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Introduction

The electroweak vacuum in the Standard Model is metastable.
At very large field values

Leff =
1
2

Z (h, ξ)(∂µh)2−1
4
λeff(h, ξ)h4 =

1
2
(∂µhcan)

2−1
4
λcan(hcan, ξ)h4

can

N. Tetradis University of Athens
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Figure: The dashed curves show the effective quartic coupling (left) and
effective SM potential (right) computed at next-to-leading order in a generic
Fermi ξ-gauge. The thick red dashed curve corresponds to the Landau
gauge, ξ = 0. The black continuous curves show the same potential
expressed in terms of the canonical field hcan.
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The tunnelling rate to the new vacuum is exponentially
suppressed by the action of the instanton, which is the
configuration that minimizes the Euclidean action

S =

∫
d4x

√
g
[
(∂µh)(∂µh)

2
+ V (h)− R

2κ
− ξ

2
Rh2

]
,

where R is the Ricci scalar, κ = 1/M̄2
Pl = 8πG with

M̄Pl = MPl/
√

8π, MPl ≈ 1.22 × 1019 GeV.
The instanton is an O(4)-symmetric configuration on a space
with metric

ds2 = dr2 + ρ(r)2dΩ2,

where dΩ is the volume element of the unit 3-sphere.
A. Salvio, A. Strumia, N. Tetradis and A. Urbano,
arXiv:1608.02555 [hep-ph], JHEP 1609 (2016) 054
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SM with Mh = 114 GeV, Mt = 173.34 GeV, α3(MZ ) = 0.1184
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Figure: SM bounce solutions for different values of ξ (left panel), and their
action (right panel). We consider Mh = 114 GeV, which is the value that
saturates the metastability bound for the central value of the top mass.

N. Tetradis University of Athens

Black holes and Higgs stability



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Introduction Matching the geometries The critical bubbles The Higgs profile Conclusions

SM with Mh = 125.09 GeV, Mt = 173.34 GeV, α3(MZ ) = 0.1184
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Figure: SM bounce solutions for different values of ξ (left panel), and their
action (right panel). We consider here the best fit Higgs mass Mh = 125.09
GeV, for which the vacuum decay rate is negligibly small.
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Figure: SM phase diagram for α3(MZ ) = 0.1184. Continuous red line:no
gravitational corrections or ξ = −1/6; almost coincident dot-dashed line:
ξ = 0; dashed line: |ξ| ∼ 10. Ellipses: Higgs and top mass at 1, 2, 3σ. Blue
lines: bound from thermal tunneling, for a reheating temperature of 1016 GeV.
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There are also constraints on the scale of inflation.
In the absence of a large Higgs mass term, the evolution of the
long wavelength modes of the Higgs field h is controlled by the
Langevin equation

dh
dt

+
1

3H
dV (h)

dh
= η(t),

where η is a Gaussian random noise with

⟨η(t)η(t ′)⟩ = H3

4π2 δ(t − t ′).

J.R. Espinosa et al., arXiv:1505.04825 [hep-ph], JHEP 1509
(2015) 174
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H = hmax, pHÈhÈ>hmaxL = 0.42, pHÈhÈ®¥L = 0.00016

ΞH = 0

VHhL

Figure: Random distribution of the Higgs field h̄ = h/hmax after N = 60
e-folds of inflation with Hubble constant equal to the Higgs instability scale,
H = hmax. The red curve is the SM Higgs potential V̄ (h̄), in arbitrary units.
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VSMHhL - 12ΞH H2h2�2
ΞH = - 0.01

Figure: Random distribution of the Higgs field h̄ = h/hmax after N = 60
e-folds of inflation with Hubble constant equal to the Higgs instability scale,
H = hmax, and for a non-minimal Higgs coupling ξH = −0.01. The red curve is
the Higgs potential barV SM(h̄)− 12ξHH2h̄2/2, in arbitrary units.
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Figure: As a function of ξH and the Hubble constant in units of the instability
scale hmax (and for N = 60 e-folds of inflation), we show the three regions
where: the probability for the Higgs field to end up in the negative-energy true
minimum is larger than e−3N (red); the probability for the Higgs field to
fluctuate beyond the potential barrier is larger than e−3N (orange); the latter
probability is smaller than e−3N (green). Higgs fluctuations are damped for
ξH < −3/16.
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Burda, Gregory and Moss (2015,2016) argued that the quantum
nucleation of bubbles of true vacuum can be enhanced around
black holes that act as impurities in the false vacuum.
In the context of the Standard Model, the presence of black holes
may destabilize the standard electroweak vacuum by reducing
drastically the barrier for quantum fluctuations.
A natural question is whether the creation of black holes during
inflation or later periods is accompagnied by the appearance of
AdS bubbles around them that arise as classical fluctuations in
the high-temperature or density environment.
N. Tetradis, arXiv:1606.04018 [hep-ph], to appear in JCAP
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Matching the geometries
Spherical AdS-Schwarzschild bubble within asymptotically flat or
dS space, separated by a thin wall with surface tension σ.
The space inside the bubble has a metric

ds2 = −fin(r)dη2 +
dr2

fin(r)
+ r2dΩ2

2, r < R,

with fin(r) = 1 + r2/ℓ2 − 2Gm/r , 1/ℓ2 = 8πG|V |/3.
The space outside the bubble is described by the metric

ds2 = −fout(r)dt2 +
dr2

fout(r)
+ r2dΩ2

2, r > R,

with fout(r) = 1 − r2/ℓ′2 − 2GM/r , 1/ℓ′2 = 8πGV ′/3.
M is the ADM mass of the bubble.
The two regions are separated by a domain wall with metric

ds2 = −dτ2 + R2(τ)dΩ2
2.

N. Tetradis University of Athens

Black holes and Higgs stability



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Introduction Matching the geometries The critical bubbles The Higgs profile Conclusions

The Israel junction conditions give

ϵ2(fout + Ṙ2)1/2 − ϵ1(fin + Ṙ2)1/2 = −4πGσR,

where ϵ1 = ±1, ϵ2 = ±1 are possible sign choices.
The square of this equation can be put in the form

2GM = 2Gm+

(
κ2 − 1

ℓ2 − 1
ℓ′2

)
R3+2ϵ2κR2

(
1 − 2GM

R
− R2

ℓ′2
+ Ṙ2

)1/2

,

with κ = 4πGσ. The time-derivative is with respect to τ .
Alternatively

2GM = 2Gm−
(

1
ℓ2 +

1
ℓ′2

+ κ2
)

R3+2ϵ1κR2
(

1 − 2Gm
R

+
R2

ℓ2 + Ṙ2
)1/2

.

For ϵ1 = 1, Ṙ ≪ 1 and G → 0, the above expression has a
Newtonian interpretation.
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By squaring the junction equation twice, we can express the
equation of motion for the bubble wall as the equation for the
one-dimensional motion of a particle of constant ‘energy’ in an
effective ‘potential’.
For fixed values of ℓ, ℓ′, κ, m, the ‘energy’ depends on the total
mass M of the configuration.
A multitude of wall trajectories are possible for various values of
M, describing shrinking or expanding bubbles.
For a given set of parameters there is a critical configuration that
separates small bubbles that tend to collapse from large bubbles
that tend to grow and engulf the external space.
The mass M of these bubbles characterizes the energy barrier
for transitions towards the deeper AdS vacuum.
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Asymptotically flat space, positive mass

Figure: The ‘potential’ for 1/ℓ′2 → 0, M > 0, and m/M = 0.5.
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Figure: The Penrose diagram for the wall trajectory C of the previous figure.
The total spacetime is constructed by joining the two diagrams, after the
elimination of the shaded areas.
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Asymptotically flat space, negative mass

Figure: The ‘potential’ for 1/ℓ′2 → 0, M < 0, and m/|M| = 0.5.
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Figure: The Penrose diagram for the wall trajectory I of the previous figure.
The total spacetime is constructed by joining the two diagrams, after the
elimination of the shaded areas.
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Asympotically dS space

Figure: The ‘potential’ for 1/ℓ′ > 0, M > 0, and m/M = 0.5.
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Figure: The Penrose diagram for the wall trajectory O of the previous figure.
The total spacetime is constructed by joining the two diagrams, after the
elimination of the shaded areas.
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The AdS crunch
The evolution after the wall reaches the timelike boundary of
AdS, cannot be determined without additional boundary
conditions. There is a Cauchy horizon.
A spacelike singularity (the AdS ‘crunch’ of Coleman and De
Luccia) must develop in the bubble interior.
The coordinate change

r = ℓin sin
t̂
ℓin

sinhψ cos
t̂
ℓin

=

(
1 +

r2

ℓ2
in

)1/2

cos
η

ℓin

puts the AdS metric in the form

ds2 = −dt̂2 + ℓ2
in sin2 t̂

ℓin

(
dψ2 + sinh2 ψ dΩ2

2

)
.

This metric describes an homogeneous FRW universe that is
born with a big ‘bang’ and collapses in a big ‘crunch’.
The coordinate singularity becomes a true physical singularity in
the presence of a fluctuating Higgs field.
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Figure: The AdS interior of the bubble in conformal coordinates, showing the
crunch and (in color) a patch in FRW coordinates.
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The critical bubbles

The mass of the bubble configuration is

2GM = 2Gm−
(

1
ℓ2 +

1
ℓ′2

+ κ2
)

R3+2ϵ1κR2
(

1 − 2Gm
R

+
R2

ℓ2 + Ṙ2
)1/2

.

We concentrate on the bubble evolution for κ2 = (Gσ)2 ≪ 1/ℓ2.
It is reasonable to assume that at the time of production of an
AdS bubble the wall has small velocity (Ṙ ≃ 0).
We set ϵ1 = 1. Configurations with ϵ1 = −1 correspond to
shrinking bubbles.
For a central black hole with mass parameter m, the presence of
an initially static AdS bubble of radius R results in the
modification of the asymptotic ADM mass by an amount equal to
δM(R,m) = M(R,m)− m.
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Figure: The mass difference δM = M − m for a bubble with Ṙ = 0 and
1/ℓ′ → 0, as function of its radius R and the mass m of the central black hole.
All quantities are given in units of ℓ.
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There is a critical value mcr, above which δM(R,m) is negative
for all R. This value and the corresponding bubble radius Rcr are

Gmcr =
1
3

Rcr =
2

3
√

3
κ[ 1

ℓ′2
+ ( 1

ℓ + κ)2
] 1

2
[ 1
ℓ′2

+ ( 1
ℓ − κ)2

] 1
2
≃ 2

3
√

3
κ

1
ℓ2 + 1

ℓ′2

.

The bubble radius Rcr is always larger than the horizon radius of
the black hole.
There are no bubbles with radii below a certain value. For Ṙ = 0,
the minimal radius Rh satisfies

1 − 2Gm
Rh

+
R2

h

ℓ2 = 0. (1)

If the bubble is located within the horizon, with vanishing wall
velocity, it cannot grow.
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The mass parameter m is not a properly defined physical
quantity.
A geometrical quantity that can be used to characterize the
energy content of the central region is the horizon radius Rh.
The difference δM ′(R,m) = M(R,m)− Rh(m)/(2G) provides an
alternative estimate for the energy barrier associated with the
bubble.
Rh(m)/(2G) coincides with m only for 2Gm/ℓ≪ 1, while it is
much smaller than m for 2Gm/ℓ≫ 1. As a result, δM ′ may
provide an overestimate of the energy barrier for large m.
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Figure: The mass difference δM ′ = M − Rh/(2G) for a bubble with Ṙ = 0
and 1/ℓ′ → 0, as function of its radius R and the mass m of the central black
hole. All quantities are given in units of ℓ.
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For small κℓ and 1/ℓ′ → 0, the minimal critical value of δM ′ is
obtained for

Gm′
cr =

1 +
√

13
12

R′
cr ≃

√
16 −

√
13

(
1 +

√
13

)
36

ℓ2κ.

The points (Rcr,mcr), (R′
cr,m′

cr) are close:
Gmcr = Rcr/3 ≃ 0.385 ℓ2κ and Gm′

cr = 1.151 Rcr/3 ≃ 0.450 ℓ2κ.
The quantity δM ′(R′

cr,m′
cr) can be compared with the barrier in

the absence of the black hole, estimated by M(R0, 0), with
∂M(R0, 0)/∂R = 0. For small κℓ and 1/ℓ′ → 0

δM ′(R′
cr,m′

cr)

M(R0, 0)
=

1
32

(√
220 + 47

√
13 −

√
1492 − 397

√
13

)
≃ 0.373.

For 1/ℓ′ ≫ 1/ℓ, the quantity δM ′(R,m) turns negative for

Gmcr =
1
3

Rcr ≃
2

3
√

3
κ

1
ℓ2 + 1

ℓ′2

.

Complete instability is expected for a strong dS background.
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The critical bubble mass can be estimated as

Gmcr ∼
κ

1
ℓ2 + 1

ℓ′2

for all values of 1/ℓ, 1/ℓ′.
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Standard Model Higgs
The Higgs potential has the approximate form V ∼ λ(h)h4/4 for
values of the Higgs field h above 106 GeV.
The quartic coupling λ varies from 0.02 to −0.02 for Higgs values
between 106 GeV and 1020 GeV, respectively.
The maximum of the potential is located at a value
hmax ∼ 5 × 1010 GeV.
Near the maximum the potential can be approximated as

V (h) ≃ −b ln
(

h2

h2
max

√
e

)
h4

4
,

with b ≃ 0.16/(4π)2.
For Higgs values within the range of interest around hmax, we
have |λ| = O(10−3).
In order to avoid the destabilization of the standard electroweak
vacuum because of Higgs fluctuations during inflation, one
requires that the scale Hinf of inflation satisfies Hinf <∼ 0.04 hmax
(for a minimally coupled Higgs field).
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In the presence of a black hole, the energy barrier to be
overcome in order to produce an AdS bubble is reduced
significantly.
A primordial black hole can form when the density fluctuations
are sufficiently large for an overdense region of horizon size to
collapse.
Its maximal mass is of order the total mass within the particle
horizon mbh ∼ M2

Pl/H, while its maximal radius is Rbh ∼ 1/H.
These estimates are also valid for black holes that are
pair-produced during inflation.
We can estimate

mcr

mbh
∼ |V |

V ′ + |V |
H√
λ̂h
,

with λ̂ = O(10−3), V ∼ −λ̂h4, and V ′ equal to the inflaton
vacuum energy Vinf during inflation, or to zero after its end.
This ratio is always smaller than 1.
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Beyond the thin-wall approximation
For the metric

ds2 = −N(r) e2δ(r)dt2 + N−1(r)dr2 + r2
(

dθ2 + sin2 θdϕ2
)
,

with N(r) = 1 − 2GM(r)/r , the equations of motion become

M ′ = 4πr2
(

1
2

Nh′2 + V (h)
)

δ′ = 4πGrh′2

h′′ +

(
2
r
− 8πG

r
N

V (h) + 2G
M

Nr2

)
h′ =

1
N

dV (h)
dh

.

On the horizon: 2GM(Rh) = Rh. For a finite ADM mass:

h′(Rh) =
Rh

1 − 8πGR2
h V (h(Rh))

dV (h(Rh))

dh
.

h(r) → 0 for r → ∞, δ(r) → 1 for r → ∞.

δM ′ = M(∞)− Rh/(2G) is the energy barrier.
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Figure: The Higgs field h(r) (left plot) and the mass function M(r) (right plot)
outside a black hole with horizon radius Rh =0.1, 20 and 100 (lines from from
left to right). All quantities are given in units of hmax.
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Figure: The ratio of the energy barrier in the background of a black hole
relative to the barrier in the absence of a black hole.
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The ratio δM ′/M0 has a minimum δM ′
max ≃ 0.473 at Rh ≃ 11.

There is a reduction of the energy barrier by approximately a
factor of 2, instead of the factor of 3 estimated through the
thin-wall approximation.
This reduction still has a profound effect on the nucleation rate.
The energy barrier drops from approximately 300 to 150 in units
of hmax.
The characteristic scale of the solutions is set by hmax. This
means that gravitational corrections are not relevant, as they are
suppressed by powers of h2

max/M2
Pl.

For our solutions κℓ ∼
√

Ghmax ∼ hmax/MPl ≪ 1.
The energy δM ′ associated with the bubble is much smaller than
the mass of the central black hole, as estimated by Rh/(2G). The
gravitational background is induced mainly by the black hole, with
the bubble being only a small perturbation.
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Higgs potential and primordial black holes

Is the presence of primordial black holes consistent with the
Standard Model Higgs?
The barrier for classical transitions to the AdS vacuum is reduced
by roughly a factor of 2 in the presence of a black hole for an
asymptotically flat false vacuum.
For an asympotically dS false vacuum, the barrier is eliminated
by a sufficiently big black hole, indicating complete instability.
Consider a high-temperature environment with T ∼ hmax in
asymptotically flat space. The bubble nucleation probability per
unit time is dP/dt = T exp(−δM ′/T ).
The smallest time interval that can be associated with the scale
T is the Hubble time ∼ MPl/T 2.
The number of causally independent regions, which are currently
within our horizon, is roughly N ∼ 1034(T/GeV)3.

Assume that a black hole can be produced within each of these
regions with probability p.
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The total nucleation probability becomes
P ∼ p

(
T/(1011GeV)

)2 exp(173 − δM ′/T ).
The reduction of the energy barrier δM ′ from ∼ 300 to ∼ 150 in
units of hmax means that the exponental suppression is
eliminated.
It must be emphasized, however, that the probability p for the
creation of a primordial black hole may be very small, resulting in
the suppression of the rate.
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Comments

One may ask if the typical black holes can be in equilibrium with
the thermal background or affect it. The tunnelling rate becomes
maximal for a black hole with Schwarzschild radius Rh ≃ 10/hmax
and Hawking temperature TH ≃ hmax/(40π). We expect that the
bubble nucleation rate will be most efficient for T ∼ hmax. The
black holes are not in equilibrium, while they have only minor
influence on the background.
The Higgs field couples through the Yukawa couplings to
particles that contribute to density flucuations. The transition can
take place in an environment that is out of thermal equilibrium if
the density flucuations are sufficiently strong.
Similar results are expected for a wide range of potentials,
resulting from physics beyond the Standard Model at zero and
nonzero temperature or density, as long as the standard
electroweak vacuum is metastable.
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