Anomalous scaling at non-thermal fixed points of Gross-Pitaevskii and KPZ turbulence

Thomas Gasenzer Steven Mathey Jan M. Pawlowski

ITP - Heidelberg

24 September 2014
Non-thermal fixed points

Non-thermal fixed point are far from equilibrium quasi stationary states of matter.

Scale invariance $\epsilon(k) \sim k^{-d+\eta}$

Depending on the initial conditions, the system may take an algebraically long time on the way to thermalisation.

Driven-Dissipative GPE

Classical field equation for the average Bose wave-function $\phi(x, t)$:

$$i\partial_t \phi(x, t) = \left[-\left(\frac{1}{2m}\right)\nabla^2 + \mu + g|\phi(x, t)|^2\right] \phi(x, t)$$
Driven-Dissipative GPE

Classical field equation for the average Bose wave-function $\phi(x, t)$:

$$i\partial_t \phi(x, t) = \left[-\left(\frac{1}{2m} - i\nu\right) \nabla^2 + \mu + g|\phi(x, t)|^2\right] \phi(x, t) + \zeta(x, t)$$

With complex parameters

$$\mu = \mu_1 + i\mu_2 \quad \quad g = g_1 - ig_2$$

Single particle pump \quad 2 particle losses

and stochastic driving

$$\langle \zeta(x, t) \rangle = 0 \quad \quad \langle \zeta(x, t) \zeta(x', t') \rangle = \gamma \delta(t - t') \delta(x - x')$$
Driven-Dissipative GPE

Classical field equation for the average Bose wave-function $\phi(x, t)$:

$$i\partial_t \phi(x, t) = \left[-\left(\frac{1}{2m} - i\nu\right)\nabla^2 + \mu + g|\phi(x, t)|^2\right] \phi(x, t) + \zeta(x, t)$$

With complex parameters

$$\mu = \mu_1 + i\mu_2 \quad g = g_1 - ig_2$$

Single particle pump \hspace{1cm} 2 particle losses

and stochastic driving

$$\langle \zeta(x, t) \rangle = 0 \quad \langle \zeta(x, t)\zeta(x', t') \rangle = \gamma \delta(t - t')\delta(x - x')$$

Scaling in ultra-cold Bose gases

We focus on the kinetic energy density,

\[\epsilon_{\text{kin}} = \frac{1}{2m} \langle |\nabla \phi|^2 \rangle = \int |\epsilon(k)| \]

Scaling in ultra-cold Bose gases

We focus on the kinetic energy density,

\[\epsilon_{\text{kin}} = \frac{1}{2m} \langle | \nabla \phi |^2 \rangle = \int_k \epsilon(k) \]

Scaling from dimensional analysis with an anomalous correction

\[\epsilon(k) \approx \epsilon_{\text{kin}} k^{-d} (k \xi)^\eta \]
Scaling in ultra-cold Bose gases

We focus on the kinetic energy density,

\[\epsilon_{\text{kin}} = \frac{1}{2m} \langle |\nabla \phi|^2 \rangle = \int_k \epsilon(k) \]

Scaling from dimensional analysis with an anomalous correction

\[\epsilon(k) \approx \epsilon_{\text{kin}} k^{-d} (k\xi)^\eta \]
Scaling in ultra-cold Bose gases

We focus on the kinetic energy density,

\[
\epsilon_{\text{kin}} = \frac{1}{2m} \langle |\nabla \phi|^2 \rangle = \int \epsilon(k)
\]

Scaling from dimensional analysis with an anomalous correction

\[
\epsilon(k) \sim k^{-d+\eta}
\]

<table>
<thead>
<tr>
<th>(d)</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\eta_{\text{num}})</td>
<td>1</td>
<td>small</td>
<td>small</td>
</tr>
</tbody>
</table>

Kardar–Parisi–Zhang equation

A model for interface growth,

$$\partial_t \theta(x, t) = \nu \nabla^2 \theta(x, t) + \frac{\lambda}{2} [\nabla \theta(x, t)]^2 + \eta(x, t)$$

with diffusion, perpendicular expansion and stochastic driving,

$$\langle \eta(x, t) \rangle = 0 \quad \langle \eta(x, t) \eta(x', t') \rangle = D \delta(t - t') \delta(x - x')$$
Kardar–Parisi–Zhang equation

A model for interface growth,

\[\partial_t \theta(x, t) = \nu \nabla^2 \theta(x, t) + \frac{\lambda}{2} \left[\nabla \theta(x, t) \right]^2 + \eta(x, t) \]

with diffusion, perpendicular expansion and stochastic driving,

\[\langle \eta(x, t) \rangle = 0 \quad \langle \eta(x, t) \eta(x', t') \rangle = D \delta(t - t') \delta(x - x') \]
Kardar–Parisi–Zhang equation

A model for interface growth,

\[\partial_t \theta(x, t) = \nu \nabla^2 \theta(x, t) + \frac{\lambda}{2} [\nabla \theta(x, t)]^2 + \eta(x, t) \]

with diffusion, **perpendicular expansion** and stochastic driving,

\[\langle \eta(x, t) \rangle = 0 \quad \langle \eta(x, t) \eta(x', t') \rangle = D \delta(t - t') \delta(x - x') \]
Kardar–Parisi–Zhang equation

A model for interface growth,

$$\partial_t \theta(x, t) = \nu \nabla^2 \theta(x, t) + \frac{\lambda}{2} [\nabla \theta(x, t)]^2 + \eta(x, t)$$

with diffusion, perpendicular expansion and stochastic driving,

$$\langle \eta(x, t) \rangle = 0 \quad \langle \eta(x, t) \eta(x', t') \rangle = D \delta(t - t') \delta(x - x')$$
Scaling in interface growth

The stationary state has scaling correlation functions,

\[\langle \theta(t + \tau, x + r)\theta(t, x) \rangle_c = r^{2\chi} g \left(\frac{\tau}{r^z} \right) \]

with exponents given by:

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>(d)</td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
<td>(\chi)</td>
<td>(z = 2 - \chi)</td>
</tr>
<tr>
<td>(\chi)</td>
<td>(1/2)</td>
<td>0.379</td>
<td>0.300</td>
<td>?</td>
<td>(3/2)</td>
<td>1.6210</td>
</tr>
</tbody>
</table>

Kloss et al., Phys. Rev. E 86, 051124 (2012) and references therein
From DDGPE to KPZ

Density and phase decomposition $\phi(x, t) = \sqrt{n(x, t)} e^{-i\theta(x,t)}$

\[
\begin{align*}
\partial_t \theta - \frac{1}{2m} (\nabla \theta)^2 - \nu \nabla^2 \theta &= U, \\
\partial_t n - \frac{1}{m} \nabla \cdot (n \nabla \theta) &= S,
\end{align*}
\]

with sources of phase and density fluctuations,

\[
\begin{align*}
U &= U[\theta, n] + \frac{\text{Re}(\zeta e^{i\theta})}{\sqrt{n}} \\
S &= S[\theta, n] + 2\sqrt{n} \text{Im}(\zeta e^{i\theta}).
\end{align*}
\]

Altman et al., arXiv:1311.0876v2 [cond-mat.stat-mech]
From DDGPE to KPZ

Density and phase decomposition \(\phi(x, t) = \sqrt{n(x, t)} e^{-i\theta(x, t)} \)

\[
\begin{align*}
\partial_t \theta - \frac{1}{2m} (\nabla \theta)^2 - \nu \nabla^2 \theta &= U, \quad \text{KPZ equation} \\
\partial_t n - \frac{1}{m} \nabla \cdot (n \nabla \theta) &= S,
\end{align*}
\]

with sources of phase and density fluctuations,

\[
U = U[\theta, n] + \frac{\text{Re}(\zeta e^{i\theta})}{\sqrt{n}} \quad \text{and} \quad S = S[\theta, n] + 2\sqrt{n} \text{Im}(\zeta e^{i\theta}).
\]

Altman et al., arXiv:1311.0876v2 [cond-mat.stat-mech]
Comparing scaling exponents

\[
\epsilon_{\text{kin}} = \frac{1}{2m} \langle |\nabla \phi|^2 \rangle \\
= \frac{n}{2m} \int_k k^2 \langle |\theta(k, t)|^2 \rangle
\]

\[
\epsilon_{\text{kin}}(k) \sim k^{-d+\eta}
\]

\[
\epsilon_{\text{kin}}(k) \sim k^{z-d-\chi}
\]

\[\eta = z - \chi\]
Comparing scaling exponents

\[\epsilon_{\text{kin}} = \frac{1}{2m} \langle |\nabla \phi|^2 \rangle \]

\[= \frac{n}{2m} \int_k k^2 \langle |\theta(k, t)|^2 \rangle \]

\[\epsilon_{\text{kin}}(k) \sim k^{-d+\eta} \]

\[\epsilon_{\text{kin}}(k) \sim k^{z-d-\chi} \]

\[\rightarrow \eta = z - \chi \]

GPE simulations

<table>
<thead>
<tr>
<th>(d)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>(\eta_{\text{num}})</th>
<th>1</th>
<th>small</th>
<th>small</th>
</tr>
</thead>
</table>

KPZ literature

<table>
<thead>
<tr>
<th>(d)</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\eta)</td>
<td>1</td>
<td>1.242</td>
<td>1.400</td>
</tr>
</tbody>
</table>

Comparing scaling exponents

\[\epsilon_{\text{kin}} = \frac{1}{2m} \langle |\nabla \phi|^2 \rangle \]

\[\epsilon_{\text{kin}}(k) \sim k^{-d+\eta} \]

\[\rightarrow \eta = z - \chi \]

\[d = 2 \]

\[\epsilon(k) = k^2 n(k) \]

\[\nu = \mu_2 = 0 \]

\[g_2 = \zeta = 0 \]

Comparing scaling exponents

\[\epsilon_{\text{kin}} = \frac{1}{2m} \langle |\nabla \phi|^2 \rangle \]

\[= \frac{n}{2m} \int_k k^2 \langle |\theta(k, t)|^2 \rangle \]

\[\epsilon_{\text{kin}}(k) \sim k^{-d+\eta} \]

\[\epsilon_{\text{kin}}(k) \sim k^{z-d-\chi} \]

\[\eta = \zeta - \chi \]

\[d = 2 \]

\[d = 3 \]

Compressible excitations

\[\epsilon_c = \frac{1}{2m} \langle |\nabla \phi|^2 \rangle \]

\[\epsilon_c(k) \sim k^{-d+\eta+1} \]

\[= \frac{n}{2m} \int_k k^2 \langle |\theta(k, t)|^2 \rangle \]

\[\epsilon_c(k) \sim k^{z-d-\chi} \]

\[\eta = z - \chi - 1 \]

GPE simulations

<table>
<thead>
<tr>
<th>d</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>\eta_{num}</td>
<td>0</td>
<td>small</td>
<td>small</td>
</tr>
</tbody>
</table>

KPZ literature

<table>
<thead>
<tr>
<th>d</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>\eta</td>
<td>0</td>
<td>0.242</td>
<td>0.400</td>
</tr>
</tbody>
</table>

Compressible excitations

\[\epsilon_c = \frac{1}{2m} \langle |\nabla \phi|^2 \rangle \]
\[= \frac{n}{2m} \int k^2 \langle |\theta(k, t)|^2 \rangle \]
\[\epsilon_c(k) \sim k^{-d+\eta+1} \]
\[\epsilon_c(k) \sim k^{z-d-\chi} \]
\[\eta = z - \chi - 1 \]

\[d = 2 \]
\[d = 3 \]
Compressible excitations

\[\epsilon_c = \frac{1}{2m} \langle |\nabla \phi|^2 \rangle \]

\[\epsilon_c(k) \sim k^{-d+\eta+1} \]

\[\epsilon_c(k) \sim k^{z-d-\chi} \]

\[d = 2 \]

\[d = 3 \]

Conclusions

- Interface dynamics described by KPZ equation does not capture vortex dynamics.
- It does captures the rest.
- We have made an estimation of anomalous scaling exponents of the ultra-cold Bose gas at a non-thermal fixed point.