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The q-Factorial Moments of Discrete q-Distributions
and a Characterization of the Euler Distribution
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ABSTRACT The classical discrete distributions binomial, geometric and
negative binomial are defined on the stochastic model of a sequence of indepen-
dent and identical Bernoulli trials. The Poisson distribution may be defined as
an approximation of the binomial (or negative binomial) distribution. The cor-
responding q-distributions are defined on the more general stochastic model of
a sequence of Bernoulli trials with probability of success at any trial depending
on the number of trials. In this paper targeting to the problem of calculating
the moments of q-distributions, we introduce and study q-factorial moments,
the calculation of which is as ease as the calculation of the factorial moments of
the classical distributions. The usual factorial moments are connected with the
q-factorial moments through the q-Stirling numbers of the first kind. Several ex-
amples, illustrating the method, are presented. Further, the Euler distribution
is characterized through its q-factorial moments.
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3.1 INTRODUCTION

Consider a sequence of independent Bernoulli trials with probability of success
at the ith trial pi, i = 1, 2, . . .. The study of the distribution of the number Xn

of successes up to the nth trial, as well as the closely related to it distribution of
the number Yk of trials until the occurrence of the kth success, have attracted
special attention. In the particular case pi = θqi−1/(1 + θqi−1), i = 1, 2, . . .,
0 < q < 1, θ > 0, the distribution of the random variable Xn, called q-binomial
distribution, has been studied by Kemp and Newton (1990) and Kemp and
Kemp (1991). The q-binomial distribution, for n → ∞, converges to a q-analog
of the Poisson distribution, called Heine distribution. This distribution was
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introduced and examined by Benkherouf and Bather (1988). Kemp (1992a,b)
further studied the Heine distribution. In the case pi = 1 − θqi−1, i = 1, 2, . . .,
0 < q < 1, 0 < θ < 1, the distribution of the random variable Yk is called
q-Pascal distribution. A stochastic model described by Dunkl (1981) led to the
particular case θ = qm−k+1 of this distribution. This distribution also studied
by Kemp (1998) is called absorption distribution. For k → ∞, the distribution
of the number of failures until the occurrence of the kth success Wk = Yk − k

converges to another q-analog of the Poisson distribution, called Euler distribu-
tion. This distribution was studied by Benkherouf and Bather (1988) and Kemp
(1992a,b). Kemp (2001) characterized the absorption distribution as the con-
ditional distribution of a q-binomial distribution given the sum of a q-binomial
and a Heine distribution with the same argument parameter.

In the present paper, we propose the introduction of q-factorial moments
for q-distributions. These moments, apart from the interest in their own, may
be used as an intermediate step in the evaluation of the usual moments of the
q-distributions. In this respect, an expression of the usual factorial moments in
terms of the q-factorial moments is derived. Several examples, illustrating the
method, are presented and a characterization of the Euler distribution through
its q-factorial moments is derived.

3.2 q-NUMBERS, q-FACTORIALS AND
q-STIRLING NUMBERS

Let 0 < q < 1, x a real number and k a positive integer. The number [x]q =
(1 − qx)/(1 − q) is called q-real number. In particular, [k]q is called q-positive
integer. The factorial of the q-number [x]q of order k, which is defined by

[x]k,q = [x]q[x − 1]q · · · [x− k + 1]q =
(1− qx)(1 − qx−1) · · ·(1− qx−k+1)

(1− q)k

is called q-factorial of x of order k. In particular [k]q! = [1]q[2]q · · · [k]q is called
q-factorial of k. The q-binomial coefficient is defined by

[
x

k

]

q

=
[x]k,q

[k]q!
=

(1 − qx)(1− qx−1) · · ·(1− qx−k+1)
(1 − q)(1− q2) · · ·(1 − qk)

.

Note that

lim
q→1

[
x
k

]

q

=
(

x

k

)
.

The q-binomial and the negative q-binomial expansions are expressed as

n∏

i=1

(1 + tqi−1) =
n∑

k=0

qk(k−1)/2

[
n

k

]

q

tk , (3.2.1)
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and

n∏

i=1

(1 − tqi−1)−1 =
∞∑

k=0

[
n + k − 1

k

]

q

tk, |t| < 1, (3.2.2)

respectively. In general, the transition of an expression to a q-analog is not
unique. Other q-binomial and negative q-binomial expansions, useful in the
sequel, are the following

(1 − (1 − q)[t]q)n = (qt)n =
n∑

k=0

(−1)kqk(k−1)/2(1 − q)k

[
n
k

]

q

[t]k,q (3.2.3)

and

(1− (1− q)[t]q)−n = (qt)−n =
∞∑

k=0

q−nk(1 − q)k

[
n + k − 1

k

]

q

[t]k,q. (3.2.4)

Also, useful are the following two q-exponential functions:

eq(t) =
∞∏

i=1

(1− (1− q)qi−1t)−1 =
∞∑

k=0

tk

[k]q!
, |t| < 1/(1− q), (3.2.5)

Eq(t) =
∞∏

i=1

(1 + (1− q)qi−1t) =
∞∑

k=0

qk(k−1)/2 tk

[k]q!
, −∞ < t < ∞, (3.2.6)

with eq(t)Eq(−t) = 1. The nth order q-factorial [t]n,q is expanded into powers
of the q-number [t]q and inversely as follows

[t]n,q = q−n(n−1)/2
n∑

k=0

sq(n, k)[t]kq , n = 0, 1, . . . , (3.2.7)

[t]nq =
n∑

k=0

qk(k−1)/2Sq(n, k)[t]k,q, n = 0, 1, . . . . (3.2.8)

The coefficients sq(n, k) and Sq(n, k) are called q-Stirling numbers of the first
and second kind, respectively. Closed expressions, recurrence relations and other
properties of these numbers are examined by Carlitz (1933, 1948) and Gould
(1961).
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3.3 q-FACTORIAL MOMENTS

The calculation of the mean and the variance and generally the calculation of
the moments of a discrete q-distribution is quite difficult. Several techniques
have been used for the calculation of the mean and the variance of particular q-
distributions. The general method of evaluation of moments by differentiating
the probability generating function, used by Kemp (1992a, 1998), is bounded
to the calculation of the first two moments. This limited applicability is due
to the inherent difficulties in the differentiation of the hypergeometric series.
We propose the introduction of the q-factorial moments of q-distributions, the
calculation of which is as ease as that of the usual factorial moments of the
classical discrete distributions.

Definition 3.3.1 Let X be a nonnegative integer valued random variable with
probability mass function f(x) = P (X = x), x = 0, 1, . . ..

(a) The mean of the rth order q-factorial [X ]r,q,

E([X ]r,q) =
∞∑

x=r

[x]r,qf(x), (3.3.1)

provided it exists, is called rth order (descending) q-factorial moment of the
random variable X .

(b) The mean of the rth order ascending q-factorial [X + r − 1]r,q,

E([X + r − 1]r,q) =
∞∑

x=1

[x + r − 1]r,qf(x), (3.3.2)

provided it exists, is called rth order ascending q-factorial moment of the ran-
dom variable X .

The usual factorial moments are expressed in terms of the q-factorial moments,
through the q-Stirling number of the first kind, in the following theorem.

Theorem 3.3.1 Let E([X ]r,q) and E([X+r−1]r,q) be the rth order descending
and ascending q-factorial moments, r = 1, 2, . . ., respectively, of a nonnegative
integer valued random variable X. Then

E[(X)m] = m!
∞∑

r=m

(−1)r−msq(r, m)
(1− q)r−m

[r]q!
E([X ]r,q), (3.3.3)

and

E[(X + m − 1)m]

= m!
∞∑

r=m

q−(r
2)sq(r, m)

(1− q)r−m

[r]q!
E(q−rX [X + r − 1]r,q), (3.3.4)
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provided the series are convergent. The coefficient sq(r, k) is the q-Stirling num-
ber of the first kind.

Proof. According to Newton’s binomial formula, for x nonnegative integer, we
have

(1 − (1 − q)[t]q)x =
x∑

k=0

(−1)k

(
x

k

)
(1− q)k[t]kq

while, from (3.2.3) and (3.2.7) we get

(1− (1− q)[t]q)x =
x∑

k=0

{
x∑

r=k

(−1)r(1 − q)rsq(r, k)
[

x

r

]

q

}
[t]kq

and so (
x

k

)
=

x∑

r=k

(−1)r−k(1 − q)r−ksq(r, k)
[

x

r

]

q

.

Multiplying both members of this expression by the probability mass function
f(x) of the random variable X and summing for all x = 0, 1, . . ., we deduce,
according to (3.3.1), the required expression (3.3.3).

Similarly, expanding both members of (3.2.4) into powers of [t]q by the
aid of Newton’s negative binomial formula and expression (3.2.7) and taking
expectations in the resulting expression, (3.3.4) is deduced. 2

Note that Dunkl (1981), starting from Newton’s polynomial expression of a
function in terms of divided differences at certain points and letting the function
to be the binomial coefficient

(
x
k

)
and the points to be the q-numbers [r]q,

r = 0, 1, . . . , x, first derived expression (3.3.3).
In the following examples the q-factorial moments and the usual factorial

moments of several discrete q-distributions are evaluated.

Example 3.3.1 q-binomial distribution. Consider a sequence of independent
Bernoulli trials with probability of success at the ith trial pi = θqi−1/(1+θqi−1),
i = 1, 2, . . ., 0 < q < 1, θ > 0. The probability mass function of the number Xn

of successes up to the nth trial is given by

fXn(x) =
[

n
x

]

q

qx(x−1)/2θx
n∏

i=1

(1 + θqi−1)−1, x = 0, 1, . . . , n,

with 0 < q < 1, θ > 0. The rth order q-factorial moment of the random variable
Xn, according to Definition 3.3.1, is given by the sum

E([Xn]r,q) =
1∏n

i=1(1 + θqi−1)

n∑

x=r

[x]r,q

[
n
x

]

q

qx(x−1)/2θx
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and since

[x]r,q

[
n

x

]

q

= [n]r,q

[
n − r

x − r

]

q

,

(
x

2

)
=

(
x − r

2

)
+

(
r

2

)
+ r(x− r),

it is written as

E([X ]n]r,q) =
[n]r,qqr(r−1)/2θr

∏n
i=1(1 + θqi−1)

n∑

x=r

q(x−r)(x−r−1)/2

[
n − r

x − r

]

q

(θqr)x−r

and by the q-binomial formula (3.2.1), reduces to

E([Xn]r,q) =
[n]r,qqr(r−1)/2θr

∏r
i=1(1 + θqi−1)

.

The kth order factorial moment of the random variable Xn, according to The-
orem 3.3.1, is given by

E[(Xn)k] = k!
n∑

r=k

(−1)r−ksq(r, k)
(1− q)r−kqr(r−1)/2θr

∏r
i=1(1 + θqi−1)

[
n
r

]

q

.

Example 3.3.2 Heine distribution. The probability mass function of the q-
binomial distribution for n → ∞, converges to the probability mass function of
the Heine distribution

fX(x) = eq(−λ)
qx(x−1)/2λx

[x]q!
, x = 0, 1, . . . ,

with 0 < q < 1, λ > 0, where λ = θ/(1 − q) and eq(−λ) =
∏∞

i=1(1 + λ(1 −
q)qi−1)−1 is the q-exponential function (3.2.5). The rth order q-factorial mo-
ment of the random variable X is given by

E([X ]r,q) = eq(−λ)
∞∑

x=r

[x]r,q
qx(x−1)/2λx

[x]q!

= qr(r−1)/2λreq(−λ)
∞∑

x=r

q(x−r)(x−r−1)/2(λqr)x−r

[x− r]q!

and since
∞∑

x=r

q(x−r)(x−r−1)/2(λqr)x−r

[x− r]q!
= Eq(λqr) =

∞∏

i=1

(1 + λ(1− q)qr+i−1)

it reduces to

E([X ]r,q) =
qr(r−1)/2λr

∏r
i=1(1 + λ(1 − q)qi−1)

.
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Further, by Theorem 3.3.1,

E[(X)k] = k!
∞∑

r=k

(−1)r−ksq(r, k)
(1− q)r−kqr(r−1)/2

∏r
i=1(1 + λ(1− q)qi−1)

· λr

[r]q!
.

Example 3.3.3 q-Pascal distribution. Consider a sequence of independent
Bernoulli trials with probability of success at the ith trial pi = 1 − θqi−1,
i = 1, 2, . . ., 0 < q < 1, 0 < θ < 1. The probability mass function of the number
Yk of trials until the occurrence of the kth success is given by

fYk
(y) =

[
y − 1
k − 1

]

q

θy−k
k∏

i=1

(1 − θqi−1), y = k, k + 1, . . . ,

with 0 < q < 1, 0 < θ < 1. The rth order ascending q-factorial moment of the
random variable Yk , according to Definition 3.3.1, is given by the sum

E([Yk + r − 1]r,q) =
1

∏k
i=1(1− θqi−1)−1

∞∑

y=k

[y + r − 1]r,q

[
y − 1
k − 1

]

q

θy−k

and since

[y + r − 1]r,q

[
y − 1
k − 1

]

q

= [k + r − 1]r,q

[
y + r − 1
k + r − 1

]

q

,

it is written as

E([Yk + r − 1]r,q) =
[k + r − 1]r,q∏k

i=1(1− θqi−1)−1

∞∑

y=k

[
y + r − 1
k + r − 1

]

q

θy−k .

Thus, by the q-negative binomial formula (3.2.2),

E([Yk + r − 1])r,q) =
[k + r − 1]r,q∏r

i=1(1− θqk+i−1)
.

Similarly

E(q−rYk [Yk + r − 1])r,q) =
[k + r − 1]r,qq−kr

∏r
i=1(1 − θq−r+i−1)

and by Theorem 3.3.1,

E[(X+m−1)m] = m!
∞∑

r=m

q−kr−(r
2)sq(r, m)

(1− q)r−m

∏r
i=1(1− θq−r+i−1)

[
k + r − 1

r

]

q

.
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Example 3.3.4 Euler distribution. The probability mass function of the num-
ber of failures until the occurrence of the kth success Wk = Yk − k is given by

fWk
(w) =

[
k + w − 1

w

]

q

θw
k∏

i=1

(1 − θqi−1), w = 0, 1, . . . .

This distribution, which may be called q-negative binomial distribution, for
k → ∞, converges to the Euler distribution with probability mass function

fX(x) = Eq(−λ)
λx

[x]q!
, x = 0, 1, . . . ,

with 0 < q < 1, 0 < λ < 1/(1 − q), where λ = θ/(1 − q) and Eq(−λ) =∏∞
i=1(1 − λ(1 − q)qi−1) is the q-exponential function (3.2.6). The rth order

q-factorial moment of the random variable X is given by

E([X ]r,q) = Eq(−λ)
∞∑

x=r

[x]r,q
λx

[x]q!
= λrEq(−λ)

∞∑

x=r

λx−r

[x − r]q!

and since, by (3.2.5),

∞∑

x=r

λx−r

[x− r]q!
= eq(λ) =

1
Eq(−λ)

,

it follows that
E([X ]r,q) = λr.

Further, by Theorem 3.3.1,

E[(X)k] = k!
∞∑

r=k

(−1)r−ksq(r, k)
(1− q)r−kλr

[r]q!
.

3.4 A CHARACTERIZATION OF THE
EULER DISTRIBUTION

Consider a family of nonnegative integer valued random variables {Xλ, 0 < λ <
ρ ≤ ∞} having a power series distribution with probability mass function

f(x; λ) =
a(x)λx

g(λ)
, x = 0, 1, . . . , 0 < λ < ρ (3.4.1)

and series function

g(λ) =
∞∑

x=0

a(x)λx, 0 < λ < ρ.
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It is well-known that the mean-variance equality

E(Xλ) = V ar(Xλ) for all λ ∈ (0, ρ)

characterizes the Poisson family of distributions [see Kosambi (1949) and Patil
(1962)]. Note that the requirement that this equality holds for all λ ∈ (0, ρ)
has been overlooked by some authors [see Sapatinas (1994) for details]. This
requirement may be relaxed by weaker ones; e.g., it suffices to verify it for all
λ ∈ I , where I is any nondegenerate subinterval of (0, ρ). A q-analogue to
the Kosambi-Patil characterization for the Euler distribution is derived in the
following theorem.

Theorem 3.4.1 Assume that a family of nonnegative integer valued random
variables {Xλ, 0 < λ < ρ ≤ ∞} obeys a power series distribution with probability
mass function (3.4.1). Then, Xλ has an Euler distribution if and only if

E([Xλ]2,q) = [E([Xλ]q)]2 (3.4.2)

for all λ ∈ (0, ρ).

Proof. Assume first that (3.4.2) holds for all λ ∈ (0, ρ). Then

λ2

g(λ)

∞∑

x=0

[x + 1]q[x + 2]qa(x + 2)λx =
λ2

[g(λ)]2

[ ∞∑

x=0

[x + 1]qa(x + 1)λx

]2

which, using the series g(λ) =
∑∞

x=0 a(x)λx, may be written as

[ ∞∑

x=0

a(x)λx

][ ∞∑

x=0

[x + 1]q[x + 2]qa(x + 2)λx

]
=

[ ∞∑

x=0

[x + 1]qa(x + 1)λx

]2

or equivalently as

∑∞
x=0

{
x∑

k=0

[k + 1]q[k + 2]qa(k + 2)a(x− k)

}
λx

=
∞∑

x=0

{
x∑

k=0

[k + 1]q[x − k + 1]qa(k + 1)a(x− k + 1)

}
λx.

Hence
x∑

k=0

[k + 1]q[k + 2]qa(k + 2)a(x− k)

=
x∑

k=0

[k + 1]q[x − k + 1]qa(k + 1)a(x− k + 1), (3.4.3)



56 Charalambides and Papadatos

for x = 0, 1, . . .. Setting x = 0 it follows that

[2]q!a(2)a(0) = [a(1)]2.

It is easy to see that if a(0) = 0 then a(1) = 0 and using (3.4.3) it follows that
a(x) = 0 for all x = 0, 1, . . ., which is a contradiction to the assumption that
Xλ obeys a power series distribution. Thus a(0) 6= 0, and without any loss of
generality we may assume that a(0) = 1. Therefore

a(2) = a2/[2]q!,

where a = a(1) > 0. Further, setting x = 1 it follows that

[2]q!a(2)a(1) + [3]q!a(3)a(0) = 2[2]q!a(2)a(1)

and
a(3) = a3/[3]q!.

Suppose that
a(k) = ak/[k]q!, k = 0, 1, . . . , x + 1.

Then

[x + 1]q[x + 2]qa(x + 2)a(0) +
x−1∑

k=0

[k + 1]q[k + 2]qa(k + 2)a(x − k)

= [x + 1]q[1]qa(x + 1)a(1) +
x−1∑

k=0

[k + 1]q[x − k + 1]qa(k + 1)a(x− k + 1)

and since

x−1∑

k=0

[k + 1]q[k + 2]qa(k + 2)a(x− k) = ax+2
x−1∑

k=0

1
[k]q![x − k]q!

,

x−1∑

k=0

[k + 1]q[x − k + 1]qa(k + 1)a(x− k + 1) = ax+2
x−1∑

k=0

1
[k]q![x − k]q!

,

it follows that
[x + 2]qa(x + 2) = a · a(x + 1)

and so
a(x + 2) = ax+2/[x + 2]q!.

Thus
a(x) = ax/[x]q!, x = 0, 1, . . . .
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Further, the series function, by (3.2.5), is given by

g(λ) =
∞∑

x=0

a(x)λx =
∞∑

x=0

(aλ)x

[x]q!
= eq(aλ) =

1
Eq(−aλ)

for 0 < q < 1, 0 < aλ < 1/(1− q), and so the random variable Xλ has an Euler
distribution with probability mass function

f(x; λ) = Eq(−aλ)
(aλ)x

[x]q!
, x = 0, 1, . . . ,

with 0 < q < 1, 0 < aλ < 1/(1 − q). Finally, according to Example 3.3.4, the
q-factorial moments of the Euler distribution satisfy relation (3.4.2). 2
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