Suppression of Quantum Fluctuations by Classical Backgrounds

N. Brouzakis
University of Athens
The cubic Galileon theory describes the dynamics of the scalar mode that survives in the decoupling limit of the DGP model (Dvali, Gabadadze, Porrati).

The action contains a higher-derivative term, cubic in the field \(\pi(x) \), with a dimensionful coupling that sets the scale \(\Lambda \) at which the theory becomes strongly coupled.

\[
\nu = \frac{1}{\Lambda^3}
\]

\[
\Lambda \sim (m^2M_{Pl})^{1/3} \text{ with } m \sim H \sim M_5^3/M_{Pl}^2
\]
The action is invariant under the **Galilean transformation**
\[\pi(x) \rightarrow \pi(x) + b_\mu x^\mu + c, \] up to surface terms.

In the **Galileon theory** additional terms can also be present, but the theory is **ghost-free**: EOM is second order (Nicolis, Rattazzi, Trincherini).

Nonlinearities become important below the **Vainshtein radius**
\[r_V \sim (M/\Lambda^3 M_{Pl})^{1/3}. \]

Does this construction survive quantum corrections?

The DBI action
\[S = \int d^4 x \mu \sqrt{1 + \partial_\mu \pi \partial^\mu \pi} \] corresponds to the simplest term of a theory of embedded surfaces.

The effective theory of **embedded surfaces** can be used in order to reproduce the **Galileon theory** at low energies \((\partial \pi)^2 << 1 \) (de Rham, Tolley).
Outline

- Classical solutions and Vainshtein mechanism.
- Renormalization of the cubic Galileon theory, perturbative background.
- Heat-kernel method for nontrivial backgrounds.
- Suppression of quantum corrections by the Vainshtein mechanism.
- Classicalon.
N. B., J. Rizos, Nikos Tetradis

N. B., A. Codello, Nikos Tetradis, O. Zanusso
arXiv:1310.0187 [hep-th]

N. B., Nikos Tetradis
Classical solution, Vainshtein mechanism

- The classical EOM for cubic Galileon is
 \[
 \Box \pi - \frac{1}{\Lambda^3} (\Box \pi) + \frac{1}{\Lambda^3} \partial_\mu \partial_\nu \pi \partial^\mu \partial^\nu \pi = T \delta^3(\vec{x})
 \]

- Spherically symmetric solution \((w = r^2)\)
 \[
 \pi'_{cl}(w) = \frac{1}{8\nu} \left(1 - \sqrt{1 + \frac{16\nu c}{w^{3/2}}} \right).
 \]

- \(r_v \sim (c\nu)^{1/3}\)
- For \(r \ll r_v\) we have \(\pi \sim \sqrt{c/\nu} \sqrt{r}\).
- For \(r \gg r_v\) we have \(\pi \sim c/r\).
Renormalization of the Galileon theory

- Perturbative background.

\[S = \int d^4 x \left\{ \frac{1}{2} (\partial \pi)^2 - \frac{\nu}{2} (\partial \pi)^2 \Box \pi + \frac{\kappa}{4} (\partial \pi)^2 \left((\Box \pi)^2 - (\partial_\mu \partial_\nu \pi)^2 \right) + \ldots \right\}. \]

- If a momentum cutoff is used, of the order of the fundamental scale \(\Lambda \) of the theory, and the couplings are taken of order \(\Lambda \), the one-loop effective action of the Galileon theory is, schematically, (Luty, Porrati, Nicolis, Rattazzi)

\[\Gamma_1 \sim \int d^4 x \sum_m \left[\Lambda^4 + \Lambda^2 \partial^2 + \partial^4 \log \left(\frac{\partial^2}{\Lambda^2} \right) \right] \left(\frac{\partial^2 \pi}{\Lambda^3} \right)^m. \]

- Non-renormalization of the Galileon couplings (de Rham, Gabadadze, Heisenberg, Pirtskhalava, Hinterbichler, Trodden, Wesley).

- Explicit one-loop calculation using dimensional regularization (Paula Netto, Shapiro).
One-loop corrections to the cubic Galileon

- Tree-level action in Euclidean d-dimensional space

\[S = \int d^d x \left\{ \frac{1}{2} (\partial \pi)^2 - \frac{\nu}{2} (\partial \pi)^2 \Box \pi \right\}. \]

- Field fluctuation $\delta \pi$ around the background π. The quadratic part is

\[S^{(2)} = \int d^d x \left\{ -\frac{1}{2} \delta \pi \Box \delta \pi + \frac{\nu}{2} \delta \pi \left[2 (\Box \pi) \Box \delta \pi - 2 (\partial \mu \partial ^\nu \pi) \partial \mu \partial ^\nu \delta \pi \right] \right\}. \]

- Define

\[K = -\Box \quad \Sigma_1 = 2\nu (\Box \pi) \Box \quad \Sigma_2 = -2\nu (\partial_\mu \partial ^\nu \pi) \partial ^\mu \partial ^\nu \]

- One-loop contribution to the effective action

\[\Gamma_1 = \frac{1}{2} \text{tr} \log \left(K + \Sigma_1 + \Sigma_2 \right) = \frac{1}{2} \text{tr} \log \left(1 + \Sigma_1 K^{-1} + \Sigma_2 K^{-1} \right) + \mathcal{N}. \]
Expanding the logarithm up to $O(\nu^2)$ we obtain

\[
\text{tr} \left(\Sigma_1 K^{-1} \Sigma_1 K^{-1} \right) = 4\nu^2 (2\pi)^d \int d^d k \ k^4 \tilde{\pi}(k) \tilde{\pi}(-k) \int \frac{d^d p}{(2\pi)^d}
\]

\[
\text{tr} \left(\Sigma_1 K^{-1} \Sigma_2 K^{-1} \right) = -4\nu^2 (2\pi)^d \int d^d k \ k^4 \tilde{\pi}(k) \tilde{\pi}(-k) \frac{1}{d} \int \frac{d^d p}{(2\pi)^d}
\]

\[
\text{tr} \left(\Sigma_2 K^{-1} \Sigma_2 K^{-1} \right) = 4\nu^2 (2\pi)^d \int d^d k \ \tilde{\pi}(k) \tilde{\pi}(-k) \left\{ \frac{3}{d(d+2)} k^4 \int \frac{d^d p}{(2\pi)^d} + \frac{(d-8)(d-1)}{d(d+2)(d+4)} k^6 \int \frac{d^d p}{(2\pi)^d} \frac{1}{p^2} - \frac{(d-24)(d-2)(d-1)}{d(d+2)(d+4)(d+6)} k^8 \int \frac{d^d p}{(2\pi)^d} \frac{1}{p^4} \right\}.
\]
Putting everything together, we obtain in position space, the one-loop correction to the effective action

\[\Gamma^{(2)}_1 = \nu^2 \int d^d x \pi(x) \left\{ - \frac{d^2 - 1}{d(d + 2)} \left(\int \frac{d^d p}{(2\pi)^d} \right) \Box^2 + \frac{(d - 8)(d - 1)}{d(d + 2)(d + 4)} \left(\int \frac{d^d p}{(2\pi)^d} \frac{1}{p^2} \right) \Box^3 + \frac{(d - 24)(d - 2)(d - 1)}{d(d + 2)(d + 4)(d + 6)} \left(\int \frac{d^d p}{(2\pi)^d} \frac{1}{p^4} \right) \Box^4 \right\} \pi(x). \]

- The momentum integrals are defined with UV and IR cutoffs.
- If dimensional regularization near \(d = 4 \) is used, the first two terms are absent. The third one corresponds to a counterterm \(\sim 1/\epsilon \) (Paula Netto, Shapiro).
- No corrections to the Galileon couplings.
- Terms outside the Galileon theory are generated.
Perturbation theory:

\[\Gamma_1 \sim \int d^4 x \sum_m \left[\Lambda^4 + \Lambda^2 \partial^2 + \partial^4 \log \left(\frac{\partial^2}{\Lambda^2} \right) \right] (\nu \partial^2 \pi)^m. \]

- Split the field as \(\pi = \pi_{cl} + \delta\pi. \)
- The action includes terms \(\sim \nu^2 \Lambda^4 (\nu \square \pi_{cl})^n (\square \delta\pi)^2 \)
- But \(\nu \square \pi_{cl} \sim (r_V/r)^{3/2} \gg 1 \) below the Vainshtein radius.
Heat-kernel approach around a nontrivial background

- Our task is to evaluate the one-loop effective action

\[\Gamma_1 = \frac{1}{2} \text{tr} \log \Delta \]

with

\[\Delta = -\Box + 2\nu (\Box \pi) \Box - 2\nu (\partial_\mu \partial_\nu \pi) \partial^\mu \partial^\nu \]

around the background \((w = r^2)\)

\[\pi'_\text{cl}(w) = \frac{1}{8\nu} \left(1 - \sqrt{1 + \frac{16\nu c}{w^{3/2}}} \right). \]

- The propagation of classical fluctuations in suppressed below the Vainshtein radius \(r_V \sim (\nu c)^{1/3}\), where \(\nu \Box \pi_{cl} \sim (r_V / r)^{3/2} \gg 1\).

- What about the quantum fluctuations?
Calculate the heat kernel

\[h(x, x', \epsilon) = \int \frac{d^4 k}{(2\pi)^4} e^{-ikx'} e^{-\epsilon \Delta} e^{ikx} \]

The one-loop effective action can be obtained as

\[\Gamma_1 = -\frac{1}{2} \int_{1/\Lambda^2}^{\infty} \frac{d\epsilon}{\epsilon} \int d^4 x \ h(x, x, \epsilon). \]

\[h(x, x, \epsilon) = \int \frac{d^4 k}{(2\pi)^4} e^{-k^2} e^{\sqrt{\epsilon}X(k, \partial) + \epsilon Y(k, \partial)} \] \hspace{1cm} (1)

Expand in powers of \(\sqrt{\epsilon} \). The result is the derivative expansion of the effective action.
The diagonal part of the heat kernel becomes

$$h(x, x, \epsilon) = \int \frac{d^4 k}{(2\pi)^4} \frac{1}{\epsilon^2} \exp \left\{ -k^2 + 2i\sqrt{\epsilon} k^\mu \partial_\mu + \epsilon \Box
+ 2\nu \Box \pi \left(k^2 - 2i\sqrt{\epsilon} k^\mu \partial_\mu - \epsilon \Box \right)
- 2\nu \partial_\mu \partial_\nu \pi \left(k^\mu k^\nu - 2i\sqrt{\epsilon} k^\mu \partial^\nu - \epsilon \partial_\mu \partial^\nu \right) \right\}$$

- Expand in ϵ and ν.
- The leading perturbative result is reproduced:

$$h(x, x, \epsilon) = \frac{15}{32 \pi^2 \epsilon^2 \nu^2 (\Box \pi)^2}$$

$$\Gamma_1^{(2)} = -\frac{1}{2} \int_{1/\Lambda^2}^{\infty} \frac{d\epsilon}{\epsilon} \int d^4 x \, h(x, x, \epsilon) = -\frac{15}{128 \pi^2 \nu^2 \Lambda^4} \int d^4 x \, (\Box \pi)^2.$$
Heat kernel

- The exponent of the heat-kernel is \(\pi = \pi_{cl} + \delta \pi \)

\[
F = -G_{\mu \nu} k^\mu k^\nu - (1 - 2\nu \Box \pi_{cl}) D_\epsilon(k) + 2\nu \partial_\mu \partial_\nu \pi_{cl} L_\epsilon^{\mu \nu}(k) \\
+ 2\nu \Box \delta \pi (k^2 + D_\epsilon(k)) + 2\nu \partial_\mu \partial_\nu \delta \pi (-k^\mu k^\nu + L_\epsilon^{\mu \nu}(k))
\]

with the "metric" \(G_{\mu \nu} = g_{\mu \nu} - 2\nu \Box \pi_{cl} g_{\mu \nu} + 2\nu \partial_\mu \partial_\nu \pi_{cl} \) and

\[
D_\epsilon(k) = -2i \sqrt{\epsilon} k^\mu \partial_\mu - \epsilon \Box \\
L_\epsilon^{\mu \nu}(k) = 2i \sqrt{\epsilon} k^\mu \partial^\nu + \epsilon \partial^\mu \partial^\nu.
\]

- Make the "metric" \(G_{\mu \nu} \) trivial by rescaling \(k^\mu = S^\mu_\nu k'^\nu \), with

\[
S^\mu_\rho G_{\mu \nu} S^\nu_\sigma = g_{\rho \sigma}.
\]

- The most divergent term quadratic in \(\delta \pi \) in the heat kernel is

\[
h(x, x, \epsilon) = \int \frac{d^4 k}{(2\pi)^4} (\det S) \frac{1}{2\epsilon^2} e^{-k^2} \left(2\nu \Box \delta \pi (Sk)^2 \\
+ 2\nu \partial_\mu \partial_\nu \delta \pi (-Sk^\mu Sk^\nu) \right)^2.
\]
On the background that realizes the Vainshtein mechanism

\[
\Gamma_1^{(2)} = -\frac{1}{128\pi^2} \nu^2 \Lambda^4 \int d^4x \left((\Box \delta \pi)^2 P(r^2) - 2(\Box \delta \pi)(\partial_\mu \partial_\nu \delta \pi) V^{\mu\nu}(r^2)
+ (\partial_\mu \partial_\nu \delta \pi)(\partial_\rho \partial_\sigma \delta \pi) W^{\mu\nu\rho\sigma}(r^2) \right).
\]

with \(P(r^2), V^{\mu\nu}(r^2), W^{\mu\nu\rho\sigma}(r^2) \sim (r/r_V)^6 \) and \(r_V \sim (\nu c)^{1/3} \).
Figure: \((\det S)\left(S^i_i\right)^4\) as a function of \(r\) with \(\nu = 1, c = 10^6\). The solid, blue line corresponds to \(i = 0\), the dotted, red line to \(i = 1\) and the dashed, green line to \(i = 2\) or \(3\).
Higher order in ϵ

- The heat-kernel for the cubic Galileon takes the form

$$h(x, x, \epsilon) = \int \frac{d^4 k}{(2\pi)^4} \frac{1}{\epsilon^2} \exp \left\{ -G_{\mu\nu} k^\mu k^\nu + 2i\sqrt{\epsilon} G_{\mu\nu} k^\mu \partial^\nu + \epsilon G_{\mu\nu} \partial^\mu \partial^\nu \right\},$$

- $X = -G_{\mu\nu} k^\mu k^\nu$, \hspace{0.5cm} $Y = 2i\sqrt{\epsilon} G_{\mu\nu} k^\mu \partial^\nu + \epsilon G_{\mu\nu} \partial^\mu \partial^\nu$.
- $e^{X+Y} = e^X \left(1 - \frac{1}{2} Y[X, Y] - \frac{1}{2} [X, Y] + \ldots\right)$.
The general structure of the effective action is

\[
\Gamma^{(2)}_1 = \nu^2 \int d^4x \left[\Lambda^4 \left(c_0 \frac{r^6}{R_V^6} (\delta \pi \partial^4 \delta \pi) \right) + \Lambda^2 \left(c_{1a} \frac{r^{5/2}}{R_V^{9/2}} (\delta \pi \partial^4 \delta \pi) + c_{1b} \frac{r^{7/2}}{R_V^{9/2}} (\delta \pi \partial^5 \delta \pi) + c_{1c} \frac{r^{9/2}}{R_V^{9/2}} (\delta \pi \partial^6 \delta \pi) \right)
+ \log(\Lambda/\mu) \left(c_{2a} \frac{1}{r R_V^3} (\delta \pi \partial^4 \delta \pi) + c_{2b} \frac{1}{R_V^3} (\delta \pi \partial^5 \delta \pi)
+ c_{2c} \frac{r}{R_V^3} (\delta \pi \partial^6 \delta \pi) + c_{2d} \frac{r^2}{R_V^3} (\delta \pi \partial^7 \delta \pi) + c_{2e} \frac{r^3}{R_V^3} (\delta \pi \partial^8 \delta \pi) \right) \right].
\]
Classicalon

We repeat the same procedure for the Classicalon field.

\[S = \int d^4 x \left(\frac{1}{2} \partial_\mu \pi \partial^\mu \pi + \frac{1}{\Lambda^4} (\partial_\mu \pi \partial^\mu \pi)^2 \right). \]

\[G_{\mu\nu} = g_{\mu\nu} \left(1 + \frac{\nu}{2} \partial_\rho \pi \partial^\rho \pi \right) + \nu \partial_\mu \pi \partial_\nu \pi. \]

\[r_c = \frac{1}{\Lambda} \left(\frac{M}{\Lambda} \right)^{\frac{1}{2}} \]

\[h(x, x, \epsilon) = \frac{1}{16\pi^2 \epsilon^2} \det S \]
Figure: \((\det S) (S_i^i)^4\) as a function of \(r\) with \(\Lambda = 1\), \(r_c = 30\).
Conclusions

- The couplings of the Galileon theory do not get renormalized. However, the Galileon theory is not stable under quantum corrections. Additional terms are generated.
- Quantum corrections are suppressed below the Vainshtein radius.
- The Classicalon model possibly shares the same properties.