Domain Wall Renormalization Approach for 2d Ising spin model

Ken-Ichi Aoki, *Tamao Kobayashi, Tomohiko Yasoyama and Yusuke Yoshimura
Kanazawa Univ. and Yonago College of Technology, Japan

2014.09.24 Wed. ERG2014 at Ionian Blue in Lefkade inland, Greece
Motivation

• What is “Domain Wall Renormalization Group” (DWRG)?
 • How to define coarse graining of domain walls?
 • Domain wall representation corresponds to “loop” dynamics.
 • A sort of tensor network renormalization group (TRG) method
 We will clarify detailed structures of the TRG transformation.

• The 2d Ising model
 • A best work bench for non-perturbative renormalization group approach
 • Non-trivial magnetization
 • Long history and numerous approaches
 Ex. Onsager’s exact solution,
 Various RG approaches already proposed

• Extension to contain external magnetic field
 • Oriented Domain Wall representation
 • High Temperature representation
References

- **Triangle lattice**

- **Square lattice**

- **Our works**
 - Aoki, Kobayashi & Tomita, JPS2008
 - Aoki, Fujii, Kobayashi & Sato
 - Aoki, Fujii, Kobayashi, Sato & Yoshimura, JPS2014
Definition of domain wall

Domain walls are the boundary of up and down spin.

Domain walls live on the dual links.
Domain walls constitute the boundaries of up and down spins. Domain walls make “loops”.

Domain wall representation of spin configuration
How to represent statistical weights in terms of domain walls

Spin variables $\sigma_i (\equiv \pm 1)$

Domain wall variables $\alpha_{ij} (\equiv \sigma_i \sigma_j)$ *2 to 1 mapping

- no domain wall $\alpha = +1$
- domain wall $\alpha = -1$

Domain walls constitute the boundary of spin up/down domains

Domain wall is conservative

topological “loop” objects

No such configuration
Definition of a Tensor

To respect conservation law, we define statistical weights directly.

A vertex “tensor”

\[T_{\alpha\beta\gamma\delta} \]

is a function of four domain wall variables around the dual site.

Some elements vanish for vertices breaking the conservation law. Eventually, non vanishing elements of tensor are only 8 elements.
Partition function

Configuration sum
= Sum of all dual link domain wall variables

\[Z = 2 \sum_{\alpha\beta\delta\gamma} T_{\alpha\beta\delta\gamma} T_{\delta\mu\nu\rho} \ldots \beta \]

Total products of all tensors on the dual sites

Can be seen as a “tensor network RG model”
Coarse grained domains

Micro domain

Coarse grained domain

Macro domain

*Domain decimation is equivalent to the spin decimation.
Coarse graining lattice & dual lattice

Coarse graining lattice

Decimating sites

Coarse graining dual lattice

Decimating domains
Local mapping rules (a function)

Coarse grained domain walls (macro variables) should be defined by a “local” function of original domain walls (micro variables) in order to satisfy the mapping of domains (RG policy).

1 macro domain wall 4 micro domain walls

Deterministic function, respecting conservation law
Macro domain walls & conservation law

Macro domain walls are defined as the boundary of coarse grained domains, thus, they must be conserved.

4 to 1 reduction mapping (in this local domain wall)
Coarse graining, examples 1
How to get macro domain wall variables

Renormalization transformation

Optimization problem: singular value decomposition

\[T'_{MNKL} = \sum_{\alpha\beta\gamma\delta} S_{\alpha\beta M} S_{\beta\gamma N} S_{\gamma\delta K} S_{\delta\alpha L} \]

Integrating out micro variables
There is an Eigenvalue with the single relevant operator.

Critical exponent of the correlation length.

\(\nu = 0.984 \)
How to introduce magnetic field?

Method 1

- Same domain walls

\[
\exp \left(K \sum_{<ij>} \sigma_i \sigma_j + h \sum_i \sigma_i \right)
\]

\(<ij> : \text{nearest neighbor pair}\)
Oriented Domain Wall representation

Oriented Domain wall
Up domain & Down domain

No domain wall
6 dimensional space

\[\{N, \overline{N}, b, \overline{b}, a, c\} : \text{Oriented Domain Wall Representation} \]

1 to 1 correspondence

\[\{C_0, K, K_D, K_4, h, h_3\} : \text{Spin Representation} \]

\[
\begin{align*}
\sigma_1 & \quad \sigma_4 \\
\sigma_2 & \quad \sigma_3
\end{align*}
\]

\[
\exp [C_0 + K (\sigma_1 \sigma_2 + \sigma_2 \sigma_3 + \sigma_3 \sigma_4 + \sigma_4 \sigma_1) \\
+ K_D (\sigma_1 \sigma_3 + \sigma_2 \sigma_4) + K_4 (\sigma_1 \sigma_2 \sigma_3 \sigma_4) \\
+ h (\sigma_1 + \sigma_2 + \sigma_3 + \sigma_4) \\
+ h_3 (\sigma_1 \sigma_2 \sigma_3 + \sigma_2 \sigma_3 \sigma_4 + \sigma_3 \sigma_4 \sigma_1 + \sigma_4 \sigma_1 \sigma_2)]
\]
Magnetization Property

\[h \neq 0 \text{ sector} \]

\[\alpha \equiv e^{-2K} \sim T \]
Eigenvalues of \mathbb{Z}_2 odd sector around the non-trivial fixed point

$2.02141, 1.05465$

Critical exponent of susceptibility

$\gamma_{DW} = 2.0276 \quad \leftrightarrow \quad \gamma_{\text{exact}} = \frac{7}{4} = 1.75$
How to introduce magnetic field?

Method 2

Bond value representation

\[Z = \sum_{\sigma} e^{K \sum_{x, \nu} \sigma_x \sigma_{x+\nu} + h \sum_{x} \sigma_x} \]

\[
Z = 2^V \cosh^{DV} K \cosh^V h \sum_{b_x, \nu = \{0, 1\}} \sum_{S_x = \{0, 1\}} \prod_x \left[\left(\prod_\nu \tanh^{b_x, \nu} K \right) \times \tanh^{S_x} \hbar \delta \sum_\mu (b_{x, \mu} + b_{x-\hat{\mu}, \mu}) + S_x \mod 2, 0 \right] \]

\[
= 2^V \cosh^{DV} K \cosh^V h \sum_{b_x, \nu = \{0, 1\}} \prod_x T_x \]

\[b_x, \; \hat{\nu} : \text{Bond value} \]

\[V : \text{Numbers of lattice sites} \]

\[D = 2 \]
Bond string rep. with magnetic field

A tensor (bond string rep.)

\[
T = \begin{pmatrix}
00 & 11 & 01 & 10 \\
00 & 1 & w & f\sqrt{w} & f\sqrt{w} \\
11 & w & w^2 & f\sqrt{w^3} & f\sqrt{w^3} \\
01 & f\sqrt{w} & f\sqrt{w^3} & w & w \\
10 & f\sqrt{w} & f\sqrt{w^3} & w & w \\
\end{pmatrix}
\]

\[w = \tanh K\]

\[f = \tanh h\]

Eigen value decomposition

We set infinitesimal magnetic field and calculate by perturbation the eigenvalues of RG transformation around the fixed point annalistically.

New Eigenvalue for Z2 odd sector is found to be \[\lambda_h = 1.828\]

Critical exponent of susceptibility \textit{(preliminary)}

\[\gamma_{bs} = 1.458\quad \Leftrightarrow \quad \gamma_{\text{exact}} = \frac{7}{4} = 1.75\]
Summary

- We set up the renormalization group for the Domain Wall representation of the 2D Ising model. The key issue is how to coarse grain the domain walls so that its conservation feature is maintained in the renormalization procedure. We define the coarse grained domain walls by referring to the Tensor Network Renormalization Group technique.

- The Domain Wall RG is extended to include external magnetic field in two ways: Oriented Domain Wall representation and Bond String representation.

- The magnetic quantities are calculated in these two methods, and the critical index obtained seems fair in both methods. We don’t understand why yet, and will make further analysis.