DIMENSIONAL REDUCTION IN ASYMPTOTICALLY SAFE GRAVITY

Natália Alkofer

in collaboration with
Daniel F. Litim and Bernd-Jochen Schaefer

22/09/14
ERG 2014
Motivation

Renormalisation Group

Gravity
- Einstein-Hilbert Theory
- Asymptotic Safety Scenario
- Flow Equation

Dimensional Reduction
- Kaluza-Klein modes
- Effective Coupling
- Results

Conclusions & Outlook
Motivation I

• Asymptotically Safe Quantum Gravity might be tested at the LHC.

• Functional Renormalisation Group:
 Employed to investigate the Asymptotic Safety Scenario.

• “Large” extra dimensions (ADD model):
 Introduced to solve hierarchy problem of Particle Physics.
Motivation II

• "Large" extra dimensions (ADD model):
 - At short distances: Gravity not tested below 10^{-4} m, ample space for 'new' physics, e.g. extra dimensions as in the ADD model [1] to unify 'true' Planck with e.w. scale.
 - Low-scale Quantum Gravity:
 No hierarchy problem as $m_{EW} \approx$ gravity scale in $D=4+n$.
 - "Large" extra dimensions: $L^n \approx M_{Pl}^2/m_{EW}^{2+n}$
 - Appearance of Kaluza-Klein modes: Experimentally testable at LHC [2].
 - Is the ADD model UV complete?

Renormalisation Group

- Different resolution scales: \(k \) (momentum) or \(\ell \) (distance).

Start from \(M_{Pl} = (\hbar c/G_N)^{1/2} = 1.22 \times 10^{19} \text{ GeV} \), resp.,

\[\ell_{Pl} = 1.62 \times 10^{-35} \text{ m} \]
Gravity I

Einstein-Hilbert Theory

- Einstein Gravity: metric field $g_{\mu\nu}(x)$
 - curvature (Riemann) tensor $R_{\mu\nu\rho\sigma}$
 - Ricci tensor $R_{\mu\nu} = R^\rho_{\mu\rho\nu}$
 - curvature scalar $R = R_{\mu\mu}$

- Einstein-Hilbert action (Euclidean signature):

 $$S_{EH} = \int d^Dx \sqrt{\det g_{\mu\nu}} \left(\frac{-R + 2\Lambda}{16\pi G_N} \right) + S_{\text{matter}}$$

Asymptotically safe!

- **Non-trivial UV fixed point** (A).
- **Gaussian IR fixed point** (B).
Gravity III

Exact Functional Identity

- **Wetterich equation** [3] for QEG [4]:

\[
\frac{d}{dk} \Gamma_k[g_{\mu\nu}; \bar{g}_{\mu\nu}] = \frac{1}{2} \text{Tr} \left[\left(\Gamma_k^{(2)}[g_{\mu\nu}; \bar{g}_{\mu\nu}] + R_k \right)^{-1} k \frac{d}{dk} R_k \right]
\]

- **Effective action:**

\[
\Gamma_k = \int d^D x \, \sqrt{\text{det} g_{\mu\nu}} \left(\frac{-R + 2\Lambda_k}{16\pi G_k} + \ldots \right) + S_{\text{matter},k} + S_{gf,k} + S_{\text{ghosts},k}
\]

\[\partial_t g_k = \beta_g (g_k, \lambda_k) = (D - 2 + \eta_{Nk}) g_k \]

\[\partial_t \lambda_k = \beta_\lambda (g_k, \lambda_k) = \eta_{Nk} \lambda_k - 2 \lambda_k + g_k \left(A_0 (\lambda_k) - \eta_{Nk} A_1 (\lambda_k) \right) \]

\[\eta_{Nk} = \frac{g_k B_0 (\lambda_k)}{1 + g_k B_1 (\lambda_k)} \]

\[\partial_t = k \frac{\partial}{\partial k} \]

\[g_k \equiv k^{D-2} G_k \]

\[\lambda_k \equiv k^{-2} \Lambda_k \]
Dimensional Reduction I

- **4+1 ADD model**: Choose one extra dimension to be compact (periodic boundary conditions), sum over Kaluza-Klein modes.

\[
\int \frac{d^D q}{(2\pi)^D} \to \frac{1}{L} \sum_n \int \frac{d^{D-1} q}{(2\pi)^{D-1}}, \quad q_D \to \frac{2\pi n}{L}
\]

- After many and 20: Expressions for the β-functions, e.g., in an approximate Background Field Flow:

\[
A_0 (\lambda_k ; kL) = \frac{1}{8 \pi} \left[\frac{15}{\sqrt{1 - 2 \lambda_k}} \coth \left(\frac{kL\sqrt{1 - 2 \lambda_k}}{2} \right) - 10 \coth \left(\frac{kL}{2} \right) \right]
\]
Effective Coupling

Consistency of limits requires: \(g_k^{4D} = \frac{g_k^{5D}}{kL} \) for \(kL \ll 1 \).

Follows also from the identification \(G_{4N}^{4D} = G_{5N}^{5D} / L \)

Define **effective coupling** such that
- it is well-defined and finite in both limits \(L \to \infty \) and \(L \to 0 \).
- it connects smoothly both limits
- it behaves like \(k^2 \) for \(k \ll 1/L \) and \(k^3 \) for \(k \gg 1/L \), semi-class. regime.
- it displays the 4D to 5D crossover at \(k \approx 1/L \).

\[
g_{k,\text{eff}} = g_k B_0(\lambda_k; kL) / B_0^\infty \]

with \(B_0^\infty = \lim_{L \to \infty} B_0(\lambda_k; kL) \)
Conclusions & Outlook

- Asymptotic Safety Scenario to Einstein-Hilbert quantum gravity in four extended + one compact dimensions.
- Explicit example for an UV completion of the ADD model!!!
- 4D-5D crossover identified.

☐ Include several compact dimensions.
☐ Improve on truncation, e.g., f(R) gravity.
☐ Include matter.
☐ ...

Thank you!
Backup Slide

Result: Exact Functional Identity