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A FACTORIAL MOMENT DISTANCE AND

AN APPLICATION TO THE MATCHING PROBLEM

В этой заметке мы вводим понятие расстояния факториальных
моментов для неотрицательных целочисленных случайных величин
и сравниваем его с расстоянием по вариации. Кроме этого, мы изу-
чаем скорость сходимости в классической задаче о составлении пар
и в обобщенной задаче о составлении пар.

Ключевые слова и фразы: расстояние факториальных моментов,
расстояние по вариации, задача о составлении пар.
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1. Introduction. Let πn = (πn(1), . . . , πn(n)) be a random permutation
of Tn = {1, . . . , n}, in the sense that πn is uniformly distributed over n!
permutations of Tn. A number j is a fixed point of πn if πn(j) = j. Denote
by Zn the total number of fixed points of πn,

Zn =

n∑

j=1

I{πn(j) = j},

where I stands for the indicator function. The study of Zn corresponds
to the famous matching problem, introduced by de Montmort in 1708 [5].
Obviously, Zn can take the values 0, 1, . . . , n−2, n, and its exact distribution,
using standard combinatorial arguments, is found to be

P(Zn = j) =
1

j!

n−j∑

k=0

(−1)k

k!
, j = 0, 1, . . . , n− 2, n.

It is obvious that Zn converges in law to Z, where Z is the standard Poisson
distribution, Poi(1). Furthermore, the Poisson approximation is very accu-
rate even for small n (evidence of this may be found in [1]). Bounds on
the error of the Poisson approximation in the matching problem, especially
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concerning the total variation distance, are also well known. Recall that the
total variation distance of any two random variables X1 and X2 is defined as

dtv(X1, X2) = sup
A∈B(R)

|P(X1 ∈ A)−P(X2 ∈ A)|,

where B(R) is the Borel σ-algebra of R. An appealing result is given by
Diaconis [6], who proved that dtv(Zn, Z) 6 2n/n! . This bound has been
improved by DasGupta (see [3], [4]):

dtv(Zn, Z) 6
2n

(n+ 1)!
. (1.1)

It can be seen that dtv(Zn, Z) ∼ 2n/(n + 1)!, where an ∼ bn means that
limn(an/bn) = 1; for a proof of a more general result see Theorem 3.2.
Therefore, the bound (1.1) is of the correct order.

Consider now the sets of discrete random variables

Dn := {X : P(X ∈ {0, 1, . . . , n}) = 1},
D∞ := {X : P(X ∈ {0, 1, . . . }) = 1}.

Since the first n moments of Zn and Z are identical and Zn ∈ Dn, Z ∈ D∞,
one might think that

inf
X∈Dn

{dtv(X,Z)} ∼ dtv(Zn, Z) ∼
2n

(n+ 1)!
. (1.2)

However, (1.2) is not true. In fact,

min
X∈Dn

{dtv(X,Z)} = 1− e−1
n∑

j=0

1

j!
∼ e−1

(n+ 1)!
. (1.3)

Indeed, for any X1, X2 ∈ D∞ with probability mass functions p1 and p2, the
total variation distance can be expressed as

dtv(X1, X2) =
1

2

∞∑

j=0

|p1(j)− p2(j)| =
∞∑

j=0

(p1(j)− p2(j))
+, (1.4)

where x+ = max{x, 0}. Thus, for any X1 ∈ Dn (so that p1(j) = 0 for all
j > n), we get

dtv(X1, X2) =

n∑

j=0

(p1(j)− p2(j))
+
>

n∑

j=0

(p1(j)− p2(j))

= 1−
n∑

j=0

p2(j) = P(X2 > n),
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with equality if and only if p1(j) > p2(j), j = 0, 1, . . . , n. Applying the
preceding inequality to p2(j) = P(Z = j) = e−1/j! we get the equality
in (1.3), and the minimum is attained by any random variable X ∈ Dn with
P(X = j) > e−1/j!, j = 0, 1, . . . , n. Furthermore, the well-known Cauchy
remainder in the Taylor expansion reads as

f(x)−
n∑

j=0

f (j)(0)

j!
xj =

1

n!

∫ x

0
(x− y)nf (n+1)(y) dy. (1.5)

Applying (1.5) to f(x) = ex we get the expression

1− e−1
n∑

j=0

1

j!
= e−1

(
e−

n∑

j=0

1

j!

)
=
e−1

n!

∫ 1

0
(1− y)ney dy,

and by the obvious inequalities 1 < ey < 1 + (e− 1)y, 0 < y < 1, we have

1

n+ 1
<

∫ 1

0
(1− y)ney dy <

1

n+ 1

(
1 +

e− 1

n+ 2

)
.

It follows that

e−1

(n+ 1)!
< min

X∈Dn

{dtv(X,Z)} = 1− e−1
n∑

j=0

1

j!
<

e−1

(n+ 1)!

(
1 +

e− 1

n+ 2

)
,

and, therefore, minX∈Dn{dtv(X,Z)} ∼ e−1/(n+ 1)!.
In the present note we introduce and study a class of factorial moment

distances, {dα, α > 0}. These metrics are designed to capture the discrep-
ancy among discrete distributions with finite moment generating function
in a neighborhood of zero and, in addition, they satisfy the desirable prop-
erty minX∈Dn{dα(X,Z)} = dα(Zn, Z). In Section 3 we study the rate of
convergence in a generalized matching problem, and we present closed form
expansions and sharp inequalities for the factorial moment distance and the
variational distance.

2. The factorial moment distance. We start with the following obser-
vation: For the random variables Z and Zn,

E(Z)k = 1 and E(Zn)k = I{k6n}, k = 0, 1, . . . , (2.1)

where E(X)k denotes the k-th order descending factorial moment of X (for
each x ∈ R, (x)0 = 1 and (x)k = x(x − 1) · · · (x − k + 1), k = 1, 2 . . . ). For
a proof of a more general result see Lemma 3.1.

The factorial moment distance will be defined in a suitable sub-class of
discrete random variables, as follows. For each t > 0, we define

X (t) := {X ∈ D∞ : there exists t′ > t such that PX(1 + t′) <∞}, (2.2)
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where PX(u) = EuX is the probability generating function of X. Also, we
define

X (∞) :=
⋂

t∈[0,∞)

X (t) = {X ∈ D∞ : PX(1 + t′) <∞ for any t′ > 0}. (2.3)

Note that if X ∈ Dn for some n, then X ∈ X (t) for each t ∈ [0,∞];
therefore, each X (t) is nonempty. For 0 6 t1 < t2 6 ∞, it is obvious that
X (t2) ⊂ X (t1); that is, the family {X (t), 0 6 t 6 ∞} is decreasing in t.

If X ∈ X (0), then there exists a t′ > 0 such that PX(1 + t′) < ∞, i.e.,
EeθX < ∞, where θ = ln(1 + t′) > 0. Since X is nonnegative, EeθX < ∞
implies that EeuX < ∞ for all u ∈ (−θ, θ), which means that X has finite
moment generating function at a neighborhood of zero. Therefore, X has
finite moments of any order and its probability mass function is characterized
by its moments; equivalently, X has finite descending factorial moment of any
order and its probability mass function is characterized by these moments.
This enables the following definition.

Definition 2.1. (a) Let X1, X2 ∈ X (0). For α > 0, we define the factorial

moment distance of order α of X1, X2 by

dα(X1, X2) :=

∞∑

k=1

αk−1

k!
|E(X1)k −E(X2)k|. (2.4)

(b) Let X ∈ X (0) and {Xn}∞n=1 ⊂ X (0). We say that Xn converges in

factorial moment distance of order α to X, in symbols Xn
α→ X, if

dα(Xn, X) → 0 as n→ ∞.

One can easily check that the function dα : X (0)× X (0) → [0,∞] is a dis-

tance. Obviously, Xn
α→ X implies that the moments of Xn converge to the

corresponding moments of X. Since every X ∈ X (0) is characterized by its
moments, it follows that dα convergence (for any α > 0) is stronger than
the convergence in law; the later is equivalent to the convergence in total
variation (see Wang [8]). Of course, the converse is not true even in X (∞).
For example, consider the random variable X with P(X = 0) = 1, and the
sequence of random variables {Xn}∞n=1, where each Xn has probability mass
function

pn(j) =





1− 1

n
, j = 0,

1

n
, j = n.

It is obvious that {X,X1, X2, . . . } ⊂ X (∞), and the total variation distance
is

dtv(Xn, X) =
1

n
→ 0 as n→ ∞.
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Moreover, since E(X)k = 0 and E(Xn)k = (n − 1)k−1I{k 6 n} for all
k = 1, 2, . . . , the dα distance does not converge to zero:

dα(Xn, X) =

∞∑

k=1

αk−1

k!
(n− 1)k−1I{k 6 n}

>
α

2
(n− 1)I{2 6 n} → ∞ as n→ ∞.

Remark 2.1. Let X ∈ Dn r {X : X ∈ Dn, X
d
= Zn}. It is obvious that

E(X)k = 0 for all k > n, and we can find an index k ∈ {1, . . . , n} such that
E(X)k 6= 1. From (2.1) and (2.4) we see that dα(X,Z) > dα(Zn, Z). Hence,

inf
X∈Dn

{dα(X,Z)} = dα(Zn, Z) for all α > 0.

Proposition 2.1. Let 0 < α1 < α2 and X1, X2 ∈ X (0). Then

(a) dα1(X1, X2) 6 dα2(X1, X2);
(b) we cannot find a constant C = C(α1, α2) < 1 such that for all any

random variables X1, X2 ∈ X (0), dα1(X1, X2) 6 Cdα2(X1, X2).
Proof. (a) is obvious. To see (b), it suffices to consider X1 and X2 with

P(X1 = 0) = P(X2 = 1) = 1. Then dα(X1, X2) = 1 for every α > 0. The
proposition is proved.

From (a) of the preceding proposition, Xn
α2→ X implies Xn

α1→ X for
every α1 < α2. In the sequel we shall show that for any α > 2, the inequality
dtv(Xn, X) 6 dα(Xn, X) holds true, provided {X,X1, X2, . . . } ⊆ X (1). To
this end, we shall make use of the following «moment inversion» formula.
Though this result is widely used (see, e.g., [2, p. 49]), we provide a short
proof, specifying a condition under which the formula is valid.

Lemma 2.1. If X ∈ X (1), then its probability mass function p can be

written as

p(j) =

∞∑

k=j

(−1)k−j

k!

(
k

j

)
E(X)k, j = 0, 1, . . . . (2.5)

Proof. By the assumption X ∈ X (1), we can find a number t′ > 1 such
that E(1 + t′)X =

∑∞
j=0(1 + t′)jp(j) < ∞. Since X is nonnegative, its

probability generating function admits a Taylor expansion around 0 with
radius of convergence R > 1+ t′ > 2, i.e., P (u) =

∑∞
j=0 u

jp(j) ∈ R, |u| < R.

It is well known that dk

dukP (u)
∣∣
u=1

= E(X)k, and since P admits a Taylor
expansion around 1 with radius of convergence R′ > t′ > 1, we have

P (u) =

∞∑

k=0

E(X)k
k!

(u− 1)k, |u− 1| < R′.
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Using the preceding expansion and the fact that 0 ∈ (1−R′, 1 +R′) we get

p(j) =
1

j!
· d

j

duj
P (u)

∣∣∣∣
u=0

=
1

j!

∞∑

k=j

(u− 1)k−j

(k − j)!
E(X)k

∣∣∣∣
u=0

=

∞∑

k=j

(−1)k−j

j! (k − j)!
E(X)k,

completing the proof.

It should be noted that the condition X ∈ X (t) for some t ∈ [0, 1) is not
sufficient for (2.5). As an example, consider the geometric random variable X
with probability mass function p(j) = 2−j−1, j = 0, 1, . . . . It is clear that
X /∈ X (1), butX ∈ X (t) for each t ∈ [0, 1). The factorial moments ofX are
E(X)k = k!, k = 0, 1, . . . , and the right-hand side of (2.5),

∑∞
k=j(−1)k−j

(
k
j

)
,

is a nonconvergent series.
Theorem 2.1. If X1, X2 ∈ X (1), then dtv(X1, X2) 6 dα(X1, X2) for

each α > 2.
Proof. In view of Proposition 2.1, (a), it is enough to prove the desired

result for α = 2. By (1.4) and (2.5) we get

dtv(X1, X2) =
1

2

∞∑

j=0

∣∣∣∣
∞∑

k=j

(−1)k−j

k!

(
k

j

)
(E(X1)k −E(X2)k)

∣∣∣∣

6
1

2

∞∑

j=0

∞∑

k=j

1

k!

(
k

j

)
|E(X1)k −E(X2)k|.

Interchanging the order of summation according to Tonelli’s theorem, we
have

dtv(X1, X2) 6
1

2

∞∑

k=0

k∑

j=0

1

k!

(
k

j

)
|E(X1)k −E(X2)k|

=
∞∑

k=0

2k−1

k!
|E(X1)k −E(X2)k|.

The proof is completed by the fact that E(X1)0 = E(X2)0 = 1.

Theorem 2.1 quantifies the fact that for any α > 2, the dα convergence
(in X (1)) implies the convergence in total variation, and provides convenient
bounds for the rate of the total variation convergence. However, we note that
such convenient bounds do not hold for α < 2. In fact, for given α ∈ (0, 2)
and t > 0, we cannot find a finite constant C = C(α, t) > 0 such that
dtv(X1, X2) 6 Cdα(X1, X2) for all X1, X2 ∈ X (t) (see Remark 3.1).
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3. An application to a generalized matching problem. Consider
the classical matching problem where, now, we record only a proportion of
the matches, due to a random censoring mechanism. The censoring mech-
anism decides independently to every individual match. Specifically, when
a particular match occurs, the mechanism counts this match with proba-
bility λ, independently of the other matches, and ignores this match with
probability 1 − λ, where 0 < λ 6 1. We are now interested on the number
Zn(λ) of the counted matches. The case λ = 1 corresponds to the classical
matching problem, where all coincidences are recorded, so that Zn = Zn(1).

The probabilistic formulation is as follows: Let πn = (πn(1), . . . , πn(n))
be a random permutation of {1, . . . , n}, as in the introduction. Let also
J1(λ), . . . , Jn(λ) be independent and identically distributed Bernoulli(λ) ran-
dom variables, independent of πn. The number Zn(λ) of the recorded coin-
cidences can be written as

Zn(λ) =

n∑

i=1

Ji(λ)I{πn(i) = i}.

Let Ai = {Ji(λ) = 1}, Bi = {πn(i) = i}, Ei = Ai ∩ Bi, i = 1, . . . , n. Then
Zn(λ) presents the number of the events E’s that will occur and, by standard
combinatorial arguments,

P(Zn(λ) = j) = P(exactly j among E1, . . . , En occur)

=

n∑

i=j

(−1)i−j

(
i

j

)
Si,n,

where

S0,n = 1, Si,n =
∑

16k1<···<ki6n

P(Ek1 ∩ · · · ∩Eki), i = 1, . . . , n.

Since the A’s are independent of the B’s, we have

P(Ek1 ∩ · · · ∩Eki) = P(Ak1 ∩ · · · ∩Aki)P(Bk1 ∩ · · · ∩Bki) = λi
(n− i)!

n!
,

so that

Si,n =

(
n

i

)
λi

(n− i)!

n!
=
λi

i!
, i = 0, 1, . . . , n.

Therefore, the probability mass function of Zn(λ) is given by

pn;λ(j) : = P(Zn(λ) = j) =
1

j!

n∑

i=j

(−1)i−j λi

(i− j)!

=
λj

j!

n−j∑

i=0

(−λ)i
i!

, j = 0, 1, . . . , n. (3.1)
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The generalized matching distribution (3.1) has been introduced by Nier-
mann [7], who showed that pn;λ is a proper probability mass function for all
λ ∈ (0, 1]; however, Niermann did not give a probabilistic interpretation to
the probability mass function pn;λ, and derived its properties analytically.

Since

lim
n→∞

n−j∑

i=0

(−λ)i
i!

= e−λ

for any fixed j, we see that pn;λ converges pointwise to the probability mass
function of Z(λ), where Z(λ) is a Poisson random variable with mean λ,
Poi(λ). Interestingly enough, the Poisson approximation is extremely ac-
curate; numerical results are shown in Niermann’s work. Also, Niermann
proved that EZn(λ) = VarZn(λ) = λ for all n > 2 and λ ∈ (0, 1]. In fact,
the following general result shows that the first n moments of Zn(λ) and
Z(λ) are identical, giving some light to the amazing accuracy of the Poisson
approximation.

Lemma 3.1. For any λ ∈ (0, 1], E
(
Zn(λ)

)
k
= λkI{k 6 n}, k = 1, 2, . . . .

Proof. For k > n the relation is obvious, since Zn(λ) ∈ Dn. For k =
1, . . . , n− 1,

E
(
Zn(λ)

)
k
=

n∑

j=k

λj

(j − k)!

n−j∑

i=0

(−λ)i
i!

= λk
n−k∑

r=0

λr

r!

(n−k)−r∑

i=0

(−λ)i
i!

= λk
n−k∑

r=0

pn−k;λ(r),

and, since pn−k;λ is a probability mass function supported on {0, 1, . . . , n−k},
we get the desired result. For k = n, E

(
Zn(λ)

)
n
= n! pn;λ(n) = λn, complet-

ing the proof.
Corollary 3.1. For any λ ∈ (0, 1] and α > 0,

inf
X∈Dn

{
dα
(
X,Z(λ)

)}
= dα

(
Zn(λ), Z(λ)

)
.

Thus, for λ ∈ (0, 1], Zn(λ) minimizes the factorial moment distance from
Z(λ) over all random variables supported in a subset of {0, 1, . . . , n}. Us-
ing (2.5) it is easily verified that Zn(λ) is unique. Moreover, it is worth
pointing out that for λ > 1, we cannot find a random variable X ∈ Dn such
that E(X)k = λkI{k 6 n} for all k. Indeed, since Dn ⊂ X (∞) ⊂ X (1),
assuming X ∈ Dn and E(X)k = λkI{k 6 n}, we get from (2.5) that

0 6 P(X = n− 1) =
λn−1(1− λ)

(n− 1)!
,

which implies that λ 6 1. Therefore, finding infX∈Dn

{
dα
(
X,Z(λ)

)}
for

λ > 1 seems to be a rather difficult task.
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We now evaluate some exact and asymptotic results for the factorial mo-
ment distance and the total variation distance between Zn(λ) and Z(λ) when
λ ∈ (0, 1].

Theorem 3.1. Fix α> 0 and λ∈ (0, 1] and let dα(n) := dα
(
Zn(λ), Z(λ)

)
.

Then,

dα(n) =
αnλn+1

n!

∫ 1

0
(1− y)neαλy dy. (3.2)

Moreover, the following double inequality holds:

1 +
αλ

n+ 2
+

a2λ2

(n+ 2)(n+ 3)
<

(n+ 1)!

αnλn+1
dα(n) < 1 +

αλ

n+ 2
+

a2λ2eαλ

(n+ 2)(n+ 3)
.

(3.3)
Hence, as n→ ∞,

dα(n) ∼
αnλn+1

(n+ 1)!
and, more precisely,

dα(n) =
αnλn+1

(n+ 1)!

(
1 +

αλ

n+ 2
+ o

(
1

n

))
.

(3.4)

Proof. From the definition of dα and in view of (1.5) and Lemma 3.1,

dα(n) =
1

α

∞∑

k=n+1

(αλ)k

k!
=

1

α

(
eαλ −

n∑

k=0

(αλ)k

k!

)
=

1

αn!

∫ αλ

0
(αλ− x)nex dx,

and the substitution x = αλy leads to (3.2). Now (3.3) follows from the
inequalities

1 + αλy +
1

2
α2λ2y2 < eαλy < 1 + αλy +

1

2
eαλα2λ2y2, 0 < y < 1,

while (3.4) is obvious from (3.3). Theorem 3.1 is proved.

Theorems 2.1 and 3.1 give the following statement.
Corollary 3.2. An upper bound for dtv(Zn, Z) is given by

dtv(Zn, Z) <
2n

(n+ 1)!

(
1 +

2

n+ 2
+

4e2

(n+ 2)(n+ 3)

)
∼ 2n

(n+ 1)!
. (3.5)

The bound in (3.2) is of the correct order, and the same is true for the
better result (1.1), given by DasGupta [3], [4]. In contrast, the bound
dtv(Zn, Z) 6 2n/n!, given by Diaconis [6], is not asymptotically optimal,
because 2n/(n + 1)! = o(2n/n!). Thus, it is of some interest to point out
that the factorial distance d2 provides an optimal rate upper bound for the
variational distance in the matching problem. The situation is similar for
the generalized matching distribution, as the following result shows.
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Theorem 3.2. For any λ ∈ (0, 1], let dtv(n) := dtv
(
Zn(λ), Z(λ)

)
be the

variational distance between Zn(λ) and Z(λ). Then,

dtv(n) =
λn+1

2n!

∫ 1

0
[yn + (2− y)n]e−λy dy. (3.6)

Moreover, the following inequalities hold:

dtv(n) >
2nλn+1

(n+ 1)!

(
1− 2λ

n+ 2

(
1− 1

2n+1

))
,

dtv(n) <
2nλn+1

(n+ 1)!

(
1− 2λ

n+ 2

(
1− 1

2n+1

)
+

4λ2

(n+ 2)(n+ 3)

(
1− n+ 3

2n+2

))
.

(3.7)
Hence, as n→ ∞,

dtv(n) ∼
2nλn+1

(n+ 1)!
and, more precisely,

dtv(n) =
2nλn+1

(n+ 1)!

(
1− 2λ

n+ 2
+ o

(
1

n

))
.

(3.8)

Proof. Clearly, (3.8) is an immediate consequence of inequalities (3.7).
Moreover, the inequalities (3.7) are obtained from (3.6) and the fact that

1− λy < e−λy < 1− λy +
1

2
λ2y2, 0 < y < 1.

It remains to show (3.6). From (1.4) with p1 = pn;λ and p2 the probability
mass function of Poi(λ), we get

dtv(n) =

n∑

j=0

λj

j!

[n−j∑

i=0

(−λ)i
i!

− e−λ

]+

=

n∑

j=0

λj

j!

[
(−1)n−j

(n− j)!

∫ λ

0
(λ− x)n−je−x dx

]+
,

where the integral expansion is deduced by an application of (1.5) to the
function f(λ) = e−λ. Thus,

dtv(n) =

n∑

k=0

λn−k

(n− k)!

[
(−1)k

k!

∫ λ

0
(λ− x)ke−x dx

]+

=
1

n!

∫ λ

0
e−x

(∑

k even

(
n

k

)
(λ− x)kλn−k

)
dx.

Since ∑

k even

(
n

k

)
(λ− x)kλn−k =

1

2

[
xn + (2λ− x)n

]
,
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we obtain

dtv(n) =
1

2n!

∫ λ

0
[xn + (2λ− x)n]e−x dx,

and a final change of variables x = λy yields (3.6). Theorem 3.2 is proved.
Remark 3.1. Although the factorial moment distance dα dominates the

variational distance when α > 2, the situation for α ∈ (0, 2) is completely
different. To see this, assume that for some α ∈ (0, 2) and t > 0 we can find
a finite constant C = C(α, t) > 0 such that

dtv(X1, X2) 6 Cdα(X1, X2) for all X1, X2 ∈ X (t). (3.9)

Obviously, Z and Zn, n = 1, 2, . . . , lie in X (∞) ⊂ X (t). From Theorem 3.2
we know that

lim
n→∞

(n+ 1)!

2n
dtv(Zn, Z) = 1.

On the other hand, from (3.3) with λ = 1,

dα(Zn, Z) <
αn

(n+ 1)!

(
1 +

α

n+ 2
+

α2eα

(n+ 2)(n+ 3)

)
,

and, since α/2 < 1, this inequality contradicts (3.9):

1 = lim
n→∞

(n+ 1)!

2n
dtv(Zn, Z)

6 C lim
n→∞

((
α

2

)n(
1 +

α

n+ 2
+

α2eα

(n+ 2)(n+ 3)

))
= 0.
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