

The inhomogeneity of the Universe and the cosmological model

N. Tetradis

University of Athens

University of Athens

The inhomogeneity of the Universe and the cosmological model

Inhomogeneities and expansion	Brane cosmology	Quintessence cosmology	

Figure: 2MASS Galaxy Catalog (more than 1.5 million galaxies).

◆□ > ◆□ > ◆□ > ◆□ > ◆□ > ◆□ >

University of Athens

The inhomogeneity of the Universe and the cosmological model

Figure: 2MASS Galaxy Catalog: Various redshifts.

University of Athens

The inhomogeneity of the Universe and the cosmological model

Outline

- Effect of inhomogeneities on the average expansion
- A similar problem in brane cosmology
- Large-scale structures in quintessence cosmology
- Non-linear spectrum of matter perturbations
 - Coupled quintessence
 - 2 Variable equation of state
 - ③ Growing neutrino quintessence
- Conclusions

Inhomogeneities and expansion	Brane cosmology	Quintessence cosmology	
•0000000			

Standard framework

Basic assumptions: Homogeneity and isotropy

$$ds^{2} = -dt^{2} + a^{2}(t)\delta_{ij}dx^{i}dx^{j}$$
$$\left(\frac{\dot{a}}{a}\right)^{2} = \frac{8\pi G}{3}\rho$$
$$\frac{\ddot{a}}{a} = -\frac{4\pi G}{3}(\rho + 3p)$$

- Inhomogeneities can be treated as small perturbations of this background
- Indications for the acceleration of the cosmological expansion
 - Distant supernovae
 - Power spectrum of the galaxy distribution
 - Cosmic microwave background
- For acceleration: $p < -\rho/3$

Inhomogeneities and expansion		
0000000		

Question

- Assumed, but not observed directly, dominant contributions to the energy content of the Universe:
 - 1 Dark matter: p = 0 (~ 25%)
 - 2 Dark energy: p < 0 (~ 70%)</p>
- Could the acceleration of the cosmological expansion be related to the appearance of inhomogeneities in a pressureless cosmological fluid (dark matter)?

Inhomogeneities and expansion		

Our approach

- All the information about the expansion of the Universe is obtained through light signals.
- Study light propagation in an exact background that mimics a Universe with structure.
- Calculate observables: Luminosity distance of a light source a function of its redshift.
- P. Apostolopoulos, N. Brouzakis, N. T., E. Tzavara astro-ph/0603234, JCAP 0606: 009 (2006)

N. Brouzakis, N. T., E. Tzavara astro-ph/0612179, JCAP 0702: 013 (2007) astro-ph/0703586, JCAP 0804: 008 (2008)

N. Brouzakis, N. T.

arXiv:0802.0859 [astro-ph], Phys. Lett. B 665: 344-348 (2008)

Inhomogeneities and expansion		

Figure: The evolution of the density profile for a central underdensity surrounded by an overdensity.

The inhomogeneity of the Universe and the cosmological model

Inhomogeneities and expansion	Brane cosmology	Quintessence cosmology	
0000000			

Luminosity distance and redshift

- Consider photons emitted within a solid angle Ω_s by an isotropic source with luminosity *L*. These photons are detected by an observer for whom the light beam has a cross-section A_o .
- The redshift factor is

$$1+z=\frac{\omega_s}{\omega_o}=\frac{k_s^0}{k_o^0},$$

• The energy flux fo measured by the observer is

$$f_{o} = \frac{L}{4\pi D_{L}^{2}} = \frac{L}{4\pi} \frac{\Omega_{s}}{(1+z)^{2}A_{o}}.$$

• Integrating the Sachs optical equations allows the determination of the luminosity distance D_L as a function of the redshift *z*.

Inhomogeneities and expansion		
00000000		

Observer at the center of a large hole

Figure: The distance modulus $\mu = m - M = 5 \log(D_L/Mpc) + 25$ as a function of redshift *z*.

a) Green line: FRW cosmology with $\Omega_m = 1$, $\Omega_{\Lambda} = 0$.

b) Blue line: FRW cosmology with $\Omega_m = 0.3$, $\Omega_{\Lambda} = 0.7$.

c) Red line: LTB cosmology with the observer at the center of an underdense region of present size ~ 800 Mpc.

Inhomogeneities and expansion	Brane cosmology	Quintessence cosmology	
00000000			

Observer and source at random positions

Figure: The distribution of luminosity distances for various redshifts in the LTB Swiss-cheese model for inhomogeneities with length scale $40 h^{-1}$ Mpc.

N. Tetradis

University of Athens

The inhomogeneity of the Universe and the cosmological model

mogeneities and expansion		
00000		

Figure: Same as before for a characteristic scale of $400 h^{-1}$ Mpc.

University of Athens

The inhomogeneity of the Universe and the cosmological model

N. Tetradis

Inho

A similar problem in brane cosmology

- Identify the Universe with a hypersurface (brane) in five-dimensional space-time. Low-energy gravity is localized near the brane (Randall, Sundrum (1999)).
- Assume an inhomogeneous energy distribution along the fourth spatial dimension. Is accelerated expansion possible along the brane?
- For an arbitrary energy distribution, accelerated expansion requires negative pressure either on the brane or in the bulk.
- This holds even when corrections, such as an induced gravity term on the brane, or a Gauss-Bonnet term in the bulk, are taken into account.
- P. Apostolopoulos, N. T. astro-ph/0604014, Phys. Rev. D 74: 064021 (2006)
 - P. Apostolopoulos, N. Brouzakis, N. T., E. Tzavara arXiv:0708.0469, Phys. Rev. D 76: 084029 (2007)

Inhomogeneities and expansion	Brane cosmology	Quintessence cosmology	
		•0000000	

Quintessence cosmology

- It seem unlikely that the acceleration of the cosmological expansion can be attributed to the growth of inhomogeneities.
- Negative pressure is needed.
- The simplest scenario assumes the presence of a cosmological constant.
- The quintessence scenario attempts to provide a dynamical explanation for the smallness of the present value of the vacuum energy.
- We shall discuss coupled quintessence: a quintessence field coupled with dark matter (or neutrinos).
- What kind of new structures can appear in such cosmologies?
- Are they observable?

Inhomogeneities and expansion	Brane cosmology	Quintessence cosmology	
		0000000	

Basic relations

Action

$$S = \int d^4x \sqrt{-g} \left(\frac{1}{16\pi G} R - \frac{1}{2} \frac{\partial \phi}{\partial x^{\mu}} \frac{\partial \phi}{\partial x_{\mu}} - U(\phi) \right) - \sum_i \int m(\phi(x_i)) d\tau_i,$$

with $d\tau_i = \sqrt{-g_{\mu\nu}(\mathbf{x}_i)d\mathbf{x}_i^{\mu}d\mathbf{x}_i^{\nu}}$ and the second integral taken over particle trajectories.

Equation of motion

$$\frac{1}{\sqrt{-g}}\frac{\partial}{\partial x^{\mu}}\left(\sqrt{-g} g^{\mu\nu}\frac{\partial \phi}{\partial x^{\nu}}\right) = \frac{dU}{d\phi} - \frac{d\ln m(\phi(x))}{d\phi} (T_M)^{\mu}_{\mu}.$$

University of Athens

The inhomogeneity of the Universe and the cosmological model

	Quintessence cosmology	
	0000000	

Cosmological evolution

Homogeneous background

$$egin{aligned} \ddot{\phi}+3H\dot{\phi}&=rac{dU}{d\phi}+rac{d\ln m(\phi)}{d\phi}(
ho-3p)\ \dot{\phi}+3H
ho&=-rac{d\ln m(\phi)}{d\phi}(
ho-3p)\dot{\phi}\ H^2&=rac{8\pi G}{3}\left(rac{1}{2}\dot{\phi}^2+U(\phi)+
ho
ight) \end{aligned}$$

University of Athens

The inhomogeneity of the Universe and the cosmological model

	Quintessence cosmology	
	0000000	

Static spherically symmetric configurations

Metric:

$$ds^{2} = -B(r)dt^{2} + r^{2}(d\theta^{2} + \sin^{2}\theta d\phi^{2}) + A(r)dr^{2}.$$

Fermi-Dirac distribution at every point in space:

$$f(p) = \left[\exp\left(\frac{\sqrt{p^2 + m^2(\phi(r))} - \mu(r)}{T(r)}\right) + 1\right]^{-1}$$

The Einstein equations give:

$$T(r) = T_0/\sqrt{B(r)}, \qquad \mu(r) = \mu_0/\sqrt{B(r)}$$

• N. T.

hep-ph/0507288, Phys. Lett. B 632: 463-466 (2006) N. Brouzakis, N. T. astro-ph/0509755, JCAP 0601: 004 (2006) N. T., J.D. Vergados, A. Faessler hep-ph/0609078, Phys. Rev. D 75: 023504 (2007)

Dark matter in galaxy haloes

- The coupling between DM and the quintessence field generates an attractive force between DM particles.
- The typical DM velocity is larger than in the decoupled case.
- Implications for DM detection.

	Quintessence cosmology	
	00000000	

Compact astrophysical objects made of dark matter

Figure: A typical configuration

University of Athens

The inhomogeneity of the Universe and the cosmological model

Inhomogeneities and expansion	Brane cosmology	Quintessence cosmology	
		00000000	

Figure: The mass to radius relation.

University of Athens

The inhomogeneity of the Universe and the cosmological model

Inhomogeneities and expansion	Brane cosmology	Quintessence cosmology	
		0000000	

Astrophysical objects made of neutrinos

N. Brouzakis, N. T., C. Wetterich e-Print: arXiv:0711.2226 [astro-ph], Phys. Lett. B 665: 131 (2008)

N. Tetradis

University of Athens

The inhomogeneity of the Universe and the cosmological model

	Non-linear matter power spectrum	
	•00000000000000000000000000000000000000	

Link with observations

- Study the formation of structure in the distribution of dark (and baryonic) matter.
- Dark energy does not cluster.
- The evolution of inhomogeneities depends on the cosmological background.
- The matter spectrum at various redshifts reflects the detailed structure of the cosmological model.
- Comparison with observations of the galaxy distribution can differentiate between models.
- Baryon acoustic oscillations: 100 Mpc range.
- Analytical calculation of the matter spectrum beyond the linear level. Crocce, Scoccimarro (2005)

Brane cosmolog

Quintessence cosmology

Conclusions

Sloan Digital Sky Survey (2005)

Figure: Galaxy correlation function.

The inhomogeneity of the Universe and the cosmological model

Formalism: Time renormalization group (Pietroni 2008)

Action for quintessence and non-relativistic fluid

$$S = \int d^4x \sqrt{-g} \left(\frac{1}{2M^2} R - \frac{1}{2} \frac{\partial \phi}{\partial x^{\mu}} \frac{\partial \phi}{\partial x_{\mu}} - U(\phi) \right) - \sum_i \int m(\phi(x_i)) d\tau_i,$$

with $d\tau_i = \sqrt{-g_{\mu\nu}(x_i)dx_i^{\mu}dx_i^{\nu}}$ and the second integral taken over particle trajectories.

Equation of motion

$$\frac{1}{\sqrt{-g}} \frac{\partial}{\partial x^{\mu}} \left(\sqrt{-g} \ g^{\mu\nu} \frac{\partial \phi}{\partial x^{\nu}} \right) = \frac{dU}{d\phi} - \frac{d\ln m(\phi(x))}{d\phi} \ \left(T_{CDM} \right)^{\mu}_{\mu}.$$
$$M = 1$$
$$\beta(\phi) = -d\ln m(\phi)/d\phi.$$

	Non-linear matter power spectrum	
	000000000000000000000000000000000000000	

Ansatz for the metric

$$ds^{2} = a^{2}(\tau) \left[(1 + 2\Phi(\tau, \vec{x})) d\tau^{2} - (1 - 2\Phi(\tau, \vec{x})) d\vec{x} d\vec{x} \right],$$

with $\Phi \ll 1.$

Scalar field

$$\phi(\tau, \vec{\mathbf{x}}) = \bar{\phi}(\tau) + \delta \phi(\tau, \vec{\mathbf{x}}),$$

with $\delta \phi / \bar{\phi} \ll 1$. In general, $\bar{\phi} = \mathcal{O}(1)$ in units of *M*.

Density field

$$\rho(\tau, \vec{\mathbf{x}}) = \bar{\rho}(\tau) + \delta \rho(\tau, \vec{\mathbf{x}}),$$

with $\delta \rho / \bar{\rho} \lesssim 1$.

Velocity field

 $|\delta \vec{v}| \ll 1.$

The inhomogeneity of the Universe and the cosmological model

Hierarchy of scales

- For subhorizon perturbations with momenta $k \gg \mathcal{H} = \dot{a}/a$, the linear analysis predicts $|\delta \vec{v}| \sim (k/\mathcal{H})\Phi \sim (\mathcal{H}/k)(\delta \rho/\bar{\rho})$.
- We assume the hierarchy of scales: $\Phi, \delta \phi / \bar{\phi} \ll |\delta \vec{v}| \ll \delta \rho / \bar{\rho} \lesssim 1$.
- As we are dealing with subhorizon perturbations, we assume that the spatial derivatives of Φ , $\delta\phi$, $\delta\vec{v}$ dominate over their time derivatives. We also assume that a spatial derivative acting on Φ , $\delta\phi$ or $\delta\vec{v}$ increases the position of that quantity in the hierarchy by one level: $\nabla \Phi$ is comparable to $\mathcal{H}\delta\vec{v}$, while $\nabla^2 \Phi$ is comparable to $\mathcal{H}^2 \delta\rho/\bar{\rho}$.

F. Saracco, M. Pietroni, N. T., V. Pettorino, G. Robbers arXiv:0911.5396[astro-ph], Phys. Rev. D 82: 023528 (2010)

Equations of motion for several non-relativistic species

The evolution of the homogeneous background is described by

$$\mathcal{H}^{2} = \frac{1}{3} \left[a^{2} \sum_{i=1,2} \bar{\rho}_{i} + \frac{1}{2} \dot{\phi}^{2} + a^{2} U(\bar{\phi}) \right] \equiv \frac{1}{3} a^{2} \rho_{tot}$$
$$\dot{\bar{\rho}}_{i} + 3\mathcal{H}\bar{\rho}_{i} = -\beta_{i} \dot{\bar{\phi}}\bar{\rho}_{i}$$
$$\ddot{\phi} + 2\mathcal{H}\dot{\bar{\phi}} = -a^{2} \left(\frac{dU}{d\phi}(\bar{\phi}) - \sum_{i=1,2} \beta_{i} \bar{\rho}_{i} \right),$$

with $\rho_{tot} \equiv \sum_i \bar{\rho}_i + \dot{\phi}^2/(2a^2) + U(\bar{\phi}).$

• For the CDM we set $\beta_1 = \beta$, while for BM, because of strong observational constraints , we set $\beta_2 = 0$.

Inhomogeneities and expansion Brane cosmology Quintessence cosmology N 00000000 0 0000000 C

Non-linear matter power spectrum Co

Equations for the perturbations

Poisson equations

$$abla^2 \delta \phi = -a^2 \sum_i \beta_i \delta \rho_i \equiv -3 \sum_i \beta_i \mathcal{H}^2 \Omega_i \delta$$
 $abla^2 \Phi = \frac{1}{2} a^2 \sum_i \delta \rho_i \equiv \frac{3}{2} \mathcal{H}^2 \sum_i \Omega_i \delta_i,$

with
$$\Omega_i(\tau) \equiv \bar{\rho}_i a^2/(3\mathcal{H}^2)$$
.

Continuity and Euler equations

$$\begin{split} \delta\dot{\rho}_i + \mathbf{3}\mathcal{H}\delta\rho_i + \vec{\nabla}[(\bar{\rho}_i + \delta\rho_i)\delta\vec{v}_i] &= -\beta_i\bar{\phi}\delta\rho_i\\ \delta\dot{\vec{v}}_i + (\mathcal{H} - \beta_i\dot{\phi})\delta\vec{v}_i + (\delta\vec{v}_i\cdot\vec{\nabla})\delta\vec{v}_i &= -\vec{\nabla}\Phi + \beta_i\vec{\nabla}\delta\phi. \end{split}$$

The inhomogeneity of the Universe and the cosmological model

	Non-linear matter power spectrum	
	000000000000000000000000000000000000000	

Time renormalization group (Pietroni (2008))

- Fourier-transformed density contrast and velocity field: $\delta_i \equiv \delta \rho_i(\mathbf{k}, \tau) / \bar{\rho}_i$ and $\theta_i(\mathbf{k}, \tau) \equiv \vec{\nabla} \cdot \vec{\delta v_i}(\mathbf{k}, \tau)$.
- They obey

$$\dot{\delta}_i(\mathbf{k},\tau) + \theta_i(\mathbf{k},\tau) = -\int d^3\mathbf{k}_1 \, d^3\mathbf{k}_2 \, \delta_D(\mathbf{k} - \mathbf{k}_1 - \mathbf{k}_2) \, \tilde{\alpha}(\mathbf{k}_1,\mathbf{k}_2) \, \theta_i(\mathbf{k}_1,\tau) \, \delta_i(\mathbf{k}_2,\tau)$$

where $\tilde{\alpha}(\mathbf{k}_1, \mathbf{k}_2) = \mathbf{k}_1 \cdot (\mathbf{k}_1 + \mathbf{k}_2)/k_1^2$, and

$$\begin{split} \dot{\theta}_i(\mathbf{k},\tau) + (\mathcal{H} - \beta_i \dot{\phi}) \theta_i(\mathbf{k},\tau) + \frac{3\mathcal{H}^2 \sum_j \Omega_j (2\beta_i \beta_j + 1) \delta_j(\mathbf{k},\tau)}{2} \\ = -\int d^3 \mathbf{k}_1 \, d^3 \mathbf{k}_2 \, \delta_D(\mathbf{k} - \mathbf{k}_1 - \mathbf{k}_2) \, \tilde{\beta}(\mathbf{k}_1, \mathbf{k}_2) \, \theta_i(\mathbf{k}_1,\tau) \, \theta_i(\mathbf{k}_2,\tau), \end{split}$$

where
$$\tilde{\beta}(\mathbf{k}_1, \mathbf{k}_2) = (\mathbf{k}_1 + \mathbf{k}_2)^2 \mathbf{k}_1 \cdot \mathbf{k}_2 / (2k_1^2 k_2^2)$$
.

The inhomogeneity of the Universe and the cosmological model

Inhomogeneities and expansion	Brane cosmology	Quintessence cosmology	Non-linear matter power spectrum	
			000000000000000000000000000000000000000	

Define the quadruplet

$$\begin{pmatrix} \varphi_{1}(\mathbf{k},\eta) \\ \varphi_{2}(\mathbf{k},\eta) \\ \varphi_{3}(\mathbf{k},\eta) \\ \varphi_{4}(\mathbf{k},\eta) \end{pmatrix} = \mathbf{e}^{-\eta} \begin{pmatrix} \delta_{CDM}(\mathbf{k},\eta) \\ -\frac{\theta_{CDM}(\mathbf{k},\eta)}{\mathcal{H}} \\ \delta_{BM}(\mathbf{k},\eta) \\ -\frac{\theta_{BM}(\mathbf{k},\eta)}{\mathcal{H}} \end{pmatrix}$$

where $\eta = \ln a(\tau)$.

The equations of motion become

 $\partial_{\eta}\varphi_{a}(\mathbf{k},\eta) + \Omega_{ab}\varphi_{b}(\mathbf{k},\eta) = \mathbf{e}^{\eta}\gamma_{abc}(\mathbf{k},-\mathbf{k}_{1},-\mathbf{k}_{2})\varphi_{b}(\mathbf{k}_{1},\eta)\varphi_{c}(\mathbf{k}_{2},\eta).$

The indices a, b, c take values $1, \ldots, 4$. Repeated momenta are integrated over, while repeated indices are summed over.

Inhomogeneities and expansion Brane cosmology Quintessence cosmology Non-linea 00000000 0 0000000 000000

The non-zero components of the effective vertices γ are

$$\begin{split} \gamma_{121}(\mathbf{k}, \mathbf{k}_1, \mathbf{k}_2) &= \frac{\tilde{\alpha}(\mathbf{k}_1, \mathbf{k}_2)}{2} \delta_D(\mathbf{k} + \mathbf{k}_1 + \mathbf{k}_2) = \gamma_{112}(\mathbf{k}, \mathbf{k}_2, \mathbf{k}_1) \\ \gamma_{222}(\mathbf{k}, \mathbf{k}_1, \mathbf{k}_2) &= \tilde{\beta}(\mathbf{k}_1, \mathbf{k}_2) \ \delta_D(\mathbf{k} + \mathbf{k}_1 + \mathbf{k}_2) \\ \gamma_{343}(\mathbf{k}, \mathbf{k}_3, \mathbf{k}_4) &= \frac{\tilde{\alpha}(\mathbf{k}_3, \mathbf{k}_4)}{2} \delta_D(\mathbf{k} + \mathbf{k}_3 + \mathbf{k}_4) = \gamma_{334}(\mathbf{k}, \mathbf{k}_4, \mathbf{k}_3) \\ \gamma_{444}(\mathbf{k}, \mathbf{k}_3, \mathbf{k}_4) &= \tilde{\beta}(\mathbf{k}_3, \mathbf{k}_4) \ \delta_D(\mathbf{k} + \mathbf{k}_3 + \mathbf{k}_4). \end{split}$$

The Ω -matrix, that defines the linear evolution, is

$$\Omega(\eta) = egin{pmatrix} 1 & -1 & 0 & 0 \ -rac{3}{2}\Omega_{CDM}(2eta^2+1) & 2-etaar \phi'+rac{\mathcal{H}'}{\mathcal{H}} & -rac{3}{2}\Omega_{BM} & 0 \ 0 & 0 & 1 & -1 \ -rac{3}{2}\Omega_{CDM} & 0 & -rac{3}{2}\Omega_{BM} & 2+rac{\mathcal{H}'}{\mathcal{H}} \end{pmatrix}.$$

University of Athens

The inhomogeneity of the Universe and the cosmological model

Inhomogeneities and expansion		Non-linear matter power spectrum	

Define the spectra, bispectra and trispectra as

$$\begin{split} \langle \varphi_{a}(\mathbf{k},\eta)\varphi_{b}(\mathbf{q},\eta)\rangle \equiv &\delta_{D}(\mathbf{k}+\mathbf{q})P_{ab}(\mathbf{k},\eta)\\ \langle \varphi_{a}(\mathbf{k},\eta)\varphi_{b}(\mathbf{q},\eta)\varphi_{c}(\mathbf{p},\eta)\rangle \equiv &\delta_{D}(\mathbf{k}+\mathbf{q}+\mathbf{p})B_{abc}(\mathbf{k},\mathbf{q},\mathbf{p},\eta)\\ \langle \varphi_{a}(\mathbf{k},\eta)\varphi_{b}(\mathbf{q},\eta)\varphi_{c}(\mathbf{p},\eta)\varphi_{d}(\mathbf{r},\eta)\rangle \equiv &\delta_{D}(\mathbf{k}+\mathbf{q})\delta_{D}(\mathbf{p}+\mathbf{r})P_{ab}(\mathbf{k},\eta)P_{cd}(\mathbf{p},\eta)\\ &+\delta_{D}(\mathbf{k}+\mathbf{p})\delta_{D}(\mathbf{q}+\mathbf{r})P_{ac}(\mathbf{k},\eta)P_{bd}(\mathbf{q},\eta)\\ &+\delta_{D}(\mathbf{k}+\mathbf{r})\delta_{D}(\mathbf{q}+\mathbf{p})P_{ad}(\mathbf{k},\eta)P_{bc}(\mathbf{q},\eta)\\ &+\delta_{D}(\mathbf{k}+\mathbf{p}+\mathbf{q}+\mathbf{r})Q_{abcd}(\mathbf{k},\mathbf{p},\mathbf{q},\mathbf{r},\eta). \end{split}$$

• Essential approximation: Neglect the effect of the trispectrum on the evolution of the bispectrum.

The inhomogeneity of the Universe and the cosmological model

homogeneities and expansion		Non-linear matter power spectrum	

In this way we obtain

$$\begin{split} \partial_{\eta} P_{ab}(\mathbf{k},\eta) &= -\Omega_{ac} P_{cb}(\mathbf{k},\eta) - \Omega_{bc} P_{ac}(\mathbf{k},\eta) \\ &+ e^{\eta} \int d^{3}q \big[\gamma_{acd}(\mathbf{k},-\mathbf{q},\mathbf{q}-\mathbf{k}) B_{bcd}(\mathbf{k},-\mathbf{q},\mathbf{q}-\mathbf{k}) \\ &+ \gamma_{bcd}(\mathbf{k},-\mathbf{q},\mathbf{q}-\mathbf{k}) B_{acd}(\mathbf{k},-\mathbf{q},\mathbf{q}-\mathbf{k}) \big], \\ \partial_{\eta} B_{abc}(\mathbf{k},-\mathbf{q},\mathbf{q}-\mathbf{k}) &= -\Omega_{ad} B_{dbc}(\mathbf{k},-\mathbf{q},\mathbf{q}-\mathbf{k}) - \Omega_{bd} B_{adc}(\mathbf{k},-\mathbf{q},\mathbf{q}-\mathbf{k}) \\ &- \Omega_{cd} B_{abd}(\mathbf{k},-\mathbf{q},\mathbf{q}-\mathbf{k}) \\ &+ 2e^{\eta} \int d^{3}q \big[\gamma_{ade}(\mathbf{k},-\mathbf{q},\mathbf{q}-\mathbf{k}) P_{db}(\mathbf{q},\eta) P_{ec}(\mathbf{k}-\mathbf{q},\eta) \\ &+ \gamma_{bde}(-\mathbf{q},\mathbf{q}-\mathbf{k},\mathbf{k}) P_{dc}(\mathbf{k}-\mathbf{q},\eta) P_{ea}(\mathbf{k},\eta) \\ &+ \gamma_{cde}(\mathbf{q}-\mathbf{k},\mathbf{k},-\mathbf{q}) P_{da}(\mathbf{k},\eta) P_{eb}(\mathbf{q},\eta) \big]. \end{split}$$

- Similarity with the Exact Renormalization Group (Wilson 1971).
- Path integral representation.
- Vertex expansion of the effective action.

Coupled quintessence

- The field has a potential $V(\phi) \sim \phi^{-\alpha}$, with $\alpha = 0.143$.
- The present-day energy content of the Universe has $\Omega_{DE} = 0.743$, $\Omega_{CDM} = 0.213$, $\Omega_{BM} = 0.044$.
- The Universe is assumed to have vanishing spatial curvature $(\Omega_k = 0)$, current expansion rate $H_0 = 71.9$ km s⁻¹ Mpc⁻¹.
- The mass variance is taken $\sigma_8 = 0.769$, as calculated from the linear spectrum.

F. Saracco, M. Pietroni, N. T., V. Pettorino, G. Robbers arXiv:0911.5396[astro-ph], Phys. Rev. D 82: 023528 (2010)

Inhomogeneities and expansion	Brane cosmology	Quintessence cosmology	Non-linear matter power spectrum	
			000000000000000000000000000000000000000	

Figure: Comparison of results from N-body simulations and our calculation ($\beta = 0.05$). We display the ratio of the non-linear and linear spectra for z = 0.

Inhomogeneities and expansion	Brane cosmology	Quintessence cosmology	Non-linear matter power spectrum	
			000000000000000000000000000000000000000	

Figure: Baryonic matter density-density spectra for various β at z = 0, normalized with respect to the a smooth spectrum.

University of Athens

	Non-linear matter power spectrum	
	000000000000000000000000000000000000000	

Figure: Spectra for $\beta = 0.1$ at z = 0, normalized with respect to a smooth spectrum.

University of Athens

The inhomogeneity of the Universe and the cosmological model

Inhomogeneities and expansion	Brane cosmology	Quintessence cosmology	Non-linear matter power spectrum	
			000000000000000000000000000000000000000	

Variable equation of state

- No coupling between dark matter and dark energy.
- One massive species: baryonic+dark matter
- Dark energy fluctuations are negligible.
- Equation of state $p/\rho = w(z)$

0

$$w(a) = rac{a \, ilde{w}(a)}{a + a_{ ext{trans}}} - rac{a_{ ext{trans}}}{a + a_{ ext{trans}}}$$

a = 1/(1 + z) is the scale factor.

 $\tilde{w}(a) = \tilde{w}_0 + (1-a)\tilde{w}_a$

atrans corresponds to the "transition epoch"

At small redshifts

$$w(a)=w_0+(1-a)w_a.$$

• We describe the various models through $w_0 \equiv w(z = 0)$, $w' \equiv dw/dz|_{z=0}$, and a_{trans} . N. Brouzakis, N. T. arXiv:1002.3277[astro-ph], JCAP 1101: 024 (2011)

Figure: The form of the equation of state w(z) for ACDM and a variety of models: $w_0 = -1$, w' = 1 (dotted), $w_0 = -1.3$, w' = 1 (long-dashed), $w_0 = -1.3$, w' = 0 (short-dashed), $w_0 = -0.8$, w' = -0.7 (continuous), $w_0 = -0.6$, w' = -1.5 (dash-dotted).

	Non-linear matter power spectrum	
	000000000000000000000000000000000000000	

Figure: Linear and non-linear spectra at z = 0, for $w_0 = -0.8$, w' = -0.7, normalized with respect to a smooth spectrum.

Inhomogeneities and expansion		Non-linear matter power spectrum	

Figure: The fractional shift of the maximum, minima and nodes of the non-linear spectrum, as a function of redshift, for $w_0 = -0.8$, w' = -0.7.

-1.2 -1.0

WO

-0.8

Figure: The fractional shift of the first maximum from its location for ACDM,

-1.4

as a function of w_0 and w', at a redshift z = 0.366.

-0.6

w'

University of Athens

Inhomogeneities and expansion	Brane cosmology	Quintessence cosmology	Non-linear matter power spectrum	
			000000000000000000000000000000000000000	

Growing neutrino quintessence

Figure: The fractional energy density in neutrinos (solid), CDM+BM (dashed) and dark energy (dotted). The acceleration parameter $q = a\ddot{a}/\dot{a}^2$ (dot-dashed) is also depicted.

Figure: The neutrino density power spectrum $P_{11}(k, \eta)$ (solid lines) and the CDM+BM density spectrum $P_{33}(k, \eta)$ (dotted lines) at redshifts z = 4.70, 4.08, 3.04, 2.77, 2.69, 2.60 (starting from below).

N. Brouzakis, V. Pettorino, N. T., C. Wetterich arXiv:1012.5255[astro-ph], JCAP 1103: 047 (2011)

N. Tetradis

University of Athens

The inhomogeneity of the Universe and the cosmological model

Conclusions

- The inhomogeneities in the matter distribution have a very small effect on the average acceleration.
- Novel large-scale structures can appear in quintessence cosmology.
- The spectrum of matter perturbations is a very useful tool in order to differentiate between cosmological models. The non-linear corrections to the spectrum must be evaluated carefully in order to compare with astrophysical data.
- The resummation of cosmological perturbations permits the comparison with observations in the BAO range. At smaller length scales, the spectrum can be deduced through numerical simulations.
- Required accuracy: 1%. A real challenge.