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Chapter 1

Introduction

Distributed ledgers or blockchains are a technology for storing data in a distributed manner, that is, without
a central storage while keeping a consensus about the contents of the data. Data that has been entered to a
blockchain is very hard to remove.

Distributed ledgers have seen great prominence in the recent years. This technology has many applications,
such as cryptocurrencies, or assuring the transparency of documents.

The aim of the project PRIViLEDGE is to develop and advance techniques that increase privacy, anonymity
and efficient decentralized consensus for distributed ledgers technologies (DLT). Thus it is important to collect
knowledge about the state of the art of different privacy-enhancing cryptographic primitives and protocols that
relate or may relate to the blockchain. This document aims to collect knowledge that might be applicable or
relevant to this topic. It does not describe cryptographic ledgers or protocols built on ledgers, as such, however,
for this is not the aim of this deliverable. They will be described in more detail in the deliverable D3.1.

The document is structured in the following way.
Chapter 2 describes the different cryptographic models. These are a necessary component of understanding

cryptographic protocols. This is necessary as then later it is better to describe and compare different instantiations
of the protocols. It does, however, not describe models of ledgers, such as assumptions about players being
rational or that no party is assumed to control more than some amount of computational power. Those will be
described in the deliverable D3.1.

Chapter 3 gives an overview of primitives related to authentication. Many of the benefits of the blockchain
come from the power of being able to preserve data. However, keeping the integrity of the data is not very useful
if the data itself is incorrect due to either error or malice. Thus authentication of the data is a necessary part
of DLTs. This chapter gives an overview of different flavours of signatures, many of which have been used or
been proposed for use in various blockchains. It also describes various other authentication-related primitives,
such as verifiable random functions, anonymous credential chemes, hash chains, and others. A description of
well-known elementary primitives is included for completeness.

Chapter 4 gives an overview on privacy-enhancing protocols which are of central importance in this project.
This chapter begins with some elementary confidentiality-related primitives for completeness. Then it proceeds
to encryption, which is perhaps the most straight-forward of all privacy-enhancing techniques. It views several
different flavours of encryption — different encryption flavours allow different sets of parties to encrypt and
decrypt the data. Distributed ledgers deal with many parties simultaneously which tends to lead to complicated
types of interactions with each other. Thus it would be beneficial to provide different possibilities to account for
the fact that the desires of the parties might be rather complicated. We also overview private information retrieval,
which allows a client to obtain information from a database without the owner of the database learning what
information was queried for. As distributed ledgers and blockchains are used often for storing data, cryptographic
protocols related to databases is a natural area of interest.

Chapter 5 describes secure computation and verifiable computation settings. These are powerful tools that
allow processing of data in secret and authenticated ways, respectively. On one hand, these can be important
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tools for building other protocols. On the other hand, if data is stored on the ledgers, then it is rather natural to
want to compute on it, while still preserving the privacy of the data and the correctness of the computation.

Chapter 6 gives an overview of zero-knowledge techniques. Zero knowledge is an important tool for achiev-
ing many cryptographic goals – the ability to prove to another party that everything has been done correctly
without revealing any private information is extremely useful for making protocols secure in the malicious set-
ting — i.e. in the setting where it is not assumed that the parties behave only as the protocol dictates. Also,
blockchain can help with improving zero-knowledge protocols as it can be used as an instantiation of a trusted
third party.

This document ends with Chapter 7 where a number of open problems are presented. These can be seen as
directions of possible research.

2



Chapter 2

Preliminaries

Cryptographic primitives are based on models — in order to do cryptography one needs make some assumptions
— what is possible to compute efficiently, how some infrastructure is set up, who is trusted, what can we assume
about hardware, and so on. It is useful to outright specify what is assumed about the system we use. Thus this
chapter gives an overview about various cryptographic models.

2.1 Information-Theoretic and Computational Security

We remind these two very basic notions for the sake of completeness.
Information-theoretic security is understood to be the kind of security that even an adversary with unlimited

computing power cannot break. Essentially, the information is, information-theoretically speaking, not there.
This is contrasted with computational security. Computational security protocols come with some complexity

parameter κ that describes the computational bounds of the adversary — it is said that an adversary whose com-
putational powers are bound by κ can not break the scheme, while not making statements about computationally
more powerful adversaries.

2.2 Public Key Models

As shown in [GK90] achieving non-interactive zero-knowledge (NIZK, see 6.1) proofs in the standard model
is impossible and some trust assumptions are a must. One may distinguish two main approaches in order to
achieve NIZKs. One assumes existence of some basic public key infrastructure and can be further subdivided
into models presented in this section (ordered from the strongest to the weakest): common reference string model
(there exists a public key provided by a trusted third party), registered public key model (each party has her own
key registration authority that makes sure that a public key is well-formed) and bare public key model (where
each party provides her own public key and no one checks its well-formedness). The other approach assumes
existence of Random Oracle and has been described in details in 2.3.

2.2.1 Common Reference String Model

The Common Reference String (CRS) model has been introduced by Blum, Feldman and Micali in [BFM88].
The model assumes that there exists a Trusted Third Party (TTP) that provides a common reference string for all
players participating in the protocol. In particular, for NIZK proof systems, the CRS is known by both prover
and verifier. A weaker version of NIZK proof system is NIZK argument system, the difference between the two
has been explained in Sec. 6.1.

In the case of a NIZK argument system, each string crs comes with a pair of secret trapdoors (CRS trapdoor
tc and simulation trapdoor ts, where ts ⊆ tc), such that tc is sampled from a well-defined distribution D, and
for some function f , we have crs ← f(tc). The simulation trapdoor ts allows the simulator to generate proofs

3
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Functionality FD,f
crs

FD
crs is parametrized by distribution D. It proceeds as follows, running with a set of parties and an adversary:

1. Choose a value tc←$D;

2. Compute crs← f(tc);

3. When receiving (retrieve, sid) from some party send (CRS, sid, crs) to that party.

Figure 2.1: Functionality FD
crs [BCNP04]

Functionality Frpk

Frpk proceeds as follows, given function f and security parameter λ, and running with a set of parties and
an adversary A. At the first activation a set R of strings is initialized to be empty.
Registration: When receiving a message (register, sid) from a party Pi (either corrupted or uncorrupted)
send (register, sid,Pi) to A and receive p′ from A. If p′ ∈ R then let p ← p′. Otherwise, r←$ {0, 1}λ,
let p← f(r), and add p to R. Record (Pi, p) and return (sid, p) to Pi and to A.
Registration by a corrupted party: When receiving a message (register, sid, r) from a corrupted party
Pi, record (Pi, f(r)). In this case, f(r) is not added to R.
Retrieval: When receiving a message (retrieve, sid,Pi) from party Pj , send (retrieve, sid,Pi,Pj) to
A, and obtain a value p from A. If (Pi, p) is recorded then return (sid,Pi, p) to Pj . Else, return (sid,Pi,⊥)
to Pj .

Figure 2.2: Functionality Frpk [BCNP04].

for instances which it does not know a witness for (i.e. it assures that the simulator can fulfil the task given to it
in the definition of zero knowledge, see 6.1). Here, it is assumed that the TTP does not reveal any part of tc to
anyone and only provides ts to the simulator. An ideal functionality realizing the model is presented in Fig. 2.1.

2.2.2 Registered Public Key Model

Registered Public Key (RPK) model is a model of establishing Public Key Infrastructure (PKI) proposed by
Barak et al. in [BCNP04]. The model assumes that each participant P has their own trusted Key Registration
Authority (KRA) RP . Key Registration Authority stores and publishes keys following its functionality described
on Fig. 2.2.

In the first phase (key registration phase), P sends her public key to RP and then proves to RP the knowledge
of the secret key. (That is why we will later refer to this model as RPK using traditional proofs of knowledge
model, RPKPoK.) It is assumed that if P is honest, then the secret key exists and the public key comes from
correct distribution (it is “safe”). If P is dishonest, the secret key still exists and, since P has to provide a proof
of knowledge of it, it is known to her. However, there is no guarantee about distribution (such key is called “well-
formed”). See Fig. 2.2 for the original description of the functionality of the key registration from [BCNP04]
and Fig. 2.3 for illustration of this model. Note, that if an honest party P wants to register her key, the key may
be picked as well by the KRA, as depicted on Fig. 2.2 and 2.3.

Verifier-Only RPK We distinguish a special version of the RPK model, called the verifier-only RPK model.
In this model, contrary to the standard RPK model, only a verifier has her trusted key registration authority that
provides her a key.

4
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P ′ P P∗

RP′

1. register

2. pkP′

RP∗

1∗. register, pkP∗ ,PoK(skP∗ )3. retrieve,P ′

4. pkP′

3∗. retrieve,P∗

4∗. pkP∗

Figure 2.3: RPKPoK with three parties – an honest P ′ with her KRA RP ′ , a dishonest P∗ with the KRA RP∗

and a party P who wants to retrieve public keys of P ′ and P∗. Party P ′ registers her key by sending register

message to her authority RP ′ . Dishonest P∗ picks her public key, secret key pair (pkP∗ , skP∗), sends register
to RP∗ along with the picked pkP∗ and PoK(skP∗) – proof of knowledge of skP∗ . Party P retrieves public keys
of P ′,P∗ by querying RP ′ ,RP∗ respectively.

2.2.3 Bare Public-Key Model

The Bare Public-Key (BPK) model was proposed by Canetti et al. in [CGGM00] as a very mild setup assumption
that allows for round-efficient constructions of advanced notions of zero-knowledge proofs.

The model as described in [CGGM00] and later on formalized by [Rey01] assumes that the verifiers post
their identities represented by public keys to a public repository. This is a form of preprocessing phase to be
performed before any proof system starts.

The reason why the assumption is mild is that the public repository can be completely controlled by the
adversary that can decide to discard identities and to add her own identities, even adaptively on the ones of the
honest verifiers. The fact that the assumption is mild has been formally proven in [KL11] where it is shown that
the impossibility of universally composable secure computation that holds in the plain model, holds also in the
BPK model.

The BPK model has a natural extension to any cryptographic protocol by requiring that players post their
identities before being engaged in protocol executions.

There is a connection between the BPK model and the execution of cryptographic protocols in presence of
a ledger. Indeed in the BPK model honest players are guaranteed that after protocols start, the public repository
will not change. There is therefore a clear similarity with the read-only property of past data added to the ledger.

2.3 Random Oracle Model

In the standard computational model all parties involved in a cryptographic protocol are assumed to be interactive
Turing machines. In many cases, including consensus protocol design, it has been proven useful to describe
properties in the Random Oracle model (ROM) [BR93]. In this model, the parties involved in the execution of
a protocol have access to a shared functionality that takes an input x and returns a random value ρ. Moreover,
whenever queried on the same input x, the function returns always the same value ρ. The ROM allows to
construct highly efficient cryptographic schemes. Though, even if a protocol can be proved secure in the ROM,
it is not implied that the security holds when the random oracle is replaced by a concrete, publicly computable
hash function [Nie02, GK03, CGH04].

The Random Oracle model can be captured as an ideal functionality, cf. Figure 2.4.
The ROM is widely used to analyze the security of general protocols following the simulation-based security

definitions. The ROM provides also some composable security guarantees. The work of Canetti et. al. [CJS14]
shows how to obtain composability for different classes of cryptographic protocols in the Global Random Or-
acle model (GROM). In this model, all the protocol instances share access to the same RO. The recent work

5
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Functionality FRO

The functionality interacts with an adversary S and a
set P = {P1, . . . , Pn} of parties.

- Upon receiving (Eval, sid, x) from Pi (resp. S),
return ρ to Pi (resp. S) if (x, ρ) ∈ T . If no
entry for x is in T , then choose ρ ← {0, 1}κ,
add (x, ρ) in T and return ρ to Pi.

Figure 2.4: The random oracle ideal functionality.

of [CDG+18] proposes a revisited version of the GROM and extends the number of essential cryptographic
primitives that can be proved secure when arbitrarily composed in this special GROM model.

The RO has been intensively used to describe the security of transaction ledger [GKL15, KZZ16, DGKR18].
For example, in many blockchains the miners, in order to generate a new block, need to compute a certain amount
of hash values. In order to analyse the security of the underlying blockchain it is convenient to model the hash
as a random oracle.

2.4 Universally Composable Security

The following description is from [CLOS02, Lin11].
Universal composability is a definition of security that considers a stand-alone execution of a protocol in a

special setting involving an environment machine Z , in addition to the honest parties and adversary. As with the
classic definition of secure computation, ideal and real models are considered where a trusted party carries out
the computation in the ideal model and the real protocol is run in the real model. The environment adaptively
chooses the inputs for the honest parties, interacts with the adversary throughout the computation, and receives
the honest parties’ outputs. Security is formulated by requiring the existence of an ideal-model simulator Sim so
that no environment Z can distinguish between the case that it runs with the real adversary A in the real model
and the case that it runs with the ideal-model simulator Sim in the ideal model.

In slightly more detail, we denote by IDEALF ,SimA,Z(λ, x) the output of the environment Z with input x
after an ideal execution with the ideal adversary (simulator) Sim and functionality F , with security parameter λ.
We will only consider black-box simulators Sim, and so we denote the simulator by SimA meaning that it works
with the adversary A attacking the real protocol. We denote by EXECπ,A,Z(λ, x) the output of environment Z
with input x after a real execution of the protocol π with adversary A, with security parameter λ.

In addition, according to the definition in [CLOS02], all messages between the parties and between the par-
ties and the ideal functionality are delivered by the adversary. We consider a model with ideally authenticated
channels, and so the adversary is allowed to read the messages sent but cannot modify them. In contrast to
messages sent between the parties which can be read by the adversary, messages sent between the parties and
the ideal functionality are comprised of a public header and private content. The public header contains infor-
mation that is not secret (like the message type, session identifier, the sending and receiving party), whereas the
private content contains information that the adversary is not allowed to learn like the parties’ private inputs.
See [CLOS02] for more details.

A protocol π UC-securely computes F if there exists a probabilistic polynomial time (PPT) Sim such that
for every non-uniform PPT (NUPPT) Z and every PPT A, the following holds:

{IDEALF ,SimA,Z(λ, x)}λ∈N,x∈{0,1}∗ ≈c {EXECπ,A,Z(λ, x)}λ∈N,x∈{0,1}∗ .

The importance of this definition is a composition theorem that states that any protocol that is universally
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composable is secure when run concurrently with many other arbitrary protocols (see [Can01, CLOS02] for
discussions and definitions). Indeed, one main challenge in formulating the security of cryptographic protocols is
capturing the threats coming from the execution environment, and in particular potential “bad interactions” with
other protocols that are running in the same system or network. One way to capture the security concerns that
arise in a specific protocol environment or in a given application is to directly represent the given environment
or application within an extended definition of security. Such an approach is taken, for instance in the cases
of non-malleable commitments, concurrent zero knowledge and general concurrently secure protocols, where
the definitions explicitly model several adversarially coordinated instances of the protocol in question. This
approach, however, results in definitions with ever-growing complexity, and is inherently limited in scope since
it addresses only specific environments and concerns [Can01].

Composable Treatment of Ledger Distributed ledgers can be used as a tool to design cryptographic proto-
cols. So it is natural to define the security and the functionalities that, for example, Bitcoin can provide. More
precisely, it is convenient to define models of computation and, in these models, an abstraction of Bitcoin as a
distributed protocol, and proved that the output of this protocol satisfies certain security properties, for example
the common prefix [GKL15] or consistency [PSS17] property. The reason to model a ledger functionality in the
UC model relies on the fact that it is not known in what context the ledger will be used, and what kind of crypto-
graphic protocols will be concurrently executed (see [GKL15, KZZ16] for more details about the UC treatment
of ledger).

2.5 Leakage Resiliency and Tamper-Proofness

PRIViLEDGE will use the ledger to secure data providing confidentiality and integrity. This will necessary
require some key management mechanisms. A major issue in key management is the possibility that some
important information (i.e., a secret) could be leaked therefore threatening the desired security. Two main direc-
tions have been investigated to obtain a robust key management: the use of tamper-proof hardware, and the use
of leakage-resilient cryptography.

2.5.1 Tamper-Proof Hardware Tokens

The use of smart cards in the last decades has been a concrete real-world example of the advantages of using
tamper-proof hardware for running cryptographic protocols. Starting from smart cards, secure identification has
been the standard application for tamper-proof hardware. Indeed RSA SecurID tokens are used all over the world
and are nowadays part of multi-factor authentication systems.

Katz showed in [Kat07] that tamper-proof hardware can be used to actually perform any universally com-
posable (UC) secure computation. The feasibility result of Katz has then been exploited in multiple directions
in particular focusing on reducing the requirements on tamper proofness (e.g., by focusing on stateless tokens),
the number of tokens, the reuse of tokens in multiple sessions and minimizing the involved complexity-theoretic
assumptions. In addition to the obvious attempts to securely realize any functionality by means of tokens, part of
the recent research has focused on specific primitives that are relevant in real-world applications. In [MS08]
Moran and Segev showed how to use tamper-proof tokens for designing advanced notions of commitment
schemes. In [Kol10] Kolesnikov showed how to obtain an efficient protocol for oblivious transfer (OT) with
stateless tamper-proof tokens. However this construction is proven secure under a relaxed security notion (i.e.,
covert) where the adversary cheats only if she is guaranteed not to be caught. Improvements were presented
by [DKNS04] requiring only stateless tokens for any unbounded number of OTs and UC security. In [FPS+11]
it was shown that tamper-proof tokens allow for very efficient constructions for secure set intersection.

The reason why tamper-proof hardware tokens can be useful for ledgers is two-fold. First of all, tamper-proof
hardware helps for key management and more in general for storing and using private information. Second,
tamper-proof hardware allows for the design of non-interactive protocols. Non-interactiveness can be crucial in
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several applications that make use of ledgers. Indeed when using interaction different messages are published in
different blocks, and the delays to confirm blocks in (at least some) ledgers would affect negatively the overall
performance.

2.5.2 Primitives with leakage resilience

A recent research direction in cryptography consists of designing cryptographic primitives that remain secure
even in case of leakage of some information from the state of a machine storing a secret. Since the seminal work
of Dziembowski and Pietrzak [DP08], security against leakage attacks has been considered in the design of all
cryptographic primitives studying both feasibility and infeasibility results.

Cryptocurrencies typically make use of digital signatures posted in a ledger in order to show the transfer
of coins among wallets. As such, leakage-resilient signature schemes are a relevant privacy-enhancing crypto-
graphic primitive for ledgers. In general a privacy-preserving ledger includes encrypted data and therefore there
are secret keys stored out of the ledger that have a critical role for using the ledger. However since some sort of
leakage is possible, the use of leakage-resilient encryption can be useful.

We finally mention a recent attempt to relax the security in the presence of leakage leading to the notion
of leakage tolerance [BCH12]. Such a limited security notion is sometimes required because of impossibility
results in presence of leakage [OPV15].

2.6 Simulation

The security of a cryptographic primitive can be defined via the notion of simulation. Let us consider an encryp-
tion scheme Π. A natural way to define the security of such a scheme would be to state that Π is secure if the
adversary that receives a ciphertext learns nothing about the encrypted message. However, this definition does
not consider that an adversary could know something about the encrypted message in advance, before receiving
the ciphertext. The simulation paradigm captures this specific aspect. Indeed, to define the security of an encryp-
tion scheme we impose that whatever an adversary A1 can give as output given an encryption c of a message m,
it can be given as output also by an adversaryA2 that does not take c as input. SinceA2 receives nothing, he can
learn nothing about the message m. We refer to this scenario as the ideal world. The scenario where the A1 gets
the encryption of m is instead called real world. More precisely, we say that an encryption scheme is secure if
the behavior of an adversary A1 attacking Π in the real world can be simulated by an adversary A2 in the ideal
world. Clearly A2 should get some help in order to simulate the output of A1. Indeed, A2 can have access to
some information related to A1, for example he can access to its description.

More generally, to define the security of a cryptographic primitive, it is necessary to define an ideal world.
Then, to prove that a scheme Π securely implements the cryptographic primitive, it is sufficient to construct a
simulator (an ideal world adversary) that generates a view that is computationally indistinguishable from the real
world adversary’s view. We can summarize the tasks that a simulator must fulfill as follows [Lin17]: 1) it must
generate a view for the real adversary that is indistinguishable from its real view; 2) it must extract the actual
inputs used by the adversary in the execution; 3) it must make the generated view consistent with the output that
is based on this input.

Understanding how to define security is the first step to capture the cryptographic primitives needed to im-
prove the privacy of distributed ledgers. Moreover, this helps to understand and formalise the notion privacy that
we want to achieve in the context of distributed ledgers and blockchains.

2.7 Post-Quantum Cryptography

Post-quantum cryptography concerns cryptographic schemes that are secure against an attacker making use of
a large-scale quantum computer. Nearly all public key cryptography in use today is based on either RSA, or
the discrete logarithm problem in cyclic groups or in elliptic curves over finite fields. In 1994 Shor proposed a
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quantum algorithm to factor integers or solve the discrete logarithm problem in time polynomial in the size of
the problem [Sho94]. This means that, should quantum computers become reality in the future, the public key
schemes in use today will be broken. Furthermore, any messages encrypted using these schemes that have been
recorded in the past can then also be deciphered.

Another issue for post-quantum cryptography is to take into account the consequences of Grover’s algo-
rithm [Gro96]. Grover’s algorithm is a quantum algorithm that is typically described as being capable of search-
ing an unordered database in time which scales with the square root of the size of the database in contrast with
the linear time required by a classical computer.

In actuality, Grover’s algorithm performs a more general task of searching for solutions satisfying some
efficiently computable predicate. Examples would be to find pre-images of hash functions, or find keys used for
symmetric encryption.

Although the square root speed up of Grover’s algorithm compared to classical search algorithms is not as
dramatic as the speed-up of Shor’s algorithm, it does mean that key and hash sizes for which brute force attacks
are deemed infeasible using classical computers could be performed using a quantum computer. It is expected
that key and hash sizes need to be doubled to provide the same level of security against an attacker using a
quantum computer as currently offered against classical attackers.

To prepare for the eventuality of quantum computers, alternative asymmetric cryptographic schemes are be-
ing developed to withstand attackers with quantum computing capabilities. At the time of writing, the U.S. Na-
tional Institute of Standards and Technology’s Post-Quantum Cryptography Standardization project [Nat17], the
first large scale standardization project of its kind, has finished accepting proposals for post-quantum cryptogra-
phy standards and is in the evaluation stage of the proposals. Most proposals for post-quantum cryptography are
based on one of a few problems which are thought to resist quantum computing. The most popular of these prob-
lems for candidate post-quantum cryptography standards are lattice-based, code-based and multivariate-based
cryptography. For signature schemes hash-based cryptography is also suitable.

Not all cryptography is vulnerable to attacks using quantum computers. Information theoretically secure
methods are secure even against unlimited computational resources. Examples thereof are one time pad en-
cryption, secure multi-party computation with honest majority and information theoretically secure message
authentication codes. Of course, in practice, these methods often make use of pseudo randomly generated num-
bers and are typically used in conjunction with non information theoretically secure cryptography, which may
still make systems using such schemes vulnerable to quantum attacks.
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Chapter 3

Authentication-related primitives

Chapter 3 gives an overview of primitives related to authentication. Many of the benefits of the blockchain come
from the power of being able to preserve data. However, keeping the integrity of the data is not very useful if
the data itself is incorrect due to either error or malice. Thus authentication of the data is a necessary part of
DLTs. This chapter gives an overview of different flavours of signatures, many of which have been used or been
proposed for use in various blockchains. It also views the verifiable random functions, anonymous credential
schemes, hash chains, anonymous authentication, and chameleon hashes — primitives that have either been
used or proposed to be used for blockchains. A description of well-known elementary primitives is included for
completeness.

3.1 Elementary Primitives

Here we recall some elementary cryptographic protocols. As they are commonly known, we shall be brief about
them.

Hash functions are deterministic functions that map arbitrary length inputs to fixed-length outputs. There are
several properties that hash functions are supposed to have which vary depending on the context. Generally, it
should be hard to find two different values x and x′ so that h(x) = h(x′) where h is the hash function — this
is called collision resistance. Given y, it should be hard to find a x so that h(x) = y — this is called pre-image
resistance. Also, given x, it should be hard to find x′ 6= x so that h(x) = h(x′) — this is called second pre-image
resistance. In cryptographic contexts they are often used as instantiations of random oracles.

A commitment scheme is a scheme that, given a secret value x allows one to commit to it and publish the
commitment cx so that one one hand, others do not learn anything about x from the commitment, and on the other
hand, there is a revealing phase where one reveals x and where others can verify that cx was indeed computed
from x.

Signatures can be created only by the owner of a private key but that can be verified by anyone that has the
corresponding public key. They are used for showing the authenticity — if the owner publishes some data X and
his signature y = ssk(X), then everybody can compute the verification vpk(y,X) to learn whether y corresponds
to X or not. If it does not, then this suggests that X has been tampered with.

3.2 Signatures

3.2.1 Server-Supported Signature Schemes

Server-supported signatures, as the name implies, are characterized by the fact that the signer has to co-operate
with a server to produce a signature. The two main motivations for such schemes are:

• performance: costly computations can be offloaded from an underpowered signing device (such as a smart-
card) to a more powerful device (such as a desktop computer or a server);
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• security: risks of key misuse can be reduced by either keeping the keys in a server environment which
can presumably be managed better than an end-user’s personal computer, or by having the server perform
additional checks as part of the signature generation protocol.

When the signer fully trusts the server, an obvious solution is to let the server just handle all asymmetric-key
operations based on requests from the signer authenticated using symmetric-key techniques. The drawback of
this approach is that if the server abuses the key, the signer can’t hold the server accountable. To solve this
problem, several protocols have been proposed where the server’s actions are verifiable: for any valid-looking
signature, the signer either authorized it or can prove that the server has misbehaved.

The first such protocol by Asokan et al. [ATW96] combined an asymmetric-key signature primitive with
one-time password authentication. For each message, the signer has to verify the signature the server produced,
thus the protocol only saves the signer’s resources in case verification is cheaper than signing in the underlying
asymmetric-key primitive. Additionally, the signer has to keep copies of all signatures.

Bicakci and Baykal [BB04] replaced the one-time passwords with one-time hash-based signatures. In the
resulting protocol the signer has to create a new one-time key pair and compute a one-time signature for each
message, but does not have to verify the asymmetric-key signature produced by the server and also the burden
of keeping communication history is shifted from the signer to the server. Goyal [Goy04] proposed a method to
reduce the storage requirements.

A common drawback of the above protocols is that a malicious server can create signatures that appear to be
valid to a verifier until challenged by the signer. As such, they may be usable for signing digital equivalents of
traditional contracts, where a dispute resolution process exists, but are unsuitable for applications with immediate
and irrevocable effects, such as authentication for access control purposes or accepting transactions to an append-
only ledger.

As an alternative research avenue, several methods have been proposed for outsourcing more expensive
computation steps of specific signature algorithms, starting with Matsumoto et al. [MKI88] for RSA in particular.
However, many of the early proposals have subsequently been shown to be insecure [PW92, LL95].

In recent years, perhaps also due to increasing computational power of handheld devices and wider avail-
ability of hardware-accelerated implementations of popular cryptographic algorithms, attention has shifted to
splitting keys between end-user devices and back-end servers to improve the security of the private keys, for
example by Camenisch et al. [CLNS16] and Buldas et al. [BJKO17].

As a somewhat different approach, Buldas et al. [BLT17] combined hash-linked time-stamping and message
authentication codes with one-time keys to obtain a server-assisted signature scheme.

3.2.2 Compact Types of Signature Schemes

This section reviews signature schemes with improved storage efficiency, which is important in the blockchain
setting as it allows to save significant storage space.

Multi-Signatures A multi-signature scheme enables a group of signers to produce a joint signature on a com-
mon document. A trivial implementation of a multi-signature scheme concatenates the individual signatures of
all signers; the size of such a multi-signature, however, grows linearly in the number of signers. Specialised
multi-signature schemes achieve better efficiency in terms of signature size.

Existing multi-signature schemes. The first line of work on multi-signature schemes did not protect from rogue
secret keys; these schemes are therefore not discussed in this overview. The first scheme protecting against
adversarially created keys was developed by Micali et al. [MOR01], and uses a multi-party protocol for the key
generation. As a consequence, no further users can join the protocol after the setup. The subsequent works of
Boldyreva [Bol03] and Lu et al. [LOS+06] solved this issue, but require that knowledge of the secret key is
proven when registering the public keys. Ristenpart and Yilek [RY07] later showed that the proof of possession
sometimes performed by CAs today is sufficient to justify the knowledge-of-secret-key assumption used in those
schemes.
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Scheme Setup Registry Rounds Assumption |sig| |pk| Sign Verify
[MOR01] RO interactive 2 DL 2|G| (3 + 2 logN)|G| 1 exp. N exp.
[Bol03] RO, CRS known sk 1 GapDH |G| |G| 1 exp. 2N p.

[BGLS03] RO bare pk 1 co-GapDH |G| |G| 1 exp. N p.
[LOS+06] CRS known sk 1 co-CDH 2|G| |G| 3 exp. 2N p.

[BN06] RO, CRS bare pk 3 DL |G|+ |q| |G| 1 exp. N exp.
[BJ08] RO, CRS bare pk 3 DDH 2|q| 2|G| 1 exp. N exp.

[BCJ08] RO, CRS bare pk 2 DL 3|G|+ 3|q| |G| 3 exp. N exp.
[Nev08] RO bare pk 1 RSA n+ |G| |G| 1 exp. 2N mult.

[MWLD10] RO, CRS bare pk 2 DL 3|q| |G| 1 exp. N exp.
[MPSW18] RO bare pk 2 one more DL |G|+ |q| |G| N + 1 exp. N + 2 exp.
[BDN18] RO bare pk 2 co-CDH |G| |G| 1 exp. N + 1 p.

Table 3.1: Comparison of multi-signature schemes from the literature. Size |G| refers to group elements, whereas
|q| refers to (possibly shorter) exponents. Size measurement in number of elements is only partially meaningful
because necessary group sizes will differ in different settings. The overhead of [Nev08] can be up to (n+1)|G| for
short messages, the table indicates the best case for large messages. The last two schemes [MPSW18, BDN18]
additionally provide key aggregation. Verification is stated for all signatures.

The current state-of-the-art multi-signature schemes only require the bare public key model without the need
to prove possession of the secret key. They differ in the number of communication rounds required for signing,
the efficiency in terms of computation as well as key and signature size, and the assumptions under which they
are proven secure. One early and somewhat special scheme is that of Boneh et al. [BGLS03], which can be used
as a multi-signature scheme as discussed by Bellare et al. [BNN07]. The resulting scheme differs from most
following schemes in that it does not require a CRS, is non-interactive, and is based on pairings. It has small
signature and key sizes, but a comparably slow verification.

Most following schemes are based on the work of Bellare and Neven [BN06], which has a three-round sign-
ing protocol, is based on the discrete-logarithm problem, proven in the random-oracle model, and requires a CRS.
Subsequent work achieves a smaller signature size [BJ08] or less communication rounds [BCJ08, MWLD10],
at the cost of other parameters. Recently, Boneh et al. [BDN18] revisited the scheme of [BGLS03] and ap-
plied techniques of [MPSW18] to achieve an efficient multi-signature scheme with public-key aggregation. The
scheme is also useful as an aggregate-signature scheme and as an accountable-subgroup multi-signature, which
is similar to a threshold signature without the anonymity property.

The parameters of all schemes are summarized in Table 3.1. The assumptions required by the schemes
differ. Some schemes are based on the discrete logarithm (DL) assumption in a cyclic group G, meaning that
given ga for some known generator g ∈ G, computing a is infeasible. Other schemes use stronger assumptions,
such as the “one more DL” assumption which states it is hard to compute q + 1 discrete logarithms with q
queries to a discrete-logarithm oracle, for any q (polynomial in the security parameter). The Decisional Diffie-
Hellman (DDH) assumption states that for uniformly random a, b, c ∈ {1, . . . , |G|}, the triples (ga, gb, gc) and
(ga, gb, gab) are indistinguishable. The GapDH assumption requires that it be infeasible to compute, given ga, gb,
the value gab, even in presence of an oracle that solves DDH. The co-CDH and co-GapDH assumptions are stated
in the pairing setting, namely a setting with three groups G1,G2,GT and a bilinear map e : G1 × G2 → GT.
Here, co-CDH requires that given g, ga ∈ G1 for uniformly random a ∈ {1, . . . , |G1|} and h ∈ G2 it be hard
to compute ha. The assumption co-GapDH requires that this hold even given an oracle that distinguishes tuples
g, gb, h, hb from tuples g, gb, h, hc for uniformly random b, c ∈ {1, . . . , |G1|}. The columns Sign and Verify
indicate the computational cost of the algorithms in terms of the most expensive operations required, which,
depending on the setting, may be modular multiplication (mult.), modular exponentiation (exp.), or pairings (p.),
i.e. evaluations of the mapping e described above.

Use of multi-signature schemes in DLT. Maxwell et al. [MPSW18] discuss the use of multi-signatures for Bit-
coin. A multi-input multi-output (MIMO) transaction in Bitcoin contains signatures (on the same data) with
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Scheme Setup Assumption |sig| |pk| Sign Verify Type
[BGLS03]/[BNN07] — co-GapDH |G| |G| 1 exp. n p. general

[LMRS04] RO certified TDP |G| |G| 1 exp. n exp. sequential
[LOS+06] CRS co-CDH 2|G| (k + 2)|G| 4 exp. 2n p. sequential
[Nev08] RO RSA |G|+ ` |G| n+ 1 exp. n exp. sequential
[BGR12] RO RSA |G|+ (n+ 1)` |G| 1 exp. n exp. sequential
[GOR18] RO RSA |G| |G| n+ 1 exp. n exp. sequential
[FLS12] — co-GapDH+coll.res. 3|G|+ ` |G| n exp. + n p. n+ 1 p. sequential
[Sch11] — LRSW (interactive) 4|G| 2|G| n p. + 2n exp. n p. + 2n exp. sequential
[LLY15] — SXDH, LW2, DBDH 8|G| 11|G| 8 p. + 4n exp. 8 p. + 5n exp. sequential

Table 3.2: Comparison of aggregate signature schemes from the literature. Size |G| refers to group elements,
whereas |q| refers to (possibly shorter) exponents. Size measurement in number of elements is only partially
meaningful because necessary group sizes will differ in different settings. Value k refers to the length of signed
messages. Size ` is (approx.) the output length of a hash function used in [Nev08], [BGR12], and [FLS12].

all keys corresponding to the inputs of the transaction. A multi-signature can therefore decrease the size of the
transactions stored in the blockchain. The aggregation of public keys claimed by [MPSW18] additionally de-
creases transaction size. Recent work of Drijvers et al. [DEFN18] shows, however, that the proof of [MPSW18]
is flawed and is unlikely to be recovered under standard assumptions.

Aggregate Signatures An aggregate signature scheme enables a group of signers to combine their signatures
into a compact representation. In contrast to multi-signatures, aggregate signatures do not require the signed
messages to be equal.

An overview of schemes described below is given in Table 3.2. Most abbreviations are analogous to the ones
used in Table 3.1 and described above, and we only describe the differences here. A trapdoor permutation (TDP)
is a family of permutations that are easy to compute but difficult to invert, but which can be sampled together
with a trapdoor that allows for easy inversion. The most prominent example of a TDP is RSA. A certified TDP
is one where the public key, i.e. the description of the permutation, allows to determine whether it describes a
valid instance of the TDP. The term “coll.res.” indicates that the scheme additionally uses a hash function that is
required to be collision resistant. The LRSW assumption, named after the paper introducing it [LRSW99], states
that given an oracle that on input an integer s returns a triple (a, asy, ax+sxz), it is difficult to produce a new
integer t and triple (b, bty, bx+txz) that is non-trivial, i.e., t 6= s and b is not the neutral element. The symmetric
external Diffie-Hellman (SXDH) assumption is in the pairing setting and can be seen as the DDH assumption in
the group G2. The LW2 assumption was introduced by Lewko and Waters [LW10] assumes that, with generators
g1 ∈ G1 and g2 ∈ G2, given ga1 , g

b
1, g

c
1 and ga2 , g

a2
2 , g

bx
2 , g

abx
2 , ga

2x
2 , it is difficult to distinguish gbc1 from gd1 ,

where all exponents a, b, c, d, x are uniformly random. Finally, the decisional bilinear Diffie-Hellman (DBDH)
assumption requires that it be difficult to distinguish, given ga1 , g

b
1, g

c
1 and ga2 , g

b
2, g

c
3, the values e(g1, g2)abc and

e(g1, g2)
d, with a, b, c, d uniformly random.

The first construction of aggregate signatures was given by Boneh et al. [BGLS03] and is based on pairings.
Bellare et al. [BNN07] later showed that a certain condition (relating to messages being distinct) can be dropped
for a certain variant of the scheme.

Sequential aggregate signatures. Introduced by Lysyanskaya et al. [LMRS04], a sequential aggregate signature
scheme achieves the same security as a (general) aggregate signature scheme, but requires that the signatures
be aggregated in a certain predetermined order. This restriction allows for more efficient implementations, in
particular, they show a scheme based on certified trapdoor permutations which is secure in the random-oracle
model. The scheme of Lu et al. [LOS+06] achieves security in the standard model, based on pairings and at
the cost of efficiency. Analogously to the multi-signature presented in the same paper, the scheme requires
that signers prove knowledge of their secret key. The scheme of Neven [Nev08] realizes sequential aggregate
signatures based on a weaker assumption, not requiring the trapdoor permutation to be certified. The scheme
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of Brogle et al. [BGR12] allows lazy verification in which each partial signature can be checked independently.
Recent work of Gentry et al. [GOR18] improves said constructions. (Their proofs do not support instantiations
for realistic parameter sizes.) Fischlin et al. [FLS12] provide a sequential aggregate signature scheme based
on pairings, which additionally is history-free in the sense that a signer is not required to know the messages
that are already signed in the partial signature they are amending. The schemes of Schröder [Sch11] and Lee et
al. [LLY15] also assume that the signers prove possession of their secret keys.

Use of aggregate signature schemes in DLT. Aggregate signatures allow for a more compact representation of
multiple signatures. Especially for data that is stored on many replicas, such as the blockchain itself, the overall
savings in storage can be significant. Possible methods are, e.g., to aggregate the signatures of all transactions
within each block.

3.2.3 Privacy-Enhancing Signature Schemes

Blind Signatures Blind signatures are a form of signatures where the signer does not see the message M
signed as it has been disguised in some way so that he sees only a randomized version of M . However, the
verification still checks the signature against the original message M . Unlike digital signatures, blind signatures
are generated by means of an interactive protocol between the signer and a receiver. The signer does not see the
message being signed, and, in addition, the signer does not learn any useful information on the signature being
produced.

Blind signatures are due to Chaum, who also invented the well-known RSA-based blind signature scheme
[Cha82, Cha83]. A blind signature scheme consists of three components:

Key generation. An algorithm that on input of a security parameter k, generates a key pair (sk, pk) consisting
of a private key and a public key, respectively.

Signature generation. A two-party protocol between a signer S and a receiver R with a public key pk as
common input. Private input of S is a private key sk, and private input of R is a message M . At the end
of the protocol,R obtains a signature S on M as private output.

Signature verification. An algorithm that on input of a message M , a public key pk, and a signature S, deter-
mines whether S is a valid signature on M with respect to public key pk.

A blind signature scheme is required to be unforgeable and unlinkable, defined as follows. Let (sk, pk) be a
key pair for a blind signature scheme. A pair (M,S) is valid if signature verification of M and S with respect to
public key pk succeeds.

A blind signature scheme is unforgeable if for an adversary (not knowing sk) the only feasible way to
obtain valid pairs (M,S) is to execute the signature generation protocol with a signer holding private key sk.
More precisely, a blind signature scheme should withstand a one-more forgery: if an adversary is able to obtain
` valid pairs of messages and signatures, then the signer executed the signature generation protocol at least `
times. Preferably, we like this to hold for any positive ` bounded polynomially in the security parameter k.

A blind signature scheme is unlinkable if for an adversary (colluding with a signer) it is infeasible to link
any valid pair (M,S) to the instance of the signature generation protocol in which it was created. More precisely,
suppose a signer S and a receiver R play the following game. First they run the signature generation protocol
resulting in a pair (M0, S0) and then they run it once more, resulting in (M1, S1). Then R flips a coin, that
is, chooses b ∈R {0, 1} and sends (Mb, Sb), (M1−b, S1−b) (in this order) to S. Finally, S makes a guess for
the value of b. Unlinkability means that the probability of S guessing b correctly is 1

2 , except for a difference
negligible in the security parameter k.

Ring Signatures A ring signature allows a signer to sign a message such that the authenticity can be verified
relative to a ring of users, that is, a spontaneous set of users chosen by the signer when creating the signature.
The other members of the ring do not cooperate in the signing or may not even be aware of it. Ring signatures
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provide a certain level of anonymity since a verifier will only learn that the signer is among the users in the
ring, but will not learn which user has signed. The term ring signature was coined by Rivest et al. [RST01],
although earlier group-signature schemes already used similar schemes as building blocks of their constructions
(cf. [HS03]).

Dodis et al. [DKNS04] describe the first ring signature scheme in which the signature size does not grow with
the number of users, and show it secure in the random-oracle model. Ring-signature schemes based on pairings
and secure without random oracles have been described by Shacham and Waters [SW07] with signatures growing
linearly in the number of ring members, Chandran et al. [CGS07], with signature size growings sub-linearly in
the number of ring members, and by Chow et al. [CWLY06] with constant-size signatures. The work of Bender
et al. [BKM09] points out that previous constructions of ring signatures assume that public keys are generated
honestly; they provide a stricter security definition. They then also describe a generic construction and two more
efficient constructions based on specific computational assumptions and only for rings of size 2. A first (still
not practical) lattice-based scheme has been given by Melchor et al. [MBB+13]. Another scheme that achieves
post-quantum security is described by Derler et al. [DRS18]. It is only based on symmetric primitives.

Ring signatures with advanced security properties exist and are interesting for use in combination with DLT.
For instance, threshold ring signature schemes combine threshold signing with the anonymity guarantees of
ring signatures. A first scheme has been described by Bresson et al. [BSS02], based on the RSA assumption
and secure in the random-oracle model. Wong et al. [WFLW03] have described a construction extending the
original work of Rivest et al. [RST01]. Separable ring signature schemes furthermore allow to combine sev-
eral users’ signatures into a threshold ring scheme, even although the keys are for different types of signature
schemes [LWW03]. A linkable ring signature scheme allows to determine whether two ring signatures have
been created by the same user [LWW04, LW05]; a scheme with constant-size signatures based on RSA has been
proposed by Tsang and Wei [TW05]. Recently, Baum et al. [BLO18] have described a scheme based on hardness
of lattice problems. The discussed properties can also be combined in a single scheme [TWC+04].

Accountable ring signatures allow to specify one designated opener that can revoke the anonymity and have
been introduced by Xu and Yung [XY04]. An implementation based on the DDH assumption, in which the
signature size grows logarithmically with the number of ring users, has been proposed by Bootle et al. [BCC+15].
This has been improved to constant-size signatures by Lai et al. [LZCS16] and Kumawat and Paul [KP17].

Traceable ring signatures, as introduced by Fujisaki and Suzuki [FS08] allow each user to only use the ring
signature once for a certain context; this can be used for preventing double spending. The original scheme is
based on the decisional Diffie-Hellman assumption and proven in the random-oracle model [FS08], a later work
of Fujisaki [Fuj11] devises a scheme where the signature grows sub-linearly in the number of ring members,
based on pairing-based cryptography and secure in the standard model. Recent work of Gu and Wu [GW18]
describes a scheme with constant-size signatures, based on the CDH assumption.

Use of ring signatures in DLT. Various cryptocurrencies have used ring signatures to improve transaction privacy.
The underlying idea is that a transaction is signed with a ring signature, which is signed relative to a certain
number of transaction outputs, hiding which exact output was spent. Since a vanilla implementation would allow
for double spending, ring signatures with additional features are used. CryptoNote [vS13], for instance, is based
on the traceable ring signature scheme of Fujisaki and Suzuki [FS08]. The Monero cryptocurrency [Noe15] uses
the scheme of Liu et al. [LWW04]. An improved protocol has recently been described and is based on similar
technical ideas [SALY17].

Group Signatures Group signature were introduced by Chaum and van Heyst [CvH91] as a special type of
digital signatures satisfying three extra requirements.

A group signature scheme for a group formed by a group leader P0 and group members P1, . . . ,P`, ` ≥ 1,
consists of four components:

Key generation. A protocol between P0,P1, . . . ,P` for generating a public key h for the group, a private key
x0 for the group leader P0 and a private key xi for each group member Pi, 1 ≤ i ≤ `.
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Signature generation. An algorithm that on input of a message M , the public key h of the group, and a private
key xi of a group member Pi, outputs a group signature S.

Signature verification. An algorithm that on input of a message M , the public key h of the group, and a signa-
ture S, determines whether S is a valid group signature on M with respect to public key h.

Signature opening. An algorithm that on input of a message M , the public key h of the group, a valid group
signature S, and the private key x0 of the group leader, outputs the identity of the group member who
generated S.

In addition to the requirements for a basic digital signature scheme, a group signature scheme should satisfy the
following requirements related to the anonymity of a group member and the role of the group leader. Given a
signature, no-one except the group leader should be able to tell which group member produced a given signa-
ture. More generally, given two signatures, no-one except the group leader should be able to tell whether these
signatures were produced by the same group member or not (unlinkability). Of course, group members should
not be able to produce signatures on behalf of other group members. Similarly, a group leader should not be able
to frame a group member Pi by opening a signature produced by Pj as if it was produced by Pi (i 6= j).

Ring signatures and list signatures can be viewed as special types of group signatures. Ring signatures are
well-known (see previous section) and can be seen as group signatures without a group leader. Indeed, as noted
at the end of [CDS94], direct application of 1-out-of-` proofs yields this type of group signatures.

List signatures. Canard et al. [CSST06] introduced list signatures as a variant of group signatures setting a limit
on the number of signatures each group member may issue. The basic idea behind list signatures goes back to
Stam’s master’s thesis [Sta99], which covers mechanisms to ensure that voters cannot cast more than one vote in
an anonymous election. The limits must be enforced without having the group leader open signatures of honest
group members—which excludes the trivial solution in which the group manager opens every signature to see
whether some group members exceed their limits. Furthermore, list signatures enable public identification of
group members who exceed their limits, also without involving the group manager. See [CSST06] for construc-
tions, both for small groups (complexity grows with size of group) and large groups (complexity independent of
group size).

Threshold Signatures Threshold signatures are a specific type of multi-signatures. For a set of n users and a
specific threshold t ≤ n, generation of a signature is possible if and only if t signers collaborate.

Threshold cryptosystems based on the discrete logarithm problem have been suggested early by Desmedt
and Frankel [DF89]. Their scheme required a trusted party to generate all keys; this restriction is resolved
by the scheme of Pedersen [Ped91]. Many protocols for generating the distributed keys have been developed
later [GJKR07]. Gennaro et al. [GJKR96] describe a threshold signature based on DSA which is additionally
robust in the sense that malformed shares contributed by dishonest parties will not affect the correctness of
the signature. Later, Gennaro et al. [GGN16] presented a protocol for DSA signature generation that requires
6 rounds of interaction. All these solutions, however, require an interactive protocol between the participants
for signature generation. This interactive signing phase appears in most of the early discrete-logarithm-based
threshold signature schemes and may limit their applicability in distributed ledgers.

Shoup [Sho00] describes the first practical threshold signature scheme based on RSA that has a non-interactive
signing phase. The protocol requires a trusted setup phase to generate the keys; this requirement has been over-
come by Damgård and Koprowski [DK01]. Later, Gennaro et al [GHKR08] describe a variant of the scheme
that works for dynamically changing groups of users. Boneh et al. (BLS) introduce a non-interactive threshold
signature scheme in the random-oracle model using elliptic-curve cryptosystems with bilinear maps, which re-
quires a pairing operation for verification [BLS04]. A non-interactive scheme based on the GapDH assumption1

has been given by Boldyreva [Bol03], and builds on the BLS signature scheme [BLS04].

1The GapDH assumption requires that in a cyclic group G with generator g, given ga, gb with uniformly random a, b, it be difficult
to compute gab even in presence of an oracle that distinguishes Diffie-Hellman triples gx, gy, gxy from random triples gx, gy, gz .
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Recently, Boneh et al. [BGGK17] describe what they call a universal thresholdizer, a method to convert any
signature scheme into a threshold signature scheme. This method leads to the first (non-interactive) lattice-based
threshold signature scheme, but is based on computationally expensive techniques such as fully homomorphic
encryption.

Use of threshold signature schemes in DLT. Gennaro et al. [GGN16] suggest the use of threshold DSA for
generating signatures in Bitcoin transactions, as a measure against compromise of secret keys. A further area
where threshold signatures are useful is permissioned blockchain systems, meaning systems in which all users
have registered identities, in which a natural model is for a threshold of nodes to agree on a specific action.

Key-Evolving Signatures In regular digital signature schemes, an adversary who compromises the signing key
of a user can generate signatures for any messages it wishes, including messages that were (or should have been)
generated in the past. Forward secure signature schemes [BM99] prevent such an adversary from generating
signatures for messages that were issued in the past, or rather allows honest users to verify that a given signature
was generated at a certain point in time. Basically, such security guarantees are achieved by “evolving” the
signing key after each signature is generated and erasing the previous key in such a way that the actual signing
key used for signing a message in the past cannot be recovered but a fresh signing key can still be linked to the
previous one. This notion is formalized through key evolving signature schemes, which allow signing keys to be
evolved into fresh keys for a number of time periods. Efficient constructions of key evolving signature schemes
with forward security are given e.g. in [IR01, MMM02, KR02]. An efficiency comparison of various forward
secure signature schemes is given in [CJMM03].

Use of key-evolving signatures in DLT. The primary use of key-evolving signatures in blockchain protocols
(more specifically: proof-of-stake protocols) is to achieve security against adaptive corruptions. In a nutshell,
these schemes are used to sign blocks (or other protocol messages), and honest participants are mandated by the
protocol to update their secret keys regularly. Typically, a participant that is selected to act by the protocol (e.g. to
create a new block), signs this block with a key-evolving signature, evolves its key, and only then broadcasts this
signed block. In this way, even if the adversary is capable to corrupt this party immediately after it discloses its
role (by broadcasting the block), he can no longer take advantage of the secret key obtain through the corruption
to forge a signature on an alternative block. This general approach is used in the protocols Algorand [Mic16],
Ouroboros Praos [DGKR18] and Ouroboros Genesis [BGK+18].

3.3 Verifiable Random Functions

A verifiable random function (VRF for short) is a public-key analogue to the well-known pseudorandom func-
tions (PRFs), consisting of three algorithms F, P, V . It allows the owner of a secret key sk to evaluate the
function on arbitrary input x, obtaining an output y = Fsk(x) that is unique, and pseudorandom for anyone not
holding the key sk. However, using the secret key sk it also allows to generate a proof π = Psk(x) that can later
be used by anyone holding the public key pk corresponding to sk to verify that y is indeed the correct value of
F on x, by checking y = Vpk(y, x, π).

Verifiable random functions were introduced by Micali, Rabin and Vadhan in [MRV99]. A more efficient
VRF construction was later proposed in [DY05].

Use of verifiable random functions in DLT. Verifiable random functions have been used in proof-of-stake proto-
cols to realize a local, private lottery selecting participants eligible to act in the protocol proportionally to their
stake share. The local and private nature of the lottery helps achieve the security of the protocol against instant
adaptive corruptions, as the potential positive outcome of the lottery remains hidden to the other participants (and
the attacker) until the winning party acts, at which point corrupting the party can no longer compromise the pro-
tocol. This use of VRFs has appeared in the NXT cryptocurrency [Com14], and the protocols Algorand [Mic16],
Ouroboros Praos [DGKR18] and Ouroboros Genesis [BGK+18].
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Additionally, VRFs are also used in [Mic16, DGKR18, BGK+18] in the process of generating protocol
randomness in a way that is efficient (hashing-based, as opposed to a coin-tossing protocol in [KRDO17]) and
yet the resulting randomness can only be biased by the attacker in a limited amount that can be contained by the
protocols.

3.4 Anonymous Credential Schemes

The purpose of an anonymous credential scheme is to allow a user to prove claims about their identity in a
privacy-preserving way. The user obtains a certificate that binds attributes related to the user, such as name, birth
date, or employer, to the user’s cryptographic key. Different from a traditional certificate scheme, an anonymous
credential system allows the user to selectively and partially open attributes toward the verifier, and the verifier
will not be able to infer more information about the user than the fact that the attribute is true. For instance, this
allows a user to prove toward a web site that he is older than some minimum age required to access the web site,
without disclosing his name or any other privacy-sensitive information.

Cryptographic schemes that provide anonymous credentials have been proposed a series of works by Ca-
menisch and Lysyanskaya [CL01, CL02, CL04] and by Brands et al. [BDD07], and have been implemented in
Identity Mixer [CH02] and U-Prove [PZ13].

Use of anonymous credential schemes in DLT. Anonymous credential schemes are useful in permissioned DLT
to allow registered users to anonymously but authentically initiate transactions. More concretely, Identity Mixer
technology is in the process of being implemented in Hyperledger Fabric [Dub17]. Another combination of
DLT and anonymous credential schemes is by using a distributed ledger for providing credentials in a privacy-
friendly way. The Sovrin project [Sov18] builds on the Hyperledger Indy platform, which also uses Identity
Mixer technology.

3.5 Hash Chains

Hash chains are the fundamental concept underlying any blockchain: each block contains the hash of the pre-
ceding block. This also means that each block inherently authenticates the entire history up to that block. Hash
chains are closely related to the concept of Merkle trees [Mer80] but appear explicitly first in the work of Haber
and Stornetta [HS90] in the context of time stamping. The underlying idea is for a time stamping service to
accept documents, hash them (together with the previous hash), and publish the hash value e.g. in a newspaper.
Subsequent work by Benaloh and de Mare [BdM93] and Buldas et al. [BLLW98] extended the efficiency of the
time stamping service using different tree shapes.

Hash chains have since been used in multiple distributed systems protocols, such as the Blind Stone Tablet
(BST) by Williams et al. [WSS09], as a means to achieve fork-linearizability in cloud-based storage with multiple
clients. In contrast to those protocols, and starting with Bitcoin [Nak09], blockchain systems collate multiple
transactions into a block, and builds a hash chain over those blocks. All subsequent blockchain protocols follow
the same approach.

Several newer schemes generalize the concept of a blockchain toward a directed acyclic graph of blocks,
or block-DAG, as the total order of transactions achieved by a blockchain may be unnecessarily strict and can
become a performance bottleneck. Such systems include Swirlds [swi], Iota [iot], Spectre [SLZ16] and Phan-
tom [SZ18]. The consistency of these approaches is, however, not as well understood as that of blockchains.

3.6 Authenticated Data Types

An authenticated data type (ADT, also authenticated data structure) [Tam03] allows a client to outsource data
to a server while guaranteeing the integrity of the data. In a nutshell, while the server stores the data, the client
holds a small authenticator (or digest) that relates to it. Operations on the data are performed by the server, and
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for each operation the server computes a proof that, together with the authenticator, allows the client to check
that the server performed the operation correctly.

Merkle trees [Mer80, Mer89] can be seen as the prototype realization ADT, efficiently implementing a
bounded-length array and providing efficient proofs for array elements. Many ADTs for specific data structures
and related specific types of queries have been described in the literature. Merkle trees apply to bounded-length
arrays, where entries can be updated. Other instantiations exist for data structures such as sets [NN00, PTT11],
dictionaries [AGT01, GTS01], range trees [MNG+01], hash tables [PTT08] and many more. A recent con-
struction of Cachin et al. [CGPT17] provides a construction for arbitrary abstract data types, based on verifiable
computation. Generally, ADTs can be seen as special cases of (stateful) verifiable computation schemes [WB15,
PHGR13, FFG+16, CGPT17] and NIZKs, where the server can prove the correctness of an arbitrary computa-
tion. Furthermore, recent work has seamlessly integrated an ADT into a programming language [MHKS14].

Use of authenticated data types in DLT. Besides the appearance of a hash chain as the underlying data structure
of a blockchain, Merkle trees are used in various ways for compact proofs of membership. As an example,
Zerocash [BCG+14a] keeps a Merkle tree of all commitments of assets seen on the ledger, and a membership
proof to show validity.

3.7 Anonymous Authentication

Cryptography is useful to solve many real-world tasks that sometimes conflict with each other. A requirement
often needed is that of obtaining entity authentication so that a player is ensured about the identity of another
player. Another often-needed requirement is related to privacy protection, and the fact that a qualified entity
would like to access to some remote services without being traced. The tension between such two requirements
can be relaxed through anonymous authentication systems. Here a user can prove to be a qualified user without,
however, revealing his identity. The verifier of such system is convinced that the user belongs to a qualified set of
users and has no additional information about the identity of the user. This notion has been sometimes referred
as anonymous group identification [DKNS04].

Anonymous authentication is clearly connected to group and ring signatures. Indeed such signatures schemes
can be seen as building blocks for anonymous authentication. There are constructions of anonymous authentica-
tion schemes that leverage on interaction (that is clearly not available in the setting of signatures schemes). Some
notable examples are the OR-composition technique of Cramer et al. [CDS94] recently improved in [CPS+16a,
CPS+16b], and the deniable ring authentication of Naor [Nao02].

Anonymous authentication is a privacy-preserving primitive that can be useful for privacy-enhancing ledgers
since it would allow a legitimate user of a ledger to perform a transaction keeping his identity private. Still the
transaction can be verified and validated since it was originated by a legitimate user.

3.8 Chameleon Hashes

Chameleon hashes are similar to hash functions but additionally contain a trapdoor T . For a party who does
not know T , a chameleon hash function is similar to a regular hash function in that it is hard to find collisions
and a second preimage to a given value. However, if a party knows T , she can easily find collisions and second
pre-images. [CDK+17]

These were originally proposed as a mechanism for non-transferrable signatures — the idea is that the re-
cipient of the signature should not be able to pass the signature along to third parties and be believed. This is
achieved in the following way. Suppose that Alice signs a message m and obtains a signature s and sends them
to Bob, who possesses the trapdoor T and that everybody knows that Bob knows T . Now, Bob is convinced that
the message is authentic as other people do not know the trapdoor. However, since Bob knows T , he can find a
different message m′ the signature of which is also s. Everybody knows that Bob has such abilities and thus, if
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Bob passes the pair (m, s) along to Charlie and claims that m was signed by Alice, then Charlie will not believe
him, as Bob could have replaced m with any other m′.

Chameleon hashes are potentially interesting to blockchain as they introduce a way to redact a blockchain,
for example, to remove some blocks. [AMVA17] This might be desirable if criminal content is stored on the
blockchain, for example child pornography. Currently, this has already happened for Bitcoin [bit]. Other possible
reasons to modify blockchain include the ”right to be forgotten” — if one has spent all their cryptocurrency, one
might wish to remove ones spending history from the blockchain.

The immutability of blockchain relies on the collision resistance of the underlying hash function. However,
if some committee is allowed to find collisions, then they can change the blockchain. Authors of [AMVA17]
propose a way how it is possible to remove blocks from the blockchain.

The original approach to solve this problem suffered from the key exposure problem — namely, if Bob forges
a signature, then Alice can obtain Bob’s trapdoor from it.

A property that the chameleon hash scheme can have is enhanced collision resistance (ECR)— an adversary
who does not know the trapdoor should not be able to produce collisions even after seeing polynomially many
collisions. Not all chameleon hashes have this property which was introduced by Ateniese et al. in [AMVA17],
along with a scheme that is ECR.

3.9 Cryptographic Bulletin Boards

Consider an application like the collection and storage of ballots during Internet voting and similar applications.
Here, the data collection (e.g., voting) period has short timespan, but the data (e.g., encrypted ballots) should
stay available for long time period for later auditing. The technology behind this type of ledger is called bulletin
boards. A bulletin board system consists of several high-availability bulletin board servers, a large fraction of
which is considered to be trusted.

Many of the e-voting schemes assume the existence of a bulletin board system, but the first efficient bulletin
board systems were proposed only a few years ago [CS14, CZZ+16]. The bulletin board system of [CS14] was
proven secure by using formal methods and lacks, up to our knowledge, a cryptographic security proof. The
bulletin board system of [CZZ+16] assumes the existence of a highly trusted election authority.
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Chapter 4

Confidentiality-related primitives

This chapter gives an overview of the primitives that strengthen confidentiality that either are or might be useful
for blockchains or might benefit from blockchains. Confidentiality is one of the key goals of cryptography and
thus a document about cryptographic primitives that failed to discuss confidentiality-related primitives would
necessarily be incomplete.

We first remind a few elementary notions for the sake of completeness. Then we overview different flavours
of encryption which allow different sets of parties to encrypt and decrypt the data. Distributed ledgers deal with
many parties simultaneously which tends to lead to complicated types of interactions with each other. Thus it
would be beneficial to provide different possibilities to account for the fact that the desires of the parties might be
rather complicated. We also overview private information retrieval, which allows a client to obtain information
from a database without the owner of the database learning what information was queried for. As distributed
ledgers and blockchains are used often for storing data, cryptographic protocols related to databases is a natural
area of interest.

4.1 Elementary Primitives

We here recall some elementary cryptographic protocols. As they are commonly known, we shall be brief about
them. Public key encryption schemes (PKE) are schemes where there are two related keys — a public key and a
private key. A public key is presumed to be known to the public. Anyone who knows the public key can encrypt
a message that can be decrypted only by those that know the corresponding secret key. The phrase ’asymmetric
encryption scheme’ is used as a synonym for ’public key encryption scheme’.

Symmetric encryption schemes are encryption schemes where the same key is used for encrypting and de-
crypting.

Signcryption schemes are schemes where private-key-secret-key pairs are such that they can be used for both
PKE and signature schemes.

An encryption scheme is said to have the ciphertext indistinguishability (IND-CPA) property if an adversary
can pick two plaintexts,m0 andm1 and is presented an encrypted version of one of these and can not tell whether
it is the encryption of m0 or m1.

4.2 Functional Encryption

Traditionally, encryption has been an all-or-nothing affair: either a recipient owns the secret key (and thus can
decrypt) or she does not (and then learns nothing about the plaintext, except possibly its size). Functional
encryption [SW05, KSW08, O’N10, BSW11] enables a much more fine-grained handling of encrypted data.
Here, the owner of the master key can delegate partial secret keys to various recipients. In a functional encryption
scheme for functionality F , the knowledge of a secret key corresponding to some y enables one to decrypt an
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encryption of z to F(y, z). As such, functional encryption has many potential applications, and has spurred a
long line of research, see the excellent survey [BSW12].

A functional encryption scheme can be required to satisfy several different security requirements [O’N10,
BSW11]. In the case of the adaptive IND-FE-CPA security [O’N10, BSW11], it must be difficult for an adversary
to distinguish functional ciphertexts of any two plaintexts z0 and z1. This must hold even if the adversary is
given an oracle access to the partial secret key generator, where the secret key queries must satisfy the condition
that F(y, z0) = F(y, z1) for each queried y. In the weaker selective security model, the adversary is required to
choose z0 and z1 before seeing the public key and answers to any of the secret key queries. See [O’N10, BSW11]
for discussion.

4.3 Identity-Based Encryption

The public-key infrastructure has the problem of associating public keys to the identities — somebody has to
guarantee that a public key claimed by a e-mail address really belongs to that e-mail address and not to an
impostor. The common way to deal with this problem is relegating trust to keyservers.

Identity-based encryption aims for a situation where the public key can be any string (as opposed to the usual
encryption schemes where public keys must have a specific structure), for example, the e-mail address that it is
tied to. This, however poses a problem — we can presume that e-mail addresses are public knowledge — how
can only the owner of that e-mail address obtain the secret key with what to decrypt messages sent to her?

Here the problem is solved with introducing an agency who has the power to create secret keys. That agency,
however, requires even more trust as it has all the secret keys it has created. It has to be trusted not to read the
mail sent to the users for which it has generated the secret keys and also not to be compromised.

IBE was proposed by Shamir in 1986 [Sha84]. A solution was given by Boneh and Franklin in 2001 [BF01].
Since then, the problem has been subject to a large amount of research.

4.4 Attribute-Based Encryption

Attribute-based encryption is a type of functional encryption where the owner of the secret key can only decrypt
if he satisfies certain properties. This allows for fine-grained access control.

There are a certain number of attributes that each key either satisfies or does not satisfy. We can encrypt
messages and require that it should be decryptable only by such keys the attributes of which satisfy certain
logical statements of the arguments.

ABE was proposed by Goyal, Pandey et al. in 2006 [GPSW06].

4.5 Deniable Encryption

In [CDNO97] Canetti et al. introduced the concept of (sender) deniable encryption. It is a special encryption
that allows the sender to generate fake randomness keys as evidence that a given ciphertexts is the encryption
of a given plaintext. The original construction of Canetti et al. had the limitation of pre-planning in the sense
that at encryption time it is required to choose either the standard encryption function or the deniable encryption
function. This has been more recently improved by Sahai and Waters [SW14] that through the use of indis-
tinguishable obfuscation showed how to perform deniable encryption without pre-planning. This was the first
scheme with super-polynomial security, i.e., where an adversary has negligible advantage in distinguishing real
and fake openings. In [Dac14] it is proven that there is no black-box construction of (sender) deniable public-
key encryption with super-polynomial security from simulatable public-key encryption. This impossibility result
shows that any construction should employ non-black-box techniques, stronger assumptions (this is the case of
the construction of [SW14]), or interaction.
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4.6 Witness Encryption

Let L be a language in NP. Witness encryption is a type of encryption where Alice encrypts a value y with
respect to a value x. The ciphertext can only be decrypted by the one who manages to provide a witness wx that
witnesses that x ∈ L. If x /∈ L, then the cyphertext can not be decrypted. Note that Alice does not have to know
whether x ∈ L. Currently, there are no practical witness encryption schemes known.

Garg, Gentry et al. proposed the concept of witness encryption in [GGSW13]. They also gave a construction
based on multilinear maps for a witness encryption scheme where the NP-problem under question is EXACT
COVER. They also give an impossibility result — a statistically sound witness encryption is impossible unless the
polynomial hierarchy collapses. The original construct also suffered not being able to rely on simple assumptions
— basically, they had to assume that the scheme was secure.

There have been improvements of the original scheme. Gentry et al. [GLW14] propose a method for reducing
the assumptions of a WE scheme. They demonstrate that the approach is viable by obtaining an assumption that
depends on the length of the witness but otherwise does not depend on the NP-instance.

Also, Ananth et al. [AJN+16] propose combiners for WE — a system that takes several constructions of a
primitive and combines them and is secure if any of them is secure. Their constructions gives a combiner that is
secure provided that one-way functions exist.

As multilinear maps are very expensive, WE based on those would also be expensive. Abusalah et al.
[AFP16] propose a method where they add a setup phase, essentially offloading the cost to the setup phase
that needs to be done only once. In that case encryption phase needs only two CPA encryptions and a NIZK
proof. The setup required is still expensive, but needs to be done only once and can be used for arbitrarily
many encryptions. The provider of the setup phase must be trusted though. Also, the decryption phase remains
expensive.

Goyal and Goyal proposed using witness encryption in [GG17] in order to build a non-interactive zero-
knowledge scheme that needs only blockchain as a trusted third party.

4.7 Private Information Retrieval

An m-out-of-n computationally private information retrieval (shortened to (n,m)-CPIR, [KO97]) protocol en-
ables the receiver to obtainm elements from sender’s database of n elements, without the sender getting to know
which elements were obtained. An efficient CPIR protocol has to be implemented by virtually any two-party
privacy-preserving database application, and hence CPIR protocols have received significant attention in the
literature.

Let ` be the element length. Since there exists a trivial CPIR protocol with linear communication `n where
the sender just forwards the whole database to the receiver, a major requirement in the design of new CPIR pro-
tocols is their communication efficiency. The first CPIR protocol with sublinear communication was proposed
by Kushilevitz and Ostrovsky [KO97], and slightly optimized by Stern [Ste98]. The first CPIR protocol with
polylogarithmic-in-n communication was proposed by Cachin, Micali and Stadler [CMS99]. The first CPIR pro-
tocols with asymptotically truly efficient communication complexity were proposed by Lipmaa [Lip05, Lip09]
and Gentry and Ramzan [GR05]. Very recently, Kiayias et al. [KLL+15, LP17] have proposed (n, 1)-CPIR
protocols with optimal rate, that is, with communication `+ o(`).

Oblivious transfer is a strengthened version of CPIR that additionally requires that the user gain no informa-
tion about the other items in the database that the user did not ask for. Differently from CPIR, oblivious transfer
is also interesting in the case of linear communication (the mentioned trivial protocol where the sender forwards
the whole database to the receiver does not preserver the privacy of the sender), in particular since it is known
to be complete for multi-party computation [Kil88]. (This is since oblivious transfer can be used to securely
evaluate arbitrary functions.) Moreover, oblivious transfer is often useful in the case when the trapdoor only
consists of two elements since (2, 1)-oblivious transfer can be used together with garbled circuits to implement
two-party computation [Yao82].
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Chapter 5

Secure computation

Distributed ledgers have by definition multiple parties involved. These parties may not necessarily trust each
other. The most basic cryptographic protocols necessary for blockchain —- signing and hashing — require the
private data of either no party or just one party and can be verified by anybody. However, if we wish to build more
complicated operations on top of the blockchain, we might need operations that take the private input of more
than one party. For example, two parties may agree to put cryptocurrency to an account so that neither of those
parties can take the currency when operating alone but they can move the currency when they collaborate. For
this, a very natural solution is secure (multi-party) computation — a field that studies how to compute on values
while preserving their secrecy. Another, related field that is relevant is the field of verifiable computing — other
parties might need verification that all operations were performed correctly and this might be more complicated
than simply verifying a signature or re-computing a hash.

5.1 Secret Sharing

Secret sharing is a method for taking a piece of data x and obtaining k values x1, . . . xk (called shares) in such
a way that x can be learned from some subsets of {x1, . . . xk} but no information about x can be learned, if one
possesses some other subsets. The values xi are given to parties Pi.

Common examples are threshold secret sharing schemes where there is an integer t such that possessing t
shares allows us to compute x, but possessing t − 1 shares gives no information about x. Shamir secret sharing
[Sha79] is a popular option, it uses polynomial interpolation.

Secret sharing can be used for storing data in the cases where it is desirable that single parties can not access
the data but committees of parties can.

A number of secret-sharing schemes enjoy homomorphic properties — given the sharings of values x and y,
it is possible to manipulate the shares to obtain shares of x + y, xy or some other function of x and y (which
functions can be computed this way and how efficient these operations are depend on the concrete setting).
Secret-sharing based secure multi-party computation studies how to do this efficiently and with different security
guarantees.

However, this property can be useful in using secret-sharing in other cryptographic protocols as well — for
example, two parties may be able to create a key so that neither party knows the key nor can use it but that they
can use the key when they collaborate [BDM16].

5.2 Secure (Multi-Party) Computation

Secure computation is a field that studies how to compute functions on values in such a way that the computing
party or parties do not learn anything about the values they compute on.

Data is very useful in the modern world and much can be gained when multiple parties use their data together.
However, data can also be private in nature. — for example, medical data or business data. To do medical re-
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search, data is highly needed, however, a person’s medical information is considered private, and anonymisation
might not provide enough privacy. (For example, when given the gender, birth date, and educational history, this
might be sufficient to single out a person from a dataset even if their name is not given.) Similarly, companies
may want to collaborate in a way where each provides some data of their own to achieve some common goal, but
do not want to reveal that data as it is a business secret. Thus for the kinds of applications where at least some
of the computing parties should not learn anything about the data they process secure computation methods are
necessary.

Popular paradigms for secure computation include secret-sharing based approaches (SS), garbled-circuit
based approaches (GC), and fully homomorphic encryption (FHE). An interesting property of FHE is that only
a single party is needed to do the computation — in other cases we need to make assumptions about at least
some sets of parties not collaborating, but as there is only one party in the case of FHE, we do not need any such
assumption. However, whereas GC-based and SS-based approaches have been used in the real world, FHE is
far too inefficient to be currently of any practical use [MSM17]. Thus, as this deliverable aims to describe the
primitives that can be practically used for blockchain, we shall not describe FHE in any more detail.

5.3 Secret Sharing-Based Secure Computation

Some secret sharing schemes have structures that allow to perform different operations on shares. If two values
x and y have been shared, then it is possible to manipulate those shares in such a way that the parties would
hold shares of x+ y or xy — it is possible to add and multiply the shared values, thus theoretically allowing any
computable function to be computed. This often includes the parties passing specific messages to each other,
although some operations are possible to perform without sending any messages. Sending these messages is
usually the bottleneck of this type of secure computation. As a consequence, these kinds of computations benefit
very much from parallel composition.

Some variants of SS require at least three parties, while others require only two. Both have their advantages
and disadvantages. Secure two-party computation can only be achieved with computational security which is
usually slower than information-theoretical security. [DO10]. On the other hand, it can be more difficult to find
three parties any two of which would not collaborate than to find two such parties.

Another approach to secret-shared based computation uses the idea of splitting computation into a precom-
putation phase and online phase. The idea is that it is possible to do some computations before the actual data
enters the system. This makes computation faster when the actual data enters the system. This is useful when the
application is an infrequent event with lots of data to process (for example an election), not a continuous process
where computation needs to be done constantly (for example, keeping satellites from colliding). The original
example of this are the Beaver triplets [Bea91] where one party prepares secret-shared multiplicative triples that
help with the secret multiplication operation.

5.4 Garbled Circuits

Garbled circuits is a method for two-party computation that was originally proposed by Yao in 1986[Yao86].
Alice takes a circuit C that computes some function f and applies a ’garbling function’ to it, obtaining the object
C ′ and sends it to Bob. The nature of C ′ will be explained later. Bob now obtains the inputs from the Alice via
oblivious transfer, enters his own input and evaluates the circuit, without learning anything more about Alice’s
input than can be learned from the output of C ′.

A garbled circuit consists of garbled gates and wires. In an evaluation of a garbled circuit, wires carry wire
labels corresponding to binary wire values in such a way that Bob does not learn anything about the wire values,
unless they only depend on values known to Bob.

Generally it is done so that Alice picks two values w0 and w1 for every wire W that signify the respective
bits. Bob should learn only one of them without knowing whether it corresponds to 0 or 1. In the case where
these bits are the input bits, this can be easily solved with oblivious transfer.
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However, suppose that we want to obtain the value of the wire wo that leaves a gate, for clarity, let it be an
AND-gate. Bob knows the values wl and wr — the values of the wires entering the gate.

Bob can learn the value wo with the technique of the garbled gate. Essentially, there are four possibilities for
the pair (wl, wr) — (wl0 , wr0), (wl0 , wr1), (wl1 , wr0) and (wl1 , wr1). In the first three cases, Bob should obtain
wo0 and in the last case wo1 . Note that while Bob knows wl and wr, Bob does not know which of the four
possible variants it is.

Thus Alice uses every possible pair of inputs as keys to symmetrically encrypt eitherwo0 orwo1 , respectively.
When the output bit of the gate for the input (l, w) is supposed to be o, then the value that Alice encrypts with
(wl, wr) is wo.

In total she obtains four possible ciphertexts.
Now she computes a random permutation π of these four values and sends the values Bob. That is, essentially,

a garbled gate.
Bob knows wl and wr which is one of the (wl0 , wr0), (wl0 , wr1), (wl1 , wr0) and (wl1 , wr1) — thus, when

he tries to use the keys he knows to try to decrypt Ca, Cb, Cc and Cd, he succeeds precisely once, obtaining wo
without knowing whether the decrypted value is wo0 or wo1 .

Note that Alice can send all the quadruples (Ca, Cb, Cc, Cd) for every gate to Bob simultaneously. This
makes the communication scheme of garbled circuits different from secret-shared based computations — in the
first case, the parties need to communicate once, but the amount of data to be sent is very big. In the other case,
the amount of data sent during every communication is smaller, but many rounds are needed. Also, in the case
of garbled circuits, the amount of computation before and after communication is quite significant, whereas in
some flavours of secret-sharing, they can be rather small. This gives the two approaches different strengths and
weaknesses.

The method described above is the simple version of garbled circuits. Many optimizations have been pro-
posed and implemented, but the specifics of those are not the goal of this deliverable.

5.5 Verifiable Computation

A verifiable computation scheme [GGP10, BGV11, FG12] allows for a client to outsource the computation of a
function to an untrusted server; the server produces a proof of correctness along with the output of the function.
The client checks the correctness proof to decide whether the output provided by the server is accepted or not.
Let F be a function. A VC scheme VC = (KeyGen,ProbGen,Compute,Verify) for function F consists, in
general, of the algorithms described below.

• (sk, pk)← KeyGen(F , λ) : The (randomized) key generation algorithm takes as input the function F and
the security parameter λ, and outputs a public key pk and a secret key sk.

• (ΣX , vkX) ← ProbGensk(X) : The (randomized) problem generation algorithm takes as input the value
X and uses the secret key sk to compute an encoding ΣX of X and a secret verification key vkX .

• ΣY ← Computepk(ΣX) : The (deterministic) compute algorithm takes as input the encoded value ΣX

and uses the public key pk to compute an encoding of Y = F(X).

• Y ← Verifysk(vkX ,ΣY ) : The (deterministic) verify algorithm takes as input the verification key vkX and
the value ΣY ; it uses the secret key sk and vkX to compute a value Y ∈ {0, 1}∗ ∪ {⊥}, where symbol ⊥
denotes that the algorithm rejects the value ΣY .

A typical VC scheme needs to satisfy some properties that we informally discuss below.

• Correctness: The ProbGen algorithm produces problem instances that allow for a honest server to success-
fully compute a value ΣY such that Y = F(X).
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• Soundness: No malicious server can “trick” a client into accepting an incorrect output, i.e, some value Y
such that Y 6= F(X). We require this to hold even in the presence of so-called verification queries [FGP14].

• Outsourceability: The time to encode the input plus the time to run a verification is smaller than the time
to compute the function itself.

The notion of verifiable computation combines well with smart contracts. In general one could delegate the
verification process to a smart contract in order to start a transaction to pay for the computation.

27



Chapter 6

Zero Knowledge

The concept of zero knowledge [GMR85] refers to the capability of a user (the prover) to convince another user
(the verifier) that some claim is true, without revealing any side information. and has been defined in several
different ways. This is a fundamental privacy-preserving primitive for the constructions of privacy-enhancing
ledgers since it allows to upload private data in ledger allowing later to prove statements about encrypted data
without revealing any unnecessary private information. It has been defined with different flavors in order to
capture different real-world scenarios and we discuss the main variants below.

6.1 Zero-Knowledge Proofs and Argument Systems

A zero-knowledge proof system guarantees the verifier that even an unbounded adversarial prover can not con-
vince the verifier of a false claim with non-negligible probability. Instead the notion of zero-knowledge argument
limits the security of the verifier to the fact that the prover can not break some computational assumption, and
therefore applies only to computationally bounded (i.e., polynomial time) provers. Zero-knowledge proof and
argument systems enable parties in a protocol to convince other users that they honestly followed the protocol
without revealing their private data. E.g., in the case of electronic voting, a voter can prove that his encrypted
ballot is for a registered candidate without revealing which candidate precisely he voted for.

6.1.1 Timing

A zero-knowledge protocol allows a prover to convince a verifier about the validity of an NP statement with-
out providing additional knowledge to the verifier. This is formalized by requiring the existence of an efficient
simulator S that can simulate the view of a malicious verifier interacting with the honest prover P . The no-
tion of concurrent ZK (cZK), introduced in [DNS04], considers an adversary mounting a coordinated attack
by acting as a verifier in many concurrent sessions and asking to receive proofs from multiple provers. cZK
protocols are significantly harder to construct and analyze, and are often less efficient than the standalone ZK
protocols [PTV10]. The difficulties in constructing and proving the security of a protocol in this setting is due to
the message schedule that a malicious verifier could adopt. To help the simulator against such a strong malicious
verifier, a timing model was introduced in [DNS04]. In this model it is assumed that every party has a local
clock, and that all these local clocks are roughly synchronized. Using the clock the prover (and the simulator)
can delay the response of certain messages by a given amount of time, thus limiting the power of the malicious
verifier. In common ledger implementations, some synchronisation between the parties involved in the protocol
is assumed, i.e., there exists a clock that all parties can access.
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6.2 Non-Interactive Zero Knowledge

In many practical applications, one prover must convince many verifiers that he followed the protocol correctly.
In such cases, one should use non-interactive zero-knowledge proofs (NIZK, [BFM88]), where the proof itself
is a bit-string, created once by the prover and then verified independently by anybody who is interested in the
correct outcome of the protocol.

It is impossible for a NIZK proof system to simultaneously satisfy its expected security requirements, namely
the soundness and zero-knowledge properties, in the so called standard model [BFM88]. Because of that, uni-
versally verifiable NIZK proof systems are designed usually either in the common reference string model (the
CRS model, [BFM88]) or in the random oracle model (the RO model, [BR93]). Those two models are orthog-
onal. The RO model is very often favored by practitioners due the availability of well-known heuristics like the
Fiat-Shamir heuristic [FS86] that make it possible to construct very efficient RO-model NIZK proof systems for
a wide variety of tasks. While it is well-known that the RO model is not always instantiable [CGH98, GK03], no
concrete attacks are known against any sensibly designed NIZK proof systems. To avoid possible future attacks
against heuristic RO-model NIZK proof systems, it is reasonable to design NIZK proof systems in the CRS
model.

The two main drawbacks of the CRS model are

(i) one must trust the entity who has generated the CRS, and

(ii) CRS-model NIZK proof systems have traditionally been inefficient.

Currently, one can say that (ii) is not an issue, at least not in many cases; see Sect. 6.5.

6.3 Zero-Knowledge Proofs and Arguments of Knowledge

A zero-knowledge proof/argument of knowledge is a strengthened notion of a zero-knowledge proof/argument
system. The prover proves not only that a claim is true but also that he knows a witness that allows to check
in polynomial time that the claim is true, without any interaction [BG92]. This advanced security notion for a
verifier is formalized by requiring that there exists an efficient procedure named extractor that having access to
the prover outputs the witness except with negligible probability. The difference between proof and argument
is again a consequence of the assumed computational power of the adversarial prover, that is unbounded in the
former case and efficient (i.e., polynomial time) in the latter.

The witness extraction property is fundamental in several applications where in some cases the claim is true
by definition and the only point is to prove possession of a witness (e.g., knowledge of a discrete logarithm, of a
private key, of a signature).

Witness extraction is performed using rewinds in case of a black-box extractor but can also be straight-line in
case non-black-box extraction is possible [BL02]. In the non-interactive case witness extraction can be straight-
line in the CRS model [SP92] while instead it requires rewinds in the random oracle model when the Fiat-Shamir
heuristic is used. Using instead a heuristic due to Fischlin [Fis05], one cane have a NIZK proof of knowledge in
the random oracle model with straight-line extraction.

6.4 Honest-Verifier Zero Knowledge and Witness Indistinguishability

There exists two weaker security notions for proofs and argument systems, namely: honest-verifier zero-knowledge
and witness indistinguishability.

Honest-verifier zero knowledge refers to preserving the privacy of the input of the prover only w.r.t. a verifier
that follows the protocol honestly. The adversary is in this case a distinguisher that studies the transcript of an
interaction in order to extract some private information about the input of the prover.
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Witness indistinguishability refers to hiding which witness is used by prover out of the several existing
witness for proving that a certain claim is true. This notion has been introduced by Feige and Shamir in [FS90]
and has been proved in [FLS90] to be a major building block for the design obtaining zero knowledge. This last
construction introduced the so called FLS paradigm that allows to obtain zero knowledge by artificially creating
another statement that is false during the real execution, but true during the simulation.

claims is true.
The most practical constructions of zero-knowledge proofs/arguments are based on Σ protocols. Every such

protocol consists of 3 messages where the message of the verifier is a random string. They are honest-verifier
zero-knowledge proofs of knowledge. The reason why Σ protocols are very popular in cryptography is twofold.
First of all, there exist efficient constructions for several languages of practical relevance (e.g., proving that a
triple is a Diffie-Hellman tuple). Second, the existence of the Fiat-Shamir heuristic [FS86] that transforms such
protocol to non-interactive zero-knowledge arguments of knowledge. The reason why this is just a heuristic is
that it relies on the assumption that the output of a collision-resistant hash function can be considered random
in a security proof. Finally in [CDS94] and later on in [CPS+16a, CPS+16b] it has been shown how to obtain
witness indistinguishability from Σ-protocols.

6.5 SNARKs

A succinct non-interactive argument of knowledge (SNARK) is a non-interactive argument of knowledge where
the argument π is succinct. More precisely, it is required that the argument length is poly(λ) (|x| + |w|)o(1),
where |x| is the input length and |w| is the witness length, [GW11]. As shown in [GW11], SNARKs exist only
under very strong (“non-falsifiable”) assumptions.

Recently, many pairing-based (zero-knowledge) SNARKs (zk-SNARKs) in the CRS model have been pro-
posed. In most of such SNARKs (see, e.g., [Gro10, Lip12, GGPR13, Lip13, DFGK14, Gro16]), the verifier’s
computation is dominated by a small number of exponentiations and pairings in a bilinear group, while the argu-
ment consists of a small number of group elements. Importantly, such SNARKs have a general-purpose feature:
it is enough to construct a secure and efficient SNARK once; after that, one is only left to design an application-
specific arithmetic circuit. If the functionality changes, one only has to redesign the arithmetic circuit (and the
CRS) but not the SNARK. Because of the mentioned benefits, SNARKs have been implemented in contexts like
verifiable computation [PGHR13] and, perhaps most importantly, cryptocurrencies [BCG+14b].

However, one drawback in the mentioned pairing-based SNARKs is their reliance on the CRS model (Exist-
ing fully-succinct SNARKs with a short CRS, see e.g. [BCCT13, BCTV14], are impractical.) where all parties of
the protocol have to trust that the CRS generator is honest. This is especially troublesome since (usually) one has
to generate a new CRS each time the functionality changes. Reducing such trust has been a long-standing open
question. Several different approaches for this are known, but each one has its own problems. The Registered
Public Key (RPK, [BCNP04]) model is a weaker trust model where each party Pi has her own trusted authority Ri
that registers her public key. While it is known how to construct NIZK arguments in the RPK model, [BCNP04],
in the (at least, standard) RPK model the arguments are not transferable since either the malicious verifier or
her key authority knows the simulation trapdoor. Thus, a third party does not know if the argument was created
by the prover or the designated verifier (or, her key authority). Moreover, existing NIZK arguments in the RPK
model are not efficient, and in particular, no pairing-based SNARKs (even designated-verifier ones) are known
to exist in the RPK model.

Currently zk-SNARKs are one of the most promising (or at least, best known) existing approaches to effi-
ciently solve some of the privacy issues surrounding cryptocurrency ledgers. In particular, Zerocash [BCG+14a]
seems to be quite efficient.

While RO-model NIZK proof systems are often much more efficient than CRS-model NIZK proof systems,
very little work has been done in RO-model zk-SNARKs (see, e.g., [GK15, BCC+16]).

The first problem of the CRS-model (the need to trust the generator of CRS) has recently been studied by
several groups. One well-known approach here is to use multi-party computation, but this has been only recently
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made practical [BCG+15]. Another approach is to construct NIZK proof systems so that at least some of the
security guarantees hold even if the CRS has been subverted [BFS16]. This approach sounds very promising for
future research, see, e.g., [ABLZ17, Fuc18].
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Chapter 7

Open problems

Zero-Knowledge SNARKs The first open problem related to zkSNARKs we would like to deal with is to mini-
mize the trust in the CRS creator for pairing-based zk-SNARKs (implemented say in, e.g. Zerocash, [BCG+14a]).
(Cf. [ABLZ17].) and study zk-SNARKs in different cryptographic settings, especially to see if one can avoid
complete trust in the CRS creator and/or get better efficiency.

Another open problem is to construct cryptographic primitives that are SNARK-friendly, i.e., that can be
implemented efficiently by using a SNARK. For example, construct commitment schemes and hash functions
that have a small multiplication complexity.

Furthermore, one should study quantum-secure SNARKs, with the aim to obtain security even in the case a
quantum computer is constructed.

Functional Encryption and Witness Encryption The first open problem to deal with would be to construct
a functional encryption and attribute-based encryption scheme for stronger security notions. Stronger notions
of functional encryption (FE) allow a more fine-grained access to encryption data. A multi-input secret key FE
scheme, for example, allow different parties to encrypt data. Later on another party, given a functional key for a
function f , can compute the output of f on such encrypted data. In a similar way the notion of attribute-based
encryption (ABE) can be extended to the multi-input case. It is an interesting problem to construct efficient FE
and ABE in the multi-input setting already for the two-input case.

Another task could focus on improving the efficiency/assumption of Witness Encryption (WE). Constructing
efficient WE scheme without relying on setup represents an interesting problem for the blockchain context. A
recent work [BJK+17] goes into the direction of constructing WE under more standard assumptions (LWE). The
drawback of this scheme is that the encryption procedure takes sub-exponential time. It could be interesting
to study what is the best balance between efficiency and cryptographic assumption that one can achieve in the
context of WE.

Multi-Party Computation An important open problem related to MPC and DLT is to verify whether secure
multi-party computation may be used to reduce the amount of trust needed in trusted set up (CRS generation for
zk-SNARKs)? To do this verifiable less efficient proof techniques that do not require the same kind of set up
may be employed.

Another open problem is to design a system in which the CRS is regularly refreshed, i.e., the set up for
zk-SNARKs is regularly repeated in such a way that a compromised CRS cannot be exploited to alter history,
nor affect the security of the system after it expired.

Authentication and Credentials The first open problem in this area is to construct authenticated data type
without trusted setup. The generic authenticated data type in [CGPT17] requires trusted setup. For use in the
DLT setting, a construction without this requirement will be needed.
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Next one would be to devise efficient implementations of authenticated data types for specific applications
relevant to distributed ledger technology, including payments, asset transfers, financial clearance, netting and so
on.

Furthermore, one could improve anonymous credential systems ([CDD17]) by including functionalities like
key life-cycle management, revocation, and support for auditable tokens.

Last but not least, an improvement in compositional treatment of practical protocols would be appreciated.
Protocols in the area of DLT are often composed of different schemes such as NIZKs, signatures, commitment,
and so forth. This calls for a compositional treatment, but at the moment practical protocols do not quite fit into
the existing compositional frameworks.

Generally, work on NIZKs and zkSNARKs targeted at efficiency and post-quantum assumptions would be
of interest; we expect that this also holds for other partners.

Non-Interactive Computation An important open problem in a field of non-interactive computation is to
find useful models where Non-Interactive Secure Computation (NISC) can be achieved. The work of Ishai
et al. [IKO+11] gave the first solution for NISC assuming that parties have access to the oblivious transfer
functionality. Subsequently, efficient solutions for NISC based on cut-and-choose techniques were investigated
in the common reference string (CRS) model. [AMPR14, MR17] the global random oracle model [CJS14], as
well as the plain model with super-polynomial-time simulation [BGI+17]. An interesting open question is to
find other interesting models where NISC can be achieved.

For NIZK, an interesting task is to design Non-Interactive Zero-Knowledge proofs avoiding trusted parties
(and thus avoiding the CRS). Efficient NIZK proofs have been constructed under somewhat unsatisfying as-
sumptions, involving a CRS or using heuristic security. An interesting open question is to design efficient NIZK
proofs avoiding trusted parties (and thus avoiding the CRS) and at the same time reducing the heuristic security.

In case of Sigma-protocols, further investigate CDS-OR and CPSSV techniques in zero-knowledge proofs is
necessary. The CDS-OR technique [CDS94] allows to compose sigma protocols efficiently and unconditionally
but requiring the statements to be known already in the first round. The recent work of [CPS+16a] allows a partial
knowledge in the last round, still unconditionally. The [CPS+16b] showed how to postpone knowledge of all the-
orems to the last round obtaining better performance in the online-offline case, however assuming computational
assumptions (e.g., DDH). An interesting open question is the possibility or impossibility of obtaining the best of
both worlds, having all theorems postponed to the last round without requiring computational assumptions.

Authenticated Data Types An important open problem in this area is to provide a mechanism for tracking key
states where it’s possible to verify the current state of each key and to prove either for a single key or for the
whole set that all state updates have been in agreement with a predefind state transtition graph. In most practical
use cases the states could be integers from a predefined range — for example 0 for “enrolled” and 1 for “revoked”
— and valid transitions always increase the value, but the more general case of arbitrary finite state machines is
also interesting.
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