ∈ K there exists a countable subset D′ of D such that g ∈ D′p.

Proof. We may assume that g ∈ Acc(D). We set

Seq(D) := {f ∈ Acc(D) : f is the limit of a sequence of distinct members of D}.

We claim that g ∈ Seq(D)
p
. Indeed, let x1, x2, . . . , xk ∈ X and let ε > 0 be

arbitrary. Then there exist a sequence (fn) of distinct members of D such that

|fn(xi) − g(xi)| < ε for every i ∈ {1, . . . , k} and every n ∈ N. By part (3) of

Theorem 6, there exists a pointwise convergent subsequence (fnk) of (fn). If f is

the pointwise limit of (fnk), then clearly f ∈ Seq(D) and |f(xi) − g(xi)| 6 ε for

every i ∈ {1, . . . , k} which proves the claim.

Now observe that Seq(D) is a subset of Acc(D) ⊆ B1(X). Therefore, Seq(D)

is a relatively compact subset of B1(X). By the Main Theorem in [10], the result

follows. �

Remark 3. It seems to be well-known, and follows by the results in [13], that every

separable Rosenthal compactum satisfies the Continuum Hypothesis. Indeed, by

[13, Theorem 5], every separable Rosenthal compactum K either contains a discrete

subspace of size continuum or it is an at most two-to-one continuous pre-image of
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a compact metrizable space. In any case, it is straightforward that K has either ℵ0

or 2ℵ0 members.

Example 1. We are about to present examples of separable quasi-Rosenthal com-

pacta which show the variety of this class. Let C = {0, 1}N be the Cantor set and

let X = C × C. For every σ ∈ C let Cσ = {σ} × C. We select ∆σ ⊆ Cσ such that

1∆σ (viewed as a real-valued function on X) is Baire-1. For every s ∈ D, where D

is the dyadic tree, we set

∆s :=
⋃
s@σ

∆σ

and fs := 1∆s . Let K = {fs}
p

s∈D. Then K is separable, and for every sequence

(fsn) in {fs}s∈D there exists L ∈ [N]∞ such that either (sn)n∈L are pairwise incom-

parable, or there exists σ ∈ C such that sn @ σ for every n ∈ L. In the first case

the sequence (fsn)n∈L converges pointwise to 0, while in the second case it con-

verges pointwise to 1∆σ . Theorem 6 yields that K is a separable quasi-Rosenthal

compactum. Depending on the choice of {∆σ : σ ∈ C} we obtain different spaces.

(1) We may select ∆σ with α(1∆σ
) > ξσ and sup{ξσ : σ ∈ C} = ω1. This

space answers in negative Bourgain’s question stated for separable quasi-

Rosenthal compacta.

(2) If ℵ0 < |{σ ∈ C : ∆σ 6= ∅}| < 2ℵ0 , then the corresponding K satisfies that

ℵ0 < |K| < 2ℵ0 . This yields that, under the negation of CH, there exist

separable quasi-Rosenthal compacta not homeomorphic to any Rosenthal

compactum (see Remark 3).

A variant of this example, based on techniques of universal sets from descriptive

set theory, is presented after Theorem 23.

We recall that a sequence
(
(Ak, Bk)

)
of subsets of a set S with Ak ∩ Bk = ∅

for every k ∈ N, is called independent provided that for every pair F,G of finite

disjoint subsets of N we have( ⋂
k∈F

Ak
)
∩
( ⋂
k∈G

Bk
)
6= ∅.

This definition is crucial for the proof of Rosenthal’s `1 theorem (see [6, 12]).

Proposition 8. Let (fn) be a pointwise bounded sequence of continuous real-

valued functions on X, and assume that there exist a < b such that the tree

T = T
(
(fn), a, b

)
is not well-founded. Let

(
(uk, Tk)

)
be an infinite chain of T ,

and set N :=
⋃
k uk = {nk : k ∈ N} and T :=

⋃
k Tk = (ts)s∈D. Then there ex-

ist a Cantor set C ⊆ T and a subsequence (fn′
k
) of (fnk) such that the sequence(

([fn′
k
< a] ∩ C, [fn′

k
> b] ∩ C)

)
is an independent sequence of disjoint pairs.

Proof. By induction, we shall construct a subtree T ′ = (t′s)s∈D of T , an increasing

sequence (lk)k∈ω and a family of open balls {Bs : s ∈ D} of X with the following

properties.
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(1) For every s we have t′s ∈ Bs.
(2) If |s| = k, then there exists s′ with |s′| = lk such that t′s = ts′ .

(3) If |s| = k, then Bsa0 ⊆ [fnlk+1
< a] and Bsa1 ⊆ [fnlk+1

> b].

(4) We have Bsa0 ∪Bsa1 ⊆ Bs.
(5) We have diam(Bs) 6 1

2|s| .

We start by setting t′∅ = t∅, l0 = 0; also let B0 be any open ball containing t∅
with diam(B0) 6 1

2 . Suppose that the construction has been carried out for some

k ∈ ω. Let 2εk = min{diam(Bs) : s ∈ Dk} and select m ∈ ω such that 1
2lk+m < εk.

Let s ∈ Dk with |s| = k. Then t′s = ts′ for some s′ with |s′| = lk. Hence,

either fnlk (t′s) < a or fnlk (t′s) > b. If fnlk (t′s) < a (respectively, fnlk (t′s) > b),

then we set s′′ := s′a0m (respectively, s′′ = s′a1m) and we define t′sa0 = ts′′a0,

t′sa1 = ts′′a1 and lk+1 = lk + m + 1. Hence, d(t′sa0, t
′
sa1) 6 1

2lk+1
< εk

2 and so

t′sa0, t
′
sa1 ∈ Bs. By the continuity of fnlk+1

and the fact that fnlk+1
(t′sa0) < a and

fnlk+1
(t′sa1) > b, we may select Bsa0 and Bsa1 containing t′sa0 and t′sa1 respectively

such that Bsa0 ⊆ [fnlk+1
< a], Bsa1 ⊆ [fnlk+1

> b], Bsa0 ∪ Bsa1 ⊆ Bs and

diam(Bsai) <
1

2k+1 for every i ∈ {0, 1}. The construction is completed.

For every k ∈ N we set nlk := n′k, Ak0 := [fn′
k
< a], Ak1 := [fn′

k
> b] and C := T ′.

It is easily seen that
(
(Ak0∩C,Ak1∩C)

)
is an independent sequence of disjoint pairs,

as desired. �

Remark 4. The sequence (fn′
k
) obtained from Proposition 8 can be used to derive

the following two well-known results (see [12]).

(1) The closure of {fn′
k
} in RX is homeomorphic to βN, and every accumulation

point of {fn′
k
} in RX is not a Borel function.

(2) The sequence (fn′
k
) contains no pointwise convergent subsequence.

The properties of the tree T
(
(fn), a, b

)
can also be used to derive the following

well-known dichotomy (see [12]).

Theorem 9. Let (fn) be a pointwise bounded sequence of continuous real-valued

functions on X and let {fn}
p

be the closure of {fn} in RX . Then one of the

following, mutually exclusive, alternatives holds true.

(i) We have {fn}
p
⊆ B1(X).

(ii) βN is homeomorphic to a subset of {fn}
p
.

Proof. Consider the following (mutually exclusive) cases.

Case 1: for every a < b the tree T
(
(fn), a, b

)
is well-founded. By Theorem 6, we

see that the accumulation points of {fn} in RX belong to B1(X).

Case 2: there exists a < b such that the tree T
(
(fn), a, b

)
is not well-founded. In

this caase, by Proposition 8 and the above remark, we obtain that βN is homeo-

morphic to a subset of {fn}
p
. �
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3. The tree rank o
(
(fn)

)
of a pointwise bounded sequence.

This section concerns the relation between o
(
(fn)

)
, defined below, and the sep-

aration rank α(f) when f is an accumulation point of {fn}. The exact relation is

given in Theorem 11 below.

Definition 10. Let fn : X → R (n ∈ N) be a pointwise bounded sequence of func-

tions. We define the tree rank o
(
(fn)

)
of the sequence (fn) by setting

o
(
(fn)

)
:= sup

{
o
(
T ((fn), a, b)

)
: a < b

}
if the tree T

(
(fn), a, b

)
is well-founded for every a < b. Otherwise, we set

o
(
(fn)

)
= (2ℵ0)+.

The basic properties of the tree rank are described in the following theorem.

Theorem 11. Let X be a Polish space. Then for every sequence (fn) in RX and

every f ∈ B1(X) the following are satisfied.

(1) If f ∈ Acc
(
{fn}

)
, then

o
(
(fn)

)
+ 1 > α(f).

(2) If f = lim fn, then

o
(
(fn)

)
6 ω · 2 · α(f).

The proof of Theorem 11 follows from a series of lemmas.

Notation. Let f : X → R be a function, let Y be a closed subset of X, and let

a < b. By T (Y, f, a, b) we denote the tree T (Y, (fn), a, b) where fn = f for every

n. If Y = X, then we write T (f, a, b) instead of T (X, f, a, b). Note that if f is a

Baire-1 function, then the tree T (f, a, b) is well-founded.

Lemma 12. Let f : X → R be Baire-1 and a < b. Set T = T (f, a, b), and let ξ be

a countable ordinal. Let

Sξ = T
(
X

(ξ)
(f,a,b) ∩ ([f < a] ∪ [f > b]), f, a, b

)
.

Then we have Sξ ⊆ T (ξ).

Proof. We proceed by induction on ξ. The case ξ = 0 is straightforward. Let

ζ < ω1 and suppose that the lemma is true for every ξ < ζ. Assume that ζ = ξ+ 1

and let (u, T ) ∈ Sξ+1. Then T ⊆ X(ξ+1)
(f,a,b) ∩ ([f < a] ∪ [f > b]). Write T = (ts)s∈Dk

for some k ∈ ω. Then for every s with |s| = k we have that ts ∈ X(ξ+1)
(f,a,b), and either

f(ts) < a or f(ts) > b. If f(ts) < a, then we select y ∈ X
(ξ)
(f,a,b) with f(y) > b

and d(ts, y) 6 1
2k+1 , and we set tsa0 := ts and tsa1 := y. If f(ts) > b, then with

similar arguments, we select y′ ∈ X(ξ)
(f,a,b) ∩ [f < a] with d(ts, y) 6 1

2k+1 , and we set

tsa0 := y′ and tsa1 := ts. We set T ′ := (ts)s∈Dk+1
and u′ := uan where n > max(u).

Then (u, T ) < (u′, T ′) and (u′, T ′) ∈ Sξ. By our inductive assumption, we have
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(u′, T ′) ∈ T (ξ). Therefore, (u, T ) ∈ T (ξ+1) which proves the case of a successor

ordinal.

Finally, if ζ is a limit ordinal, then note that Sζ ⊆ Sξ for every ξ < ζ. Hence,

Sζ ⊆
⋂
ξ<ζ

Sξ ⊆
⋂
ξ<ζ

T (ξ) = T (ζ)

and the lemma is proved. �

Lemma 13. Let f : X → R Baire-1 and let a < b. Then we have

α(f, a, b) 6 o
(
T (f, a, b)

)
+ 1.

Proof. Let ξ < ω1 such that α(f, a, b) > ξ + 2. Then notice that

X
(ξ)
(f,a,b) ∩ ([f < a] ∪ [f > b]) 6= ∅

which, using the notation of Lemma 12, yields that Sξ 6= ∅. By Lemma 12, we obtain

that T (ξ) 6= ∅, and so o
(
T (f, a, b)

)
> ξ+1. Hence, α(f, a, b) 6 o

(
T (f, a, b)

)
+1. �

Lemma 14. Let K = {fn}
p

be a quasi-Rosenthal compactum, let a < b and let

f ∈ Acc(K). Then there exists a monotone map

ϕ : T (f, a, b)→ T
(
(fn), a, b

)
.

Consequently, we have o
(
T (f, a, b)

)
6 o
(
T ((fn), a, b)

)
.

Proof. Let F2 be the set of all finite subsets of X∩([f < a]∪[f > b]) with cardinality

greater than or equal to 2. For every F ∈ F2 we set

NF :=
{
n ∈ N : for every x ∈ F if f(x) < a then fn(x) < a,

while if f(x) > b then fn(x) > b
}
.

Note that NF is infinite. For every F ∈ F2 if {n1 < n2 < · · · } is the increasing

enumeration of NF , then we set nF = n|F |. Observe that if F1  F2, then we have

nF1
< nF2

.

Define the map ϕ : T (f, a, b) → T
(
(fn), a, b

)
as follows. Let (u, T ) ∈ T (f, a, b)

be arbitrary. If u = ∅, then we set ϕ
(
(∅, t∅)

)
= (∅, t∅). If u = (n1, . . . , nk) and

T = (ts)s∈Dk , then we set ϕ
(
(u, T )

)
= (u′, T ) where u′ = (n′1, . . . , n

′
k) and

n′i = n{ts:|s|=i} for every i ∈ {1, . . . , k}.

It is easy to see that ϕ is a well-defined monotone map. �

By Lemmas 13 and 14, we obtain the following corollary.

Corollary 15. Let K = {fn}
p

be a separable quasi-Rosenthal compactum. Then

sup{α(f) : f ∈ Acc(K)} 6 o
(
(fn)

)
+ 1.

Lemma 16. Assume that (fn) is pointwise convergent to f : X → R. Let Y ⊆ X

be nonempty, let a < b, set S = T
(
Y, (fn), a, b

)
and let m ∈ N. Let (u, T ) ∈ S(ω+m)

and x ∈ T . Then, either
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(i) f(x) 6 a and there exists y ∈ Y with d(x, y) 6 1
2|u|+m and f(y) > b, or

(ii) f(x) > b and there exists y ∈ Y with d(x, y) 6 1
2|u|+m and f(y) 6 a.

Proof. By induction on m. For m = 1 let (u, T ) ∈ S(ω+1) be arbitrary. There

exists (u′, T ′) ∈ S(ω) such that (u, T ) < (u′, T ′) and |u′| = |u| + 1. Let x ∈ T and

set T ′ = (t′s)s∈D|u|+1
. There exists s ∈ D|u| such that x = t′s. We may assume that

t′sa0 = t′s = x. (The case t′sa1 = t′s = x is similarly treated.) We set t′sa1
:= y.

Then d(x, y) 6 1
2|u|+1 . Since (u′, T ′) ∈ S(ω), we see that (u′, T ′) ∈ S(k) for every

k ∈ N. Hence, for every k ∈ N we may select (uk, Tk) ∈ S with (u′, T ′) < (uk, Tk)

and |uk| = |u′| + k. Set L :=
⋃
k∈N uk \ u′. Clearly L ∈ [N]∞. Moreover, observe

that for every l ∈ L we have fl(x) < a and fl(y) > b. Since f = lim fn, we see that

f(x) 6 a and f(y) > b. The proof for the case m = 1 is completed.

Next, assume that the lemma is true for some m ∈ N. Let (u, T ) ∈ S(ω+m+1)

and x ∈ T . We select (u′, T ′) ∈ S(ω+m) with (u, T ) < (u′, T ′) and |u′| = |u| + 1.

Setting T ′ := (t′s)s∈D|u′| , we see that x ∈ T ′ and x = t′s for some s ∈ D|u′|. By our

inductive assumption, there exists y ∈ Y such that

d(x, y) 6
1

2|u′|+m =
1

2|u|+(m+1)
,

and either f(x) 6 a and f(y) > b, or f(x) > b and f(y) 6 a. The proof of the

lemma is completed. �

Lemma 17. Assume that (fn) is pointwise convergent to f : X → R. Let Y ⊆ X

be closed, let a < b, and set S = T
(
Y, (fn), a, b

)
. Then for every 1 6 ξ < ω1 and

every 0 < ε < b−a
2 we have

S(ω·2·ξ) ⊆ T
(
Y

(ξ)
(f,a+ε,b−ε), (fn), a, b

)
.

Proof. First we deal with the case ξ = 1. Let (u, T ) ∈ S(ω·2) and x ∈ T . Let m ∈ N
be arbitrary. As (u, T ) ∈ S(ω·2) ⊆ S(ω+m), by Lemma 16, either

(i) f(x) 6 a < a + ε and there exists y ∈ Y with d(x, y) 6 1
2|u|+m and

f(y) > b > b− ε, or

(ii) f(x) > b > b − ε and there exists y ∈ Y with d(x, y) 6 1
2|u|+m and

f(y) 6 a < a+ ε.

Since m was arbitrary, we obtain that

x ∈ Y ∩ [f < a+ ε] ∩ Y ∩ [f > b− ε] = Y
(1)
(f,a+ε,b−ε).

This shows that T ⊆ Y (1)
(f,a+ε,b−ε) and, in particular, that

S(ω·2) ⊆ T
(
Y

(1)
(f,a+ε,b−ε), (fn), a, b

)
.

Next, we proceed by induction on ξ. Let ζ < ω1 and assume that the lemma is

true for every ξ < ζ. If ζ = ξ + 1, then, by our inductive assumption, we have

S(ω·2·(ξ+1)) =
(
S(ω·2·ξ))(ω·2) ⊆

(
T
(
Y

(ξ)
(f,a+ε,b−ε), (fn), a, b

))(ω·2)

.
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We set Z = Y
(ξ)
(f,a+ε,b−ε). By the first case of our induction,(
T
(
Y

(ξ)
(f,a+ε,b−ε), (fn), a, b

))(ω·2)

⊆ T
(
Z

(1)
(f,a+ε,b−ε), (fn), a, b

)
.

By the above inclusions, we conclude that

S(ω·2·(ξ+1)) ⊆ T
(
Y

(ξ+1)
(f,a+ε,b−ε), (fn), a, b

)
.

Now suppose ζ is a limit ordinal. Then, by our inductive assumption, we have

S(ω·2·ζ) =
⋂
ξ<ζ

S(ω·2·ξ) ⊆
⋂
ξ<ζ

T
(
Y

(ξ)
(f,a+ε,b−ε), (fn), a, b

)
.

Note that ⋂
ξ<ζ

T
(
Y

(ξ)
(f,a+ε,b−ε), (fn), a, b

)
⊆ T

(
Y

(ζ)
(f,a+ε,b−ε), (fn), a, b

)
.

Indeed, if T ⊆ Y (ξ)
(f,a+ε,b−ε) for every ξ < ζ, then

T ⊆
⋂
ξ<ζ

Y
(ξ)
(f,a+ε,b−ε) = Y

(ζ)
(f,a+ε,b−ε).

The proof is completed. �

By Lemma 17, we obtain the following corollary.

Corollary 18. Let (fn) be a sequence of functions which is pointwise convergent

to a Baire-1 function f . Then

o
(
(fn)

)
6 ω · 2 · α(f).

We are ready to complete the proof of Theorem 11.

Proof of Theorem 11. Follows immediately by Corollaries 18 and 15. �

We will give some consequences of Theorem 11. To this end we introduce the

following definition.

Definition 19. For every ξ < ω1 we set

Bξ1(X) := {f ∈ B1(X) : α(f, a, b) < ωξ for every a < b}.

Note that in the case of compact metrizable spaces, the above defined class

coincides with the class of small Baire class ξ introduced by Kechris and Louveau [7].

Corollary 20. Let (fn) be a sequence of real-valued functions on X which is point-

wise convergent to a Baire-1 function f . Then the following are satisfied.

(1) If α(f) is a limit ordinal, then α(f) 6 o
(
(fn)

)
6 ω · 2 · α(f).

(2) If α(f) < ωn+1 (respectively, α(f) 6 ωn+1) with n ∈ ω, then we have

o
(
(fn)

)
< ωn+2 (respectively, o

(
(fn)

)
6 ωn+2).

(3) If α(f) < ωξ (respectively, α(f) 6 ωξ) with ω 6 ξ < ω1, then o
(
(fn)

)
< ωξ

(respectively, o
(
(fn)

)
6 ωξ).
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(4) If o
(
(fn)

)
< ωξ, then α(f) < ωξ for every countable ordinal ξ.

(5) For every ω 6 ξ < ω1 we have f ∈ Bξ1(X) if and only if o
(
T ((fn), a, b)

)
< ωξ

for every a < b and every sequence (fn) which is pointwise convergent to f .

4. Borel separable quasi-Rosenthal compacta

The last section is devoted to the proof of the main result of the paper, and to

the presentation of an example which shows that our results are the best possible.

We have also included some open questions. We start with the following definition.

Definition 21. A quasi-Rosenthal compactum K will be called Borel separable if

it has a countable dense subset of Borel functions.

In the following proposition, the well-known equivalence of (ii) and (iii) (see,

e.g., [1]) is connected to well-founded tree structures.

Proposition 22. Let (fn) be a pointwise bounded sequence of Borel functions.

Then the following are equivalent.

(i) There exists a finer Polish topology τ ′ on X with B(X) = B(X, τ ′) such

that for every a < b the tree T
(
X ′, (fn), a, b

)
is well-founded.

(ii) For every L ∈ [N]∞ there exists L′ ∈ [L]∞ such that (fn)n∈L′ is pointwise

convergent.

(iii) The closure of {fn} in RX is a subset of B(X).

Proof. Let τ ′ be a finer Polish topology on X with B(X) = B(X, τ ′) and such that

fn is τ ′-continuous for every n (see [6]). The equivalence between (i) for τ ′ and (ii)

is precisely the equivalence of (2) and (3) in Theorem 6. Similarly, the equivalence

between (i) for τ ′ and (iii) is the equivalence of (1) and (2) in Theorem 6. �

Remark 5. Related to the above proposition the following question is open for us.

If (fn) is a pointwise bounded sequence of functions such that Acc
(
{fn}

)
⊆ B(X),

then does this imply that {fn}
p

is homeomorphic to a quasi-Rosenthal compactum?

Let us observe that the stronger question of the existence of a finer Polish topology

τ ′ on X such that {fn}
p

becomes a quasi-Rosenthal compactum, has a negative

answer. Indeed, consider the variant of Example 1 where {∆σ : σ ∈ C} = B(C).
Then, as in Example 1, every f ∈ Acc

(
{fs}s∈D

)
is a Borel function. As it is

well-known, every finer Polish topology on X has the same Borel sets. Therefore,

assuming that for a finer Polish topology τ ′ each 1∆σ is a Baire-1 function, we

conclude that each ∆σ belongs to Bξ(C) where ξ = sup{ζn < ω1 : Vn ∈ Bζn(C)}+ 2

and (Vn) is a basis for τ ′. This yields a contradiction.

The following theorem is the main result of this section.

Theorem 23. Let X be a Polish space and let K be a Borel separable quasi-

Rosenthal compact of RX . Then we have

sup{α(f) : f ∈ K ∩ B1(X)} < ω1.



TREE STRUCTURES ASSOCIATED TO A FAMILY OF FUNCTIONS 15

Clearly, Theorem 23 answers in the affirmative Bourgain’s question stated in [3].

We postpone its proof in order to give an example which shows that our theorem

is sharp.

Example 2. Let X = C × C where C = {0, 1}N is the Cantor set. Let A ⊆ C × C
be a C-universal set for the class of Fσ subsets of C (see [6]). That is, A is Fσ
in C × C, for every σ ∈ C the section Aσ = {x ∈ C : (σ, x) ∈ A} of A is Fσ,

and for every Fσ subset F of C there exists σ ∈ C such that F = Aσ. Next, set

Π := {σ ∈ C : Aσ is Gδ}. Then Π is a co-analytic subset of C. To see this, observe

that Π = {σ ∈ C : (X \ A)σ is Fσ}. Since X \ A is Borel in C × C, by a classical

theorem of Hurewicz (see [6, page 297]), we see that Π is co-analytic. For every

s ∈ D we set, as usual, Cs := {σ ∈ C : s @ σ}. (Clearly, Cs is open in C.) Now let

As = A ∩
(
(Π ∩ Cs) × C

)
. Then As is co-analytic in X. Define fs = 1As and set

K := {fs}
p

s∈D. As in Example 1, it is easily verified that K is a separable quasi-

Rosenthal compactum. Moreover, note that for every ∆ ⊆ C which is Fσ and Gδ
there exists σ ∈ Π such that Aσ = ∆. It follows that for every such ∆ ⊆ C there

exists σ ∈ C such that, setting ∆σ := {σ} × ∆, we have that 1∆σ
∈ K. Since for

every countable ordinal ξ there exists ∆ ⊆ C such that 1∆ is Baire-1 (that is, ∆ is

Fσ and Gδ) and α(1∆) > ξ, we obtain that

sup{α(f) : f ∈ Acc(K)} = ω1.

Note that by taking complements we obtain an example of a separable quasi-

Rosenthal compactum having a dense subset consisting of characteristic functions

of analytic sets and for which Theorem 23 is not valid.

Lemma 24. Let fn : X → R (n ∈ N) be a sequence of Borel functions and a < b.

Assume that the tree T = T
(
(fn), a, b

)
is well-founded. Then we have o(T ) < ω1.

Proof. We enlarge the original topology of X to a Polish topology τ ′ in order to

make the sequences of sets
(
[fn < a]

)
and

(
[fn > b]

)
τ ′-clopen (see [6]). Then the

tree T is a subset of the Polish space

Y =
⊕
k∈ω

[N]k × (X, τ ′)Dk .

We claim that T is closed in Y . Indeed, let
(
(ui, Ti)

)
be a sequence such that

ui → u, Ti → T and (ui, Ti) ∈ T for every i. There exists i0 such that u = ui

for every i > i0. Let k = |u|. Then Ti ∈ (X, τ ′)Dk for every i > i0, and so

T ∈ (X, τ ′)Dk . For every i > i0 set Ti := (tis)s∈Dk and T := (ts)s∈Dk , and note that

tis → ts in τ ′ for every s ∈ Dk. It is clear that if k = 0, then (u, T ) ∈ T .

So, assume that k > 1 and write u = (n1, . . . , nk). We will verify that (u, T )

satisfies conditions (C1) and (C2) of the definition of T . Since for every i > i0 we

have that either ti0 = ti∅ or ti1 = ti∅, there exists I ∈ [N]∞ such that either ti0 = ti∅ for

every i ∈ I or ti1 = ti∅ for every i ∈ I. Hence, either t0 = t∅ or t1 = t∅. Therefore,

condition (C1) is satisfied.
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To verify condition (C2), let s ∈ Dk with |s| < k. As τ ′ is finer than the original

topology, we have that tis → ts in the original topology. Hence, d(tsa0, tsa1) 6 1
2|s|+1

and so (C2.i) is clear. Moreover, since the sets [fni < a] and [fni > b] are τ ′-closed,

we obtain that fn|s|+1
(tsa0) < a and fn|s|+1

(tsa1) > b; that is, condition (C2.ii) is

satisfied. Finally, in order to show that condition (C2.iii) is satisfied, assume that

s 6= ∅ and fn|s|(ts) < a. Since tis → ts and [fn|s| < a] is τ ′-open, we see that there

exists is > i0 such that fn|s|(t
i
s) < a for every i > is. Therefore, tisa0 = tis for every

i > is which implies that tsa0 = ts. The case fn|s|(ts) > b is similarly treated. This

completes the proof that T is closed in Y .

Now define the relation ≺ on Y by setting

(u′, T ′) ≺ (u, T ) if (u, T ), (u′, T ′) ∈ T and (u, T ) < (u′, T ′).

Clearly, ≺ is a strict well-founded relation on Y and o(T ) = ρ(≺). We will show that

≺, as a subset of Y ×Y , is closed. Indeed, let
(
(u′i, T

′
i )
)
, (u′, T ′) ∈ Y ,

(
(ui, Ti)

)
and

(u, T ) ∈ Y be such that (u′i, T
′
i )→ (u′, T ′), (ui, Ti)→ (u, T ) and (u′i, T

′
i ) ≺ (ui, Ti)

for every i. Since T is a closed subset of Y , we see that (u′, T ′), (u, T ) ∈ T .

Moreover, as ui @ u′i and Ti C T ′i , we obtain that u @ u′ and T C T ′, that is,

(u′, T ′) ≺ (u, T ). Therefore, ≺ is a closed relation.

Finally, by the Kunen–Martin theorem, we conclude that o(T ) = ρ(≺) < ω1 and

the proof is completed. �

Corollary 25. Let K = {fn}
p

be a Borel separable quasi-Rosenthal compactum.

Then o
(
(fn)

)
< ω1.

Proof. Let a < b and consider the tree T
(
(fn), a, b

)
. By Theorem 6, the tree

T
(
(fn), a, b

)
is well-founded. By Lemma 24, we obtain that o

(
T ((fn), a, b)

)
< ω1.

Finally, note that

sup
{
o
(
T ((fn), a, b)

)
: a < b

}
= sup

{
o
(
T ((fn), a, b)

)
: a < b rationals

}
.

Therefore, o
(
(fn)

)
< ω1 as desired. �

Proof of Theorem 23. By Corollaries 15 and 25, it follows that

sup{α(f) : f ∈ Acc(K)} < ω1.

Since the isolated points of K in B1(X) are at most countable, the result follows. �

Remark 6. We conclude this paper with some open problems.

(1) Even for separable Rosenthal compacta K, it is unclear to us whether there exists

an equivalence between the quantities o
(
(fn)

)
and sup{α(f) : f ∈ K}. However,

the proper setting of this problem seems to be for the class of Borel separable

quasi-Rosenthal compacta. We notice that in the case where the sequence (fn) has

finitely many accumulation points, then easy modifications of the proof of part (2)

of Theorem 11 yield a positive answer.
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(2) For an arbitrary sequence (fn) of functions with T
(
(fn), a, b

)
well-founded for

every a < b, we do not know if
(
2ℵ0
)+

is the best upper bound for o
(
(fn)

)
.

(3) As we have shown in Proposition 7, every quasi-Rosenthal compactum K has

countable tightness. It remains open whether every accumulation point of a subset

L of K is the limit of a sequence in L. For quasi-Rosenthal compacta homeomor-

phic to a Rosenthal compactum this is a consequence of the Bourgain–Fremlin–

Talagrand theorem [4].
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