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In certain higher-derivative field theories scattering can take
place at a length scale r∗ much larger than the typical scale L∗ of
the nonrenormalizable terms in the Lagrangian.
(Dvali, GIudice, Gomez, Kehagias, Pirtskhalava, Grojean...)

The center-of-mass energy can be used to define the analogue
of the Schwarzschild radius: classicalization radius r∗.

If all scattering takes place at r∗ ≫ L∗, the fundamental scale L∗

is irrelevant and no UV completion of the theory is needed.

The DBI theory is a typical theory that can support classicalons.

I shall present a numerical study of the scenario.

Classical solutions that describe shock fronts may also be
relevant for scattering. These solutions also describe throats
connecting two branes.
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The cubic Galileon theory describes the dynamics of the scalar
mode that survives in the decoupling limit of the DGP model
(Dvali, Gabadadze, Porrati).

The action contains a higher-derivative term, cubic in the field
π(x), with a dimensionful coupling that sets the scale Λ at which
the theory becomes strongly coupled.

Λ ∼ (m2MPl)
1/3 with m ∼ H ∼ M3

5/M2
Pl

The action is invariant under the Galilean transformation
π(x) → π(x) + bµxµ + c, up to surface terms.

In the Galileon theory additional terms can also be present, but
the theory is ghost-free: EOM is second order (Nicolis, Rattazzi,
Trincherini).

Nonlinearities become important below the Vainshtein radius
rV ∼ (M/Λ3MPl)

1/3.

Does this contruction survive quantum corrections?
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The DBI action corresponds to the simplest term of a theory of
embedded surfaces.

The effective theory of embedded surfaces can be used in order
to reproduce the Galileon theory at low energies (de Rham,
Tolley).

How does the theory behave under renormalization?

There is a connection with asymptotic safety in gravity.

N. Tetradis University of Athens and CERN
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Outline

A numerical study of classicalization.

Classical solutions of higher-derivative theories that describe
surfaces embedded in Minkowski space.

Branes with throats or shock fronts. Brane annihilation.
Classicalization?

Connection with solutions of the Galileon theory. Vainshtein
mechanism.

Renormalization of the cubic Galileon theory.

Suppression of quantum corrections by the Vainshtein
mechanism.

Renormalization of theories that describe surfaces.

Renormalization-group evolution and asymptotic safety.

N. Tetradis University of Athens and CERN
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DBI model
Lagrangian density (λ = ±L4

∗
)

L = − 1
λ

√

1 − λ (∂µφ)
2 or L = 1

2 (∂µφ)
2
+ λ

8

(

(∂µφ)
2
)2

Equation of motion

∂µ

[

∂µφ/

√

1 − λ (∂νφ)
2
]

= 0.

Idealized scattering process: collapsing spherical wavepacket

φ0(t , r) =
A
r

exp

[

− (r + t − r0)
2

a2

]

.

Perturbation theory (Dvali, Pirtskhalava): strong deformation at
the classicalization radius

r∗ ∼ L∗

(

A2L∗/a
)1/3

.

We have r∗ ≫ L∗ when the center-of-mass energy
√

s ∼ A2/a is
much larger than 1/L∗.

N. Tetradis University of Athens and CERN
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Alternative point of view
With spherical symmetry, the equation of motion is

(

1 + λφ2
r

)

φtt −
(

1 − λφ2
t

)

φrr − 2λφrφt φtr =
2φr

r

(

1 − λφ2
t + λφ2

r

)

.

This is a quasilinear second-order partial differential equation

A(φt , φr )φtt + B(φt , φr )φtr + C(φt , φr )φrr = D(φt , φr , r),

with discriminant

∆ =
1
4
(B2 − 4AC) = 1 − λφ2

t + λφ2
r .

∆ > 0: hyperbolic, ∆ = 0: parabolic, ∆ < 0: elliptic.
Hyperbolic equations admit wave-like solutions, while elliptic
ones do not support propagating solutions. Equations whose
discriminant can change sign are of mixed type.
If A, B, C are evaluated for the unperturbed configuration, the
discriminant can vanish or change sign in the vicinity of the
classicalization radius.

N. Tetradis University of Athens and CERN
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Possible problems

At some stage the solution develops a shock front. From this
point on, the numerical integration cannot be continued, as the
evolution of the shock depends on additional physical
assumptions about its nature (discontinuities in the field
configuration, or its derivatives).

At some time a real solution ceases to exist within a certain range
of r . This possibility is also apparent in exact analytical solutions.

The equation of motion switches type within a range of r . When it
becomes elliptic, its solution requires (Dirichlet or Neumann)
boundary conditions on a closed contour. The scattering problem
that we are considering cannot provide such conditions, as it is
set up through Cauchly boundary conditions at the initial time.
Boundary conditions on a closed contour would require the
values of φ or its derivatives at times later than the time of
interest.

N. Tetradis University of Athens and CERN
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Figure: The nonlinear wavepacket at various times (solid lines) vs. the linear
wavepacket (dotted lines), in the context of the DBI model with λ = 1. The
initial wavepacket has A = 20, a = 1. The vertical dashed line denotes the
classicalization radius.

N. Tetradis University of Athens and CERN
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Figure: The derivatives φt (dashed) and φr (solid) of the nonlinear field, and
the discriminant ∆ (solid grey), at two different times, before and after the
crossing of the classicalization radius. The model is the DBI model with
λ = 1. The vertical dashed line denotes the classicalization radius.

N. Tetradis University of Athens and CERN
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Figure: The nonlinear field φ (solid) and the product 4πr2ρ, with ρ the energy
density (dashed). The model is the DBI model with λ = 1. The vertical
dashed line denotes the classicalization radius. The energy density is
multiplied by 5 × 10−4.
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Features

The classicalization radius sets the scale for the onset of
significant deformations of a collapsing classical configuration
with large energy concentration in a central region.
Similarity with the Vainshtein mechanism.
Shock fronts develop during the scattering process at distances
comparable to the classicalization radius.
An observable feature of the classical evolution is the creation of
an outgoing field configuration that extends far beyond the
classicalization radius. However, the scattering during the
classical evolution seems to be minimal.
Within the DBI model (λ > 0) the collapsing wavepacket can
approach distances ∼ L∗ = |λ|1/4 before strong scattering
appears.
Within the ”wrong”-sign DBI model (λ < 0), the scattering
problem may not have real solutions over the whole space. What
happens in the quantum theory?

N. Tetradis University of Athens and CERN
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Brane effective action

Consider a (3+1)-dimensional surface (brane) embedded in
(4+1)-dimensional Minkowski space.
Induced metric in the static gauge: gµν = ηµν + ∂µπ ∂νπ

Extrinsic curvature: Kµν = −∂µ∂νπ/
√

1 + (∂π)2.
Leading terms in the effective action (de Rham, Tolley)

Sλ = −λ
∫

d4x
√−g = −λ

∫

d4x
√

1 + (∂π)2

SK = −M3
5

∫

d4x
√−g K = M3

5

∫

d4x
(

[Π]− γ2[φ]
)

SR = (M2
4/2)

∫

d4x
√−g R

= (M2
4/2)

∫

d4x γ
(

[Π]2 − [Π2] + 2γ2([φ2]− [Π][φ])
)

Notation: ηµν = diag(−1, 1, 1, 1), γ = 1/
√−g = 1/

√

1 + (∂π)2,
Πµν = ∂µ∂νπ, square brackets represent the trace,
[φn] ≡ ∂π · Πn · ∂π.

N. Tetradis University of Athens and CERN
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Galileon theory

The Galileon theory can be obtained in the nonrelativistic limit
(∂π)2 ≪ 1.

The action becomes

SNR =

∫

d4x

{

−λ

2
(∂π)2+

M3
5

2
(∂π)2

�π+
M2

4

4
(∂π)2 ((�π)2 − (∂µ∂νπ)

2)
}

.

Invariant under the Galilean symmetry δπ = c + vµxµ.

The term of highest order in the Galileon theory, omitted here,
can be obtained by including in the brane action the
Gibbons-Hawking-York term associated with the Gauss-Bonnet
term of (4 + 1)-dimensional gravity.

Generalized Galileon or Horndeski (1974) theory: Up to second
derivatives in the EOM, but no Galilean symmetry.

N. Tetradis University of Athens and CERN
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Exact analytical solutions
DBI action: surface area

L = −1
λ

√

1 + λ (∂µπ)
2
.

Exact solutions (c > 0):

dπ/dr = ± c√
r4 − λc2

.

λ < 0: Field configuration induced by a δ-function source
resulting from the concentration of energy around r = 0
(Dvali, Giudice, Gomez, Kehagias).
Static classicalons: Similar to BIons (Gibbons).
λ > 0: The solutions have a square-root singluarity at
rs = λ1/4c1/2. They can be joined smoothly in a continuous
double-valued function of r for r ≥ rs: throat connecting two
(3)-branes embedded in (4 + 1)-dimensional Minkowski space.
The field π corresponds to the Goldstone mode of the broken
translational invariance (Gibbons).

N. Tetradis University of Athens and CERN
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Exact dynamical solutions π = π(z), with z = r2 − t2 , satisfying

dπ/dz = ± 1√
cz4 − 4λz

.

For both signs of λ, the solutions display square-root singularities
at z = 0 and at the value zs that satisfies z3

s = 4λ/c (c > 0).

For λ > 0, the singularity is located at r2
s = t2 + (4λ/c)1/3.

Shock fronts associated with meson production (Heisenberg).

They display strong scattering at a length scale ∼ (4λ/c)1/6.
Classicalization?

These are particular solutions. The general solution of the
equation of motion does not display scattering at large length
scales.

N. Tetradis University of Athens and CERN
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Brane picture

By joining solutions with opposite signs, one can create evolving
networks of throats or wormholes, connecting two branes.

When the throat expands, the worldvolume of the part of the
branes that is eliminated reappears as energy distributed over
the remaining part of the branes.

Interpretation: Annihilating branes, bouncing Universe.

The solutions can be generalized in the context of
higher-derivative effective actions that describe surfaces
embedded in Minkowski space.

N. Tetradis University of Athens and CERN
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Equations of motion

Brane theory

λγ
{

([Π]− γ2[φ]
}

− M3
5γ

2
{

[Π]2 − [Π2] + 2γ2
(

[φ2]− [Π][φ]
)

}

−M2
4

2 γ3
{

[Π]3 + 2[Π3]− 3[Π][Π2]

+3γ2
(

2
(

[Π][φ2]− [φ3]
)

−
(

[Π]2 − [Π2]
)

[φ]
)

}

= 0.

Galileon theory

λ [Π]− M3
5

(

[Π]2 − [Π2]
)

− M2
4

2

(

[Π]3 + 2[Π3]− 3[Π][Π2]
)

= 0,

Notation: ηµν = diag(−1, 1, 1, 1), γ = 1/
√−g = 1/

√

1 + (∂π)2,
Πµν = ∂µ∂νπ, square brackets: trace, [φn] ≡ ∂π · Πn · ∂π.
They have solutions of the form
π = π(r2)

π = π(r2 − t2).

N. Tetradis University of Athens and CERN
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Solutions π(w), with w = r2

Brane theory
a) For M5 = M4 = 0 and c > 0

πw = ± c√
w3 − 4c2w

,

b) For M4 = 0 and κ = 12M3
5/λ

πw =
±
√

6c
√

3w3 +
√

9w6 ∓ 12κc w9/2 − 24c2w ∓ 2κc w3/2
.

Galileon theory
For M4 = 0 and κ = 12M3

5/λ

πw =
3

2κ

(

1 −
√

1 ∓ 4
3

κc
w3/2

)

.

Vainshtein mechanism: rV ∼ (κc)1/3

N. Tetradis University of Athens and CERN
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Πw

Figure: The solution πw = dπ/dw for: a) The brane theory with
M4 = M5 = 0, c = 10 (blue). b) The brane theory with M4 = 0,
12M3

5/λ = κ = 1, c = 10 (green). c) The Galileon theory with M4 = 0,
12M3

5/λ = κ = 1, c = 10 (red).

N. Tetradis University of Athens and CERN
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Figure: The solution πw = dπ/dw for: a) The brane theory with
M4 = M5 = 0, c = 10 (blue). b) The brane theory with M4 = 0,
12M3

5/λ = κ = 40, c = 10 (green). c) The Galileon theory with M4 = 0,
12M3

5/λ = κ = 40, c = 10 (red).
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Solutions π(z), with z = r2 − t2

Brane theory
a) For M5 = M4 = 0 and c > 0

πz = ± c√
z4 − 4c2z

.

b) For M4 = 0 and κ = 12M3
5/λ

πz =
±
√

2c
√

z4 + z3
√

z2 ∓ 2κc − 8c2z ∓ κc z2
.

Galileon theory
For M4 = 0 and κ = 12M3

5/λ

πz =
1
κ

(

1 −
√

1 ± 2κc
z2

)

.

N. Tetradis University of Athens and CERN
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Figure: The solution πz = dπ/dz for: a) The brane theory with M4 = M5 = 0,
c = 10 (blue). b) The brane theory with M4 = 0, 12M3

5/λ = κ = 1, c = 10
(green). c) The Galileon theory with M4 = 0, 12M3

5/λ = κ = 1, c = 10 (red).
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The throat solutions of the DBI theory can be generalized to
solutions of the (quantum corrected) brane theory.

The Galileon theory reproduces correctly the shape of the
throats at large distances, but fails to do so at short distances.

The solutions of the brane and Galileon theories coincide in the
formal limits κc → ∞ with c fixed, or c → 0, with κc fixed.

Similar solutions exist in the context of the generalized Galileon
theory, and in particular in theories with kinetic gravity braiding.

Possible cosmological applications: brane annihilation, bouncing
Universe.

N. Tetradis University of Athens and CERN
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Renormalization of the Galileon theory

S =

∫

d4x

{

µ

2
(∂π)2− ν

2
(∂π)2

�π+
κ̄

4
(∂π)2 ((�π)2 − (∂µ∂νπ)

2)
}

.

If a momentum cutoff is used, of the order of the fundamental
scale Λ of the theory, and the couplings are taken of order Λ, the
one-loop effective action of the Galileon theory is, schematically,
(Luty, Porrati, Nicolis, Rattazzi)

Γ1 ∼
∫

d4x
∑

m

[

Λ4 + Λ2∂2 + ∂4 log
(

∂2

Λ2

)](

∂2π

Λ3

)m

.

Non-renormalization of the Galileon couplings (de Rham,
Gabadadze, Heisenberg, Pirtskhalava, Hinterbichler, Trodden,
Wesley).
Explicit one-loop calculation using dimensional regularization
(Paula Netto, Shapiro).

N. Tetradis University of Athens and CERN

Aspects of HIgher-Derivative Theories



Introduction Classicalization Exact classical solutions Renormalization of the Galileon Renormalization of the brane theory Conclusions

One-loop corrections to the cubic Galileon

Tree-level action in Euclidean d-dimensional space

S =

∫

dd x
{µ

2
(∂π)2 − ν

2
(∂π)2

�π
}

.

Field fluctuation δπ around the background π. The quadratic part
is

S(2) =

∫

ddx
{

−µ

2
δπ�δπ +

ν

2
δπ [2(�π)�δπ − 2(∂µ∂νπ)∂µ∂νδπ]

}

.

Define

K = −µ� Σ1 = 2ν(�π)� Σ2 = −2ν(∂µ∂νπ) ∂µ∂ν

One-loop contribution to the effective action

Γ1 =
1
2

tr log (K +Σ1 +Σ2) =
1
2

tr log
(

1 +Σ1K−1 +Σ2K−1)+N .

N. Tetradis University of Athens and CERN
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Expanding the logarithm

tr
(

Σ1K−1Σ1K−1) = 4
ν2

µ2 (2π)
d
∫

ddk k4π̃(k)π̃(−k)
∫

ddp
(2π)d

tr
(

Σ1K−1Σ2K−1) = −4
ν2

µ2 (2π)
d
∫

ddk k4π̃(k)π̃(−k)
1
d

∫

ddp
(2π)d

tr
(

Σ2K−1Σ2K−1) = 4
ν2

µ2 (2π)
d
∫

ddk π̃(k)π̃(−k)

{

3
d(d + 2)

k4
∫

ddp
(2π)d

+
(d − 8)(d − 1)

d(d + 2)(d + 4)
k6
∫

ddp
(2π)d

1
p2

− (d − 24)(d − 2)(d − 1)
d(d + 2)(d + 4)(d + 6)

k8
∫

ddp
(2π)d

1
p4

}

.

N. Tetradis University of Athens and CERN
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Putting everything together, we obtain in position space, the
one-loop correction to the effective action

Γ1 =
ν2

µ2

∫

dd x π(x)

{

− d2 − 1
d(d + 2)

(
∫

ddp
(2π)d

)

�
2

+
(d − 8)(d − 1)

d(d + 2)(d + 4)

(
∫

ddp
(2π)d

1
p2

)

�
3

+
(d − 24)(d − 2)(d − 1)
d(d + 2)(d + 4)(d + 6)

(
∫

ddp
(2π)d

1
p4

)

�
4

}

π(x).

The momentum integrals are defined with UV and IR cutoffs.
If dimensional regularization near d = 4 is used, the first two
terms are absent. The third one corresponds to a counterterm
∼ 1/ǫ (Paula Netto, Shapiro).
No corrections to the Galileon couplings.
Terms outside the Galileon theory are generated.

N. Tetradis University of Athens and CERN
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Heat-kernel approach around a non-trivial background

Our task is to evaluate the one-loop effective action

Γ1 =
1
2

tr log∆

with (µ = 0) ∆ = −�+ 2ν (�π)�− 2ν (∂µ∂νπ) ∂µ∂ν

around the background (w = r2)

π′

cl (w) =
1
8ν

(

1 −
√

1 +
16νc
w3/2

)

.

The propagation of classical fluctuations in suppressed below
the Vainshtein radius rV ∼ (νc)1/3, where ν�πcl ∼ (rV/r)3/2 ≫ 1.

What about the quantum fluctuations?

N. Tetradis University of Athens and CERN
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Calculate the heat kernel

h(x , x ′, ǫ) =

∫

d4k
(2π)4 e−ikx′

e−ǫ∆eikx

The one-loop effective action can be obtained as

Γ1 = −1
2

∫

∞

1/Λ2

dǫ
ǫ

∫

d4x h(x , x , ǫ).

N. Tetradis University of Athens and CERN
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The diagonal part of the heat kernel becomes

h(x , x , ǫ) =

∫

d4k
(2π)4

1
ǫ2 exp

{

−k2 + 2i
√
ǫkµ∂µ + ǫ�

+2ν�π
(

k2 − 2i
√
ǫkµ∂µ − ǫ�

)

−2ν∂µ∂νπ
(

kµkν − 2i
√
ǫkµ∂ν − ǫ∂µ∂ν

)

}

Expand in ǫ and ν.

The leading perturbative result is reproduced:

h(x , x , ǫ) =
15

32π2ǫ2 ν
2(�π)2

Γ
(2)
1 = −1

2

∫

∞

1/Λ2

dǫ
ǫ

∫

d4x h(x , x , ǫ) = − 15
128π2 ν

2Λ4
∫

d4x (�π)2.

N. Tetradis University of Athens and CERN
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Pertubation theory:

Γ1 ∼
∫

d4x
∑

m

[

Λ4 + Λ2∂2 + ∂4 log
(

∂2

Λ2

)]

(

ν∂2π
)m

.

Split the field as π = πcl + δπ.

The action includes terms ∼ ν2Λ4(ν�πcl)
n(�δπ)2

But ν�πcl ∼ (rV/r)3/2 ≫ 1 below the Vainshtein radius.
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Modified heat kernel
The exponent of the heat-kernel is ( π = πcl + δπ)

F = −Gµνkµkν − (1 − 2ν�πcl)Dǫ(k) + 2ν∂µ∂νπcl Lµν
ǫ (k)

+2ν�δπ
(

k2 + Dǫ(k)
)

+ 2ν∂µ∂νδπ (−kµkν + Lµν
ǫ (k))

with the “metric” Gµν = gµν − 2ν�πcl gµν + 2ν∂µ∂νπcl and

Dǫ(k) = −2i
√
ǫkµ∂µ − ǫ�

Lµν
ǫ (k) = 2i

√
ǫkµ∂ν + ǫ∂µ∂ν .

Make the “metric” Gµν trivial by rescaling kµ = Sµ
νk ′ν , with

Sµ
ρGµνSν

σ = gρσ .

The most divergent term quadratic in δπ in the heat kernel is

h(x , x , ǫ) =

∫

d4k
(2π)4 (det S)

1
2ǫ2 e−k2

(

2ν�δπ(Sk)2

+2ν∂µ∂νδπ (−SkµSkν)

)2

.
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On the background that realizes the Vainshtein mechanism

Γ
(2)
1 = − 1

128π2 ν
2Λ4

∫

d4x
(

(�δπ)2 P(r2)− 2(�δπ)(∂µ∂νδπ)Vµν(r2)

+ (∂µ∂νδπ) (∂ρ∂σδπ) Wµνρσ(r2)
)

.

with P(r2),Vµν(r2),Wµνρσ(r2) ∼ (r/rV )
6 and rv ∼ (νc)1/3.
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The general structure of the effective action is

Γ
(2)
1 = ν2

∫

d4x
[

Λ4
(

c0
r6

R6
V

(

δπ∂4δπ
)

)

+Λ2

(

c1a
r5/2

R9/2
V

(

δπ∂4δπ
)

+ c1b
r7/2

R9/2
V

(

δπ∂5δπ
)

+ c1c
r9/2

R9/2
V

(

δπ∂6δπ
)

)

+ log(Λ/µ)
(

c2a
1

rR3
V

(

δπ∂4δπ
)

+ c2b
1

R3
V

(

δπ∂5δπ
)

+c2c
r

R3
V

(

δπ∂6δπ
)

+ c2d
r2

R3
V

(

δπ∂7δπ
)

+ c2e
r3

R3
V

(

δπ∂8δπ
)

)

]

.
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Brane effective action
Leading terms in the effective action (Euclidean space)

Sµ = µ
∫

d4x
√

g = µ
∫

d4x
√

1 + (∂π)2

Sν = ν
∫

d4x
√

g K = −ν
∫

d4x
(

[Π]− γ2[φ]
)

Sκ = (κ/2)
∫

d4x
√

g K 2 = (κ/2)
∫

d4x
√

g
(

[Π]− γ2[φ]
)2

Sκ̄ = (κ̄/2)
∫

d4x
√

g R

= (κ̄/2)
∫

d4x γ
(

[Π]2 − [Π2] + 2γ2([φ2]− [Π][φ])
)

The action Sλ + Sν + Sκ̄ belongs to the generalized Galileon
(Horndeski) class. It reduces to the Galileon theory in the
nonrelativistic limit.
The first Gauss-Codazzi equation gives R = K 2 − KµνKµν .
The term Sκ becomes ∼ π�2π in the nonrelativistic limit
(∂π)2 ≪ 1. This term is not included in the Galileon theory.
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One-loop corrections to the brane action
Brane theory with µ = µ0, ν = ν0, κ = κ̄ = 0
The one-loop correction is

Γ1 =
1
2

tr log
(

δ2S
δπ2

)

,

with

δ2S
δπ2 = µ0∆+ ν0Vµν∇µ∇ν + µ0U +O(K 4,∇K ) ,

Covariant derivatives are evaluated with the induced metric gµν .
∆ = −gµν∇µ∇ν , Vµν = 2(Kµν − Kgµν ), U = K 2 − KµνKµν = R.
Expanding the logarithm

Γ1 =
1
2

tr log(µ0∆) +
1
2
ν0

µ0
tr

(

1
∆

Vµν∇µ∇ν

)

+
1
2

tr

(

1
∆

U
)

−1
4
ν2

0

µ2
0

tr

(

1
∆

Vµν∇µ∇ν
1
∆

Vαβ∇α∇β

)

+O(K 4,∇K ) .
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Evaluation of the traces with heat kernel techniques

tr log(µ0∆) =

(
∫

ddp
(2π)d ln

(

µ0p2)
)
∫

ddx
√

g

+
d − 2

12

(

∫

ddp
(2π)d

ln
(

µ0p2
)

p2

)

∫

ddx
√

gR

tr

(

1
∆

Vµν∇µ∇ν

)

=
d − 1

d

(
∫

ddp
(2π)d

)
∫

ddx
√

gK

tr

(

1
∆

U
)

=

(
∫

ddp
(2π)d

1
p2

)
∫

ddx
√

gR

tr

(

1
∆

Vµν∇µ∇ν
1
∆

Vαβ∇α∇β

)

=
4(d2 − 1)
d(d + 2)

(
∫

ddp
(2π)d

)
∫

ddx
√

gK 2

− 8
d(d + 2)

(
∫

dd p
(2π)d

)
∫

ddx
√

gR .
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The couplings at one-loop level are

µ = µ0 +
1
2

∫

ddp
(2π)d ln

(

µ0p2)

ν = ν0 +
d − 1

2d
ν0

µ0

∫

ddp
(2π)d

κ = −2(d2 − 1)
d(d + 2)

ν2
0

µ2
0

∫

dd p
(2π)d

κ̄ =
4

d(d + 2)
ν2

0

µ2
0

∫

ddp
(2π)d +

∫

ddp
(2π)d

1
p2 +

d − 2
12

∫

ddp
(2π)d

ln
(

µ0p2
)

p2 .

Terms outside the Galileon theory are generated.

The couplings of the brane (generalized Galileon) theory are
renormalized.
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Renormalization-group evolution

We use the Wilsonian (exact) renormalization group.

Heat-kernel techniques.

The evolution equations for the couplings take the form
∂tµk = kd

(4π)d/2Γ( d
2 +1)

2κk k2+µk
κk k2+µk

∂tνk = − kd

(4π)d/2Γ( d
2 +2)

(d − 1) (2κk k2+µk )νk

(κk k2+µk )2

∂tκk = 2kd

(4π)d/2Γ( d
2 +2)

{

d+4
4

(2κk k2+µk )κk

(κk k2+µk )2 + 4(d2
−1)

d+4
(2κk k2+µk )ν

2
k

(κk k2+µk )3

}

∂t κ̄k = kd

(4π)d/2Γ( d
2 +2)

{

d(d+2)
12

2κk k2+µk
(κk k2+µk )k2 − 16

d+4
(2κk k2+µk )ν

2
k

(κk k2+µk )3

−
[

(d + 2)µk
k2 + 2dκk + 3(d−2)

2 κ̄k

]

2κk k2+µk
(κk k2+µk )2

}

.
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We can obtain the β-functions of κk , κ̄k for two-dimensional fluid
membranes for which the volume (now area) term is considered
subleading.

We set d = 2, µk = νk = 0 and obtain

∂tκk =
3

4π
, ∂t κ̄k = − 5

6π
. (1)

These expressions reproduce known results (Polyakov, Kleinert,
Forster) for the renormalization of the bending and Gaussian
rigidities of fluctuating membranes in a three-dimensional bulk
space.
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Asymptotic safety
Consider the theory with d = 4, ν = κ = 0. It includes a
cosmological constant and an Einstein term.
Define the dimensionless cosmological and Newton’s constants
through

µk

k4 =
Λk

8πGk
,

κ̄k

k2 = − 1
8πGk

. (2)

Their scale dependence is given by

∂tΛk = −2Λk +
1

6π
Gk(3 − 2Λk ) (3)

∂tGk = 2Gk +
1

12π
G2

k

Λk
(3 − 4Λk ). (4)

This system of equations has two fixed points at which the
β-functions vanish:
a) the Gaussian one, at Λk = Gk = 0, and
b) a nontrivial one, at Λk = 9/8, Gk = 18π.
The flow diagram is similar to the scenario of asymptotic safety.
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Figure: The flow diagram.
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Conclusions
The DBI action and its generalizations have exact classical
solutions that can be interpreted as shock fronts that scatter at
length scales much larger than the fundamental scale
(classicalization). This is possible for specific initial conditions.
The same solution can be interpreted as wormholes or throats
connecting a pair of branes.
They can also be viewed as bouncing Universe solutions.
Cosmological applications?
The couplings of the Galileon theory do not get renormalized.
However, the Galileon theory is not stable under quantum
corrections. Additional terms are generated.
Quantum corrections are suppressed below the Vainshtein
radius.
The nonrenormalization of couplings is not a feature of the
generalized Galileon theories.
The brane theory displays RG evolution very similar to that in the
asymptotic safety scenario.
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