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AN APPLICATION OF A DENSITY TRANSFORM AND THE LOCAL
LIMIT THEOREM∗

T. CACOULLOS† , N. PAPADATOS‡ , AND V. PAPATHANASIOU‡§

Abstract. Consider an absolutely continuous random variable X with finite variance σ2. It
is known that there exists another random variable X∗ (which can be viewed as a transformation
of X) with a unimodal density, satisfying the extended Stein-type covariance identity Cov[X, g(X)] =
σ2E[g′(X∗)] for any absolutely continuous function g with derivative g′, provided that E|g′(X∗)| <
∞. Using this transformation, upper bounds for the total variation distance between two absolutely
continuous random variables X and Y are obtained. Finally, as an application, a proof of the local
limit theorem for sums of independent identically distributed random variables is derived in its full
generality.
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1. Introduction. For an absolutely continuous (a.c.) random variable (r.v.) X with
density f , mean µ, variance σ2, and support S(X) (throughout this paper we will always
mean the support of an a.c. r.v. X with density f to be the set S(X) = {x : f(x) > 0}),
consider the r.v. X∗ with density f∗ given by the relation

f∗(x) =
1

σ2

∫ x

−∞
(µ− t)f(t) dt =

1

σ2

∫ ∞

x

(t− µ) f(t) dt.(1.1)

The following known properties of X∗ (see [11] or [17]) will be used in what follows.
Lemma 1.1. (i) The density f∗ is unimodal and absolutely continuous with mode µ and

maximal value

f∗(µ) =
E|X − µ|

2σ2
.

(ii) For any absolutely continuous function g such that E|g′(X∗)| <∞,

Cov
[
X, g(X)

]
= σ2E

[
g′(X∗)

]
.(1.2)

Moreover, X∗ is characterized by this property.
(iii) S(X∗) = (ess inf S(X), ess supS(X)).

(iv) For any real numbers a �= 0 and b, (aX + b)∗
d
= aX∗ + b (throughout this paper,

X
d
= Y will always means that the r.v.’s X and Y have the same distribution).
(v) If the independent a.c. r.v.’s X1, X2 have means µ1, µ2 and variances σ

2
1 , σ

2
2 , then

for all a1 and a2 with a1a2 �= 0,

(a1X1 + a2X2)
∗ d
= B(a1X

∗
1 + a2X2) + (1−B)(a1X1 + a2X

∗
2 ),(1.3)

where X1, X2, X
∗
1 , X

∗
2 , and B are mutually independent with

P{B = 1} = a2
1σ

2
1

a2
1σ

2
1 + a2

2σ
2
2

= 1− P{B = 0}.
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Identity (1.2) generalizes the well-known Stein identity for the standard normal r.v. Z,
namely, E[Zg(Z)] = E[g′(Z)], for any a.c. function g with derivative g′ satisfying E|g′(Z)| <
∞ (see [22], [21]). The classical Stein identity has had many interesting applications to several
areas of probability and statistics (see, e.g., [13] and [14]). Other important applications
include the well-known Stein method for the approximation of the distribution of a sum of
dependent r.v.’s [21]. Another point of view is given by Chen [8], where the CLT is obtained
by using Poincaré-type inequalities (closely connected with this identity), and by the results
of [4].

Some applications of (1.2), concerning variance bounds and characterizations of distri-
butions, are discussed in [17]. Moreover, Goldstein and Reinert [11] extended Stein’s method
and presented very interesting applications of (1.2) in the rate of convergence in the CLT.
In particular, they obtained an O(n−1) bound for smooth functions (see [11, Corollary 3.1]).
Furthermore, they used the so-called zero biased transformation of X (i.e., the r.v. X∗) to
obtain estimates for the rate of convergence for several dependent samples.

The purpose of this paper is to obtain general upper bounds for the total variation
distance between two arbitrary a.c. r.v.’s X and Y with finite second moment, provided
that S(X∗) ⊂ S(Y ) and that S(Y ) is a (finite or infinite) interval (in fact, this does not
impose any further assumption if S(Y ) = (−∞,∞)). The results of [16] are extended in
two directions: (i) we do not require an interval support on X, and (ii) without any further
assumptions, closed forms for the constants appearing in the bounds are derived (in terms
of the “limiting” r.v. Y ).

In the most interesting special case where Y is normal, the bound becomes extremely
simple and useful. It is used not only to characterize the normal distribution as a unique
fixed point of the zero bias transformation (see [11, Lemma 2.1]), but also to obtain the
corresponding stability result (Theorem 2.2). As a final application, an elementary and
relatively simple proof of the local limit theorem, due to Prokhorov [20], for sums of i.i.d.
r.v.’s, is given in section 3.

2. Total variation distance. This section deals with the derivation of upper bounds
for the total variation distance

dTV (X,Y ) = sup
A

{∣∣P{X ∈ A} − P{Y ∈ A}
∣∣, A Borel

}
=

1

2

∫ ∞

−∞

∣∣f(x)− h(x)
∣∣ dx

between two r.v.’s X, Y with densities f , h, means µ, m, and variances σ2, s2, respectively.
We may view X as an arbitrary r.v. and Y as the “limiting” r.v. The results apply to the
case where S(Y ) is an open (finite or infinite) interval and S(X∗) ⊂ S(Y ), i.e., when the
measure produced by X is a.c. with respect to that produced by Y (this does not impose
any restriction if S(Y ) = (−∞,∞)).

The results generalize (see [16]) for an arbitrary X (not necessarily having an interval
support). Furthermore, without using any further assumptions, we derive closed forms for
the constants appearing in the bounds in terms of the “limiting” r.v. Y .

Assume that S(Y ) = (a, b), where −∞ � a < b � ∞. Fix an arbitrary Borel set A and
consider the a.c. function (c.f. [3], [6], [16])

ψA(x) =
1

h∗(x)

∫ x

a

(
I(t ∈ A)− P{Y ∈ A}

)
h(t) dt, a < x < b,(2.1)

where h∗ is the density of Y ∗. The following lemma is required for the main result.
Lemma 2.1. The functions ψA(x) and h

∗(x)ψ′
A(x)/h(x) (the second one defined for

almost all x ∈ (a, b)) are absolutely bounded by some finite constants c and c′, respectively,
which do not depend on x ∈ (a, b) and A. A possible choice is c′ = 2 and c = s2cY , where

cY =
2max{P{Y � m}, P{Y � m}}

E|Y −m| <
2

E|Y −m| .
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Proof. Let a < x < x+ y � m. It follows that∫ x

a

h(t) dt

∫ x+y

x

(m− t)h(t) dt � (m− x)

∫ x

a

h(t) dt

∫ x+y

x

h(t) dt

�
∫ x

a

(m− t)h(t) dt

∫ x+y

x

h(t) dt.

By adding to both sides the quantity
∫ x

a
h(t) dt

∫ x

a
(m− t)h(t) dt we conclude that

s2h∗(x)H(x+ y) � s2h∗(x+ y)H(x),

where H is the distribution function of Y . Since x > a, h∗(x) > 0, and H(x) > 0, it follows
that the function H(x)/h∗(x) is nondecreasing for x ∈ (a,m]. Similarly, (1−H(x))/h∗(x) is
nonincreasing for x ∈ [m, b). Since∣∣ψA(x)

∣∣ � 1

h∗(x)
min

{
H(x), 1−H(x)

}
for all x ∈ (a, b), it follows that

∣∣ψA(x)
∣∣ � 1

h∗(m)
max

{
H(m), 1−H(m)

}
=

2s2 max{H(m), 1−H(m)}
E|Y −m|

by Lemma 1.1(i). Taking derivatives in (2.1) we have that, for almost all x ∈ (a, b),

h∗(x)
h(x)

ψ′
A(x) =

x−m

s2
ψA(x) +

(
I(x ∈ A)− P{Y ∈ A}

)
.(2.2)

Hence, ∣∣∣∣h∗(x)
h(x)

ψ′
A(x)

∣∣∣∣ � 1

s2

∣∣(x−m)ψA(x)
∣∣+ 1 � |x−m|min{H(x), 1−H(x)}

s2h∗(x)
+ 1.

Therefore, for almost all x ∈ (a,m],∣∣∣∣h∗(x)
h(x)

ψ′
A(x)

∣∣∣∣ �
(m− x)

∫ x

a
h(t) dt∫ x

a
(m− t)h(t) dt

+ 1 � 2.(2.3)

Similarly, |h∗(x)ψ′
A(x)/h(x)| � 2 for almost all x ∈ [m, b), and the proof is complete.

The following result is now an immediate consequence of the above lemma.
Theorem 2.1. For X and Y as above,

dTV (X,Y ) � 2

∫ b

a

∣∣∣∣f(x)− σ2h(x)

s2h∗(x)
f∗(x)

∣∣∣∣ dx+ cY |µ−m|,(2.4)

where f∗ is the density of X∗.
Proof. Since f(x) = f(x) I(x ∈ S(X∗)) almost everywhere, we may assume that

S(X) ⊂ S(X∗). Taking expectations with respect to X in (2.2) and using Lemma 1.1(ii), we
have (c.f. [16])

P{X ∈ A} − P{Y ∈ A} = E

[
h∗(X)

h(X)
ψ′

A(X)

]
− 1

s2
Cov

[
X,ψA(X)

]
− µ−m

s2
E
[
ψA(X)

]
= E

[
h∗(X)

h(X)
ψ′

A(X)

]
− σ2

s2
E
[
ψ′

A(X
∗)
]
− µ−m

s2
E
[
ψA(X)

]
=

∫
S(X∗)

[
f(x)

h∗(x)
h(x)

− σ2

s2
f∗(x)

]
ψ′

A(x) dx− µ−m

s2
E
[
ψA(X)

]
.
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Therefore, since S(X) ⊂ S(X∗) ⊂ S(Y ) = (a, b), we have from Lemma 2.1 that

|P{X ∈ A} − P{Y ∈ A}| � ess sup
x∈(a,b)

∣∣∣∣h∗(x)
h(x)

ψ′
A(x)

∣∣∣∣
∫ b

a

∣∣∣∣f(x)− σ2h(x)

s2h∗(x)
f∗(x)

∣∣∣∣ dx
+

|µ−m|
s2

sup
x∈(a,b)

∣∣ψA(x)
∣∣ � 2

∫ b

a

∣∣∣∣f(x)− σ2h(x)

s2h∗(x)
f∗(x)

∣∣∣∣ dx+ cY |µ−m|,

which is independent of A, and the result follows.
In particular, for the normal r.v. Zm,σ2 = σZ + m, where Z is standard normal, the

following result holds.
Corollary 2.1. For any a.c. r.v. X with mean µ and variance σ2,

dTV (X,Zm,σ2) � 3 dTV (X,X
∗) +

√
π

σ
√
2
|µ−m| .(2.5)

Remark 2.1. It should be noted that (2.4) immediately yields (2.5) with a constant 4
instead of 3.

Proof of Corollary 2.1. From (2.3) we have that for all x and A,∣∣(x−m)ψA(x)
∣∣ � σ2.

On the other hand, the normal density h(x) = ϕ(x;µ, σ2) = (1/σ)ϕ((x−m)/σ), where ϕ is
the standard normal density, satisfies h∗ ≡ h. Therefore, from the calculations in the proof
of Theorem 2.1, it follows that

P{X ∈ A} − P{Zm,σ2 ∈ A} =
∫
S(X∗)

(
f(x)− f∗(x)

)
ψ′

A(x) dx− µ−m

σ2
E
[
ψA(X)

]
=

∫
S(X∗)

x−m

σ2
ψA(x)

(
f(x)− f∗(x)

)
dx

+

∫
S(X∗)

I(x ∈ A)
(
f(x)− f∗(x)

)
dx− µ−m

σ2
E
[
ψA(X)

]
.

Observe that for any Borel set A,∫
S(X∗)

I(x ∈ A)
(
f(x)− f∗(x)

)
dx � dTV (X,X

∗)

and ∫
S(X∗)

x−m

σ2
ψA(x)

(
f(x)− f∗(x)

)
dx � 2 dTV (X,X

∗).

The result follows from the fact that E|Zm,σ2 −m| = σ
√

2/π and the observation that for
any two r.v.’s X1 and X2,

dTV (X1, X2) = sup
A

{
P{X1 ∈ A} − P{X2 ∈ A}, A Borel

}
.

As a consequence, a necessary and sufficient condition for an a.c. r.v. X with a finite

second moment to have a normal distribution is that X
d
= X∗ (see also [11]). The stability

of this result is shown in the following theorem.
Theorem 2.2. Let Xn be a sequence of a.c. r.v.’s with means µn and variances σ

2
n such

that µn → µ and σ2
n → σ2 as n→ ∞, where 0 < σ2 <∞. Then, as n→ ∞,

(i) dTV (Xn, Zµ,σ2) → 0 if and only if dTV (Xn, X
∗
n) → 0.

(ii) dTV (Xn, Zµ,σ2) → 0 implies dTV (X
∗
n, Zµ,σ2) → 0.
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Proof. Assume first that dTV (Xn, X
∗
n) → 0. Then, we simply have from Corollary 2.1

and Theorem 2.1 that

dTV

(
Xn, Zµ,σ2

)
� dTV

(
Xn, Zµ,σ2

n

)
+ dTV

(
Zµ,σ2

n
, Zµ,σ2

)
� 3 dTV (Xn, X

∗
n) +

√
π

σn

√
2
|µn − µ|+ 2

∣∣∣∣1− σ2
n

σ2

∣∣∣∣−→ 0.

Assume now that dTV (Xn, Zµ,σ2) → 0. It follows that every subsequence {m} ⊂ {n}
contains a further subsequence {k} ⊂ {m} such that for almost all x, fk(x) → ϕ(x;µ, σ2) as
k → ∞, where fk is the density of Xk. Therefore, for almost all x,

(µk − x)2

σ2
k

fk(x)−→ (µ− x)2

σ2
ϕ(x;µ, σ2) as k → ∞,

and from Scheffé’s lemma,∫ ∞

−∞

∣∣∣∣ (µk − x)2

σ2
k

fk(x)− (µ− x)2

σ2
ϕ(x;µ, σ2)

∣∣∣∣ dx −→ 0.(2.6)

By using Tonelli’s theorem, we have

2 dTV

(
X∗

k , Zµk,σ
2
k

)
=

∫ µk

−∞

∣∣∣∣
∫ x

−∞

µk − t

σ2
k

(
fk(t)− ϕ(t;µk, σ

2
k)
)
dt

∣∣∣∣ dx
+

∫ ∞

µk

∣∣∣∣
∫ ∞

x

t− µk

σ2
k

(
fk(t)− ϕ(t;µk, σ

2
k)
)
dt

∣∣∣∣ dx
�
∫ µk

−∞

∫ x

−∞

µk − t

σ2
k

∣∣fk(t)− ϕ(t;µk, σ
2
k)
∣∣ dt dx

+

∫ ∞

µk

∫ ∞

x

t− µk

σ2
k

∣∣fk(t)− ϕ(t;µk, σ
2
k)
∣∣ dt dx

=

∫ ∞

−∞

(µk − t)2

σ2
k

∣∣fk(t)− ϕ(t;µk, σ
2
k)
∣∣ dt

�
∫ ∞

−∞

∣∣∣∣ (µk − t)2

σ2
k

fk(t)− (µ− t)2

σ2
ϕ(t;µ, σ2)

∣∣∣∣ dt
+

∫ ∞

−∞

∣∣∣∣ (µ− t)2

σ2
ϕ(t;µ, σ2)− (µk − t)2

σ2
k

ϕ(t;µk, σ
2
k)

∣∣∣∣ dt −→ 0,

as k → ∞, by (2.6). Therefore,

dTV (Xk, X
∗
k) � dTV

(
Xk, Zµ,σ2

)
+ dTV

(
Zµ,σ2 , Zµk,σ

2
k

)
+ dTV

(
X∗

k , Zµk,σ
2
k

)
−→ 0,

as k → ∞, and the “only if” part is complete. Regarding (ii), we simply have from (i) that

dTV

(
X∗

n, Zµ,σ2

)
� dTV (Xn, X

∗
n) + dTV

(
Xn, Zµ,σ2

)
−→ 0,

which completes the proof.
Remark 2.2. It should be noted that (2.4) extends the results of [16]. Indeed, if X has

an interval support, (2.4) yields

dTV (X,Y ) � 2E

∣∣∣∣1− σ2w(X)

s2wY (X)

∣∣∣∣+ cY |µ−m|,

where w = f∗/f and wY = h∗/h are the w-functions of X and Y , respectively.
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3. An application to the local limit theorem for densities. LetX,X1, X2, . . .
be a sequence of i.i.d. r.v.’s with mean zero, variance one, and a common density f , and
consider the partial sums Sn = X1 + · · · +Xn with densities fn. In the present section we
give a simple proof of the following result.

Theorem 3.1. If Z is the standard normal r.v., then

dTV

(
Sn√
n
, Z

)
−→ 0 as n→ ∞.(3.1)

It should be noted that several proofs of Prokhorov’s theorem (3.1) have appeared in
the probability literature within the last 20 years (see, for example, [1], [15], [6]), but it
seems that the authors use some additional restrictive conditions on the density f . The
present approach, however, does not require any further assumption, other than a finite
second moment. Our approach extends the results of [6], dispensing with the assumption of
an interval support. The proof will make use of the following lemmas.

Lemma 3.1. We have S∗
n

d
= S∗

n−1 +Xn, where S
∗
n−1 is independent of Xn.

Proof. From Lemma 1.1(v) we have (X1 +X2)
∗ d
= X∗

1 +X2 which proves the lemma for
n = 2. By induction on n,

S∗
n

d
= X∗

1 + (X2 + · · ·+Xn) .(3.2)

Therefore,

S∗
n−1 +Xn

d
= X∗

1 + (X2 + · · ·+Xn−1) +Xn
d
= S∗

n.

Lemma 3.2. The sequence dTV (Sn, S
∗
n) is nonincreasing and, hence, converges to a

nonnegative constant d.
Proof. We simply have from Lemma 3.1 that

dTV

(
Sn, S

∗
n

)
= dTV

(
Sn−1 +Xn, S

∗
n−1 +Xn

)
� dTV

(
Sn−1, S

∗
n−1

)
.

Lemma 3.3. If S(X) = {x : f(x) > 0} is the support of X, then

d � 1− P
{
X∗ ∈ S(X)

}
.

Proof. Let Gn, n = 1, 2, . . . , be a sequence of arbitrary measurable functions such that
0 � Gn(x) � 1 for all n and x. Using (3.2), we have

E
[
Gn (S

∗
n)
]
= E

[
Gn (X

∗
1 + (X2 + · · ·+Xn))

]
� E

[
Gn (X

∗
1 + (X2 + · · ·+Xn)) I (X

∗
1 ∈ S(X))

]
= E

[
f∗(X1)

f(X1)
Gn(Sn)

]
=

1

n

n∑
j=1

E

[
f∗(Xj)

f(Xj)
Gn(Sn)

]
,

where f∗ is the (common) density of X∗
j . Therefore,

E
[
Gn(Sn)

]
− E

[
Gn(S

∗
n)
]

� E

[(
1− 1

n

n∑
j=1

f∗(Xj)

f(Xj)

)
Gn(Sn)

]

= E

[(
P
{
X∗ ∈ S(X)

}
− 1

n

n∑
j=1

f∗(Xj)

f(Xj)

)
Gn(Sn)

]

+
(
1− P

{
X∗ ∈ S(X)

})
E
[
Gn(Sn)

]
� E

∣∣∣∣∣P{X∗ ∈ S(X)
}
− 1

n

n∑
j=1

f∗(Xj)

f(Xj)

∣∣∣∣∣+ 1− P
{
X∗ ∈ S(X)

}
.
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Since it is easily verified that the nonnegative i.i.d. r.v.’s Yj = f∗(Xj)/f(Xj) have the mean
E[Yj ] = P{X∗ ∈ S(X)}, it follows from the weak law of large numbers that

1

n

n∑
j=1

Yj
p−→ P

{
X∗ ∈ S(X)

}
= E

[
1

n

n∑
j=1

Yj

]
as n→ ∞.

Therefore, we conclude (see, for example, [10, Corollary 4, p. 101]) that

E

∣∣∣∣∣P{X∗ ∈ S(X)
}
− 1

n

n∑
j=1

Yj

∣∣∣∣∣−→ 0 as n→ ∞.

The proof is completed by choosing Gn(x) = I(x ∈ An), where f
∗
n is the density of S∗

n and
An = {x : fn(x) > f∗

n(x)}.
The next lemma (which is probably known) will be used in what follows. Since, how-

ever, we have not been able to trace a proof, we provide one for the completeness of the
presentation.

Lemma 3.4. Let Y,W be independent and a.c. r.v.’s with densities h, g, respectively, and
let q = h ∗ g be the density of Y +W . Then we have the following:

(i) The set S(Y +W ) = {x : q(x) > 0} contains some interval.
(ii) If 0 < P{Y � 0} < 1 and 0 < P{W � 0} < 1, then there exist four positive numbers

a1 < a2 and b1 < b2 such that (−a2,−a1) ∪ (b1, b2) ⊂ S(Y +W ).
(iii) If (a, b) ⊂ S(Y ) = {x : h(x) > 0} and (c, d) ⊂ S(W ) = {x : g(x) > 0}, then

(a, b) + (c, d) = (a+ c, b+ d) ⊂ S(Y +W ).
Proof. Set hk(x) = min{k, h(x)} for k = 1, 2, . . . . Obviously hk is bounded and

thus hk ∗ g is continuous. Therefore, the set Ak = {x : (hk ∗ g)(x) > 0} is open. Since
hk ↑ h as k → ∞ and hk ∗ g � q for all k, it follows that Ak ⊂ S(Y +W ). By monotone
convergence, hk ∗ g ↑ q as k → ∞, which shows that for large enough k, (hk ∗ g)(x) > 0
if q(x) > 0. Therefore, Ak is nonempty for large enough k and hence contains an interval;
this proves (i). Regarding (ii), observe that the set S(Y +W ) contains positive and negative
numbers (otherwise P{Y +W � 0} would be equal to 0 or 1), and the result follows as in (i).
Finally, (iii) is trivial.

It is easy to see that for any two r.v.’s as in Lemma 3.4, S(Y +W ) ⊂ S(Y ) + S(W ),
where S(Y ) + S(W ) = {y+w : y ∈ S(Y ), w ∈ S(W )}. Therefore, applying Lemma 3.4(i) to
the independent r.v.’s Y ,W with densities h(x) = I(x ∈ A)/λ(A) and g(x) = I(x ∈ B)/λ(B)
(where 0 < λ(A) <∞ and 0 < λ(B) <∞), we conclude the classical result, due to Steinhaus
(see, for example, [5]), that S(Y ) + S(W ) = A+B contains an interval.

As an immediate consequence of Lemma 3.4, the following result holds.
Corollary 3.1. There exists an integer m and a positive a such that (−na, na) ⊂

S(Snm) for n = 1, 2, . . . , where S(Snm) is the support of Snm.
Proof. From Lemma 3.4(ii) we have (−a2,−a1) ∪ (b1, b2) ⊂ S(X1 + X2) = S(S2). By

using Lemma 3.4(iii) and the fact that S2n = (X1 +X2)+ · · ·+(X2n−1 +X2n), we conclude
that

n⋃
k=0

(
− ka2 + (n− k) b1,−ka1 + (n− k) b2

)
⊂ S(S2n).

Now choose two integers k < m′ such that a1/b2 +1 < m′/k < a2/b1 +1. Then, there exists
a positive a such that (−a, a) ⊂ S(S2m′), and thus (−na, na) ⊂ S(Snm) for all n � 1, where
m = 2m′.

Finally, we will use the following lemma (for a proof see [12, p. 19] or [2, p. 176]).
Lemma 3.5. Let R,R1, R2, . . . be i.i.d. r.v.’s with mean zero and finite variance τ

2 > 0.
Then, for any a > 0,

1

n
E
[
T 2
nI
(
|Tn| > na

)]
−→ 0 as n→ ∞,
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where Tn = R1 + · · ·+Rn.
Although the proof of Lemma 3.5 is not obvious, it becomes simpler when E[|R|δ] <∞

for some δ > 2 (it follows by an application of Hölder’s inequality with p = δ/2 and a further
application of the Marcinkiewich–Zygmund inequality [12, p. 169], (2.2), and (2.3)). We can
now prove the main result.

Proof of Theorem 3.1. Let a andm be as in Corollary 3.1. It follows that by Lemma 3.5

P
{
S∗
nm ∈ S(Snm)

}
=

∫
S(Snm)

f∗
nm(x) dx �

∫ na

−na

f∗
nm(x) dx

=
1

nm

{
na

∫
|x|>na

|x| fnm(x) dx+

∫ na

−na

x2 fnm(x) dx

}

=
a

m
E
[
|Snm| I

(
|Snm| > na

)]
+

1

nm
E
[
S2
nmI

(
|Snm| � na

)]
= 1 +

a

m
E
[
|Snm| I

(
|Snm| > na

)]
− 1

nm
E
[
S2
nmI

(
|Snm| > na

)]
� 1− 1

nm
E
[
S2
nmI

(
|Snm| > na

)]
−→ 1 as n→ ∞.

Let Rj be i.i.d. r.v.’s such that Rj
d
= Smk/

√
mk, j = 1, 2, . . . . From Lemmas 3.3 and 3.2 it

follows that

d = lim
n→∞

dTV (Snmk, S
∗
nmk) = lim

n→∞
dTV

(
Snmk√
mk

,
S∗
nmk√
mk

)
� 1− P

{
R∗

1 ∈ S(R1)
}
= 1− P

{
S∗
mk ∈ S(Smk)

}
−→ 0 as k → ∞,

which shows that d = 0. The result follows from Corollary 2.1, since

dTV

(
Sn√
n
, Z

)
� 3 dTV

(
Sn√
n
,
S∗
n√
n

)
= 3 dTV (Sn, S

∗
n)−→ 0.
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