
STABLE FAMILIES OF ANALYTIC SETS

PANDELIS DODOS

Abstract. We give a different proof of the well-known fact that any un-

countable family of analytic subsets of a Polish space with the point-finite

intersection property must contain a subfamily whose union is not analytic.

Our approach is based on the Kunen–Martin theorem.

1. Introduction and notation

It is well-known that any uncountable family of analytic subsets of a Polish space

with the point-finite intersection property must contain a subfamily whose union is

not analytic (see [1, 2, 3, 5]). In [1], this (in fact a much stronger) result is proved

but the proof heavily depends on the Axiom of Choice. In [2, 3, 5], the proofs are

effective but the argument is more complicated. In this note we give a short proof

using the Kunen–Martin theorem.

Notation. In what follows X and Y will be Polish spaces. By N we denote the

Baire space. If A ⊆ X × Y and U is an arbitrary open subset of Y , then we set

A(U) := projX{A ∩ (X × U)}.

All the other pieces of notation we use are standard (see, e.g., [4]).

2. Stable families of analytic sets

Departing from standard terminology, we make the following definition.

Definition 1. A family F = (Ai)i∈I of analytic subsets of X will be called stable

if for every J ⊆ I the set
⋃
i∈J Ai is an analytic subset of X.

Clearly any subfamily of a stable family is stable. Furthermore any countable

family of analytic sets is stable. There exist, however, uncountable stable families

of analytic sets.

Example 1. Let A ⊂ X be an analytic non-Borel set. By a classical result of

Sierpiński (see [4, page 201]), there exists a transfinite sequence (Bξ)ξ<ω1
of Borel

sets such that A =
⋃
ξ<ω1

Bξ. Clearly, we may assume that the sequence (Bξ)ξ<ω1

is increasing. Since A is not Borel, there exists an uncountable subset Λ of ω1

such that Bξ  Bζ for every ξ, ζ ∈ Λ with ξ < ζ. Then the family F = (Bξ)ξ∈Λ
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is an uncountable stable family of mutually different analytic sets (note that the

members of F are actually Borel sets).

Definition 2. A family F = (Ai)i∈I of subsets of X is said to have the point-finite

intersection property (abbreviated as p.f.i.p.) provided that for every x ∈ X the set

Ix = {i ∈ I : x ∈ Ai} is finite.

As before, any subfamily of a family with the point-finite intersection property

has the point-finite intersection property. We will show that stable families of

analytic sets with the p.f.i.p. are necessarily countable. To that end we need a

couple of lemmas. The one that follows is elementary.

Lemma 3. Let X and Y be Polish spaces. If A ∈ Π1
1(X) and U ⊆ Y is open, then

A× U ∈ Π1
1(X × Y ).

Lemma 4. Let X and Y be Polish spaces. Assume that X ×Y has closed sections

(that is, for every x ∈ X the set Ax = {y ∈ Y : (x, y) ∈ A} is closed) and, moreover,

for every open set U ⊆ Y the set A(U) is analytic. Then A is also analytic.

Proof. Let B = (Vn) be a countable base for Y . Observe that (x, y) /∈ A if and only

if there exists a basic open subset Vn of Y such that x /∈ A(Vn). It follows that

(X × Y ) \A =
⋃
n

(
X \A(Vn)

)
× Vn

and so, by Lemma 3, the set A is analytic. �

We have the following stability result.

Lemma 5. Let F = (Ai)i∈I be a stable family of analytic subsets of X with the

point-finite intersection property. Then for every Polish space Y and for every

family (Bi)i∈I of analytic subsets of Y , the set

A :=
⋃
i∈I

(Ai ×Bi)

is an analytic subset of X × Y .

Proof. Let F = (Ai)i∈I and (Bi)i∈I be as above. Since every Bi is analytic, there

exists Ci ⊆ Y ×N closed such that Bi = projY Ci. We define Ã ⊆ X × Y ×N by

Ã =
⋃
i∈I

(Ai × Ci).

Clearly, A = projX×Y Ã. Note that for every x ∈ X the section

Ãx = {(y, z) ∈ Y ×N : (x, y, z) ∈ Ã}

is exactly the set
⋃
i∈Ix Ci. As the family F has the point-finite intersection prop-

erty, for every x ∈ X the section Ãx of Ã is closed. Observe that for every open
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subset U of Y ×N we have

Ã(U) = projX{Ã ∩ (X × U)}

= {x ∈ X : ∃i ∈ Ix such that Ci ∩ U 6= ∅} =
⋃
{Ai : Ci ∩ U 6= ∅}.

It follows directly from the stability of the family that Ã(U) is analytic and so, by

Lemma 4, we see that Ã is an analytic subset of X × Y ×N . Hence so is A. �

Let ≺ be a strict well-founded binary relation on X. By recursion, we define

the rank function %≺ : X → Ord as follows. We set %≺(x) = 0 if x is minimal;

otherwise, let %≺(x) = sup{%≺(y) : y ≺ x}+ 1. Finally, we define the rank of ≺ by

setting %(≺) = sup{%≺(x) + 1 : x ∈ X}. We will need the following boundedness

principle of analytic well-founded relations due to Kunen and Martin (see [4, 6]).

Theorem 6. Let ≺ be a strict well-founded relation and assume that ≺ is analytic

(as a subset of X ×X). Then %(≺) is countable.

Lemma 7. Let F = (Ai)i∈I be a stable family of mutually disjoint analytic subsets

of X. Then F is countable.

Proof. Assume that F is not countable. Select an uncountable subfamily F ′ of F
with |F ′| = ℵ1, and let F ′ = (Aξ)ξ<ω1

be a well-ordering of F ′. Clearly F ′ remains

stable. As the sets Aξ are pairwise disjoint, we define φ :
⋃
ξ<ω1

Aξ → Ord by

setting φ(x) to be the unique ξ such that x ∈ Aξ. Define the binary relation ≺ by

x ≺ y ⇔ φ(x) < φ(y).

Clearly ≺ is well-founded and strict. Moreover note that ≺, as a subset of X ×X,

is the set ⋃
ξ<ω1

(Aξ ×Bξ)

where Bξ =
⋃
ζ>ξ Aζ . From the stability of F ′, we see that the sets Bξ are analytic

subsets of X for every ξ < ω1. Since F ′ is stable and has the p.f.i.p., by Lemma 5,

we obtain that ≺ is a Σ1
1 relation. By Theorem 6, %(≺) must be countable and we

derive a contradiction. �

Finally we have the following theorem.

Theorem 8. Let F be a stable family of analytic sets with the point-finite inter-

section property. Then F is countable.

Proof. Assume not. Let F ′ be as in Lemma 7. Let Y be an arbitrary uncountable

Polish space, and let (yξ)ξ<ω1
be a transfinite sequence of distinct members of Y .

For every ξ < ω1, we set Lξ := Aξ×{yξ}; clearly, Lξ is an analytic subset of X×Y
and, moreover, Lξ ∩ Lζ = ∅ if ξ 6= ζ. As the family (and every subfamily of) F ′ is

stable and has the p.f.i.p., by Lemma 5, we see that for every G ⊆ ω1 the set⋃
ξ∈G

(Aξ × {yξ}) =
⋃
ξ∈G

Lξ
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is an analytic subset of X × Y . It follows that the family L = (Lξ)ξ<ω1
is a stable

family of mutually disjoint analytic subsets of X × Y . By Lemma 7, the family L
must be countable and again we derive a contradiction. �

By Theorem 8, we have the following corollary (see also [7]).

Corollary 9. Let X be a Polish space, Y a metrizable space and A ∈ Σ1
1(X). Also

let f : X → Y be a Borel measurable function. Then f(A) is separable.

Proof. Assume not. Let C ⊆ f(A) be an uncountable closed discrete set with

|C| > ℵ0. For every y ∈ C we set Ay := f−1({y}). Then F = (Ay)y∈C is a stable

family of mutually disjoint analytic subsets of X. By Theorem 8, the family F
must be countable and we derive a contradiction. �

Remark 1. Say that a family F = (Ai)i∈I has the point-countable intersection

property if for every x ∈ X the set Ix = {i ∈ I : x ∈ Ai} is countable. One can

easily see that Theorem 8 is not valid for stable families with the point-countable

intersection property. For instance, let (Aξ)ξ<ω1 be a strictly decreasing transfinite

sequence of analytic sets with
⋂
ξ<ω1

Aξ = ∅. As the sequence is decreasing, the

family F = (Aξ)ξ<ω1 is stable. Moreover, note that for every x ∈ X there exists

ξ < ω1 such that x /∈ Aζ for every ζ > ξ. (For if not, there would existed x ∈ X
such that x ∈ Aξ for every ξ < ω1, that is, x ∈

⋂
ξ<ω1

Aξ.) Hence, the family F is

an uncountable stable family of analytic sets with the point-countable intersection

property.
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