Quantum Gravity within Quantum Field Theory

Requirements:

a) well-defined behavior at high energy
 ○ RG-fixed point controlling the UV-behavior of the theory
 ○ ensures the absence of UV-divergences
Quantum Gravity within Quantum Field Theory

Requirements:

a) well-defined behavior at high energy
 - RG-fixed point controlling the UV-behavior of the theory
 - ensures the absence of UV-divergences

b) predictivity
 - fixed point has finite-dimensional UV-critical surface S_{UV}
 - fixing the position of a trajectory in S_{UV}
 \iff experimental determination of relevant parameters
Quantum Gravity within Quantum Field Theory

Requirements:

a) well-defined behavior at high energy
 - RG-fixed point controlling the UV-behavior of the theory
 - ensures the absence of UV-divergences

b) predictivity
 - fixed point has finite-dimensional UV-critical surface S_{UV}
 - fixing the position of a trajectory in S_{UV}
 \iff experimental determination of relevant parameters

c) classical limit
 - reconcile quantum theory with the experimental success of GR
 - RG-trajectories have part where GR is good approximation
Quantum Gravity within Quantum Field Theory

Requirements:

a) well-defined behavior at high energy
 - RG-fixed point controlling the UV-behavior of the theory
 - ensures the absence of UV-divergences

b) predictivity
 - fixed point has finite-dimensional UV-critical surface S_{UV}
 - fixing the position of a trajectory in S_{UV}
 \iff experimental determination of relevant parameters

c) classical limit
 - reconcile quantum theory with the experimental success of GR
 - RG-trajectories have part where GR is good approximation

d) question of unitarity
 - information loss in black holes?
The phase diagram of Asymptotic Safety

The phase diagram of Causal Dynamical Triangulations

J. Ambjørn, J. Jurkiewicz, R. Loll; D. Benedetti, J. Cooperman, . . .
Once upon a time there was a . . . puzzle

FRGE and Dynamical Triangulations investigate the same path integral
continuum functional renormalization group (FRGE):

- covariant computation, Euclidean signature
 - non-Gaussian fixed point (NGFP)
 - classical general relativity recovered at $\ell \approx 10\ell_{Pl}$
Once upon a time there was a . . . puzzle

FRGE and Dynamical Triangulations investigate the same path integral

continuum functional renormalization group (FRGE):

- covariant computation, Euclidean signature
 - non-Gaussian fixed point (NGFP)
 - classical general relativity recovered at $\ell \approx 10\ell_P$

Monte Carlo Simulation of gravitational partition sum

- Causal Dynamical Triangulations (CDT)
 - second order phase transition line
 - “classical universes” at $\ell \approx 10\ell_P$

- Euclidean Dynamical Triangulations (EDT)
 - no second order phase transition line
 - no “classical universes”
Once upon a time there was a … puzzle

FRGE and Dynamical Triangulations investigate the same path integral

continuum functional renormalization group (FRGE):

- covariant computation, Euclidean signature
 - non-Gaussian fixed point (NGFP)
 - classical general relativity recovered at $\ell \approx 10\ell_{Pl}$

Monte Carlo Simulation of gravitational partition sum

- Causal Dynamical Triangulations (CDT)
 - second order phase transition line
 - “classical universes” at $\ell \approx 10\ell_{Pl}$

- Euclidean Dynamical Triangulations (EDT)
 - no second order phase transition line
 - no “classical universes”

How does a causal structure influence Asymptotic Safety?
Functional Renormalization Group Equation

for foliated spacetimes
Foliation structure via ADM-decomposition

Preferred “time”-direction via foliation of space-time

- foliation structure $\mathcal{M}^{d+1} = S^1 \times \mathcal{M}^d$ with $y^\mu \mapsto (\tau, x^a)$:

\[ds^2 = N^2 dt^2 + \sigma_{ij} (dx^i + N^i dt) (dx^j + N^j dt) \]

- fundamental fields: $g_{\mu\nu} \mapsto (N, N_i, \sigma_{ij})$

\[g_{\mu\nu} = \begin{pmatrix} N^2 + N_i N^i & N_j \\ N_i & \sigma_{ij} \end{pmatrix} \]
Foliation structure via ADM-decomposition

Preferred “time”-direction via foliation of space-time

- foliation structure $\mathcal{M}^{d+1} = S^1 \times \mathcal{M}^d$ with $y^\mu \mapsto (\tau, x^a)$:

$$ds^2 = \epsilon N^2 dt^2 + \sigma_{ij} (dx^i + N^i dt) (dx^j + N^j dt)$$

- fundamental fields: $g_{\mu\nu} \mapsto (N, N_i, \sigma_{ij})$

$$g_{\mu\nu} = \begin{pmatrix}
\epsilon N^2 + N_i N^i & N_j \\
N_i & \sigma_{ij}
\end{pmatrix}$$

Allows to include signature parameter $\epsilon = \pm 1$
Foliated functional renormalization group equation

Flow equation: formally the same as in covariant construction

\[k \partial_k \Gamma_k [h, h_i, h_{ij}; \bar{\sigma}_{ij}] = \frac{1}{2} \mathrm{STr} \left[\left(\Gamma_k^{(2)} + R_k \right)^{-1} k \partial_k R_k \right] \]

- covariant: \(\mathcal{M}^4 \)

\[\mathrm{STr} \approx \sum_{\text{fields}} \int d^4 y \sqrt{g} \]

- foliated: \(S^1 \times \mathcal{M}^3 \)

\[\mathrm{STr} \approx \sqrt{\epsilon} \sum_{\text{component fields}} \sum_{\text{KK–modes}} \int d^3 x \sqrt{\bar{\sigma}} \]

structure resembles: quantum field theory at finite temperature!
Foliated functional renormalization group equation

Flow equation: formally the same as in covariant construction

\[k \partial_k \Gamma_k [h, h_i, h_{ij}; \bar{\sigma}_{ij}] = \frac{1}{2} \text{Str} \left[\left(\Gamma_k^{(2)} + R_k \right)^{-1} k \partial_k R_k \right] \]

- **covariant:** \(\mathcal{M}^4 \)

\[\text{Str} \approx \sum_{\text{fields}} \int d^4 y \sqrt{g} \]

- **foliated:** \(S^1 \times \mathcal{M}^3 \)

\[\text{Str} \approx \sqrt{\epsilon} \sum_{\text{component fields}} \sum_{\text{KK-modes}} \int d^3 x \sqrt{\sigma} \]

- structure resembles: quantum field theory at finite temperature!

Advantages of the foliated flow equation:

- \(\epsilon \)-dependence: keep track of signature effects
- structure: same as in Causal Dynamical Triangulations
Comparison: phase diagrams for ADM-variables

\[\Gamma_k^{\text{ADM}} = \frac{\sqrt{\epsilon}}{16\pi G_k} \int d\tau d^3x \sqrt{\sigma} \left[\epsilon^{-1} \left(K_{ij} K^{ij} - K^2 \right) - R(3) + 2\Lambda_k \right] + S_{gf} + S_{gh} \]
It’s all about choosing a gauge:

covariant formulation:

\[g_{\mu\nu} = \tilde{g}_{\mu\nu} + h_{\mu\nu} \]

perform covariant gauge-fixing (e.g., harmonic gauge)

\[F_\mu = \tilde{D}^\nu h_{\mu\nu} - \frac{1}{2} \tilde{D}_\mu h_{\nu\nu} = 0. \]

foliated formulation with ADM-fields \(g_{\mu\nu} \mapsto \{ N, N_i, \sigma_{ij} \} \)

\[N = \tilde{N} + h, \quad N_i = \tilde{N}_i + h_i, \quad \sigma_{ij} = \tilde{\sigma}_{ij} + h_{ij} \]

perform temporal gauge-fixing (non-covariant):

\[h = 0, \quad h_i = 0 \]

- fluctuations in the metric on the spatial slice only
It’s all about choosing a gauge:

covariant formulation:

\[g_{\mu\nu} = \bar{g}_{\mu\nu} + h_{\mu\nu} \]

perform covariant gauge-fixing (e.g., harmonic gauge)

\[F_\mu = \bar{D}^\nu h_{\mu\nu} - \frac{1}{2} \bar{D}_\mu h_{\nu\nu} = 0. \]

foliated formulation with ADM-fields \(g_{\mu\nu} \mapsto \{N, N_i, \sigma_{ij}\} \)

\[N = \bar{N} + h, \quad N_i = \bar{N}_i + h_i, \quad \sigma_{ij} = \bar{\sigma}_{ij} + h_{ij} \]

perform temporal gauge-fixing (non-covariant):

\[h = 0, \quad h_i = 0 \]

- fluctuations in the metric on the spatial slice only

ADM fields in temporal gauge

No fluctuations in stacking spatial slices!
Symmetries conserved by the foliated FRGE

fundamental fields: \(\{ \tilde{N}(\tau, x), \tilde{N}_i(\tau, x), \tilde{\sigma}_{ij}(\tau, x) \} \)

symmetry: general coordinate invariance inherited from \(\gamma_{\mu\nu} : \)

\[\delta \gamma_{\mu\nu} = \mathcal{L}_v(\gamma_{\mu\nu}), \quad v^\alpha = (f(\tau, x), \zeta^a(\tau, x)) \]

induces

\[\delta \tilde{N} = f \partial_\tau \tilde{N} + \zeta^k \partial_k \tilde{N} + \tilde{N} \partial_\tau f - \tilde{N} \tilde{N}^i \partial_i f, \]

\[\delta \tilde{N}_i = \tilde{N}_i \partial_\tau f + \tilde{N}_k \tilde{N}^k \partial_i f + \tilde{\sigma}_{ki} \partial_\tau \zeta^k + \tilde{N}_k \partial_i \zeta^k + f \partial_\tau \tilde{N}_i + \zeta^k \partial_k \tilde{N}_i + \epsilon \tilde{N}^2 \partial_i f \]

\[\delta \tilde{\sigma}_{ij} = f \partial_\tau \tilde{\sigma}_{ij} + \zeta^k \partial_k \tilde{\sigma}_{ij} + \tilde{N}_j \partial_i f + \tilde{N}_i \partial_j f + \tilde{\sigma}_{jk} \partial_i \zeta^k + \tilde{\sigma}_{ik} \partial_j \zeta^k \]

- Non-linearity of ADM-decomposition: symmetry realized **non-linearly**
Symmetries conserved by the foliated FRGE

fundamental fields: $\{ \tilde{N}(\tau, x), \tilde{N}_i(\tau, x), \tilde{\sigma}_{ij}(\tau, x) \}$

symmetry: general coordinate invariance inherited from $\gamma_{\mu\nu}$:

$$\delta \gamma_{\mu\nu} = \mathcal{L}_v(\gamma_{\mu\nu}), \quad v^\alpha = (f(\tau, x), \zeta^a(\tau, x))$$

induces

$$\delta \tilde{N} = f \partial_\tau \tilde{N} + \zeta^k \partial_k \tilde{N} + \tilde{N} \partial_\tau f - \tilde{N} \tilde{N}^i \partial_i f,$$

$$\delta \tilde{N}_i = \tilde{N}_i \partial_\tau f + \tilde{N}_k \tilde{N}^k \partial_i f + \tilde{\sigma}_{ki} \partial_\tau \zeta^k + \tilde{N}_k \partial_i \zeta^k + f \partial_\tau \tilde{N}_i + \zeta^k \partial_k \tilde{N}_i + \epsilon \tilde{N}^2 \partial_i f$$

$$\delta \tilde{\sigma}_{ij} = f \partial_\tau \tilde{\sigma}_{ij} + \zeta^k \partial_k \tilde{\sigma}_{ij} + \tilde{N}_j \partial_i f + \tilde{N}_i \partial_j f + \tilde{\sigma}_{jk} \partial_i \zeta^k + \tilde{\sigma}_{ik} \partial_j \zeta^k$$

- Non-linearity of ADM-decomposition: symmetry realized non-linearly

- in ADM it is impossible to combine:
 - linear background field method
 - regulator $\Delta_k S$ quadratic in fluctuation fields
 - background Diff(\mathcal{M})-symmetry
Symmetries conserved by the foliated FRGE

background symmetry respected by FRGE:

• subgroup of linear transformations

\[
\delta \tilde{N} = f \partial_\tau \tilde{N} + \zeta^k \partial_k \tilde{N} + \tilde{N} \partial_\tau f - \tilde{N} \tilde{N}^i \partial_i f, \\
\delta \tilde{N}_i = \tilde{N}_i \partial_\tau f + \tilde{N}_k \tilde{N}^k \partial_i f + \tilde{\sigma}_{ki} \partial_\tau \zeta^k + \tilde{N}_k \partial_i \zeta^k + f \partial_\tau \tilde{N}_i + \zeta^k \partial_k \tilde{N}_i + \epsilon \tilde{N}^2 \partial_i f \\
\delta \tilde{\sigma}_{ij} = f \partial_\tau \tilde{\sigma}_{ij} + \zeta^k \partial_k \tilde{\sigma}_{ij} + \tilde{N}_j \partial_i f + \tilde{N}_i \partial_j f + \tilde{\sigma}_{jk} \partial_i \zeta^k + \tilde{\sigma}_{ik} \partial_j \zeta^k
\]

• foliation-preserving diffeomorphisms: \(\text{Diff}(\mathcal{M}, \Sigma) \subset \text{Diff}(\mathcal{M}) \)

\[
\delta \gamma_{\mu\nu} = \mathcal{L}_v(\gamma_{\mu\nu}), \quad v^\alpha = (f(\tau), \zeta^\alpha(\tau, x))
\]
Symmetries conserved by the foliated FRGE

background symmetry respected by FRGE:

- subgroup of linear transformations
 \[\delta \tilde{N} = f \partial_\tau \tilde{N} + \zeta^k \partial_k \tilde{N} + \tilde{N} \partial_\tau f - \tilde{N} \tilde{N}^i \partial_i f, \]
 \[\delta \tilde{N}_i = \tilde{N}_i \partial_\tau f + \tilde{N} \tilde{N}^k \partial_k f + \sigma_{ki} \partial_\tau \zeta^k + \tilde{N}_k \partial_i \zeta^k + f \partial_\tau \tilde{N}_i + \zeta^k \partial_k \tilde{N}_i + \epsilon \tilde{N}^2 \partial_i f \]
 \[\delta \tilde{\sigma}_{ij} = f \partial_\tau \tilde{\sigma}_{ij} + \zeta^k \partial_k \tilde{\sigma}_{ij} + \tilde{N}_j \partial_i f + \tilde{N}_i \partial_j f + \tilde{\sigma}_{j\ell} \partial_i \zeta^\ell + \tilde{\sigma}_{i\ell} \partial_j \zeta^\ell \]

- foliation-preserving diffeomorphisms: \(\text{Diff}(\mathcal{M}, \Sigma) \subset \text{Diff}(\mathcal{M}) \)
 \[\delta \gamma_{\mu\nu} = \mathcal{L}_v (\gamma_{\mu\nu}), \quad v^\alpha = (f(\tau), \zeta^a(\tau, x)) \]

symmetry group of Hořava-Lifshitz gravity
Wetterich Equation

for projectable Hořava-Lifshitz gravity

[M. Baggio, J. de Boer and K. Holsheimer, arXiv:1112.6416]
central idea: find a perturbatively renormalizable quantum theory of gravity

fundamental fields: \(\{ N(\tau), N_i(\tau, x), \sigma_{ij}(\tau, x) \} \)

symmetry: \(\text{Diff}(\mathcal{M}, \Sigma) \subset \text{Diff}(\mathcal{M}) \)

- spatial higher-derivative terms make theory power-counting renormalizable
- anisotropic dispersion relation breaks Lorentz-invariance
projective Hořava-Lifshitz gravity in a nutshell

central idea: find a perturbatively renormalizable quantum theory of gravity

fundamental fields: \(\{ N(\tau), N_i(\tau, x), \sigma_{ij}(\tau, x) \} \)

symmetry: \(\text{Diff}(\mathcal{M}, \Sigma) \subset \text{Diff}(\mathcal{M}) \)

- spatial higher-derivative terms make theory power-counting renormalizable
- anisotropic dispersion relation breaks Lorentz-invariance

Can construct the effective average action for projectable HL-gravity

- scale-dependence governed by functional renormalization group equation

\[
k \partial_k \Gamma_k[\phi, \bar{\phi}] = \frac{1}{2} \text{Str} \left[\left(\Gamma_k^{(2)} + \mathcal{R}_k \right)^{-1} k \partial_k \mathcal{R}_k \right]
\]

- Complication: anisotropic models have two correlation lengths
Relation between Asymptotic Safety and Hořava-Lifshitz gravity

Theory space: Hořava-Lifshitz
Symmetry: foliation preserving

Subspace: Quantum Einstein Gravity
Symmetry: diffeomorphisms

also see: talk by G. D’Odorico tomorrow
Proposals for UV fixed points (incomplete...)

- isotropic Gaussian Fixed Point (GFP)
 - fundamental theory: Einstein-Hilbert action
 - perturbation theory in G_N
Proposals for UV fixed points (incomplete…)

- isotropic Gaussian Fixed Point (GFP)
 - fundamental theory: Einstein-Hilbert action
 - perturbation theory in G_N
Proposals for UV fixed points (incomplete...)

- isotropic Gaussian Fixed Point (GFP)
 - fundamental theory: Einstein-Hilbert action
 - perturbation theory in G_N

- isotropic Gaussian Fixed Point (GFP)
 - fundamental theory: higher-derivative gravity
 - perturbation theory in higher-derivative coupling
Proposals for UV fixed points (incomplete...)

- isotropic Gaussian Fixed Point (GFP)
 - fundamental theory: Einstein-Hilbert action
 - perturbation theory in G_N

- isotropic Gaussian Fixed Point (GFP)
 - fundamental theory: higher-derivative gravity
 - perturbation theory in higher-derivative coupling
Proposals for UV fixed points (incomplete...)

- isotropic Gaussian Fixed Point (GFP)
 - fundamental theory: Einstein-Hilbert action
 - perturbation theory in G_N

- isotropic Gaussian Fixed Point (GFP)
 - fundamental theory: higher-derivative gravity
 - perturbation theory in higher-derivative coupling

- non-Gaussian Fixed Point (NGFP)
 - fundamental theory: interacting
 - Lorentz-invariant, non-perturbatively renormalizable
Proposals for UV fixed points (incomplete...)

- isotropic Gaussian Fixed Point (GFP)
 - fundamental theory: Einstein-Hilbert action
 - perturbation theory in G_N

- isotropic Gaussian Fixed Point (GFP)
 - fundamental theory: higher-derivative gravity
 - perturbation theory in higher-derivative coupling

- non-Gaussian Fixed Point (NGFP)
 - fundamental theory: interacting
 - Lorentz-invariant, non-perturbatively renormalizable
Proposals for UV fixed points (incomplete…)

- isotropic Gaussian Fixed Point (GFP)
 - fundamental theory: Einstein-Hilbert action
 - perturbation theory in G_N

- isotropic Gaussian Fixed Point (GFP)
 - fundamental theory: higher-derivative gravity
 - perturbation theory in higher-derivative coupling

- non-Gaussian Fixed Point (NGFP)
 - fundamental theory: interacting
 - Lorentz-invariant, non-perturbatively renormalizable

- anisotropic Gaussian Fixed Point (aGFP)
 - fundamental theory: Hořava-Lifshitz gravity
 - Lorentz-violating, perturbatively renormalizable
Proposals for UV fixed points (incomplete...)

- isotropic Gaussian Fixed Point (GFP)
 - fundamental theory: Einstein-Hilbert action
 - perturbation theory in G_N

- isotropic Gaussian Fixed Point (GFP)
 - fundamental theory: higher-derivative gravity
 - perturbation theory in higher-derivative coupling

- non-Gaussian Fixed Point (NGFP)
 - fundamental theory: interacting
 - Lorentz-invariant, non-perturbatively renormalizable

- anisotropic Gaussian Fixed Point (aGFP)
 - fundamental theory: Hořava-Lifshitz gravity
 - Lorentz-violating, perturbatively renormalizable
RG-flows of Hořava-Lifshitz gravity in the IR

A. Contillo, S. Rechenberger, F.S., JHEP 1312 (2013) 017

RG-flow of anisotropic λ-R truncation

$$\Gamma^{\text{grav}}_k[N, N_i, \sigma_{ij}] = \frac{1}{16\pi G_k} \int d\tau d^3x N \sqrt{g} \left[K_{ij} K^{ij} - \lambda_k K^2 - (^{(3)} R + 2\Lambda_k) \right]$$
RG-flows of Hořava-Lifshitz gravity in the IR

A. Contillo, S. Rechenberger, F.S., JHEP 1312 (2013) 017

RG-flow of anisotropic λ-R truncation

$$\Gamma_k^{\text{grav}} [N, N_i, \sigma_{ij}] = \frac{1}{16\pi G_k} \int d\tau d^3x N \sqrt{g} \left[K_{ij} K^{ij} - \lambda_k K^2 - (3) R + 2\Lambda_k \right]$$

Fixed points of the beta functions:

- Wheeler-de Witt metric \Rightarrow line of GFPs
 $$\tilde{G}_* = 0, \quad \tilde{\Lambda}_* = 0, \quad \lambda = \lambda_*$$
 - one IR attractive, one IR repulsive, one marginal direction

- NGFP:
 $$\tilde{G}_* = 0.49, \quad \tilde{\Lambda}_* = 0.17, \quad \lambda_* = 0.44$$
 - three UV-attractive eigen-directions
 - imprint of Asymptotic Safety
RG-flows of Hořava-Lifshitz gravity in the IR

A. Contillo, S. Rechenberger, F.S., JHEP 1312 (2013) 017

RG-flow of anisotropic λ-R truncation

$$\Gamma_{k}^{\text{grav}} [N, N_{i}, \sigma_{ij}] = \frac{1}{16\pi G_{k}} \int d\tau d^{3}x N \sqrt{g} \left[K_{ij} K^{ij} - \lambda_{k} K^{2} - (3) R + 2\Lambda_{k} \right]$$

Fixed points of the beta functions:

- Wheeler-de Witt metric \Rightarrow line of GFPs
 $$\tilde{G}_{*} = 0, \quad \tilde{\Lambda}_{*} = 0, \quad \lambda = \lambda_{*}$$
 - one IR attractive, one IR repulsive, one marginal direction

- NGFP:
 $$\tilde{G}_{*} = 0.49, \quad \tilde{\Lambda}_{*} = 0.17, \quad \lambda_{*} = 0.44$$
 - three UV-attractive eigen-directions
 - imprint of Asymptotic Safety

anisotropic GFP providing UV-limit of HL-gravity not in truncation
Hořava-Lifshitz gravity: recovering general relativity in the IR
Scale-dependence of dimensionful couplings

![Graphs showing scale-dependence of dimensionful couplings](image)
Scale-dependence of dimensionful couplings

GFP governs IR-behavior of HL-gravity
small value of cosmological constant makes λ compatible with experiments
Summay

Asymptotic Safety Program

- strong evidence for a non-Gaussian fixed point:
 - predictive: finite number of relevant parameters
 - connected to classical general relativity in the IR
Summay

Asymptotic Safety Program

- strong evidence for a non-Gaussian fixed point:
 - predictive: finite number of relevant parameters
 - connected to classical general relativity in the IR

Connecting the FRG to CDT

- Constructed FRG probing CDT theory space
- prospects of comparing RG flows
Summay

Asymptotic Safety Program

- strong evidence for a non-Gaussian fixed point:
 - predictive: finite number of relevant parameters
 - connected to classical general relativity in the IR

Connecting the FRG to CDT

- Constructed FRG probing CDT theory space
- prospects of comparing RG flows

Connection to Hořava-Lifshitz gravity

- use different RG fixed points for continuum limit
- FRGE: key tool for establishing renormalizability
Outlook

many proposals for quantum gravity within QFT:

- Asymptotic Safety
- (Causal) Dynamical Triangulations
- Hořava-Lifshitz gravity
- first order formalism
- shape dynamics

differences:

- field content (metric, vielbein, ADM-variables, . . .)
- symmetry group (diffeomorphisms, foliation preserving diff.)

unclear if theories are the same universality class
Outlook

many proposals for quantum gravity within QFT:

- Asymptotic Safety
- (Causal) Dynamical Triangulations
- Hořava-Lifshitz gravity
- first order formalism
- shape dynamics

differences:

- field content \((\text{metric, vielbein, ADM-variables, \ldots})\)
- symmetry group \((\text{diffeomorphisms, foliation preserving diff.})\)

unclear if theories are the same universality class

RG techniques crucial in all models!