STABLE FAMILIES OF ANALYTIC SETS

PANDELIS DODOS

Abstract. We give a different proof of the well-known fact that any uncountable family of analytic subsets of a Polish space with the point-finite intersection property must contain a subfamily whose union is not analytic. Our approach is based on the Kunen–Martin theorem.

1. Introduction and notation

It is well-known that any uncountable family of analytic subsets of a Polish space with the point-finite intersection property must contain a subfamily whose union is not analytic (see [1, 2, 3, 5]). In [1], this (in fact a much stronger) result is proved but the proof heavily depends on the Axiom of Choice. In [2, 3, 5], the proofs are effective but the argument is more complicated. In this note we give a short proof using the Kunen–Martin theorem.

Notation. In what follows X and Y will be Polish spaces. By \mathcal{N} we denote the Baire space. If $A \subseteq X \times Y$ and U is an arbitrary open subset of Y, then we set

$$A(U) := \text{proj}_X \{A \cap (X \times U)\}.$$

All the other pieces of notation we use are standard (see, e.g., [4]).

2. Stable families of analytic sets

Departing from standard terminology, we make the following definition.

Definition 1. A family $\mathcal{F} = (A_i)_{i \in I}$ of analytic subsets of X will be called stable if for every $J \subseteq I$ the set $\bigcup_{i \in J} A_i$ is an analytic subset of X.

Clearly any subfamily of a stable family is stable. Furthermore any countable family of analytic sets is stable. There exist, however, uncountable stable families of analytic sets.

Example 1. Let $A \subset X$ be an analytic non-Borel set. By a classical result of Sierpiński (see [4, page 201]), there exists a transfinite sequence $(B_\xi)_{\xi < \omega_1}$ of Borel sets such that $A = \bigcup_{\xi < \omega_1} B_\xi$. Clearly, we may assume that the sequence $(B_\xi)_{\xi < \omega_1}$ is increasing. Since A is not Borel, there exists an uncountable subset Λ of ω_1 such that $B_\xi \subset B_\zeta$ for every $\xi, \zeta \in \Lambda$ with $\xi < \zeta$. Then the family $\mathcal{F} = (B_\xi)_{\xi \in \Lambda}$

2000 Mathematics Subject Classification: 03E15.
is an uncountable stable family of mutually different analytic sets (note that the members of \mathcal{F} are actually Borel sets).

Definition 2. A family $\mathcal{F} = (A_i)_{i \in I}$ of subsets of X is said to have the point-finite intersection property (abbreviated as p.f.i.p.) provided that for every $x \in X$ the set $I_x = \{ i \in I : x \in A_i \}$ is finite.

As before, any subfamily of a family with the point-finite intersection property has the point-finite intersection property. We will show that stable families of analytic sets with the p.f.i.p. are necessarily countable. To that end we need a couple of lemmas. The one that follows is elementary.

Lemma 3. Let X and Y be Polish spaces. If $A \in \Pi^1_1(X)$ and $U \subseteq Y$ is open, then $A \times U \in \Pi^1_1(X \times Y)$.

Lemma 4. Let X and Y be Polish spaces. Assume that $X \times Y$ has closed sections (that is, for every $x \in X$ the set $A_x = \{ y \in Y : (x,y) \in A \}$ is closed) and, moreover, for every open set $U \subseteq Y$ the set $A(U)$ is analytic. Then A is also analytic.

Proof. Let $B = (V_n)$ be a countable base for Y. Observe that $(x,y) \notin A$ if and only if there exists a basic open subset V_n of Y such that $x \notin A(V_n)$. It follows that

$$(X \times Y) \setminus A = \bigcup_n (X \setminus A(V_n)) \times V_n$$

and so, by Lemma 3, the set A is analytic. □

We have the following stability result.

Lemma 5. Let $\mathcal{F} = (A_i)_{i \in I}$ be a stable family of analytic subsets of X with the point-finite intersection property. Then for every Polish space Y and for every family $(B_i)_{i \in I}$ of analytic subsets of Y, the set

$$A := \bigcup_{i \in I} (A_i \times B_i)$$

is an analytic subset of $X \times Y$.

Proof. Let $\mathcal{F} = (A_i)_{i \in I}$ and $(B_i)_{i \in I}$ be as above. Since every B_i is analytic, there exists $C_i \subseteq Y \times \mathcal{N}$ closed such that $B_i = \text{proj}_Y C_i$. We define $\hat{A} \subseteq X \times Y \times \mathcal{N}$ by

$$\hat{A} = \bigcup_{i \in I} (A_i \times C_i).$$

Clearly, $A = \text{proj}_{X \times Y} \hat{A}$. Note that for every $x \in X$ the section

$$\hat{A}_x = \{ (y,z) \in Y \times \mathcal{N} : (x,y,z) \in \hat{A} \}$$

is exactly the set $\bigcup_{i \in I_x} C_i$. As the family \mathcal{F} has the point-finite intersection property, for every $x \in X$ the section \hat{A}_x of \hat{A} is closed. Observe that for every open
subset U of $Y \times N$ we have
\[\tilde{A}(U) = \text{proj}_X \{ \tilde{A} \cap (X \times U) \} \]
\[= \{ x \in X : \exists i \in I_x \text{ such that } C_i \cap U \neq \emptyset \} = \bigcup \{ A_i : C_i \cap U \neq \emptyset \}. \]
It follows directly from the stability of the family that $\tilde{A}(U)$ is analytic and so, by Lemma 4, we see that \tilde{A} is an analytic subset of $X \times Y \times N$. Hence so is A. \(\square\)

Let \prec be a strict well-founded binary relation on X. By recursion, we define the rank function $\varrho_{\prec}: X \to \text{Ord}$ as follows. We set $\varrho_{\prec}(x) = 0$ if x is minimal; otherwise, let $\varrho_{\prec}(x) = \sup \{ \varrho_{\prec}(y) : y \prec x \} + 1$. Finally, we define the rank of \prec by setting $\varrho(\prec) = \sup \{ \varrho_{\prec}(x) + 1 : x \in X \}$. We will need the following boundedness principle of analytic well-founded relations due to Kunen and Martin (see [4, 6]).

Theorem 6. Let \prec be a strict well-founded relation and assume that \prec is analytic (as a subset of $X \times X$). Then $\varrho(\prec)$ is countable.

Lemma 7. Let $\mathcal{F} = (A_i)_{i \in I}$ be a stable family of mutually disjoint analytic subsets of X. Then \mathcal{F} is countable.

Proof. Assume that \mathcal{F} is not countable. Select an uncountable subfamily \mathcal{F}' of \mathcal{F} with $|\mathcal{F}'| = \aleph_1$, and let $\mathcal{F}' = (A_\xi)_{\xi < \omega_1}$ be a well-ordering of \mathcal{F}'. Clearly \mathcal{F}' remains stable. As the sets A_ξ are pairwise disjoint, we define $\phi: \bigcup_{\xi < \omega_1} A_\xi \to \text{Ord}$ by setting $\phi(x)$ to be the unique ξ such that $x \in A_\xi$. Define the binary relation \prec by
\[x \prec y \iff \phi(x) < \phi(y). \]
Clearly \prec is well-founded and strict. Moreover note that \prec, as a subset of $X \times X$, is the set
\[\bigcup_{\xi < \omega_1} (A_\xi \times B_\xi) \]
where $B_\xi = \bigcup_{\xi < \xi} A_\xi$. From the stability of \mathcal{F}', we see that the sets B_ξ are analytic subsets of X for every $\xi < \omega_1$. Since \mathcal{F}' is stable and has the p.f.i.p., by Lemma 5, we obtain that \prec is a Σ^1_1 relation. By Theorem 6, $\varrho(\prec)$ must be countable and we derive a contradiction. \(\square\)

Finally we have the following theorem.

Theorem 8. Let \mathcal{F} be a stable family of analytic sets with the point-finite intersection property. Then \mathcal{F} is countable.

Proof. Assume not. Let \mathcal{F}' be as in Lemma 7. Let Y be an arbitrary uncountable Polish space, and let $(y_\xi)_{\xi < \omega_1}$ be a transfinite sequence of distinct members of Y. For every $\xi < \omega_1$, we set $L_\xi := A_\xi \times \{ y_\xi \}$; clearly, L_ξ is an analytic subset of $X \times Y$ and, moreover, $L_\xi \cap L_\zeta = \emptyset$ if $\xi \neq \zeta$. As the family (and every subfamily of) \mathcal{F}' is stable and has the p.f.i.p., by Lemma 5, we see that for every $G \subseteq \omega_1$ the set
\[\bigcup_{\xi \in G} (A_\xi \times \{ y_\xi \}) = \bigcup_{\xi \in G} L_\xi \]
is an analytic subset of $X \times Y$. It follows that the family $\mathcal{L} = (L_\xi)_{\xi < \omega_1}$ is a stable family of mutually disjoint analytic subsets of $X \times Y$. By Lemma 7, the family \mathcal{L} must be countable and again we derive a contradiction.

By Theorem 8, we have the following corollary (see also [7]).

Corollary 9. Let X be a Polish space, Y a metrizable space and $A \in \Sigma^1_1(X)$. Also let $f : X \to Y$ be a Borel measurable function. Then $f(A)$ is separable.

Proof. Assume not. Let $C \subseteq f(A)$ be an uncountable closed discrete set with $|C| > \aleph_0$. For every $y \in C$ we set $A_y := f^{-1}(\{y\})$. Then $\mathcal{F} = (A_y)_{y \in C}$ is a stable family of mutually disjoint analytic subsets of X. By Theorem 8, the family \mathcal{F} must be countable and we derive a contradiction. □

Remark 1. Say that a family $\mathcal{F} = (A_i)_{i \in I}$ has the point-countable intersection property if for every $x \in X$ the set $I_x = \{i \in I : x \in A_i\}$ is countable. One can easily see that Theorem 8 is not valid for stable families with the point-countable intersection property. For instance, let $(A_\xi)_{\xi < \omega_1}$ be a strictly decreasing transfinite sequence of analytic sets with $\bigcap_{\xi < \omega_1} A_\xi = \emptyset$. As the sequence is decreasing, the family $\mathcal{F} = (A_\xi)_{\xi < \omega_1}$ is stable. Moreover, note that for every $x \in X$ there exists $\xi < \omega_1$ such that $x \notin A_\zeta$ for every $\zeta > \xi$. (For if not, there would existed $x \in X$ such that $x \in A_\zeta$ for every $\xi < \omega_1$, that is, $x \in \bigcap_{\xi < \omega_1} A_\xi$.) Hence, the family \mathcal{F} is an uncountable stable family of analytic sets with the point-countable intersection property.

Acknowledgments. I would like to thank the anonymous referee for his comments which substantially improved the presentation of the paper.

References

National Technical University of Athens, Faculty of Applied Sciences, Department of Mathematics, Zografou Campus, 157 80, Athens, Greece.

E-mail address: pdodos@math.ntua.gr