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VARIANCE INEQUALITIES FOR COVARIANCE KERNELS
AND APPLICATIONS TO CENTRAL LIMIT THEOREMS*

T. CACOULLOST, N. PAPADATOST, anp V. PAPATHANASTOUT

Abstract. A simple estimate for the error in the CLT, valid for a wide class of absolutely
continuousr.v.’s, is derived without Fourier techniques. This is achieved by using a simple convolution
inequality for the variance of covariance kernels or w-functions in conjunction with bounds for the
total variation distance. The results are extended to the multivariate case. Finally, a simple proof of
the classical Darmois—Skitovich characterization of normality is obtained.
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1. Introduction and summary. Let X be a normalized (absolutely) continu-
ous random variable (r.v.) with a distribution function (d.f. ) F and density f, and
let Z be a standard normal r.v. with a d.f. &. Recently, Cacoullos, Papathanasiou,
and Utev (henceforth, CPU) [8] obtained (inter alia) the following bound for the total
variation distance (TVD) p(F,®) = sup{|F(4) — $(A4)|, A Borel} between F and &
(or X and Z), namely,

(1.1) p(F, ®) < 2E|w(X) — 1| < 2y/Var[w(X)],

where the (characterizing) covariance kernel w(-) is defined for every # in the interval
support of X by the relation

(1.2) w(z)f(z) = —/ tf(t)dt = / t f(¢)dt.

Note that the second inequality in (1.1) follows from (E|w — 1|)2 <E(w-— 1)2 and the
fact that, for any r.v. X with finite second moment, E[w(X)] = 1, as easily verified
from (1.2) or the basic covariance identity (see [5])

(1.3) cov [X, g(X)] = EXg(X) = E[w(X) ¢ (X)]

for any absolutely continuous g. Furthermore, by using (1.1) and the law of large
numbers, CPU proved a strong version (L1 convergence of the densities) of the central
limit theorem (CLT).

More recently, Papathanasiou [14] extended the above results for a standardized
continuous random vector X = (X;,. ..,Xp)/ with d.f. F, by showing that under
appropriate conditions

(1.4) p(F, 3,)<2> E|w'(X)-1|= 22\/Var[wi(X)],

i=1
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where ®,(z1,...,2,) = ®(z1)---®(2,) is the d.f. of p independent standard normal
r.v.’s and w = (wl, . ..,wp)/: R’ — R’ is the p-dimensional covariance kernel as-
sociated with the random vector X (for the definition, see [6]). The strengthened
multivariate CLT was also proved under the assumption that E[w'(X)]® < oo for
1=1,...,p.

The key role to the derivation of the above limit theorems is based on (1.1), (1.4),
and the following theorem.

THEOREM 1.1 [7]. Let X1, X5,...,X,,... be independent identically distributed
(i.1.d.) absolutely continuous r.v.’s with

E[X,]=0, E[Xi]=1 and E[w’(X))] < oo,
where w s the covariance kernel of X,. Then,
(1.5) Var [wn(Sn)] —0 asn,

where S, = (X1 +-+-+ X,,)/v/n and w, is the w-function of S,, (for a proof of the
multivariate analogue of (1.5), see [6]).

In the present paper, exploiting the bound (1.1) of TVD, we derive an appropriate
convolution inequality (Lemma 2.1) for the variance of the w-function, perhaps of
independent interest. This is used to provide not only a very simple proof of the
CLT (i.e., Theorem 1.1), but also to establish the corresponding rate of convergence
(Theorem 2.1), of order (at least) n~? for the 1.i.d. case. It should be noted that
such rates of convergence were independently given by Sirazhdinov and Mamatov [17]
under the assumption of finiteness of the third moment (see also [15]). Also, for A,,,

defined by
(1.6) A, = sup |Fn(:c) - <I>(:c)|,

the Berry—Esseen type bounds are, of course, well known; so are those concerning D,,,
where

(1.7) D, = sup { |Fn(C) — <I>(C)|, C convex}

(see, for example, [2], [3], [4], [9], [13], [18], and references therein). As regards the
convergence of p, to zero, where

(1.8) pn = p(F,, ®) = sup {|Fn(A) — <I>(A)|, A Borel}

(here and everywhere in this paper, F, is the d.f. of the standardized sum S, of n in-
dependent r.v.’s and Fx(A) = P{X € A}), the known results are those of Prokhorov
[16], Barron [1], Mayer-Wolf [12], and CPU [8], without establishing rates of conver-
gence. Note also the complications involved in establishing Sirazhdinov and Mama-
tov’s results through Fourier techniques, and also Barron’s and Mayer-Wolf’s results
through entropy and information inequalities, respectively, in contrast to the present
simplifying approach.

Furthermore, the results are easily extended to the case of nonidentically dis-
tributed r.v.’s (Theorem 2.2), as well as in the multivariate case (Theorems 3.1, 3.2).
Moreover, an application of the above convolution inequality to the classical Darmois—
Skitovich characterization of normality, via the independence of two different linear
forms of independent r.v.’s, is given in section 4 (Theorem 4.1). Another use of the
present TVD bound (2.1) is in proving CLT’s for random sums Sy = X1 +-- -+ X,
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in the usual case where N is independent of X, X5, ...; this, however, is beyond the
scope of the present investigation and will be the object of a separate paper.

However, the preceding simplifications and/or improvements are “paid” by the
assumption that the variance of w(X) is finite, which for the Pearson family entails the
finiteness of the fourth moment of X. It is perhaps worth investigating the possibility
of relaxing this condition.

2. Rate of convergence in the CLT. In the present paper we concentrate on
the TVD p,, defined by (1.8), so that every result holding for this distance obviously
continues to hold for D,, as well as A,,. However, the results are applicable to the
family C of r.v.’s X satisfying the following conditions:

(i) E[X] =0, E[X"] = 1 (without any loss of generality);
(ii) X is absolutely continuous with density f and its support is an interval (not
necessarily finite);
(iii) the w-function of X (see (1.2)) has finite second moment:

E[wz(X)] < 0.

Note that C is wide enough within the family of the standardized absolutely
continuous r.v.’s, including, for example, the Pearson system of distributions with
finite fourth moments, as it follows from Korwar’s characterization [11] of the Pearson
family by a quadratic w-function. Regarding the restriction (ii) of interval support,
this does not essentially affect the validity of the results, since for large n (depending
on the gaps where f(z) = 0), S, attains an interval support.

The main result of this section is stated in the following theorem.

THEOREM 2.1. Suppose X1,...,X,,... are t.2.d. r.v.’s with X; € C. Then,

(2.1) Pn

A

c
vn'
where the constant ¢ can be taken as

(2.2) ¢ = 24/ Var[wy(X,)]

and w is the w-function assoctated with X;.

The proof of Theorem 2.1 is based on the convolution inequality given by the
following lemma.

LEmMA 2.1. Let X, Y be independent r.v.’s with X € C, Y € C and consider
the r.v. § = aX + bY, where a, b are real constants such that o>+ = 1. Then,
SeC and

(2.3) Var[wS(S)] < a*Var [wX(X)] + b*Var [wy(Y)],

where wx, wy, wg are the w-functions of X,Y, S, respectively.

Proof. First observe that S has a density with interval support, mean zero, and
variance one, so that the function wgs is well defined by (1.2). From (1.3), for any
absolutely continuous function g, the following covariance identity holds (c.f. Stein’s
identity for a normal r.v.):

(2-4) E[Sg(S)] = E[ws(S)¢'(5)],

where ¢’ is the derivative of g.
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On the other hand,
E[Sg(S)] = E[(aX + bY )g(aX + bY)]
= aB{E[Xg(aX + V) | Y]} + bE{E[Yg(aX +bY) | X] }
= a’Elux(X)g'(9)] +6"E[wy (Y)g'(5)],
so that we have
(2.5) E[ws(5)g'(S)] = E[(a"wx(X) + bwy (V) ¢'(S)].

Applying (2.5) to ¢'(z) = ws(z) [{ws(z) < N} (a bounded function), we have

(E[ I{wS ) ( a wx (X —|—b wy (Y )) wS(S)I{wS(S) < N}])2
< B[(a®wx (X) + bwy (V)] E[wi(S) I[{ws(S) < N}]

by the Cauchy-Schwarz inequality. Thus,
(2.6) E[w§(S) I{ws(S) < N}] < E[(a®wx (X) + b*wy (V))"],

which, taking the limit as N — oo, implies that E[wg(S)] < oo, and hence § € C.
Now, (2.6) leads to

(2.7) E[w}(S)] < E[(c’wx(X) + 6wy (Y))7],

which is equivalent to (2.3), since E[wx(X)] = 1 for any r.v. X.
Remark 2.1. Obviously Lemma2.1 also holds when § = Y """, a; X, with ) | al =
1:

Var wS Z a; Var wX )]

In the following lemma we give a shght variation of the above inequality which in
turn characterizes normality within the class C.
LEMMA 2.2. Under the conditions of Lemma 2.1,

(2.8) E[w$(S)] < ’E[wx (X)] + b°E [wy (V)]

with equality if and only if X,Y, and S are standard normal, provided ab # 0.
Proof. 1t is easily seen that

@’Blwk (X)] + ¥ E[w} (Y)] - E[(a’wx (X) + 5wy (V)]
= azbz{E[wgg(X)] + E[w;zz(Y)] — 2} = azbz{Var[wX(X)] + Var[wy(Y)] } >0

and the assertion follows from (2.7).

Obviously the equality in (2.8) holds when ab = 0 or when X and Y are both
normal; as for the “only if” part, observe that the equality in (2.8) implies the equality
n (2.7). Hence, if ab # 0 we must have Var[wx(X)] = Var[wy(Y)] = 0 by the
above argument, which in turn implies that both X, Y, (and S) are normal (see [7,
Characterization 4]).

Remark 2.2. From the above proof it is clear that (2.3) (or (2.7)) is much stronger
than (2.8), since the crucial factors a” and b* become a” and b , respectively. (This is
clearly seen in the proof of Corollary 2.1 below, where the induction argument could
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not apply if the former would be replaced by the latter.) It should be noted, however,
that the characterization result is lost in (2.3), since the equality is also attained if,

e.g., both X, Y are 1.i.d. exponential random variables and a = b = @
COROLLARY 2.1. If Xy,...,X,,... are ©.i.d. 7.v.’s such that X, € C, then S, =
(X1 + -+ X,)/+/n € C. Furthermore, for the sequence o, = Var[w,(S,)] we have
01
2.9 n< —,
(29) 5z
where w, s the w-function of S,.
Proof. The assertion follows immediately either from Remark 2.1 with a; =
-=a, =1/y/norfrom (2.3) with X = 5, 1, Y = X,,, S = S, a = /(n—1)/n,

b = 1/4/n, using induction on n, since

1 1
S, =1/2 Sn_1+an, n=1,2,....
n n

Remark 2.3. Corollary 2.1 gives a direct proof of Theorem 1.1 above (c.f. [7,
Theorem 4]).

Proof of Theorem 2.1. From (1.1) we have p,, < 2,/7,,, while from Corollary 2.1
o, < 01/n, which completes the proof.

The above results can be easily extended to the general case where the distribu-
tions of the X’s are not identical, as shown by the following theorem.

THEOREM 2.2. Suppose that the independent r.v.’s Xq,...,X,,... are in C.
Then,

Cn
\/ﬁ?

pn <2

where C,, can be taken as

C, = (1mkaxn {Var [ka (Xk)] })1/2.

Proof. From Remark 2.1 it follows that

CZ

3|

Var[ws, (S,)] < %ZVar[ka(Xk)] <

n k=1

and the assertion follows from (1.1).

Therefore, C,, = o(y/n) as n — oo provides a sufficient condition for the conver-
gence (in total variation) of S,, to the standard normal, while the assumption that C,,
remains bounded leads to a rate of convergence of order n 2,

3. Multivariate extensions. The results can be easily extended in R’ in an
obvious manner. Here, the subfamily C consists of the continuous random vectors
X with mean zero and dispersion matrix I, (the p x p identity matrix), such that
E[w' (X)) <oo,i=1,...,p.

By using similar arguments and the covariance identities of [6] in combination
with the multivariate result of [14] (see (1.4) above), one can easily establish the
multivariate analogues of Lemma 2.1, Theorems 2.1, 2.2, and Corollary 2.1 as well.
We, therefore, formulate without proof the following results.
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LEmMaA 3.1. Let X, Y be independent random vectors in C and consider the
random vector S = aX + bY, where a,b are real scalars such that o>+ b =1. Then,
SeC and

Var[wé(S)] < a*Var [w%(X)] + b4Var[w§((Y)], i=1,...,p

where U);(, w@, wé are the ith components of the w-functions of X, Y, S, respectively.

CoroLLARY 3.1. If Xy,...,X,,... are i...d. random vectors such that X, € C,
then S, = (X; + -+ X,;)/+/n € C. Moreover, for the sequences o, = Var[w, (S,)]
we have

i
;o
7 1 .
Un§_7 Z:]-a"'apa
n
1 Py - .
where W, = (Wy, ..., wy) is the w-function of S,.

THEOREM 3.1. Under the conditions of Corollary 3.1 we have

(64
pniﬁa

where the constant ¢ can be taken as

P
c=2 Z Var[w) (X1)]
i=1
and w; = (w%, ooy wh) is the w-function associated with X ;.
Finally, the above theorem can be easily extended to the following theorem.
THEOREM 3.2. Suppose that the independent random vectors Xy,...,X,,... are
in C. Then,
C
Pn = 2 —

\/ﬁ?

where C,, can be taken as

C, = Z (1mkaxn {Var [w&k (Xk)] }) 1/2.

i=1

4. A simple proof of a classical characterization for the normal distri-
bution. Several, more or less complicated, proofs have been given for the well-known
Darmois—Skitovich theorem, characterizing the normal distribution by the indepen-
dence of two linear forms in n independent r.v.’s (see [10] and references therein).
Itoh gave a complete proof for n = 2 via the convolution inequality for the Fisher
information. Here, by using the convolution inequality (2.3), a relatively simple proof
of the same result is given under stronger conditions, namely for the family C.

THEOREM 4.1. Let the independent r.v.’s X1, X5 € C and suppose that the r.v.’s
Y1, Ys are independent, where

Y, = X1 cosf + X,siné, Yo = —X;sinf + X5 cos b,

for some 0 which is not a multiple of /2. Then, the r.v.’s X;, Xs, Y1, Y3 are
standard normal.
Proof. Tt follows from Lemma 2.1 that Y7, Y5 € C. Hence, from (2.3) we conclude
that
Var [wy1 (Yl)] < cos” 6 Var [le (Xl)] +sin* 6 Var [wX2 (Xz)] ,

Var [wy2 (Yz)] < sin® 6 Var [le (Xl)] + cos” 6 Var [wX2 (Xz)] ;
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thus,
(41)  Var[wy, (Y1) + wy,(¥2)] < (cos” 8 + sin” 8) Var[wx, (X)) + wx, (X5)]-
On the other hand, since
X, =Y cos0 —Y,siné, X5 =Y,sin0 + Y, cos ¥,
we conclude, using similar arguments, that
(42)  Var[wx, (X)) + wx,(X5)] < (cos” 8 +sin” ) Var [wy, (Y1) + wy, (¥2)].
Therefore,
Var[wy, (X,)] = Var wx, (X2)] = Var[wy, (¥1)] = Var[wy,(¥2)] = 0,

and the desired result follows from Characterization 4 in [7].
Note that one could equally apply Lemma 2.2 in the above proof, using exactly
the arguments of Itoh.
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