On IR Fixed Points of Quantum Gravity.

Raul Cuesta, Carlos Contreras.

University of Sussex
Department of Physics and Astronomy.

7th International Conference on the Exact Renormalisation Group.
22 Sep. 2014
Renormalisation Group for Gravity.
Figure 1: Wilsonian flows for scale-dependent effective actions Γ_k in the space of all action functionals (schematically); arrows point towards smaller momentum scales and lower energies $k \to 0$.

a) Flow connecting a fundamental classical action S at high energies in the ultraviolet with the full quantum effective action Γ at low energies in the infrared ("top-down").

b) Flow connecting the Einstein-Hilbert action at low energies with a fundamental fixed point action Γ^* at high energies ("bottom-up").

- Integral representation.
 The physical theory described by Γ can be defined without explicit reference to an underlying path integral representation, using only the (finite) initial condition Γ_Λ, and the (finite) flow equation (3.2)
 \[\Gamma = \Gamma_\Lambda + \int \frac{\Lambda}{k^2} \text{Tr} \left(\Gamma^{(2)} + R_k \right)^{-1} k \partial_k R_k. \]
Example: Einstein-Hilbert Action.

\[\Gamma_k = \int d^4x \sqrt{g} \left[\frac{1}{16\pi G_k} (-R + 2\Lambda_k) \right] \]

\[g = G(k) k^2 \quad \lambda = \Lambda(k) k^{-2} \quad \eta = k \partial_k \log G_k \]

Anomalous Dimension.
Example: Einstein-Hilbert Action.

\[\Gamma_k = \int d^4 x \sqrt{g} \left[\frac{1}{16\pi G_k} (-R + 2\Lambda_k) \right] \]

\[g = G(k) k^2 \quad \lambda = \Lambda(k) k^{-2} \]

\[\eta = k \partial_k \log G_k \]

Anomalous Dimension.

Schematic Trajectory.

Figure 4: The Type IIIa trajectory realized in Nature and the separatrix. The dashed line is a trajectory of the canonical RG flow.

Example: Einstein-Hilbert Action.

\[\Gamma_k = \int d^4x \sqrt{g} \left[\frac{1}{16\pi G_k} (-R + 2\Lambda_k) \right] \]

\[g = G(k) k^2 \quad \lambda = \Lambda(k) k^{-2} \]

Anomalous Dimension.

\[\eta = k \partial_k \log G_k \]

Schematic Trajectory.

Classical Gravity.

Figure 4: The Type IIIa trajectory realized in Nature and the separatrix. The dashed line is a trajectory of the canonical RG flow.

Example: Einstein-Hilbert Action.

\[\Gamma_k = \int d^4 x \sqrt{g} \left[\frac{1}{16\pi G_k} (-R + 2\Lambda_k) \right] \]

\[g = G(k) k^2 \quad \lambda = \Lambda(k) k^{-2} \]

Anomalous Dimension.

\[\eta = k \partial_k \log G_k \]

Schematic Trajectory.

Figure 4: The Type IIIa trajectory realized in Nature and the separatrix. The dashed line is a trajectory of the canonical RG flow.

IR Fixed Point Hypothesis.

\[G_k = \frac{g_*}{k^2} \]

Strong Gravity in the IR.

\[\Lambda_k = \lambda_* k^2 \]

High Redshift Type Ia Supernovae.

- \(m_B \): Apparent Magnitude.
- \(z \): Red Shift.

FIG. 1: The measured apparent magnitudes of the supernovae as a function of their redshift. The continuous line represents the prediction of the IRFP cosmology, the dashed one is the best-fit FRW model, and the dot-dashed line is a flat FRW model with zero cosmological constant.

E. Bentivegna, A. Bonanno, M. Reuter, JCAP 0401 (2004) 001
Approximations.
Approximation (Leading order in g).

$$\eta = -g\alpha_1$$

Close-up on C.
Approximation - Nullclines.

Definition:

NULLCLINES are integral curves where the beta functions vanish.

\[
\beta_g(\lambda, g_g(\lambda)) = 0 \quad \beta_\lambda(\lambda, g_\lambda(\lambda)) = 0
\]

- The intersection of two nullclines is a Fixed Point.
Nullclines - Approximation.

A (UVFP)

B (GFP)

C

g_b

$g_g(\lambda)$

$g_\lambda(\lambda)$
Nullclines - Approximation.

\[
\eta = -2 \quad \text{A (UVFP)}
\]

\[
1/\eta = 0 \quad \text{B (GFP)}
\]

\[
\eta = 0 \quad \text{C}
\]
Nullclines – Approximation.

A (UVFP)

B (GFP)

DEGENERACY

\[\eta = -2 \]

\[1/\eta = 0 \]

\[\eta = 0 \]

\[g / g^* \]

\[g_b \]

\[g_g(\lambda) \]

\[g_\lambda(\lambda) \]
Introduce a small parameter δ to lift the degeneracy.
Lifting the degeneracy.
Lifting the Degeneracy-Approximation.
Lifting the Degeneracy-Approximation.
Lifting the Degeneracy-Approximation.

\[\eta = 2 \]

\[\frac{1}{\eta} = 0 \]

\[\eta = 0 \]

New Fixed Point \(C' \).

\(C' : g_\ast \neq 0, \quad \lambda_\ast \neq 0, \quad \eta = -2 \rightarrow \) Candidate for IRFP.
Lifting the Degeneracy-Approximation.

\[\eta = -2 \]

\[\frac{1}{\eta} = 0 \]

\[\eta = 0 \]

New Fixed Point C.

\[C : \ g_* = 0, \ \lambda_* \neq 0, \ \eta = 0 \rightarrow \text{Classical Gravity.} \]
Approximation 2: Hartree-Fock Resummation.
Stability Analysis of C and C.

• **Critical Exponents:** - Eigenvalues of the Stability Matrix.

1. **IRFP C':**

\[
\theta^{1}_{C'} = 4 - \frac{16\sqrt{2}}{3} \delta^{1/2} + \frac{80}{3} \delta - \frac{160\sqrt{2}}{3} \delta^{3/2}
\]

\[
\theta^{2}_{C'} = -2\sqrt{2} \delta^{-1/2} - \frac{8}{3} + \frac{40\sqrt{2}}{9} \delta^{1/2} - \frac{256}{9} \delta + \frac{6056\sqrt{2}}{81} \delta^{3/2}
\]

2. **IRFP C:**

\[
\theta_{C}^{1} = -\frac{4}{\sqrt{3}} \delta^{-1/2} - \frac{8}{3} - \frac{14}{3\sqrt{3}} \delta^{1/2} + 8\delta
\]

\[
\theta_{C}^{2} = -2
\]
• One special trajectory (separatrix (red)) will hit the FP C’ without feeling the effects of C. And another similar but connecting C.
• Trajectories between the separatrices (blue) will be dragged abruptly towards C’, spending some time in its vicinity (strong gravity). After that, they will be pushed smoothly to C where it will finish.
Conclusions.

* Deep Infrared regime of the flow contain a degenerated FP.

* We have lifted the degeneracy and found new FP.

* C': $g_* \neq 0 \quad G_k = \frac{g_*}{k^2}$

* C: $g_* = 0 \quad G_k \rightarrow constant$

1. Use the result in Cosmology (Transition to FP epoch, Accelerated Expansion without Dark Matter?).

2. Find a dynamical way to lift the degeneracy.
Thank you!

Plaudite, cives.
Poles in the flow.

★ The graviton propagator displays a pole around:

\[\sim \frac{1}{1 - 2\lambda} \quad \text{or} \quad \sim \frac{1}{1 - 2\alpha \lambda} \]

★ Then, fixed point solutions must obey

\[\lambda_* \leq \lambda_{\text{bound}} = \min \left\{ \frac{1}{2}, \frac{1}{2\alpha} \right\} \]
For $0 \leq \alpha \leq 1$, we computed the mean value and the standard deviation for FP and Critical Exponents:

<table>
<thead>
<tr>
<th></th>
<th>λ_A</th>
<th>g_A</th>
<th>θ_{A}^R</th>
<th>θ_{A}^I</th>
<th>λ_C</th>
<th>g_C</th>
<th>θ_{C}^1</th>
<th>θ_{C}^2</th>
<th>λ_C'</th>
<th>g_C'</th>
<th>$\theta_{C'}^1$</th>
<th>$\theta_{C'}^2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\langle X_{LO} \rangle$</td>
<td>0.1972</td>
<td>0.9124</td>
<td>1.3943</td>
<td>2.5287</td>
<td>0.4316</td>
<td>0</td>
<td>-27.0797</td>
<td>-2</td>
<td>0.4513</td>
<td>0.0424</td>
<td>3.5088</td>
<td>-38.1576</td>
</tr>
<tr>
<td>$\langle \Delta X_{LO} \rangle$</td>
<td>0.0040</td>
<td>0.0053</td>
<td>0.1264</td>
<td>0.0355</td>
<td>0.0010</td>
<td>0</td>
<td>0.3064</td>
<td>0</td>
<td>0.001</td>
<td>0.0003</td>
<td>0.0338</td>
<td>0.2687</td>
</tr>
<tr>
<td>$\langle X_{HF} \rangle$</td>
<td>0.1651</td>
<td>0.8362</td>
<td>1.909</td>
<td>2.5061</td>
<td>0.4635</td>
<td>0</td>
<td>-31.7670</td>
<td>-2</td>
<td>0.4692</td>
<td>0.0126</td>
<td>3.5554</td>
<td>-38.1802</td>
</tr>
<tr>
<td>$\langle \Delta X_{HF} \rangle$</td>
<td>0.0018</td>
<td>0.0547</td>
<td>0.0926</td>
<td>0.0752</td>
<td>0.0003</td>
<td>0</td>
<td>0.2688</td>
<td>0</td>
<td>0.0003</td>
<td>0.0001</td>
<td>0.0319</td>
<td>0.3591</td>
</tr>
</tbody>
</table>

The relative standard deviation ranges:

- **LO (d = 1/50):** 0.22 % for λ_C to 9.06% for $\text{Re}(\theta_A)$
- **HF (d = 1/300):** 0.06% for λ_C' to 6.54% for g_A