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© 2017 AFENDRAS G.*, PAPADATOS N.**

A FACTORIAL MOMENT DISTANCE AND
AN APPLICATION TO THE MATCHING PROBLEM

B sT0it 3ameTKe MBI BBOJMM MOHSTHE PACCTOSHUS (DAKTOPUATBHBIX
MOMEHTOB /IS HEOTPHUIIATEIbHBIX EeJOUYUCICHHBIX CIyYalHbIX BEJINYNH
¥ CPABHUBAEM €ro C pacCcTogHueM 1o Bapuanuu. Kpome 3Toro, Mbr n3y-
JaeM CKOPOCTH CXOJIMMOCTH B KJIACCUYECKOIl 3a/1ade O COCTaBJIEHNU I1ap
” B 0OODIIEHHOI 3a/1a¥e O COCTABICHUU TIap.

Kaouesvie caosa u ¢pasoi: paccrosinne (pakKTOPHAIBHBIX MOMEHTOB,
paccTosHUE IO BapUaIlid, 3a/atda O COCTABJIEHUN IIap.

DOI: https://doi.org/10.4213/tvp5125

1. Introduction. Let m, = (7,(1),...,m,(n)) be a random permutation
of T,, = {1,...,n}, in the sense that 7, is uniformly distributed over n!
permutations of 7,,. A number j is a fixed point of 7, if 7,(j) = j. Denote
by Z,, the total number of fixed points of 7,

Zy = Zl{ﬂn(j) =}

where I stands for the indicator function. The study of Z, corresponds
to the famous matching problem, introduced by de Montmort in 1708 [5].
Obviously, Z,, can take the values 0, 1,...,n—2,n, and its exact distribution,
using standard combinatorial arguments, is found to be

P(Z, =j) = - , j=0,1,...,n—2,n.

It is obvious that Z,, converges in law to Z, where Z is the standard Poisson
distribution, Poi(1). Furthermore, the Poisson approximation is very accu-
rate even for small n (evidence of this may be found in [1]). Bounds on
the error of the Poisson approximation in the matching problem, especially
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concerning the total variation distance, are also well known. Recall that the
total variation distance of any two random variables X7 and X5 is defined as

div(X1,X2) = sup [P(Xy € A)—P(X; € A),
Ac#(R)

where Z(R) is the Borel o-algebra of R. An appealing result is given by
Diaconis [6], who proved that di(Z,,Z) < 2"/n!. This bound has been
improved by DasGupta (see [3], [4]):

271
(n+ 1)l

dtV(ZmZ) < (1'1)

It can be seen that d(Z,,Z) ~ 2"/(n + 1)!, where a,, ~ b, means that
lim,,(a,/b,) = 1; for a proof of a more general result see Theorem 3.2.
Therefore, the bound (1.1) is of the correct order.

Consider now the sets of discrete random variables

Dn ={X:P(X €{0,1,...,n}) =1},
Do ={X:P(X €{0,1,...}) =1}

Since the first n moments of Z,, and Z are identical and Z,, € %,,, Z € Do,
one might think that

2TL

inf {dey (X, Z)} ~ dio(Zn, Z) ~ . 1.2
ot {020} ~ ol 20, 2) ~ oy (12
However, (1.2) is not true. In fact,
min {dy (X, Z)} =1— ¢! i LG (1.3)
Xeg, i (D ‘

Indeed, for any X7, X9 € %, with probability mass functions p; and ps, the
total variation distance can be expressed as

oo

diy (X1, X2) = Z p1() = p2()| = Y (01(4) — p2(4)) ™, (1.4)

§=0
where 7 = max{z,0}. Thus, for any X; € 2, (so that p1(j) = 0 for all
j >mn), we get

n n

div (X1, X2) =Y (01(G) = p2(1)) T =D (01(4) — p2(4))
7=0 7=0

—1—Zp2 P(X2 > n),
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with equality if and only if p1(j) > p2(j), 7 = 0,1,...,n. Applying the
preceding inequality to po(j) = P(Z = j) = e !/j! we get the equality
in (1.3), and the minimum is attained by any random variable X € %,, with
P(X =j) >eY/5!, j =0,1,...,n. Furthermore, the well-known Cauchy
remainder in the Taylor expansion reads as

nor() , x
1y - S L0 L gy, ()
=0 j 't 0

Applying (1.5) to f(z) = e® we get the expression
1 - et !
-1 - _ -1 o I R ANy
- = < Zj!)_ T, e
— =

and by the obvious inequalities 1 < eV <1+ (e — 1)y, 0 < y < 1, we have

1 1 1 e—1
< 1—y)"eVdy < ——|( 1 .
n+1 /0( y)ie’ dy n+1<+n+2>

It follows that
o1

(n+1)!

. 1 "1 e~ ! e—1
< )?é%n{dtv(X,Z)} —1-c¢ ]Z_;ﬁ <GID <1+ n+2),
and, therefore, minxcg, {dyy (X, Z)} ~e~1/(n+ 1)

In the present note we introduce and study a class of factorial moment
distances, {dq,a > 0}. These metrics are designed to capture the discrep-
ancy among discrete distributions with finite moment generating function
in a neighborhood of zero and, in addition, they satisfy the desirable prop-
erty minxeg, {do(X,2)} = do(Z,,Z). In Section 3 we study the rate of
convergence in a generalized matching problem, and we present closed form
expansions and sharp inequalities for the factorial moment distance and the
variational distance.

2. The factorial moment distance. We start with the following obser-
vation: For the random variables Z and Z,,

E(Z), =1 and B(Z),=Igeny, k=0,1,..., (2.1)

where E(X); denotes the k-th order descending factorial moment of X (for
eachzeR, (z)p=1and (z)y =z(x—1)---(z—k+1),k=1,2...). For
a proof of a more general result see Lemma 3.1.

The factorial moment distance will be defined in a suitable sub-class of
discrete random variables, as follows. For each t > 0, we define

Z(t) = {X € Do there exists ' > t such that Px(1+1t') < oo}, (2.2)
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where Px(u) = Eu¥ is the probability generating function of X. Also, we
define

Z(00):= [ Z(t)={X € Zoo: Px(1+1) < o0 for any t' > 0}. (2.3)
te[0,00)

Note that if X € 2, for some n, then X € 2°(t) for each t € [0, 00];
therefore, each 2 (t) is nonempty. For 0 < t; < t2 < oo, it is obvious that
Z (to) C Z (t1); that is, the family {27(¢),0 < t < oo} is decreasing in t.

If X € 2°(0), then there exists a ¢ > 0 such that Px (1 +¢') < oo, ie.,
Ee’X < oo, where 6 = In(1 +¢) > 0. Since X is nonnegative, EefX < o0
implies that Ee*X < oo for all u € (—6,60), which means that X has finite
moment generating function at a neighborhood of zero. Therefore, X has
finite moments of any order and its probability mass function is characterized
by its moments; equivalently, X has finite descending factorial moment of any
order and its probability mass function is characterized by these moments.
This enables the following definition.

Definition 2.1. (a) Let X1, Xy € 27(0). For o > 0, we define the factorial
moment distance of order a of X1, Xo by

S
do(X1,X3) = O‘kl : IB(X1), — E(X2)]. (2.4)
k=1

(b) Let X € Z'(0) and {X,,}72; C Z(0). We say that X,, converges in

factorial moment distance of order o to X, in symbols X,, — X, if
do(Xpn, X) =0 as n— oo.

One can easily check that the function dy: 27(0) x 27(0) — [0, 00] is a dis-
tance. Obviously, X,, = X implies that the moments of X,, converge to the
corresponding moments of X. Since every X € 27(0) is characterized by its
moments, it follows that d, convergence (for any o > 0) is stronger than
the convergence in law; the later is equivalent to the convergence in total
variation (see Wang [8]). Of course, the converse is not true even in 2 (c0).
For example, consider the random variable X with P(X = 0) = 1, and the
sequence of random variables {X,,}>° ;, where each X,, has probability mass
function

It is obvious that { X, X, X»,...} C £ (00), and the total variation distance
is

1
diy (X, X) = . —0 as n — oo.
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Moreover, since E(X); = 0 and E(X,,)r = (n — 1)1 I{k < n} for all
k=1,2,..., the d, distance does not converge to zero:

ak—l

k!

NE

do (X, X) = (n—1)1{k < n}

ol

=1

>—(n—1)I{2<n} »00 as n— oc.

| R

Remark 2.1. Let X € 2, ~ {X: X € 2,, X £ Z,}. Tt is obvious that
E(X), =0 for all £ > n, and we can find an index k € {1,...,n} such that
E(X); # 1. From (2.1) and (2.4) we see that d, (X, Z) > do(Z,, Z). Hence,

inf {do(X,2)} =dua(Z,,Z) forall o> 0.

Proposition 2.1. Let 0 < a1 < ag and X1, X9 € Z7(0). Then

(a) dOél (le X2) < da2 (Xla XQ);

(b) we cannot find a constant C = C(ay,az) < 1 such that for all any
random variables X1, X2 € Z(0), do, (X1, X2) < Cdy, (X1, X2).

Proof. (a) is obvious. To see (b), it suffices to consider X; and X with
P(X; =0) =P(Xy =1) = 1. Then do(X1,X2) = 1 for every a > 0. The
proposition is proved.

From (a) of the preceding proposition, X, 3 X implies X,, 2% X for
every a1 < ago. In the sequel we shall show that for any o > 2, the inequality
diy (X, X) < do(Xy, X) holds true, provided {X, X1, Xo,...} € 27(1). To
this end, we shall make use of the following «moment inversion» formula.
Though this result is widely used (see, e.g., [2, p.49|), we provide a short
proof, specifying a condition under which the formula is valid.

Lemma 2.1. If X € Z'(1), then its probability mass function p can be
written as

oo o k._]
p() = ( 1]3! <];>E(X)k, j=0,1,.... (2.5)

k=j

Proof. By the assumption X € 2°(1), we can find a number ¢ > 1 such
that E(1 + ¢)% = > ito(l + t)p(j) < oo. Since X is nonnegative, its
probability generating function admits a Taylor expansion around 0 with
radius of convergence R > 1+t' > 2, i.e., P(u) = > 322, wp(j) € R, Jul < R.
It is well known that %P(u)|u:1 = E(X)g, and since P admits a Taylor
expansion around 1 with radius of convergence R’ > t' > 1, we have

Pu) =3 E(lf)’f(u Sk Ju—1|<R.
k=0
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Using the preceding expansion and the fact that 0 € (1 — R',;1+ R') we get

N I R
= o] = 53 e B
e ()R

completing the proof.

It should be noted that the condition X € 2°(t) for some ¢ € [0,1) is not
sufficient for (2.5). As an example, consider the geometric random variable X
with probability mass function p(j) = 27771, j = 0,1,.... It is clear that
X ¢ Z(1),but X € 3&”( ) foreach t € [0,1). The factorial moments of X are
E(X)r =kl k=0,1,..., and the right-hand side of (2.5), > 2% .(— 1)k J(j),
is a nonconvergent series.

Theorem 2.1. If X1, Xy € %(1), then dtV(Xl,XQ) < da(Xl,Xg) for
each o > 2.

Proof. In view of Proposition 2.1, (a), it is enough to prove the desired
result for « = 2. By (1.4) and (2.5) we get

00
k=
oo

1 (o9}
diy (X1, X2) = 52%
J:

( ) (B - B

=Jj
e

! Z%( )E X1~ B(Xo)i.

J=0 k=j

N | —

Interchanging the order of summation according to Tonelli’s theorem, we
have

) <13y L 2 (5)mea - me

kO]O
2k1

= Z Bk — E(X2)xl.
k=0

The proof is completed by the fact that E(X1)g = E(X2)o = 1.

Theorem 2.1 quantifies the fact that for any o > 2, the d, convergence
(in Z°(1)) implies the convergence in total variation, and provides convenient
bounds for the rate of the total variation convergence. However, we note that
such convenient bounds do not hold for a < 2. In fact, for given a € (0, 2)
and ¢t > 0, we cannot find a finite constant C' = C(a,t) > 0 such that
div (X1, X2) < Cdo (X7, X2) for all X1, Xo € 27(t) (see Remark 3.1).
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3. An application to a generalized matching problem. Consider
the classical matching problem where, now, we record only a proportion of
the matches, due to a random censoring mechanism. The censoring mech-
anism decides independently to every individual match. Specifically, when
a particular match occurs, the mechanism counts this match with proba-
bility A, independently of the other matches, and ignores this match with
probability 1 — A\, where 0 < A < 1. We are now interested on the number
Zn(A) of the counted matches. The case A = 1 corresponds to the classical
matching problem, where all coincidences are recorded, so that Z, = Z,(1).

The probabilistic formulation is as follows: Let 7, = (m,(1),...,m(n))
be a random permutation of {1,...,n}, as in the introduction. Let also
J1(A), ..., Jn(A) be independent and identically distributed Bernoulli(\) ran-
dom variables, independent of 7r,,. The number Z,,(\) of the recorded coin-
cidences can be written as

n
Zn(N) =) Ti(WH{ma(i) = i}
i=1
Let A; = {Jz()\) = 1}, B, = {Wn(l) = i}, E,=A;,NB;,i=1,...,n. Then
Zn(A) presents the number of the events E’s that will occur and, by standard
combinatorial arguments,

P(Z,(\) = j) = P(exactly j among Ey,..., E, occur)
n .
- Z(_l)i_j <Z> Si,nv
i=j J

where

Som =1, Sin= Z P(Ey, N---NEy,), 1=1,...,n.
1<k < <ki<n

Since the A’s are independent of the B’s, we have

(n—1)!

P(Ep, N---NE)=P(Ay, N N A,)P(Bg, N---NBy,) =\

)

n!
so that . '
Sime (MWD Ny
’ i n! 7!
Therefore, the probability mass function of Z,(\) is given by
pr(i): = PN = ) = L3y X
(DN L= n =7)= — —
oy (i —J)!
N I (=) ‘
= — — 7=0,1,...,n. (3.1)
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The generalized matching distribution (3.1) has been introduced by Nier-
mann [7|, who showed that p,.\ is a proper probability mass function for all
A € (0,1]; however, Niermann did not give a probabilistic interpretation to
the probability mass function p,., and derived its properties analytically.

Since .
n—j )
: (=N
Jm 2 e
1=

for any fixed j, we see that p,.\ converges pointwise to the probability mass
function of Z(\), where Z(\) is a Poisson random variable with mean A,
Poi(\). Interestingly enough, the Poisson approximation is extremely ac-
curate; numerical results are shown in Niermann’s work. Also, Niermann
proved that EZ, (\) = Var Z,(A) = A for all n > 2 and A € (0,1]. In fact,
the following general result shows that the first n moments of Z,()\) and
Z(\) are identical, giving some light to the amazing accuracy of the Poisson
approximation.

Lemma 3.1. For any A € (0,1], E(Z,(\)), = M{k <n}, k=1,2,....

Proof. For k > n the relation is obvious, since Z,(\) € %,. For k =

k Y] !
= (j —k)! i
n—k \, (n—k)—r ( )\)z n—k
k - k
=N 5 =N P,
r=0 =0 r=0
and, since p,_. is a probability mass function supported on {0, 1,...,n—k},

we get the desired result. For k = n, E(Zn()\))n = n!pp:a(n) = A", complet-
ing the proof.
Corollary 3.1. For any X\ € (0,1] and o > 0,

Bf {da(X, ZN) } = da(Za(), Z(V))-

Thus, for A € (0, 1], Z,(\) minimizes the factorial moment distance from
Z(A) over all random variables supported in a subset of {0,1,...,n}. Us-
ing (2.5) it is easily verified that Z,()\) is unique. Moreover, it is worth
pointing out that for A > 1, we cannot find a random variable X € &, such
that E(X); = AI{k < n} for all k. Indeed, since %, C 2 (c00) C 2°(1),

assuming X € %, and E(X), = A I{k < n}, we get from (2.5) that

AT = X)

<P(X=n-1)=> "2
OSPE=n—1)=—""7

which implies that A\ < 1. Therefore, finding ianEQn{da (X,Z()\))} for
A > 1 seems to be a rather difficult task.
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We now evaluate some exact and asymptotic results for the factorial mo-
ment distance and the total variation distance between Z,,(\) and Z(\) when
A€ (0,1].

Theorem 3.1. Fiz a>0 and A€ (0,1] and let do(n) := do(Zn(N), Z(N)).
Then,

n)\n+1 1
dofm) = 22— [ = greay, (3.2)
n: 0
Moreover, the following double inequality holds:
a\ a’)\? (n+1)! a\ a?\2ec
1 dy <1 .
R e By U KL e Sl e prag
(3.3)
Hence, as n — o0,
n)\n+1
do(n) ~ (O:le)' and, more precisely,
' (3.4)

an )\l al 1
da(n) = (n+1)! (1 ) +O<E>)'

Proof. From the definition of d, and in view of (1.5) and Lemma 3.1,

I N 0 L BV AU (a9 ) L N B -
da(n)—a Z 5 —a<e —Z 1 =t/ (X —z)"e” d,

k=n+1 ’ k=0
and the substitution z = aly leads to (3.2). Now (3.3) follows from the
inequalities

1 1
14 aly + 5042)\2312 < e <14 aly + 5(3“@2)\2 2 0<y<l,

while (3.4) is obvious from (3.3). Theorem 3.1 is proved.
Theorems 2.1 and 3.1 give the following statement.
Corollary 3.2. An upper bound for diy(Z,,Z) is given by

2" 2 4e? 2"
dev(Zn, Z) < (n+1)! <1+ 2 (n+2)(n+3)> O (3.5)

The bound in (3.2) is of the correct order, and the same is true for the
better result (1.1), given by DasGupta [3], [4]. In contrast, the bound
div(Zp, Z) < 2"/nl, given by Diaconis [6], is not asymptotically optimal,
because 2"/(n 4+ 1)! = o(2"/n!). Thus, it is of some interest to point out
that the factorial distance do provides an optimal rate upper bound for the
variational distance in the matching problem. The situation is similar for
the generalized matching distribution, as the following result shows.
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Theorem 3.2. For any A € (0,1], let dy(n) := diy (Zn(X), Z(X)) be the

variational distance between Z,(\) and Z(X). Then,
)\n-i-l 1 N
div(n) = / [y" + (2 —y)"]e” Y dy. (3.6)
2n! 0

Moreover, the following inequalities hold:

on \ntl 2\
divy —(1-
w0 > (s (1 W))
+

on\ntl - 2\ - 4)\2 1_n+3
n+ 2 2”Jrl (n+2)(n+3) nt2 ) )¢

du(n) < D

Hence, as n — o0,
2n>\n+1
div(n) ~ (Tl)' and, more precisely,
n !
(3.8)

on \n+l 2\ 1
div(n) = (n+1)! (1 T2 +O<E>)‘

Proof. Clearly, (3.8) is an immediate consequence of inequalities (3.7).
Moreover, the inequalities (3.7) are obtained from (3.6) and the fact that

1
1—)\y<e*)‘y<1—)\y+§>\2 2 0<y<l

It remains to show (3.6). From (1.4) with p; = p,.\ and ps the probability

mass function of Poi()), we get
N +
dtv - Z |: :|
j= 0
iT(=1)" ) +
= Z A [ / AN=—x)"e™® d:v} ,
(n— 0

where the integral expansion is deduced by an application of (
function f(\) = e~*. Thus,

awim =3 2 [GF Lo aperar]

k=0

_ 1 OA e—x< S (Z) (A — x)k/\”_k) dz.

n!
k even

1.5) to the

Since
2 <Z> (A= at = 5o+ @A =2,

k even
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we obtain
1

~ 2n!

A
diy(n) / [z" 4+ (2 — z)"]e” " dx,
0

and a final change of variables x = Ay yields (3.6). Theorem 3.2 is proved.

Remark 3.1. Although the factorial moment distance d, dominates the
variational distance when a > 2, the situation for a € (0,2) is completely
different. To see this, assume that for some a € (0,2) and ¢ > 0 we can find
a finite constant C' = C'(«,t) > 0 such that

dtV(Xl,XQ) < Cda(Xl,Xg) for all Xi,Xo € %(t) (39)

Obviously, Z and Z,,, n = 1,2,..., liein 2 (c0) C Z'(t). From Theorem 3.2

we know that

1)!
wdtv(Zn,Z) = 1.

lim
n—00 n

On the other hand, from (3.3) with A =1,

o™ « a’e®
Ado(Zp, Z) < —— 1+ + ,
( ) (n+1)!< n+2 (n+2)(n+3)>

and, since /2 < 1, this inequality contradicts (3.9):

D 7 2)

1= lim
n—00 s

a\" « a2e”
<C 1l — 1 =0.
Cnl—>n<;lo(<2> ( +n—|—2+(n+2)(n+3)>> 0
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