Understanding hysteresis - same universality class of a system with disorder in and out of equilibrium

Ivan Balog

Institute of Physics, Zagreb

24.9.2014
Collaboration

“Laboratoire de Physique Théorique de la Matière Condensée de l’Université Pierre et Marie Curie”,

Gilles Tarjus
Matthieu Tissier
Bertrand Delamotte

What is hysteresis?

Where does it appear?

- Ferromagnetic amorphous alloys
 O'Brien, Weissman: PRE, 50, 3446

- Capillary condensation of helium in pores of an aerogel
 Lilly, Finley, Hallock: PRL, 71, 4186

- Structural martensic transition (Cu-Zn-Al alloys)
 Vives et al.: PRL, 72, 1694

- Charge density wave systems
 Middleton: PRL, 68, 670

- “SOC” self organized criticality
 Bak, Tang: PRL 59 381
Barkhausen noise

Heinrich Barkhausen Z.Physik 20, 401 (1919)

- noninvasive testing and characterization of samples
 - residual stress Curr. Appl. Phys. 4, 308
 - grain sizes J. Appl. Phys. 61, 3199, Acta Mat. 49, 3019

Dobrinevski: arXiv:1312.7156
What is in common?
- interplay of two phases
- discontinuous phase transition in the background
- thermal activation is a secondary effect
- non-equilibrium
- disorder

Is there a theoretical model?
Can it be solved?

random field Ising model (RFIM):
- Hamiltonian $H = \sum \langle i, j \rangle - J \sigma_i \sigma_j - \sum_i h_i \sigma_i - h \sum_i \sigma_i$
- Gaussian disorder distribution: $P[h_i] = \frac{1}{\sqrt{2\pi\Delta^2}} e^{-\frac{h_i^2}{2\Delta}}$
Can RFIM explain all the concepts? - YES

Sethna & Dahmen (1990-2000): “plain old criticality...”
- power law behavior
- critical exponents
- ...

Phase transition by changing disorder strength Δ:

$\Delta > \Delta_c$

$\Delta = \Delta_c$

$\Delta < \Delta_c$

GOAL: rigorously understand the phase transition in hysteresis
What next?

random field Ising model

⇓

Field theory

⇓

Non-Perturbative Renormalization Group

⇓

Result
A) formulate the field theory for RFIM (Hubbard-Stratonowich):

\[H \rightarrow \int_x \left\{ \frac{1}{2} (\nabla_x \phi_x)^2 + \frac{r}{2} \phi_x^2 + \frac{u}{4!} \phi_x^4 - (h_x + J_B) \phi_x \right\} \]

B) sum over solutions of the stationary stochastic equation (+ source \(\hat{J} \)):

\[Z = \int D\phi \delta[\frac{\delta S}{\delta \phi} - h_x - J_B] |\frac{\delta^2 S}{\delta \phi_x \delta \phi_y}| e^{\int_x \hat{J}_x \phi_x} \]

C) write \(Z \) in exponential form (superfield f. at \(T = 0 \) Parisi, Sourlas: PRL 43 744)

\[Z = \int D(\phi, \hat{\phi}, \psi, \bar{\psi}) e^{\int_x \left\{ -\hat{\phi}_x(\frac{\delta S}{\delta \phi_x} - h_x - J_B) + \hat{J}_x \phi_x + \psi_x \bar{K}_x + \bar{\psi}_x K_x \right\} + \int_x \int_y \bar{\psi}_x \frac{\delta^2 S}{\delta \phi_x \delta \phi_y} \psi_y} \]

D) introduce a sum over infinite replicas Tarjus, Mouhanna: PRE 81, 051101 (2010)

\[Z^n = \int \Pi_a D\Phi_a e^{\sum_a \left\{ \int_x \left\{ -\hat{\phi}_x^a(\frac{\delta S}{\delta \phi_x} - h_x - J_B) + \hat{J}_x^a \phi_x + \psi_x^a \bar{K}_x + \bar{\psi}_x^a K_x \right\} + \int_x \int_y \bar{\psi}_x^a \frac{\delta^2 S}{\delta \phi_x \delta \phi_y} \psi_y \right\}} \]

E) average over disorder:

\[\overline{Z^n} = \int \Pi_a D\Phi_a e^{\sum_a \left\{ \int_x \left\{ -\hat{\phi}_x^a(\frac{\delta S}{\delta \phi_x} - J_B) + \hat{J}_x^a \phi_x + \psi_x^a \bar{K}_x + \bar{\psi}_x^a K_x \right\} + \int_x \int_y \cdots \right\}} + \frac{A}{4} \sum_{a,b} \int_x \hat{\phi}_a \hat{\phi}_b \]
Steps A)-E) define free energy

\[\overline{Z^n} = e^{W[\{J_a, J_b, \cdots \}]} = \text{Exp}\left\{ \sum_a W_a[\{J_a\}] + \frac{1}{2} \sum_{a,b} W_{a,b}[\{J_a, J_b\}] + \cdots \right\} \]

F) Legendre transform \([W[\{J_a, J_b, \cdots \}]] \Rightarrow \Gamma[\{M_a, M_b, \cdots \}]\]

⇒ functional of the effective average action
Steps A)-E) define free energy

\[\tilde{Z}^n = e^{W[\{ \mathcal{J}_a, \mathcal{J}_b, \cdots \}]} = \text{Exp}\left[\sum_a W_a[\{ \mathcal{J}_a \}] + \frac{1}{2} \sum_{a,b} W_{a,b}[\{ \mathcal{J}_a, \mathcal{J}_b \}] + \cdots \right] \]

F) Legendre transform \[W[\{ \mathcal{J}_a, \mathcal{J}_b, \cdots \}] \Rightarrow \Gamma[\{ \mathcal{M}_a, \mathcal{M}_b, \cdots \}] \]

⇒ functional of the effective average action

⇒ use NPRG

- introduce a proper infrared regulator
- set the Wetterich equation:

\[\partial_t \Gamma = \frac{1}{2} \text{Tr} \int_q \]
Why is all this about hysteresis?
A) hysteresis

Auxiliary source \hat{J} (introduced in steps A)-F):

- enters the partition function as $Z = \int D\phi e^{-\Gamma'} + \int_x \hat{J}_x \phi_x$

![Diagram showing hysteresis loop and expectation value $m = \langle \phi \rangle$]
A) hysteresis

Auxiliary source \hat{J} (introduced in steps A)-F):

- enters the partition function as $Z = \int D\phi e^{-\cdots} + \int_x \hat{J}_x \phi_x$
- $\hat{J} \to \infty$
A) hysteresis

Auxiliary source \hat{J} (introduced in steps A)-F):

- enters the partition function as $Z = \int D\phi e^{\cdots} + \int_x \hat{J}_x \phi_x$
- $\hat{J} \to \infty$

\[m = \langle \phi \rangle \]
a problem of choosing the ground state!
introduce auxiliary temperature T_a: $Z = \int D\phi e^{\int x \frac{1}{T_a} S[\phi]} + \ldots$

lifts the ground state degeneracy!
B) equilibrium RFIM Tarjus & Tissier 2004-2012

- Introduce auxiliary temperature T_a: $Z = \int D\phi e^{\int_x \frac{1}{T_a} S[\phi]} + \cdots$
- Equations do not depend on T_a ($T_a \to 0$)
B) equilibrium RFIM Tarjus & Tissier 2004-2012

- introduce auxiliary temperature T_a: $Z = \int D\phi e^{\int_x \frac{1}{T_a} S[\phi]} + \cdots$
- equations do not depend on T_a ($T_a \to 0$)
A) hysteresis ($\hat{J} \to \pm \infty$)

B) equilibrium RFIM ($\hat{J} \to 0$ + auxiliary temperature T_a)
A) hysteresis ($\hat{J} \to \pm \infty$)
B) equilibrium RFIM ($\hat{J} \to 0 +$ auxiliary temperature T_a)

\[\partial_t \Gamma = \beta \Gamma \]

formally identical flow equation

Are we done???
A) hysteresis (\(\hat{J} \to \pm \infty \))

B) equilibrium RFIM (\(\hat{J} \to 0 + \) auxiliary temperature \(T_a \))

\[\partial_t \Gamma = \beta \Gamma \]

formally identical flow equation

Are we done???

NO: what are the initial conditions?
What is the meaning of the eff. average action? \((\mathcal{M} = (M, \hat{M}))\):

\[
\Gamma[\{M_a, M_b, \cdots\}] = \sum_a \Gamma_1[M_a] - \frac{1}{2} \sum_{a,b} \Gamma_2[M_a, M_b] + \cdots
\]

Derivatives by \(\hat{M}\) have a physical meaning:

- \[
\frac{\delta \Gamma_1[M_a]}{\delta \hat{M}_\alpha} = \frac{\delta}{\delta M_\alpha} \left(\frac{1}{2} (\nabla M_\alpha)^2 Z_k[M_\alpha] + U_k[M_\alpha] \right)
\]
- \[
\frac{\delta^2 \Gamma_2[M_a, M_b]}{\delta \hat{M}_\beta \delta \hat{M}_\alpha} = \Delta_k[M_\alpha, M_\beta]
\]
- higher terms in the sum \(= 0\)
What is the meaning of the eff. average action? \(\mathcal{M} = (M, \hat{M}) \):

\[
\Gamma[\{\mathcal{M}_a, \mathcal{M}_b, \cdots\}] = \sum_a \Gamma_1[\mathcal{M}_a] - \frac{1}{2} \sum_{a,b} \Gamma_2[\mathcal{M}_a, \mathcal{M}_b] + \cdots
\]

Derivatives by \(\hat{M} \) have a physical meaning:

\[
\frac{\delta \Gamma_1[\mathcal{M}_a]}{\delta \hat{M}_\alpha} = \frac{\delta}{\delta M_\alpha} \left(\frac{1}{2} (\nabla M_\alpha)^2 Z_k[M_\alpha] + U_k[M_\alpha] \right)
\]

\[
\frac{\delta^2 \Gamma_2[\mathcal{M}_a, \mathcal{M}_b]}{\delta \hat{M}_\beta \delta \hat{M}_\alpha} = \Delta_k[M_\alpha, M_\beta]
\]

higher terms in the sum = 0

- \(Z_k \) - field renormalization (critical exponent \(\eta \))
- \(\Delta_k \) - renormalized disorder strength (critical exponent \(\tilde{\eta} \))
- \(U_k \) - effective potential
U''_{k_1}
move $m_{k_1-\delta k} = m_{k_1} + \delta m_{k_1,0}$ so that $U_{k_1}'''[0] = 0 \forall k$!
move $m_{k_1-\delta k} = m_{k_1} + \delta m_{k_1,0}$ so that $U'''[0] = 0 \; \forall k$!

Solve in dimensionless quantities (gives me critical exponents):

$$\Rightarrow M = k^{d-4+\bar{\eta}} m; \; Z[M] = k^{-\eta} z[m]; \; U''[M] = k^{2-\eta} u''[m]; \; \Delta[M_1, M_2] = k^{-2\eta + \bar{\eta}} \delta[m_1, m_2]$$
a) $d = 5.5$, b) $d = 4$
a) $d = 5.5$, b) $d = 4$
Conclusions

♦ Z2 symmetry is asymptotically restored in $k \to 0$

♦ equations + renormalization functions at fixed point + critical exponents equal as in equilibrium RFIM = SAME UNIVERSALITY CLASS

♦ “COROLLARY”: fluid gas transition in the pores of aerogel is in the same universality class (binary system with an asymmetric initial condition!)
♦ study relaxation in the vicinity of the critical point

♦ implications on the physics of structural and spin glasses

♦ RFI model under external driving field
Thanks for your attention!