
Full Terms & Conditions of access and use can be found at
http://www.tandfonline.com/action/journalInformation?journalCode=gsta20

Statistics
A Journal of Theoretical and Applied Statistics

ISSN: 0233-1888 (Print) 1029-4910 (Online) Journal homepage: http://www.tandfonline.com/loi/gsta20

Orthogonal polynomials in the cumulative Ord
family and its application to variance bounds

Georgios Afendras, Narayanaswamy Balakrishnan & Nickos Papadatos

To cite this article: Georgios Afendras, Narayanaswamy Balakrishnan & Nickos Papadatos
(2018) Orthogonal polynomials in the cumulative Ord family and its application to variance bounds,
Statistics, 52:2, 364-392, DOI: 10.1080/02331888.2017.1406940

To link to this article:  https://doi.org/10.1080/02331888.2017.1406940

Published online: 29 Nov 2017.

Submit your article to this journal 

Article views: 14

View related articles 

View Crossmark data

http://www.tandfonline.com/action/journalInformation?journalCode=gsta20
http://www.tandfonline.com/loi/gsta20
http://www.tandfonline.com/action/showCitFormats?doi=10.1080/02331888.2017.1406940
https://doi.org/10.1080/02331888.2017.1406940
http://www.tandfonline.com/action/authorSubmission?journalCode=gsta20&show=instructions
http://www.tandfonline.com/action/authorSubmission?journalCode=gsta20&show=instructions
http://www.tandfonline.com/doi/mlt/10.1080/02331888.2017.1406940
http://www.tandfonline.com/doi/mlt/10.1080/02331888.2017.1406940
http://crossmark.crossref.org/dialog/?doi=10.1080/02331888.2017.1406940&domain=pdf&date_stamp=2017-11-29
http://crossmark.crossref.org/dialog/?doi=10.1080/02331888.2017.1406940&domain=pdf&date_stamp=2017-11-29


STATISTICS, 2018
VOL. 52, NO. 2, 364–392
https://doi.org/10.1080/02331888.2017.1406940

Orthogonal polynomials in the cumulative Ord family and its
application to variance bounds

Georgios Afendrasa, Narayanaswamy Balakrishnanb and Nickos Papadatosc

aDepartment of Biostatistics and Jacobs School of Medicine and Biomedical Sciences, The State University of New
York at Buffalo, Buffalo, NY, USA; bDepartment of Mathematics and Statistics, McMaster University, Hamilton, ON,
Canada; cDepartment of Mathematics, Section of Statistics and O.R., University of Athens, Athens, Greece

ABSTRACT
This article presents and reviews several basic properties of the Cumula-
tive Ord family of distributions; this family contains all the commonly used
discrete distributions. A complete classification of the Ord family of prob-
ability mass functions is related to the orthogonality of the corresponding
Rodriguespolynomials. Also, for any randomvariableX of this family and for
any suitable function g in L2(R, X), the article provides useful relationships
between the Fourier coefficients of g (with respect to the orthonormal poly-
nomial system associated to X) and the Fourier coefficients of the forward
difference of g (with respect to another system of polynomials, orthonor-
mal with respect to another distribution of the system). Finally, using these
properties, a class of bounds for the variance of g(X) is obtained, in terms
of the forward differences of g. These bounds unify and improve several
existing results.
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1. Indroduction

Ord [1] introduced the discrete analogue of Pearson’s system. Ord’s family contains all integer-valued
random variables (rvs) whose probability mass function (pmf), p, satisfies

�p(j − 1)
p(j)

= a − j
(a + b0)+ (b1 − 1)j + b2j(j − 1)

. (1)

Here, � is the forward difference operator and p(j) is the pmf of the discrete rv X and j takes
values in an integer interval. In the sequel, the term ‘discrete rv’ is customized to mean ‘integer-
valued rv’. Equation (1) is the discrete analogue of Pearson’s differential equation. Ord classified these
distributions according to the values of the parameters a, b0, b1 and b2; see [2, Table 2.1, p.87].

The present work is concerned with the Cumulative Ord Family of discrete distributions, defined
as follows.

Definition 1.1 (Cumulative Ord Family): Let X be a discrete rv with finite mean μ and pmf
p(j) = P(X = j), j ∈ Z. We say that X belongs to the Cumulative Ord family (or that p belongs to
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the Cumulative Ord system) if there exists a quadratic q(j) = δj2 + βj + γ such that∑
k≤j

(μ− k)p(k) = q(j)p(j) for all j ∈ Z. (2)

If Equation (2) is satisfied, we write X ∼ CO(μ; q) or p ∼ CO(μ; q), or more explicitly, X or p ∼
CO(μ; δ,β , γ ).

Let X ∼ CO(μ; q). Afendras et al. [3] studied the orthogonal polynomials generated by a
Rodrigues-type formula (see Theorem 7.3 below) and based on these polynomials, they prove Stein-
type covariance identities (see [3, Equation(2.7), p.512]). First-order covariance identities, k= 1, of
that kind have been studied by Sudheesh and Luisa [4] for the Ord, Katz as well as modified power
series families of distributions. Afendras et al. [3], using Bessel’s inequality (for m ∈ N = {0, 1, . . .}
such that E|X|2m < ∞ and Eq[m](X)|�mg(X)| < ∞), showed that

Var g(X) ≥
m∑
k=1

E2q[k](X)�kg(X)

k!�[k]
δ (k − 1)Eq[k](X)

; (3)

the equality holds iff g coincides with a polynomial of degree at most m in the support of X.
For q[k], �[k]

δ and �k, see Notations 2.1 below. Also, for n ∈ N such that E|X|2n < ∞ and
Eq[n](X)[�ng(X)]2 < ∞, Afendras et al. [5], by applying a discrete Mohr and Noll inequality,
established some Poincaré-type bounds for the variance of g(X), of the form

(−1)n
[
Var g(X)− Sn

] ≥ 0, where Sn =
n∑

k=1

(−1)k−1Eq
[k](X)

[
�kg(X)

]2
k!�[k]

δ (0)
; (4)

the equality holds iff g is identified with a polynomial of degree at most n in the support of X.
We first present a simple example for illustrating the improvement achieved by the results of

the present article. Let X ∼ Poisson(λ). For m=n= 1, Equations (3) and (4) produce the double
inequality

λE2�g(X) ≤ Var g(X) ≤ λE[�g(X)]2, (5)

where both equalities hold iff g is a linear polynomial. Applying the results of the present paper (see
Theorem 9.1), we get the strengthened inequality

Var g(X) ≤ λ

2
E2�g(X)+ λ

2
E[�g(X)]2, (6)

in which the equality holds iff g is a polynomial of degree at most two. It is clear that the upper bound
in (6) improves the upper bound in Equation (5) and, in fact, it is strictly better, unless g is linear.

The rest of this paper is organized as follows. In Section 2, we present some elementary properties
of the Cumulative Ord (CO) family of distributions. In Section 3, we give an algorithm (Algorithm 1)
which checks if a pair (μ; q) is admissible, according toDefinition 3.2. Also, we provide a detailed clas-
sification of the CO family. It turns out that, up to an (integer-valued) location transformation and/or
multiplication by−1, there are six different types of pmfs, described in Table 1, while Section 4 offers
a comparison between Ord’s Discrete Student distributions and that ones presented in this article.
Section 5 presents the symmetric distributions of the CO family of distributions; moreover, in this
section, we define the noncentrality parameter as well as the degrees of freedom of a discrete Student
distribution. In Section 6, we show that for any p ∼ CO(μ; q), the pmf pi ∝ q[i]p belongs to the CO
system, under appropriate moment conditions. Also, using a known covariance identity, we obtain
close-form expressions for Var(Xi) (where Xi ∼ pi) and for Eq[i](X). Recurrence relations for the
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Table 1. Probabilities of the cumulative Ord family.

Type Notation p(j) Support S q(j) Parameters Meanμ Classification rule

1. Poisson-type X ∼ P(λ) e−λ λ
j

j!
N λ λ > 0 λ δ = β = 0

2. Binomial-type X ∼ Bin(N, p)
(N
j

)
pj(1 − p)N−j 0, 1, . . . ,N p(N − j) N=1,2,...

0<p<1 Np δ = 0, β = −p ∈ (−1, 0)

3. Negative
Binomial-type

X ∼ NB(r, p)
[r]j
j!
pr(1 − p)j N

1 − p

p
(r + j) r>0

0<p<1
r(1 − p)

p
δ = 0, β = 1 − p

p
> 0

4a. Negative
Hypergeometric-
type

X ∼ NHgeo(N; r, s)
(N
j

) (−r)j(−s)N−j

(−r − s)N
0, 1, . . . ,N

(r + j)(N − j)

r + s
N=1,2,...
r,s>0

Nr

r + s
δ = −1

r + s
< 0

4b.
Hypergeometric-
type

X ∼ Hgeo(N; r, s)
(N
j

) (r)j(s)N−j

(−r − s)N
0, 1, . . . ,N

(r − j)(N − j)

r + s
N=1,2,...
r,s>N−1

Nr

r + s
δ = 1

r + s
> 0, finite S

5. Discrete F-typea X ∼ d−F(ρ; r, s)
Γ (ρ − r)Γ (ρ − s)

Γ (ρ − r − s)Γ (ρ)

[r]j[s]j
j![ρ]j

N
(r + j)(s + j)

ρ − r − s − 1
(r,s)∈C2

ρ>max{0,r+s+1}
rs

ρ − r − s − 1
δ = 1

ρ − r − s − 1
> 0, one-side infinite S

6. Discrete
Student-typeb,c

X ∼ d−t(z,w) C
[z1]j[z2]j

[w1 + 1]j[w2 + 1]j
Z

(z1 + j)(z2 + j)

w1 + w2 − z1 − z2
z,w∈C̃2:

w1+w2>z1+z2

z1z2 − w1w2

w1 + w2 − z1 − z2
δ = 1

w1 + w2 − z1 − z2
> 0, two-side infinite S

a C2 .= {(z, z̄) : z ∈ C �R} ∪ (0,∞)2 ∪ {⋃∞
n=0(−n − 1,−n)2}.

b We were not able to find a closed formula for the normalizing constant C of this pmf.
c C̃2 .= {(z, z̄) : z ∈ C �R} ∪ {⋃n∈Z(n, n + 1)2}.
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factorial moments are also given. In Section 7, we study the Rodrigues-type orthogonal polynomials
of a rv that belongs to the CO Family. The main result of this section is that the forward differences
of orthogonal polynomials of a pmf within the CO system are also orthogonal polynomials corre-
sponding to another pmf of the system; see Lemma 7.5 and Theorem 7.6. In Section 8, we present
expressions for the Fourier coefficients of a function g, with respect to the corresponding orthonor-
mal polynomials. One of the important facts is that when the polynomials are dense in L2(R,X),
the expectation Eq[n](X)[�ng(X)]2 can be expressed as a series (finite or infinite) in terms of the
Fourier coefficients of g. This is utilized in Section 9 where, upon applying the series expansion for
Eq[n](X)[�ng(X)]2, we present a wide class of (upper/lower) bounds for Var g(X).

2. Preliminaries

In the present section, we investigate the basic properties of the CO family. In the sequel, we shall
make use of the following notation.

Notation 2.1: (a) S ≡ S(X) = {j ∈ Z : P(X = j) > 0} will denote the support of a discrete rv X.
Also, we define S◦

.= S � {the lower endpoint of S} and S◦ .= S � {the upper endpoint of S}. Of
course, if S does not have a finite lower (upper) endpoint, then S◦ = S (S◦ = S);

(b) For each real function f and k = 0, 1, . . ., we define f [k](x) = f (x) · · · f (x + k − 1) and
f [−k](x) = 1/[f (x − 1) · · · f (x − k)] (provided that f (x − 1) · · · f (x − k) �= 0), with f [0](x) = 1;

(c) For z ∈ C and k = 0, 1, . . ., we define [z]k = z(z + 1) · · · (z + k − 1) and [z]−k = [(z −
1) · · · (z − k)]−1 (provided that z �= 1, . . . , k), with [z]0 = 1;

(d) For z ∈ C and k ∈ Z, we define (z)k = (−1)k[−z]k, provided that the quantity [−z]k is well-
defined. That is, for k = 0, 1, . . ., we have (z)k = z(z − 1) · · · (z − k + 1) and (z)−k = [(z +
1) · · · (z + k)]−1 (provided that z �= −1, . . . ,−k), with (z)0 = 1;

(e) �k = �(�k−1) with�0 = I, the kth order forward difference operator;
(f) For each δ ∈ R and k ∈ N,�[k]

δ (m)
.= ∏k+m−1

j=m (1 − jδ),m ∈ N, with�[0]
δ (m) = 1;

(g) Let z = (z1, z2) and w = (w1,w2) ∈ C2. We denote z � w if (z1, z2) = (w1,w2) or (z1, z2) =
(w2,w1).

Remark 2.2: For every non-degenerate discrete rv X with finite mean μ and pmf p, the function
f (j) = ∑

k≤j(μ− k)p(k), j ∈ Z, is non-negative, unimodal (increases for j ≤ �μ
, the integer part of
μ, and then decreases) and takes its maximum value at the point j = �μ
 (if μ ∈ Z, the maximum
value is attained at the points μ− 1 and μ).

Definition 2.3: A subset S of Z is called an integer chain if for every j1, j2 ∈ S with j1 ≤ j2, we have
[j1, j2] ∩ Z ⊆ S.

Remark 2.4: An integer chain S of Z can be written as {α, . . . ,ω}, where α ∈ Z ∪ {−∞} and ω ∈
Z ∪ {∞}, in the sense that {α, . . . ,∞} = {α,α + 1, . . .} when α > −∞, {−∞, . . . ,ω} = {. . . ,ω −
1,ω} when ω < ∞ and {−∞, . . . ,∞} = Z.

From Definition 1.1, we can prove the following lemma.

Lemma 2.5: Let X ∼ CO(μ; q). Then:

(a) The rv X is supported on an integer chain, denoted by S = {α, . . . ,ω}, where α ∈ Z ∪ {−∞} and
ω ∈ Z ∪ {∞} with α ≤ ω. Thus, S◦ = {α + 1, . . . ,ω} and S◦ = {α, . . . ,ω − 1}. Note that if α =
ω then S◦ = S◦ = ∅;

(b) q(j) > 0 for all j ∈ S◦;
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(c) If ω < ∞, then q(ω) = 0. If α = 0, then μ = q(0) = γ and, in general, if α > −∞, then q(α) =
μ− α;

(d) For every r ∈ Z, the rv Y =X+r follows CO(μY = μ+ r; qY(j) = q(j − r));
(e) The rv W=−X follows CO(μW = −μ; qW(j) = q(−j)− j − μ);
(f) q(j) > 0 for all j ∈ S◦, where q(j)

.= q(j)+ j − μ;
(g) p(j) = r(j − 1)p(j − 1) for all j ∈ S◦, where r(j)

.= q(j)/q(j + 1), j ∈ S◦.

Proof: (a), (b) and (c) are obvious by Equation (2) and Remark 2.2.
(d) The rv Y has mean μY = μ+ r and support S(Y) = r + S = {r + j : j ∈ S} (integer

chain). Observe that
∑

k≤j(μY − k)P(Y = k) = ∑
k≤j[μ− (k − r)]P(X = k − r) = ∑

s≤j−r(μ−
s)P(X = s) = q(j − r)P(X = j − r) = q(j − r)P(Y = j).

(e) The rv W has mean μW = −μ and support S(W) = −S = {−j : j ∈ S}. Now, write∑
k≤j(μW − k)P(W = k) = ∑

k≤j(−μ− k)P(X = −k) = − ∑
k≤j[μ− (−k)]P(X = −k) =

− ∑
s≥−j(μ− s)P(X = s) = (−μ− j)P(X = −j)− ∑

s>−j(μ− s)P(X = s) and observe that∑
s≤−j(μ− s)P(X = s)+ ∑

s>−j(μ− s)P(X = s) = 0. Thus,
∑

k≤j(μW − k)P(W = k) = (−μ−
j)P(X = −j)+ ∑

s≤−j(μ− s)P(X = s) = (−μ− j)P(X = −j)+ q(−j)P(X = −j) = [q(−j)− j −
μ]P(W = j).

(f) It is obvious that j ∈ S◦(X) ⇔ −j ∈ S◦(−X). Thus, from (b) and (e), we see that for every j ∈ S◦,
q−X(−j) > 0, i.e. q(j)+ j − μ > 0.

(g) From (f), it follows that r(j) is well-defined. For each j ∈ S◦, (2) gives q(j)p(j) = ∑
k≤j(μ−

k)p(k) = q(j − 1)p(j − 1)+ (μ− j)p(j), that is, q(j)p(j) = q(j − 1)p(j − 1). �

Now, we present a useful lemma concerning the existence of moments (see [5, p. 176]).

Lemma 2.6: Let X ∼ CO(μ; δ,β , γ ). If S(X) is finite or δ ≤ 0, then X has finite moments of any order.
Furthermore, if S(X) is infinite and δ > 0, then X has finite moments of any order θ ∈ [0, 1 + 1/δ),
while E|X|1+1/δ = ∞.

Remark 2.7: We can find a rv X ∼ CO(μ; δ,β , γ ) with δ > 0 and finite support S (with cardinality
|S| ≥ 3). However, the inequality δ < [2(|S| − 2)]−1 should be necessarily satisfied in this case; see
Section 3.3.1.

Lemma 2.8: Suppose a discrete rv X is supported on an infinite integer chain S(X), has finite mean
μ, and satisfies the relation

∑
k≤j(c − k)p(k) = q(j)p(j), j ∈ S(X), where c is a constant and q is a

polynomial of degree at most two. If S(X) is upper (resp., lower) unbounded, then q(j)p(j) → 0 as j →
∞ (resp., j → −∞).

Proof: If q is a linear polynomial, then the result is obvious becauseE|X| < ∞.We shall examine only
the case where q(j) = δj2 + βj + γ with δ �= 0. If S(X) is upper unbounded, the quantity

∑
k∈Z(c −

k)p(k) = limj→∞
∑

k≤j(c − k)p(k) is well-defined, since E|X| < ∞. Thus, limj→∞ p(j)q(j) =
C ∈ R. Observe that limj→∞ j2p(j) = limj→∞[j2/q(j)]q(j)p(j) = C/δ ≥ 0. Assuming C> 0, we
can find an integer j0 > 0 such that jp(j) > C/(2δj) for all j ≥ j0. Thus, E|X| ≥ ∑

j≥j0 jp(j) ≥∑
j≥j0 C/(2δj) = ∞, a contradiction. For the lower unbounded case, we can use analogous argu-

ments. �

The result of Lemma 2.8 applies to all rvs of the CO family whose support is infinite. For this
family, the results of the above lemma can be generalized; see Proposition 6.5.

Remark 2.9: In Lemma 2.8, if the support does not have a finite upper bound, then the con-
stant c is necessarily the mean μ of X, i.e. the rv X belongs to the CO family. However, if the
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support has a finite upper bound, it may happen that c �= μ. For example, let X ∼ Poisson(λ) =
CO(μ = λ; q(j) = λ). Then, from Lemma 2.5(e), the rv W = −X ∼ CO(μW = −λ; qW(j) =
−j), i.e.

∑j
k=−∞(μW − k)pW(k) = qW(j)pW(j) for all j ∈ Z. Now, consider the truncated W̃

at the point zero [pW̃(j) = ϑpW(j), j = −1,−2, . . .]. Then, for each j ∈ S(W̃) = {−1,−2, . . .},
we have

∑j
k=−∞(μW − k)pW̃(k) = ϑ

∑j
k=−∞(μW − k)pW(k) = ϑqW(j)pW(j) = (−j)pW̃(j) and

EW̃ �= μW (note that this W̃ does not belong to the CO family).

Now we compare the CO system, i.e. the pmfs satisfying Equation (2), with the ordinary Ord
system, i.e. the pmfs satisfying the Ord’s difference Equation (1).

Proposition 2.10: Assume that a discrete rv X has pmf p and finite mean. Then, (a) and (b) are
equivalent, where

(a) X ∼ CO(μ; q);
(b) (i) The support S of X is an integer chain, S = {α, . . . ,ω} with α ≤ ω, α ∈ Z ∪ {−∞}, ω ∈ Z ∪

{∞};
(ii) There exist polynomials p1 (of degree at most one) and q (of degree at most two) such that

[�p(j − 1)]q(j − 1) = p1(j)p(j), for all j ∈ S;
(iii) For the above polynomials, there exists a constant μ such that p1(j)+�q(j − 1) = μ− j, for

all j ∈ S. If ω < ∞, then it is further required that μ = EX.

Proof: It is obvious that (a) implies (b). We now prove that (b) implies (a). Note that we do
not assume that μ is the mean of X. Combining (i) and (iii), we have, after some algebra, that
p(j)(μ− j) = �[p(j − 1)q(j − 1)]. Fix an integer i with i ≤ j. Then,

∑j
k=i p(k)(μ− k) = p(j)q(j)−

p(i − 1)q(i − 1). If α > −∞, we choose i = α and since p(α − 1) = 0, we have
∑

k≤j p(k)(μ−
k) = ∑j

k=α p(k)(μ− k) = p(j)q(j), for all j ∈ S. For α = −∞, since E|X| < ∞, the quantity∑
k≤j(μ− k)p(k) = limi→−∞

∑j
k=i(μ− k)p(k) is well-defined. Thus, limi→−∞ p(i − 1)q(i − 1) =

C ∈ R. If q is of degree at most one, then it is obvious that C= 0. If q(j) = δj2 + βj + γ , δ �= 0,
we use the same arguments as in the proof of Lemma 2.8 and we conclude that C= 0. Thus,
in any case,

∑
k≤j(μ− k)p(k) = q(j)p(j), j ∈ S. Lemma 2.8 and Remark 2.9 then complete the

proof. �

Remark 2.11: All assumptions of Proposition 2.10(b) are necessary for a rv to lie in the CO family:
It is obvious that (ii) is necessary for all j ∈ S. Regarding the assumption (i), consider the rv X with
pmf p(0) = p(2) = 0.5 and observe that (ii) and (iii) are fulfilled for p1(j) = 2 − j, q(j) = 1 − j and
μ = 1 = EX. But, this rv does not belong to the CO family. Regarding the assumption (iii), consider
the truncated Poisson X ∼ p(j) ∝ λj/j!, j = 0, 1, . . . ,N. Observe that (i)–(iii) are satisfied for p1(j) =
λ− j, q(j) = λ and μ = λ. However, since λ �= EX, this rv does not belong to the CO family; this is
so because S has a finite upper endpoint.

3. A complete classification of the cumulative Ord family

In this section, we classify the distributions of the CO family. The classification is based on the mean
μ and the parameters of the quadratic q. The most important role is played by the parameter δ, the
coefficient of the square power of q.

The natural question is to ask whether the mean μ and the quadratic q, together, characterize the
distribution. The answer is given in the following proposition.
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Proposition 3.1: Suppose the rv X follows the CO(μ; q) distribution. Then:

(a) The support S(X) is uniquely determined by μ and q;
(b) The distribution is characterized by the pair (μ; q).

Proof: (a) First, we consider the special case when μ ∈ Z and q(μ) = 0. From Remark 2.2, it fol-
lows easily that the rv takes the value μ with probability 1. Otherwise, we define N ≡ N(μ; q) =
{the first j ∈ Z ∩ [μ,∞) such that q(N) ≤ 0}. IfN = ∞, then the support S(X) does not have a finite
upper endpoint, otherwise the valueN is the upper endpoint of S(X) and, then, q(N) = 0 (otherwise
the pair (μ; q) could not satisfy the relation (2)). Regarding the lower endpoint: The rv −X follows
CO(μ−X ; q−X) with S(−X) = −S(X), μ−X = −μX and q−X(j) = q(−j)− j − μ. As before, we can
determineN′ ≡ N(μ−X ; q−X). IfN′ = ∞, then the support S(−X) does not have a finite upper end-
point, i.e. the support S(X) does not have a finite lower endpoint. Otherwise, the valueN ′ is the upper
endpoint of S(−X), i.e. −N ′ is the lower endpoint of S(X).

(b) Consider the pmf p of X and its support, S(X), which is determined by the pair (μ; q). Now, let
p̃ ∼ CO(μ; q). Consider the function r of Lemma 2.5(g) and fix j0 ∈ S(X). For every k ∈ Z with j0 +
k ∈ S(X), it follows that p(j0 + k) = r[k](j0)p(j0) and p̃(j0 + k) = r[k](j0)p̃(j0). Consequently, p̃ ∝ p,
and so p̃ = p because p and p̃ are pmfs. �

Definition 3.2: Let μ ∈ R and q(j) = δj2 + βj + γ . We say that the pair (μ; q) is admissible if there
exists a pmf p in the CO system such that p ∼ CO(μ; q).

Now, the natural question is ‘How one can check the admissibility of a given pair (μ; q)?’ Also, if
a pair is admissible, how can the corresponding pmf be obtained by this pair? The answer is given in
Algorithm 1.

Algorithm 1 Admissibility of the pair (μ; q).
1: Consider the polynomial q(j) of Lemma 2.5(f) and define

α
.= sup{j ∈ (−∞,μ] ∩ Z : q(j) = 0}, ω

.= inf{j ∈ [μ,∞) ∩ Z : q(j) = 0},
noting that sup{∅} = −∞ and inf{∅} = ∞. Next, define S = [α,ω] ∩ Z. The pair (μ; q) is admissible if and only
if q(j) > 0 for all j ∈ S◦ and q(j) > 0 for all j ∈ S◦. If (μ; q) is admissible, go to Step 2, end otherwise.

2: Let p be the corresponding pmf to the pair (μ; q) in the CO system. By application of Lemma 2.5(g), we get1:

if α > −∞, p(α + i) ∝ r[i](α), i = 0, 1, . . . ,ω − α; (7a)

if α = −∞ and ω < ∞, p(ω − i) ∝ r[−i](ω), i = 0, 1, . . . ; (7b)

if α = −∞ and ω = ∞, p(j) ∝ r[j](0), j ∈ Z. (7c)

1 For the pmfs in (7), we observe the following. Since Lemma 2.5(g) holds, as in the analysis presented in [5, Lemma 4.1, pp. 176–
178], one can see that

∑
j∈S |j|p(j) < ∞ (so the mean of X is finite), and hence,

∑
j∈S p(j) < ∞. By construction, these pmfs

satisfy the relation [�p(j − 1)]q(j − 1) = [−�q(j − 1)− j + μ]p(j), j ∈ S. As in the proof of Proposition 2.10, we get
∑

k≤j(μ−
k)p(k) = q(j)p(j) for all j ∈ S. If ω = ∞, then q(j)p(j) → 0 as j → ∞; see Lemma 2.8; thus,

∑
k∈S(μ− k)p(k) = 0. If ω < ∞,

then q(ω) = 0, see Step 1 of Algorithm 1, and so
∑

k∈S(μ− k)p(k) = ∑
k≤ω(μ− k)p(k) = q(ω)p(ω) = 0. In both cases, ω <

∞ and ω = ∞,μ is the mean value.

Next, we present a detailed classification of the CO system.

3.1. The case δ = 0

We have to further distinguish between the cases β = 0 and β �= 0.



STATISTICS 371

3.1.1. The subcase β = 0 (Poisson-type distributions)
Then, q(j) = γ > 0, j ∈ S. The support S does not have a finite upper endpoint, but it must have a
finite lower endpoint (because the quadratic q−X(j) = γ − j − μ of −X, see Lemma 2.5(e), takes
negative values for large values of j). Without lost of generality, we assume S = N. Since α = 0,
μ = γ . Observe that the Poisson distribution with parameter λ = γ follows CO(γ ; 0, 0, γ ). Using
Proposition 3.1, we have X ∼ Poisson(γ ).

3.1.2. The subcase β �= 0
We have the following sub-subcases.

3.1.2.1. The sub-subcaseβ > 0 (NegativeBinomial-type distributions). The support Sdoes not have
a finite upper endpoint, but it has a lower one. Again, we may assume that S = N (of course μ >
0). Since α = 0, q(j) = βj + μ. Consider the Negative Binomial distribution with parameters r =
β/μ > 0 and p = 1/(1 + β) ∈ (0, 1), i.e.

p(j) = [r]j
j!

pr(1 − p)j, j = 0, 1, . . . ,

which follows CO(μ; 0,β ,μ). From Proposition 3.1, X ∼ NB(r = β/μ, p = 1/(1 + β)).

3.1.2.2. The sub-subcase −1 < β < 0 (Binomial-type distributions). The support S has a finite
upper endpoint. Also, q−X(j) = −(1 + β)j + γ − μ where,−(1 + β) < 0. Thus, S has a finite lower
endpoint. Assume that S = {0, 1, . . . ,N} and 0 < μ < N. Since q(0) = μ, q(N) = 0 and q is a linear
polynomial, we get q(j) = μ(N − j)/N. Consider the Binomial distribution with parameters N and
p = μ/N, i.e.

p(j) =
(
N
j

)
pj(1 − p)N−j, j = 0, 1, . . . ,N,

which follows CO(p; 0,−p,Np). From Proposition 3.1, we see that X ∼ Bin(N, p = μ/N).

3.1.2.3. The sub-subcase β = −1 (Poisson-type distributions). Here, q−X(j) = γ − μ (constant).
Thus, this sub-subcase is the negative of the case 3.1.1.

3.1.2.4. The sub-subcase β < −1 (Negative Binomial-type distributions). In this case, q−X(j) =
−(1 + β)j + γ − μ, −(1 + β) > 0. This case is the negative of the case 3.1.2.1.

3.2. The case δ < 0 (Negative Hypergeometric-type distributions)

It is obvious that S is finite. Without loss of generality, assume that S = {0, 1, . . . ,N} with 0 <
μ < N. Since q(N) = 0 and q(0) = μ, it follows that q(j) = δ[μ/(Nδ)− j](N − j). Consider now
the Negative Hypergeometric distribution with parameters N ∈ {1, 2, 3, . . .}, r = −μ/(Nδ) > 0 and
s = (μ− N)/(Nδ) > 0, i.e. with pmf

p(j) =
(
N
j

)
(−r)j(−s)N−j

(−r − s)N
, j = 0, 1, . . . ,N.

This follows CO(Nr/(r + s);−1/(r + s), (N − r)/(r + s),Nr/(r + s)). From Proposition 3.1, X ∼
NHgeo(N; r, s).

3.3. The case δ > 0

We study the following subcases, relating to the support.
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3.3.1. Finite S (Hypergeometric-type distributions)
Set S = {0, 1, . . . ,N} and 0 < μ < N. As in Section 3.2 (δ < 0), it follows that q(j) = δ[μ/(Nδ)−
j](N − j). From Lemma 2.5(b), we get μ/(Nδ)− (N − 1) > 0, or equivalently δ < μ/[N(N − 1)].
Now, since q(j) = j[δj + (1 − μ/N − Nδ)], from Lemma 2.5(f), we have that δ + (1 − μ/N −
Nδ) > 0, or equivalently δ < (N − μ)/[N(N − 1)]. So,

0 < δ < min{μ,N − μ}/[N(N − 1)].

Note that min{μ,N − μ}/[N(N − 1)] ≤ 1/[2(N − 1)]. Consider the Hypergeometric distribution
with parameters N ∈ {2, 3, . . .}, r = μ/(Nδ) > N − 1 and s = (N − μ)/(Nδ) > N − 1, with pmf

p(j) =
(
N
j

)
(r)j(s)N−j

(r + s)N
, j = 0, 1, . . . ,N.

Thus, p ∼ CO(Nr/(r + s); 1/(r + s),−(r + N)/(r + s),Nr/(r + s)). From Proposition 3.1, X ∼
Hgeo(N; r, s).

3.3.2. One-side infinite S (Generalized Inverse Polya or Discrete F-type distributions)
First, we give an example. Let q(j) = j2 + 1 and μ = 1. It follows that q(j) = j(j + 1). Step 1 of
Algorithm 1 gives α = 0 and ω = ∞, namely, S = N, and the pair (μ; q) = (1; j2 + 1) is admissible.
Using (7a), we find the pmf p ∼ CO(1; 1, 0, 1) which is p(j) = [π/sinh(π)][

∏j−1
k=0(k

2 + 1)]/[j!(j +
1)!], j ∈ N; this pmf can be written as

p(j) = π

sinh(π)
[ı]j[−ı]j
j!(j + 1)!

, j = 0, 1, . . . , (8)

where ı is the complex unity.
Let us consider the general case when S = N and μ > 0. Since α = 0, the quadratic q is of the

form q(j) = δj2 + βj + μ. Write q(j) = δ(j + z1)(j + z2), where−z1,−z2 are the complex roots of q.
Since q(j) > 0 for every j ∈ S, we get (z1, z2) ∈ C2 ⊂ C2, where

C2 .= {(z, z̄) : z ∈ C � R} ∪ (0,∞)2 ∪
{ ∞⋃
n=0
(−n − 1,−n)2

}
.

Observe that q(j) = δj(j + ρ), where ρ = (δ + β + 1)/δ. It is also required that q(j) > 0 for all j ∈
N∗ = {1, 2, . . .}, that is, ρ > −1, or equivalently, β > −δ − 1. Under the above restrictions, the pair
(μ; q) is admissible. Step 2 of the algorithm then yields

p(j) = Γ (ρ − z1)Γ (ρ − z2)
Γ (ρ)Γ (ρ′)

[z1]j[z2]j
j![ρ]j

, j = 0, 1, . . . , (9)

where ρ′ = 1 + 1/δ. The substitution z1,2 �→ ±ı and ρ �→ 2 in Equation (9) yields Equation (8).

3.3.3. Two-side infinite S (Discrete Student-type distributions)
First, we give an example. Let q(j) = j2 + 1 and μ = 0. It follows that q(j) = j2 + j + 1. Applying
Algorithm 1, Step 1 gives α = −∞ and ω = ∞, namely, S = Z, and the pair (μ; q) = (0; j2 + 1) is
admissible. Applying Equation (7c), the pmf of CO(0; 1, 0, 1) distribution is

p(j) ∝ [ı]j[−ı]j[
3/2 + ı

√
3/2

]
j
[
3/2 − ı

√
3/2

]
j
, j ∈ Z. (10)

Note that the above choice of (μ; q) forces S to be the entireZ.
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For the general case, let μ ∈ R, q(j) = δ(z1 + j)(z2 + j) and q(j) = δ(w1 + j)(w2 + j), where
−z1, −z2 and −w1, −w2 are the complex roots of q and q, respectively. Writing z = (z1, z2) and
w = (w1,w2), since q(j) > 0 and q(j) > 0 for all j ∈ Z, it follows that z,w ∈ C̃2, where

C̃2 .= {(z, z̄) : z ∈ C � R} ∪
{⋃
n∈Z

(n, n + 1)2
}
.

Note that the pair (w1,w2) is a function of (μ; q), i.e. a function of the values μ, δ, z1 and z2. The
pair (μ; q) is admissible; see Step 1 of Algorithm 1. From Step 2, we obtain a formula for the pmf as
follows (cf. [6]):

p(j) ∝ [z1]j[z2]j
[w1 + 1]j[w2 + 1]j

, j ∈ Z. (11)

Substituting z1,2 �→ ±ı and w1,2 �→ 1/2 ± ı
√
3/2 in (11), we obtain (10).

All the above possibilities (Sections 3.1–3.3) are summarized in Table 1 .

Remark 3.3: It is easy to check that if the cardinality |S| of the support equals 2, then different types
lead to identical distributions (since every such rv is Bernoulli).

4. A comparison with Ord’s discrete student distributions

Here, we offer a comparison between Ord’s Discrete Student distributions and the Discrete Student-
type distributions that are presented in this article.

Ord [6] defined the discrete student distribution as one with pmf

p(j) ∝
k∏

r=0

1
(j + r + a)2 + b2

, j ∈ Z, (12)

where k ∈ N, a ∈ [0, 1] and 0 < b2 < ∞ are the parameters of the distribution.
We are interested in answering the following questions: (a) Does p in Equation (12) belong to the

CO system? (b) If yes, what is the corresponding pmf in the Table 1? (c) Does Equation (12) describe
the set of Discrete Student-type distributions?

Before our analysis, we state the following relations that arise by the definition of [z]j; see Nota-
tions 2.1(c). Let z ∈ C, r ∈ N∗ and j ∈ Z. Then, one can easily check that the following identities
hold:

[z]−j = (−1)j/[−z + 1]j and [z]r+j = [z]j[z + j]r = [z]r[z + r]j, (13)

provided that the quantities that appear are well-defined.
Now, set the complex numbers z1,2 = a ± ıb, w1,2 = a + k ± ıb and then zk,a,b = (z1, z2)

and wk,a,b = (w1,w2). Obviously, zk,a,b,wk,a,b ∈ C̃2 and w1 + w2 − z1 − z2 = 2k ∈ 2N. We observe
that

∏k
r=0[(j + r + a)2 + b2] = [z1 + j]k+1[z2 + j]k+1. An application of Equation (13) shows

that
∏k

r=1[(j + r + a)2 + b2] = [z1]k+1[z2]k+1[w1 + 1]j[w2 + 1]j/([z1]j[z2]j). Since the quantity
[z1]k+1[z2]k+1 is positive and independent of j, the pmf in Equation (12) takes the form

p(j) ∝ [z1]j[z2]j
[w1 + 1]j[w2 + 1]j

, j ∈ Z.

If k= 0, the pmf p does not belong to the CO system; this is an expected result because p does not have
expected value due to the divergence of the harmonic series. In this case, p is the pmf of a discrete
Cauchy distribution. If k ∈ N∗, the pmf p belongs to the CO system. In conclusion, let us denote
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the distribution of p in Equation (12) by dord−t(k, a, b); then, for each k ∈ N and a,b as above,
the pmf p ∼ dord−t(k, a, b) belongs to the CO system iff k ∈ N∗; in particular, dord−t(k, a, b) ≡
d−t(zk,a,b,wk,a,b).

Let k ∈ N∗, 0 ≤ a ≤ 1 and b2 > 0, and let us consider p ∼ dord−t(k, a, b). Then, from the above
analysis, it follows that p ∼ d−t(zk,a,b,wk,a,b). Observe that zk,a,b,wk,a,b ∈ {(z, z̄) : z ∈ C � R} �
C̃2 with w1 + w2 − z1 − z2 ∈ 2N∗. In view of Table 1, it is obvious that the class of the discrete
student-type distributions of the CO system is strictly bigger than Ord’s class of the Discrete Student
distributions which have finitemean value. Consequently, Equation (12) cannot describe the whole of
Discrete Student-type distributions of the CO system. Of course, we must note that the Ord’s class of
Discrete Student distributions contains discrete Cauchy distributions (for k= 0); in contrast to Ord’s
system, any pmf of the CO system has finite mean value.

Finally, it is worth noting the relationship between the finite moment-order and the parameter k of
p ∼ dord−t(k, a, b). Consider the case k= 0. Then, p(j) ∝ [(j + a)2 + b2]−1 and it is obvious that p
has finite moment of order θ iff 0 ≤ θ < 1. Suppose now that k ∈ N∗. Based on the previous analysis
andTable 1, p ∼ CO(μ; δ,β , γ )with δ = 1/(2k) > 0. Since 1 + 1/δ = 2k + 1, Lemma 2.6 shows that
p has finite moment of order θ iff 0 ≤ θ < 2k + 1. Observe that the rule ‘p has finite moment of order
θ iff 0 ≤ θ < 2k + 1’ holds for every k ∈ N.

5. The symmetric pmfs of the CO system

In this section, we are interested in characterizing the symmetric pmfs of the CO system. In investi-
gating this aspect, we state and prove the following theorem. First, observe that if X is a symmetric
integer-valued rv with finite mean value, then the expected value of X is an integer or half-integer
number (the set of the half-integer numbers is denoted by Z + 1/2).

Theorem5.1: Let p ∼ CO(μ; δ,β , γ ). The pmf p is symmetric, around its mean valueμ, iffμ ∈ 1
2Z

.=
Z ∪ {Z + 1/2} and 4δμ+ 2β = −1.

Proof: Suppose X ∼ p. We prove separately the cases μ ∈ Z and μ ∈ Z + 1/2.
Let μ ∈ Z and let us consider the rv Y = X − μ. Then, the rv X, and so the pmf p, is symmetric

iff Y d== −Y . Using Lemma 2.5(d),(e), it follows that Y ∼ CO(μY ; qY), where μY = 0 and qY(j) =
δj2 + (2δμ+ β)j + (δμ2 + βμ+ γ ), and −Y ∼ CO(μ−Y ; q−Y), where μ−Y = 0 and q−Y(j) =
δj2 − (2δμ+ β + 1)j + (δμ2 + βμ+ γ ). Applying Proposition 3.1(b), Y d== −Y iff 4δμ+ 2β =
−1.

Let μ ∈ Z + 1/2, say μ = �μ
 + 1/2. Consider the rvs Y1 = X − �μ
 and Y2 = −Y1 + 1. Then,
the rv X, and so the pmf p, is symmetric iff Y1

d== Y2. Again, from Lemma 2.5(d),(e), we get Y1 ∼
CO(μ1; q1), where μ1 = 1/2 and q1(j) = δj2 + (2δ�μ
 + β)j + (δ�μ
2 + β�μ
 + γ ), and Y2 ∼
CO(μ2; q2), whereμ2 = 1/2 and q2(j) = δj2 − [2δ(�μ
 + 1)+ β + 1]j + [δ�μ
2 + δ(2�μ
 + 1)+
β(�μ
 + 1)+ γ + 1/2]. An application of Proposition 3.1(b) implies that Y1

d== Y2 iff 4δμ+ 2β =
−1. �

Now, we are interested in finding the types of the CO system that contain symmetric pmfs. If
X ∼ CO(μ; δ,β , γ ), there exist s ∈ {−1, 1} and r ∈ Z such that the pmf of Y = sX+r belongs to
Table 1. It is obvious that X is a symmetric rv iff Y is symmetric. Under this observation and using
Theorem 5.1 and Table 1, we have the following list:

• The Poisson-type distributions do not contain symmetric pmfs, due to non-symmetric support.
Alternatively, since δ = β = 0, we have that 4δμ+ 2β = 0 �= −1;

• The Binomial-type distributions contain symmetric pmfs. Since δ = 0 and β = −p, 4δμ+ 2β =
−1 is equivalent with p = 1/2 which implies μ = N/2 ∈ 1

2Z;
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• The Negative Binomial-type of distributions does not contain symmetric pmfs, due to non-
symmetric support. Alternatively, δ = 0, β = (1 − p)/p and so 4δμ+ 2β = 2(1 − p)/p > 0;

• The Negative Hypergeometric-type distributions contain symmetric pmfs. If p is a symmetric pmf,
its support S = 0, 1, . . . ,N must be symmetric around μ; consequently, μ = rN/(r + s) = N/2,
equivalently, r= s. Conversely, for r= s, we have that μ = N/2, δ = −1/(2r), β = (N − r)/(2r)
and so 4δμ+ 2β = −1;

• The Hypergeometric-type distributions contain symmetric pmfs. Using the same arguments as in
the Negative Hypergeometric-type distributions, a pmf in this subsystem is symmetric iff r= s;

• The discrete F-type distributions do not contain symmetric pmfs, due to non-symmetric support.
Alternatively, setting θ = ρ − r − s − 1 > 0, we have that μ = rs/θ , δ = 1/θ and β = (r + s)/θ .
Observe that rs> 0 and r + s ∈ R because (r, s) ∈ C2. The relation 4δμ+ 2β = −1 implies that
θ2 + 2(r + s)θ + 4rs = 0, which has discriminantΔ = 4(s − r)2. If r and s are complex conjugate
numbers, θ ∈ C � R, a contradiction; therefore, (r, s) ∈ (0,∞)2 ∪ {⋃∞

n=0(−n − 1,−n)2}. Solv-
ing the equation θ2 + 2(r + s)θ + 4rs = 0, we get θ = −2r or −2s. Observe that μ = −s/2 > 0
(or μ = −r/2 > 0) belongs in 1

2Z. Hence, s (or r) is a negative integer, a contradiction;• The discrete student-type distributions contain symmetric pmfs. Consider the vectors z =
(−1/2,−1/2), w = (1/2, 1/2) ∈ C̃2. Then, w1 + w2 − z1 − z2 = 2, μ = 0, β = −1/2 and so
4δμ+ 2β = −1. Using (11), we find that the corresponding symmetric pmf is p(0) = (2π2 −
55/3)−1, p(j) = (6π2 − 165)−1 when j = ±1, and p(j) = (2π2 − 55/3)−1(j2 − 1/4)−2 for j =
±2,±3, . . ..
Now, we determine the class of the symmetric discrete-t rvs. SupposeX ∼ d−t(z,w), where z,w ∈
C̃2 with δ−1 = w1 + w2 − z1 − z2 > 0. Then, X ∼ CO(μX ; qX) for an admissible pair (μX ; qX),
and the rvY = X − �μX
 followsCO(μY ; qY), see Lemma 2.5(d), and hasmean valueμY ∈ [0, 1).
Since X is a symmetric rv iff Y is symmetric, it is sufficient to find the generator class of the sym-
metric discrete-t distributions for which themean value is 0 or 1/2.We distinguish the casesμ = 0
and μ = 1/2.

◦ Case μ = 0. In view of Table 1, μX = δ(z1z2 − w1w2) = 0, qX(j) = δ(z1 + j)(z2 + j) and
pX(j) ∝ [z1]j[z2]j/([w1 + 1]j[w2 + 1]j), j ∈ Z. The rv Y =−X has pmf pY(j) = pX(−j) ∝
[z1]−j[z2]−j/([w1 + 1]−j[w2 + 1]−j), j ∈ Z. Applying (13), pY(j) ∝ [−w1]j[−w2]j/([−z1 +
1]j[−z2 + 1]j), j ∈ Z. Lemma2.5(d) gives thatY followsCO(μY ; qY);moreover, fromTable 1,
μY = δ(w1w2 − z1z2) = 0 and qY(j) = δ(−w1 + j)(−w2 + j). Obviously, X is a symmetric
rv iffX d== Y ; using Proposition 3.1(b),X is a symmetric rv iffw � −z and z1 + z2 < 0 (since
δ > 0). The symmetric discrete-t rvs with mean value zero is the set

S{0}
d−t

.=
{
d−t(z,−z) : z ∈ C̃2 with z1 + z2 < 0

}
;

◦ Case μ = 1/2. Again from Table 1 we have that μX = δ(z1z2 − w1w2) = 1/2 and
qX(j), pX(j) as in the case μ = 0. The rv Y =−X+1 has pmf pY(j) = pX(−j +
1) ∝ [z1]−j+1[z2]−j+1/([w1 + 1]−j+1[w2 + 1]−j+1), j ∈ Z. Applying (13), pY(j) ∝ [−w1 −
1]j[−w2 − 1]j([−z1]j[−z2]j), j ∈ Z. Lemma 2.5(d),(e) give that Y follows CO(μY ; qY). By
construction,μY = μX = 1/2; furthermore, Table 1 implies qY(j) = δ(−w1 − 1 + j)(−w2 −
1 + j). Since X is a symmetric rv iff X d== Y , Proposition 3.1(b) gives that X is a symmetric
rv iff w � −z − 1 and z1 + z2 < −1 (since δ > 0). The symmetric discrete-t rvs with mean
value half is

S{1/2}
d−t

.=
{
d−t(z,−z − 1) : z ∈ C̃2 with z1 + z2 < −1

}
.

The symmetric discrete-t rvs with mean value zero or half is the generator-set of the symmetric
discrete-t rvs,

S{0,1/2}
d−t = S{0}

d−t ∪ S{1/2}
d−t .
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The set of the symmetric discrete-t rvs is

Sd−t
.= S{0,1/2}

d−t + Z =
{
X + r : X ∈ S{0,1/2}

d−t , r ∈ Z
}
.

Finally, we define the noncentrality parameter as well as the degrees of freedom of a discrete-t
distribution. In view of Theorem 5.1 and the fact that the tν distribution has finite absolute moments
of order θ for each 0 < θ < ν while its νth absolute moment is infinity, cf. Lemma 2.6, we give the
following definition.

Definition 5.2: LetX ∼ d−t(z,w)with z,w ∈ C̃2 and δ−1 = w1 + w2 − z1 − z2 > 0, and let us con-
sider the parameters μ = δ(z1z2 − w1w2) and β = δ(z1 + z2). Then, the noncentrality parameter of
X is defined by

ε = (ε1, ε2), where ε1 = min
x∈ 1

2Z
|x − μ| and ε2 = |4δμ+ 2β + 1|,

and the degrees of freedom of X are defined as df = 1 + 1/δ.

6. Moment relations in the cumulative Ord family

This section presents some properties about the moments of a rv of the CO family.
For a discrete rv X ∼ CO(μ; q) ≡ CO(μ; δ,β , γ ), the following covariance identity holds

Cov[X, g(X)] = Eq(X)�g(X), (14)

provided that Eq(X)|�g(X)| < ∞; see [7]. Setting g(x) = x, we get

σ 2 .= VarX = Eq(X),

provided EX2 < ∞. Writing q(X) = δ(X − μ)2 + q′(μ)(X − μ)+ q(μ) and taking expectations,
we have

σ 2 = q(μ)/(1 − δ), (15)

noting that from Lemma 2.6 and Remarks 2.7 and 3.3, the denominator 1 − δ is positive.
Now, we prove a lemma concerning the pmf p∗(j) ∝ q(j)p(j).

Lemma 6.1: Suppose a non-constant rv X ∼ CO(μ; q) and E|X|3 < ∞. Let X∗ be the rv with pmf
p∗ ∝ qp. Then, X∗ is supported on the set S(X∗) .= S◦(X) (i.e. α∗ = α, ω∗ = ω − 1) and X∗ ∼
CO(μ∗; q∗), where μ∗ = (μ+ β + δ)/(1 − 2δ) and q∗(j) = q(j + 1)/(1 − 2δ).

Proof: Lemma 2.6 proves that 1 − 2δ > 0 because E|X|3 < ∞; from this and Lemma 2.5(b),(c), it
follows that the function p∗ is non-negative onZ and takes strictly positive values on the set S(X∗) =
S◦(X). Using �[h1(k)h2(k)] = h1(k)�h2(k)+ h2(k + 1)�h1(k), we have �[q(k)q(k − 1)p(k −
1)] = q(k)�[q(k − 1)p(k − 1)] + q(k)p(k)�q(k) = q(k)(μ− k)p(k)+ q(k)p(k)(2δk + δ + β) =
[μ+ δ + β − (1 − 2δ)k]q(k)p(k). Thus,

∑
k≤j(μ

∗ − k)p∗(k) = {∑k≤j�[q(k)q(k − 1)p(k − 1)]}/
[(1 − 2δ)Eq(X)]. SinceE|X|3 < ∞, using the same arguments as in the proof of Proposition 2.10, we
obtain that

∑
k≤j�[q(k)q(k − 1)p(k − 1)] = q(j + 1)q(j)p(j). So,

∑
k≤j(μ

∗ − k)p∗(k) = q∗(j)p∗(j).
It remains to show that the value μ∗ is the mean of X∗. Of course, E|X∗| < ∞ because E|X|3 < ∞.
If S(X∗) has a finite upper endpoint ω∗ = ω − 1, then q∗(ω∗) = q(ω)/(1 − 2δ) = 0, since ω is the
upper endpoint of S(X). If ω∗ = ω = ∞, we use the same arguments as in the proof of Proposi-
tion 2.10. For both cases ω < ∞ and ω = ∞,

∑
k∈S(X∗)(μ

∗ − k)p∗(k) = 0, i.e. EX∗ = μ∗. �
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The quadratic q takes non-negative values on the support of X. Therefore, we can create new pmfs
by defining pi ∝ q[i]p. But, if the support of X is finite, then for each i greater than or equal to the
cardinality of S(X), the function pi vanishes identically onZ. Thus, it is useful to define the quantity
M = M(X) as follows:

M = M(X) .= |S(X)| − 1 = ω − α ∈ {0, 1, . . .} ∪ {∞}.

Proposition 6.2: Let X ∼ CO(μ; q) = CO(μ; δ,β , γ ) with pmf p and E|X|2n+1 < ∞ for some n ∈
{0, 1, . . . ,M(X)}. For all i = 0, 1, . . . , n, we consider the rvs Xi with pmfs pi ∝ q[i]p [note that Xi =
X∗
i−1, i = 1, . . . , n, where X0 = X], and we define

μi = δi2 + βi + μ

1 − 2iδ
, qi(j) = q(j + i)

1 − 2iδ
,

δi = δ

1 − 2iδ
, ψ(i) = q

(
[−δi2 + (β + 1)i + μ]/[1 − 2iδ]

)
1 − (2i + 1)δ

.

Then:

(a) The rv Xi is supported on the set Si
.= S(Xi) = {αi, . . . ,ωi} = {α, . . . ,ω − i};

(b) Xi ∼ CO(μi; qi);
(c) VarXi = ψ(i) (for i = n, it is additionally required that E|X|2n+2 < ∞);
(d) Ai = Ai(μ; q)

.= Eq[i](X) = ψ [i](0)�[i]
2δ(0);

(e) The descending factorial moments of X, μ(r) = E(X)r , and the ascending factorial moments of X,
μ[r] = E[X]r , satisfy the following second-order recurrence relations:

(1 − rδ)μ(r+1) = {μ+ r[β − 1 + (2r − 1)δ]}μ(r) + r{γ + (r − 1)[β + (r − 1)δ]}μ(r−1),

(1 − rδ)μ[r+1] = {μ+ r[β + 2 − (2r − 1)δ]}μ[r]

+ r{γ − μ− (r − 1)[β + 1 − (r − 1)δ]}μ[r−1],

with initial conditions μ(0) = μ[0] = 1 and μ(1) = μ[1] = μ, for all r = 1, . . . , 2n;
(f) The factorial moments of X, μ(r) and μ[r], satisfy the following recurrence relations:

(1 − rδ)μ[r+1] = [μ+ r(β − rδ + 1)]μ[r] + γ r!
r−1∑
k=0

μ[k]

k!
,

(1 − rδ)μ(r+1) = (δr2 + βr + μ)μ(r) + (γ − μ)r!
r−1∑
k=0

(−1)r+k+1μ(k)

k!
.

Proof: (a) Observe that 1 − 2iδ > 0 for all i = 0, 1, . . . , n (if δ ≤ 0, it is obvious; if δ > 0, the case
of infinity support follows by Lemma 2.6 while the case of finite support by Remark 2.7). Therefore,
Lemma 2.5(b),(c) show that q[i]p is supported on Si.

(b) The proof will be done by induction on i. For i= 1, the result follows from Lemma 6.1. Assum-
ing that it holds for i − 1 ∈ {0, 1, . . . , n − 1}, we will prove that it is true for i. By assumption, Xi−1 ∼
CO(μi−1; qi−1). From E|X|2n+1 < ∞, it follows that E|Xi−1|3 < ∞. As in Lemma 6.1, we consider
the rv X∗

i−1 ∼ CO(μ∗
i−1; q

∗
i−1) with μ

∗
i−1 = (μi−1 + βi−1 + δi−1)/(1 − 2δi−1) and q∗

i−1 = qi−1(j +
1)/(1 − 2δi−1). Hence, after some algebra, we get μ∗

i−1 = μi and q∗
i−1 = qi. Finally, observe that

p∗
i−1 ∝ qi−1pi−1 and qi−1pi−1 ∝ q[i]p; so, p∗

i−1 ∝ q[i]p. By definition, pi ∝ q[i]p. Hence, we conclude
that pi = p∗

i−1 because pi, p
∗
i−1 are pmfs with support Si.

(c) It is immediate from (b) and Equation (15).
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(d) Using (c), an application of Equation (15) gives (1 − 2jδ)ψ(j) = (1 − 2jδ)Eqj(Xj) = Eq(Xj +
j) = Eq[j+1](X)/Eq[j](X) = Aj+1/Aj, j = 0, 1, . . . , n − 1, where A0 = 1. By multiplying these rela-
tions for j = 0, 1, . . . , k − 1, the result follows.

(e)WriteE(X)r+1 = (μ− r)E(X)r + E(X − μ)(X)r = (μ− r)E(X)r + Cov[X, (X)r]. Using the
covariance identity (14) and since �(j)r = r(j)r−1, it follows that Cov[X, (X)r] = rEq(X)(X)r−1.
Moreover, q(x)(x)r−1 = δ(x)r+1 + [β + (2r − 1)δ](x)r + {γ + (r − 1)[β + (r − 1)δ]}(x)r−1. Thus,
Eq(X)(X)r−1 = δμ(r+1) + [β + (2r − 1)δ]μ(r) + {γ + (r − 1)[β + (r − 1)δ]}μ(r−1). Upon com-
bining the above relations, the result follows.

For the second relation, we consider the rv Y = −X ∼ CO(−μ; δ,−β − 1, γ − μ); see
Lemma 2.5(e). Observe thatμY

(r) = (−1)rμ[r]. An application of the first relation, with some algebra,
shows the result.

(f) Using the same arguments as in (e), we write μ[r+1] = (μ+ r)μ[r] + Cov(X, [X]r). Uti-
lizing (14) and the fact that �[X]r = r[X + 1]r−1, we get Cov(X, [X]r) = rEq(X)[X + 1]r−1.
Write q(x)[x + 1]r−1 = δ[x]r+1 + (β − rδ)[x]r + γ

∑r−1
k=0(r − 1)r−1−k[x]k. Then, μ[r+1] = (μ+

r)μ[r] + r[δμ[r+1] + (β − rδ)μ[r] + γ (r − 1)!
∑r−1

k=0 μ[k]/k!]. Finally, the proof of the recurrence
relation of μ(r)s is similar to that of (e). �

Now, suppose the rv X belongs to the CO family and its support has lower endpoint α = 0. Then,
γ = μ (see Lemma 2.5(c)) and so the second recurrence relation of Proposition 6.2(f) takes the form
(1 − rδ)μ(r+1) = q(r)μ(r). Under this observation, the following corollary follows immediately.

Corollary 6.3: Let X ∼ CO(μ; δ,β , γ ). If the support of X has lower endpoint α = 0, then for
each positive integer k such that E|X|k < ∞, the kth descending factorial moment of X is μ(k) =
q[k](0)

/
�

[k]
δ (0) = ∏k−1

j=0 [q(j)/(1 − jδ)].

We apply Corollary 6.3 to the distributions of the types 1–5 that are presented in Table 1.

Application 6.4: 1. Poisson Distribution: If X ∼ P(λ) with λ > 0, then q(j)/(1 − jδ) = λ

and so μ(k) = λk for all k = 0, 1, . . .;
2. Binomial distribution: If X ∼ Bin(N, p) with N = 1, 2, . . . and 0< p< 1, then q(j)/(1 −
jδ) = p(N − j) and so μ(k) = pk(N)k for all k = 0, 1, . . .;
3.NegativeBinomialdistribution: IfX ∼ NB(r, p), r> 0 and 0< p< 1, then q(j)/(1 − jδ) =
[(1 − p)/p](r + j) and so μ(k) = [(1 − p)/p]k[r]k for all k = 0, 1, . . .;
4a. Negative Hypergeometric distribution: If X ∼ NHgeo(N; r, s) with N = 1, 2, . . . and
r,s> 0, then q(j)/(1 − jδ) = (r + j)(N − j)/(r + s + j) and so μ(k) = [r]k(N)k/[r + s]k for all
k = 0, 1, . . .;
4b. Hypergeometric distribution: If X ∼ NHgeo(N; r, s) with N = 1, 2, . . . and r,s>N−1,
then q(j)/(1 − jδ) = (r − j)(N − j)/(r + s − j) and so μ(k) = (r)k(N)k/(r + s)k for all k =
0, 1, . . .;
5. Discrete F-type distribution: If X ∼ d−F(ρ; r, s) with (r, s) ∈ C2 and ρ > max{0, r + s +
1}, then q(j)/(1 − jδ) = (r + j)(s + j)/(ρ − r − s − 1 − j) and so μ(k) = [r]k[s]k/(ρ − r − s −
1)k for all k = 0, 1, . . . such that k < ρ − r − s.

Next, we generalize the results of Lemma 2.8 in CO family.

Proposition 6.5: Let X ∼ CO(μ; q) = CO(μ; δ,β , γ ) and assume that it has an upper (resp. lower)
unbounded support andE|X|2i−1 < ∞ for some i ∈ {1, 2, . . .}. Then, j2ip(j) → 0 as j → ∞ (resp. j →
−∞).

Proof: Note that δ ≥ 0 since the support is finite if δ < 0. For the case δ = 0, the result is obvious
since X has finite moments of any order; see Lemma 2.6. When δ > 0, then, as in Proposition 6.2,
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consider the rv X2i−2 ∼ CO(μ2i−2; q2i−2). From Lemma 2.8, it follows that q2i−2(j)p2i−2(j) →
0 as j → ∞ (resp. j → −∞) and since limj→±∞ q2i−2(j)p2i−2(j) ∝ limj→±∞ j2ip(j), the proof is
complete. �

7. Orthogonal polynomials in the cumulative Ord family

In this section, we present results for the orthogonal polynomials of a probability measure of the CO
family. These polynomials are obtained by a discrete Rodrigues-type formula.

First, we present a brief review. Hildebrandt [8, Chapter IV, pp.419–439] studied the nonzero
solutions u(j) of the Pearson difference equation,

�u(j) = N(j)
D(j)

u(j), (16)

where the numeratorN is a polynomial of degree at most one and the denominatorD is a polynomial
of degree at most two. He showed that the functions Qn(j), produced by the Rodrigues-type formula

Qn(j) = �n [
D[n](j − n)u(j)

]
u(j)

, (17)

are polynomials of degree atmost n; see [8, p. 425].Note thatHildebrandtmakes use of the descending
power notation, D(n)(j − 1) .= D(j − 1)D(j − 2) · · ·D(j − n) = D[n](j − n). He farther established
several properties of these polynomials. In the sequel of this section, when we say that a function is
the solution of a difference equation, we will always mean a pmf solution.

InHildebrandt’s results, the orthogonality of the produced polynomials was not an issue. However,
these polynomials are orthogonal only when we make a correct choice of the set on which we seek
a solution, and provided that we used the correct writing of the ratio of the polynomials N and D in
Equation (17). Next, we present some examples to illustrate this issue.

Here, we note that Equations (1) and (16) are equivalent, excluding the case�p(j) = 0. Specifically,
�p(j)/p(j) = N(j)/D(j) is equivalent with�p(j − 1)/p(j) = N(j − 1)/[D(j − 1)+ N(j − 1)].

Example 7.1: (a) Consider the difference equation �p(j)/p(j) = (λ− j − 1)/(j + 1), where λ is a
positive constant. This difference equation is of the form Equation (1) and (16). Of course, in
order to solve a difference equation, we must specify the support set on which we seek the
solution. If this set is N, then the solution is e−λλj/j!, j = 0, 1, . . . (Poisson distribution with
parameter λ). If the set is {0, 1, . . . ,N}, then the solution is Cλj/j!, j = 0, 1, . . . ,N (truncated
Poissondistributionwith parameterλ). The polynomials obtained byEquation (17) are theChar-
lier polynomials which are orthogonal with respect to the Poisson pmf, but not with respect to
the truncated Poisson pmf.

(b) Consider the pmf of the geometric distribution with parameter p ∈ (0, 1), i.e. p(j) = p(1 − p)j,
j = 0, 1, . . . . This pmf satisfies the difference equation�p(j)/p(j) = −p, which can be rewritten
in the form Equation (16) in many ways. Specifically,�p(j)/p(j) = −p(bj + a)/(bj + a), where
bj+a is a constant (when b= 0), or a linear polynomial without roots onN. For any choice of a
and b, Hildebrandt’s results are valid. However, the polynomials in Equation (17) are orthog-
onal with respect to the geometric pmf only when we make the choice a = b �= 0 (Meixner
polynomials).

(c) Now, consider the difference equation�p(j)/p(j) = 0 supported on an integer chain. Of course,
if the support is infinite, then it has no pmf solutions; thus, we consider a finite integer chain,
and without loss of generality take S = {1, 2, . . . ,N}. The solution is p(j) = 1/N, j = 1, 2, . . . ,N,
i.e. X is uniformly distributed on the support. The equation can be rewritten in the form (16) in
many ways, i.e. N(j) = 0 and D(j) = cj2 + bj + a any quadratic polynomial without roots on
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{1, 2, . . . ,N − 1}. Again, the polynomials in Equation (17) are orthogonal with respect to pmf p
only when one makes the correct choice D(j) ∝ j(N − j) (Hahn polynomials).

It is true that the denominator in Equation (1), under suitable conditions, generates orthogonal
polynomials with respect to the pmf solution of this equation; see Proposition 2.10 and also the next
theorem.

Remark 7.2: In view of Example 7.1, we observe the following. The Rodrigues-type formula (17) is a
mechanism for producing polynomials, that may have some elegant properties regarding their coeffi-
cients. On the other hand, the specific cases of Example 1 clearly indicate that the relation (1) (or the
equivalent relation (16)) ignores the information about the production of the Rodrigues-orthogonal
polynomials, while the relation (2) provides the whole of the information that is needed.

Independently of Hildebrandt’s results, Afendras et al. [3] studied the orthogonality of the
Rodrigues polynomials in the CO family:

Theorem 7.3 ([3, Lemma 2.3, Theorems 2.1 and 2.2]): Let X ∼ CO(μ; q) = CO(μ; δ,β , γ ). For each
k = 0, 1, 2, . . . , define the functions Pk(j), j ∈ S, by the Rodrigues-type formula

Pk(j) = (−1)k

p(j)
�k

[
q[k](j − k)p(j − k)

]
= 1

p(j)

k∑
i=0
(−1)k−i

(
k
i

)
q[k](j − i)p(j − i). (18)

Then:

(a) Each Pk is a polynomial of degree at most k, with

lead(Pk) = �
[k]
δ (k − 1) .= ck(δ) (19)

[in the sense that the function Pk(j), j ∈ S, is the restriction of a real polynomial Gk(x) =∑k
i=0 c(k, i)x

i, x ∈ R, of degree at most k, such that c(k, k) = lead(Pk)];
(b) Provided that EX2n < ∞ for some n ≥ 1, the polynomials Pk, k = 0, 1, . . . , n, satisfy the orthog-

onality condition

EPk(X)Pm(X) = δk,mck(δ)Eq[k](X) = δk,mck(δ)Ak, k,m = 0, 1, . . . , n, (20)

where δk,m is Kronecker’s delta;
(c) Provided that k ≥ 1 and E|X|2k−1 < ∞, the following ‘Rodrigues inversion formula’ holds:

q[k](j)p(j) = 1
(k − 1)!

∑
i>j
(i − j − 1)k−1Pk(i)p(i). (21)

Remark 7.4: (a) In (18) when k>M, we have EP2k(X) = 0, since the polynomial q[k] vanishes
identically on S. Thus, in the sequel, we study the polynomials Pk only when k ≤ M.

(b) Provided that EX2k < ∞ and k ≤ M, the quantities 1 − jδ, j = 0, 1, . . . , 2k − 2, are strictly
positive. If δ ≤ 0, this is obvious. If δ > 0 and S is infinite, this follows from Lemma 2.6;
when S is finite, it follows from Remark 2.7. Thus, the quantity �[k]

δ (k − 1) is strictly posi-
tive. Also, since the polynomial q[k] is non-negative on S andP[q[k](X) > 0] > 0, it follows that
0 < Eq[k](X) < ∞.
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For a non-negative integer n such that n ≤ M and EX2n < ∞, Remark 7.4(b) shows that we can
define the standardized Rodrigues polynomials,

φk(j) = [k!ck(δ)Ak]−1/2Pk(j), k = 0, 1, . . . , n. (22)

The set {φk}nk=0 ⊂ L2(R,X) is an orthonormal basis for all polynomials with degree at most n.
Moreover, Equation (19) shows that the leading coefficient is given by

lead(φk)
.= dk(μ; q) = [ck(δ)/(k!Ak)]1/2 > 0, k = 0, 1, . . . , n. (23)

Let X be any rv of the CO family withE|X|2n < ∞, where n is less than the cardinality of the support
ofX. It is well known that we can always construct an orthonormal set of real polynomials up to order
n. This construction is based on the first 2nmoments of X and is a by-product of the Gram–Schmidt
orthonormalization process, applied to the linearly independent system {1, x, x2, . . . , xn} ⊂ L2(R,X).
The orthonormal polynomials are then uniquely defined, apart from the fact that we can multiply
each polynomial by ±1. It follows that the standardized Rodrigues polynomials φk of Equation (22)
are the unique orthonormal polynomials that can be defined for a pmf p ∼ CO(μ; δ,β , γ ), provided
that lead(φk) > 0. Therefore, it is useful to express the L2-norm of each Pk in terms of the parameters
δ, β , γ and μ. This result is given by Equation (20) and Proposition 6.2(d).

Consider the rvs Xi with pmfs pi as defined in Proposition 6.2. From (18), the corresponding
Rodrigues polynomials are given by

Pk,i(j) = (−1)k

pi(j)
�k

[
q[k]i (j − k)pi(j − k)

]
. (24)

Thus, the standardized Rodrigues polynomials, orthonormal with respect to the pmf of Xi, are given
by

φk,i(j) = [
k!ck(δi)Ak(μi; qi)

]−1/2Pk,i(j). (25)

Note that for i= 1, the rvX1 is denoted byX∗ (p1 ≡ p∗ etc.). Therefore, wemay denote the polynomial
Pk,1 by P∗

k and the standardized polynomial φk,1 by φ∗
k . An important observation is that the forward

difference of φk is scalar multiple of φ∗
k−1. Specifically, we have the following lemma.

Lemma 7.5: If X ∼ CO(μ; q) = CO(μ; δ,β , γ ) and EX2n < ∞ for some 1 ≤ n ≤ M, then the poly-
nomials φk of (22) and φk,1 ≡ φ∗

k of Equation (25) are related through

�φk(j) = vk−1φ
∗
k−1(j), k = 1, 2, . . . , n, where vk−1 = vk−1(μ; q)

.= {k[1 − (k − 1)δ]/A1}1/2 .
(26)

Proof: First, we show that for 1 ≤ m < k ≤ n, E�φk(X∗)�φm(X∗) = 0. We have

[�φk(j)�φm(j)]q(j)p(j) = �
{
φk(j)[�φm(j − 1)]q(j − 1)p(j − 1)

} − φk(j)polm(j)p(j), (27)

where polm(j)
.= [�2φm(j − 1)]q(j)+ [�φm(j − 1)](μ− j) is a polynomial with deg(polm) ≤

m. Summing (27) for all j ∈ {α, . . . ,ω}, we observe the following: The lhs of the sum is
E[�φk(X∗)�φm(X∗)]Eq(X). The first part of the rhs of the sum is φk(j)[�φm(j − 1)]q(j − 1)p(j −
1)|ω+1

α = 0 (for finite α and ω, this follows from p(α − 1) = q(ω) = 0; for infinite α and ω, it fol-
lows from Proposition 6.5). The second part of the rhs of the sum is Eφk(X)polm(X) = 0, because
φk is orthogonal to any polynomial of degree less than k. From the moment conditions, it is obvious
that E[�φk(X∗)]2 < ∞. Thus, it suffices to show that E[�φk(X∗)]2 > 0. The polynomial �φk(x),
x ∈ R, is not identically zero, since lead(�φk) = klead(φk) > 0, and can not vanish identically on
the support of X∗, since deg(�φk) = k − 1 is less than the cardinality of the support of X∗. Finally,
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since deg(�φk) = deg(φ∗
k−1) = k − 1, k = 1, . . . , n, the uniqueness of the orthogonal polynomial

system implies that there exist constants vk �= 0 such that �φk = vk−1φ
∗
k−1. Equating the lead-

ing coefficients, we obtain lead(�φk) = vk−1lead(φ∗
k−1), that is, vk−1 = lead(�φk)/lead(φ∗

k−1) =
klead(φk)/lead(φ∗

k−1) = k{[(k − 1)!ck(δ)Ak−1(μ
∗; q∗)]/[k!ck−1(δ

∗)Ak]}1/2; see Equation (23).More-
over, one can easily see that ck(δ) = [1 − (k − 1)δ](1 − 2δ)k−1ck−1(δ

∗) and Ak = (1 − 2δ)k−1A1
Ak−1(μ

∗; q∗). Thus, vk−1 = {k[1 − (k − 1)δ]/A1}1/2. �

Applying now Lemma 7.5, inductively it is easy to verify the following result.

Theorem 7.6: Let X ∼ CO(μ; q) = CO(μ; δ,β , γ ) and assume that EX2n < ∞ for some integer n
with 1 ≤ n ≤ M. Then,

�mφk(j) = v
(m)
k−mφk−m,m(j), m = 0, 1, . . . , n, k = m,m + 1, . . . , n,

with v(m)k−m = v
(m)
k−m(μ; q)

.=
{
k!�[m]

δ (k − 1)/[(k − m)!Am]
}1/2

, (28)

where the polynomials φk, φk−m,m are as given in Equations (22) and (25), respectively.

Proof: The proof follows by induction on m. For m= 0, the result is obvious, noting that φk,0 = φk
and ν(0)k,0 = 1. For m= 1, the result follows by Lemma 7.5, since φk,1 = φ∗

k and ν(1)k,1 = νk. Assuming
that it is true for m − 1 ∈ {0, 1, . . . , n − 1}, we will show that it holds for m. By the assump-
tion of induction,�m−1φk(j) = v

(m−1)
k−m+1φk−m+1,m−1(j), and v

(m−1)
k−m+1 = {k!�[m−1]

δ (k − 1)/[(k − m +
1)!Am−1]}1/2. Applying Lemma 7.5 for Xm−1 ∼ CO(μm−1; qm−1), �mφk(j) = �[�m−1φk(j)] =
v
(m−1)
k−m+1�[φk−m+1,m−1(j)] = v

(m−1)
k−m+1vk−m(μm−1; qm−1)φ

∗
k−m,m−1(j) = v

(m−1)
k−m+1vk−m(μm−1; qm−1)

φk−m,m(j), where v
(m−1)
k−m+1vk−m(μm−1; qm−1) = ({k!�[m−1]

δ (k − 1)/[(k − m + 1)!Am−1]}{(k − m +
1)[1 − (k − m)δm−1]/[A1(μm−1; qm−1)]})1/2; see (26). Finally, it is easily shown thatA1(μm−1; qm−1)
= Am/{[1 − 2(m − 1)δ]Am−1} and 1 − (k − m)δm−1 = [1 − (k − 2m − 2)δ]/[1 − 2(m − 1)δ].
Thus, v(m−1)

k−m+1vk−m(μm−1; qm−1) = v
(m)
k−m, completing the proof. �

8. L2 completeness and expansions

We now study the Fourier coefficients of a function regarding its expansion in the L2 Hilbert space.
First, we present the following basic result.

Theorem 8.1 ([3, Theorem 2.2]): Suppose X ∼ CO(μ; q) and that EX2k < ∞ for some k ≥ 1. If g
is a function defined on S with Eq[k](X)|�kg(X)| < ∞, then E|Pk(X)g(X)| < ∞ and the following
covariance identity holds:

EPk(X)g(X) = Eq[k](X)�kg(X). (29)

Note that if the support S has a finite upper endpoint, ω < ∞, then�kg(j), j ∈ S, may depend on
some values {g(j), j /∈ S}; however, only the values {j : j ∈ S, j ≤ ω − k} are relevant in the covariance
identity. This is so because for j > ω − k, the ascending power q[k](j) includes the factor q(ω) = 0.
Thus, assuming any values for g(j) when j lies in the set {ω + 1,ω + 2, . . .}, e.g. g(j) = 0, j = ω +
1,ω + 2, . . ., will not affect the covariance identity. For any function g defined on S, the function�kg
has domain the set Sk; see Proposition 6.2(a). Thus, the values�kg(j), j ∈ S � Sk (if exist), that appear
in the formula, are immaterial. Note that if S is finite and k > M(X), then both polynomials Pk and
q[k] are identically zero on S, and the relation (29) takes the trivial form 0= 0.
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It is important to note that the identity (29), combined with Equation (22), enables a convenient
calculation of the Fourier coefficient αk = Eφk(X)g(X) of a function g. Specifically,

αk = Eφk(X)g(X) = [k!ck(δ)Ak]−1/2Eq[k](X)�kg(X). (30)

The rhs of Equation (30) shows that we do not need to know the polynomial φk in order to calculate
αk.

We now shed some light on the interrelations between the spaces L2(R,Xi) and L1(R,Xi).

Lemma 8.2: Let the rvs X and X∗ be as in Lemma 6.1. Assume that the function g is defined on the
support of X. Then,

(a) �g ∈ L2(R,X∗) ⇒ g ∈ L2(R,X);
(b) �g ∈ L1(R,X∗) ⇒ g ∈ L1(R,X).

Proof: (a) For |S| < ∞, the result is obvious. Thus, assume that |S| = ∞ and consider a function g
such that�g ∈ L2(R,X∗). It suffices to show that for somem ∈ Z,

∞∑
j=m

g2(j)p(j) < ∞ when ω = ∞, and
m∑

j=−∞
g2(j)p(j) < ∞ when α = −∞.

For the first inequality, it suffices to show that �1(m)
.= ∑∞

j=m[g(j)− g(m)]2p(j) < ∞. Let m =
�μ
 + 1 > μ. Then, �1(m) = ∑∞

j=m p(j)[
∑j−1

i=m�g(i)]2 ≤ ∑∞
j=m p(j)(j − m)

∑j−1
i=m[�g(i)]2 =∑∞

i=m[�g(i)]2
∑∞

j=i+1(j − m)p(j) ≤ ∑∞
i=m[�g(i)]2

∑∞
j=i+1(j − μ)p(j). Since

∑∞
j=i+1(j − μ)p(j) =

q(i)p(i), we get �1(m) ≤ ∑∞
i=m[�g(i)]2q(i)p(i) ≤ ∑

i∈Z[�g(i)]2q(i)p(i) = Eq(X)E[�g(X∗)]2 <
∞. For the second inequality, we use the same arguments withm = �μ
 ≤ μ.

(b) Let�g ∈ L1(R,X∗). Then, Eq(X)|�g(X)| = Eq(X)E|�g(X∗)| < ∞. Applying Theorem 8.1
for k= 1, and since P1(j) = j − μ, it follows that E|P1(X)g(X)| = ∑

j∈Z |(j − μ)g(j)|p(j) is
finite. Thus,

∑
j>�μ
+1 |g(j)|p(j) ≤ ∑

j>�μ
+1 |(j − μ)g(j)|p(j) < ∞ and
∑

j≤�μ
−1 |g(j)|p(j) ≤∑
j≤�μ
−1 |(j − μ)g(j)|p(j) < ∞, completing the proof. �

Corollary 8.3: Let the rvs X and Xi, i = 0, 1, . . . , n be as in Proposition 6.2 and consider a function g
defined on the support of X. Then:

(a) �ng ∈ L2(R,Xn) ⇒ �ig ∈ L2(R,Xi) for every i = 0, 1, . . . , n;
(b) �ng ∈ L1(R,Xn) ⇒ �ig ∈ L1(R,Xi) for every i = 0, 1, . . . , n.

Proof: Follows immediately by an application of Lemma 8.2. �

It is known (due to M. Riesz) that the real polynomials are dense in L2(R,X) whenever the prob-
ability measure of X is determined by its moments; see [9,10]. An even simpler sufficient condition is
when X has a finite moment generating function at a neighborhood of zero, that is, when there exists
t0 > 0 such that

MX(t) = E etX < ∞, t ∈ (−t0, t0); (31)

see [3], cf. [11].
Consider a rv X in the CO family. If the support of X is finite, then (31) holds, and obviously,

the real polynomials are dense in the finite-dimensional space L2(R,X); in this case, L2(R,X) =
span{1, x, x2, . . . , xM}, and the system of polynomials {φk}Mk=0 is an orthonormal basis of L2(R,X).
When X has infinite support, then there are two possibilities: If δ > 0, then X does not have finite
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moments of any order, see Lemma2.6, and any real polynomial ofL2(R,X) is of boundeddegree; thus,
only a finite number of orthonormal polynomials exist, and these polynomials cannot be dense in the
infinite-dimensional space L2(R,X). If δ ≤ 0, then Equation (31) holds, see Section 3 or Table 1, so
the real polynomials are dense in L2(R,X) and the system of polynomials {φk}∞k=0 is an orthonormal
basis of this space. From the above observations, it is natural to define the following subclass of rvs of
the CO system:

X .= {X : X ∼ CO(μ; δ,β , γ ) for some (μ; δ,β , γ ), and δ ≤ 0 or |S(X)| < ∞}.

Remark 8.4: Let X ∈ X . Then:

(a) The set of polynomials {φk}Mk=0 (M is finite or infinite) is an orthonormal basis of L2(R,X). Thus,
any function g ∈ L2(R,X) can be expanded as

g(j) ∼
M∑
k=0

αkφk(j), (32)

where αk = Eφk(X)g(X) are the Fourier coefficients of g. The series converges in the
norm of L2(R,X); that is, E[g(X)− ∑M

k=0 αkφk(X)]
2 = 0 (when M < ∞) or E[g(X)−∑N

k=0 αkφk(X)]
2 → 0 as N → ∞ (whenM = ∞). Parseval’s identity shows that

Var g(X) =
M∑
k=1

α2k , g ∈ L2(R,X); (33)

(b) For every i = 0, 1, . . . ,M,Xi ∈ X (see Proposition 6.2), and the corresponding results of (a) hold
for each Xi.

One can apply i times the forward difference operator in the series (32) to get, in view of
Theorem 7.6, the formal expansion

�ig(j) ∼
M∑
k=i

αk�
iφk(j) =

M∑
k=i

v
(i)
k−i(μ; q)αkφk−i,i(j), (34)

where v(i)k−i(μ; q) and {φk−i,i(j)}Mk=i are given by Equations (28) and (25), respectively. Now, if the
expansion (34) was indeed correct in the L2(R,Xi)-sense, then the completeness of the system
{φk,i}Mi

k=0 in L2(R,Xi) would lead to the corresponding Parseval identity,

Eq[i](X)
[
�ig(X)

]2
Eq[i](X)

= E
[
�ig(Xi)

]2 =
M∑
k=i

[
v
(i)
k−i(μ; q)

]2
α2k . (35)

Finally, from Equation (28), we have [v(i)k−i(μ; q)]
2 = k!�[i]

δ (k − 1)
/
[(k − i)!Eq[i](X)]. A combina-

tion of the last equation with (35) yields the important identity

Eq[i](X)
[
�ig(X)

]2 =
M∑
k=i

k!�[i]
δ (k − 1)
(k − i)!

α2k . (36)

This should be correct for all g such that�ig ∈ L2(R,Xi), provided that expansion (32) is valid. We
shall show that this is indeed the case. The L2 convergence of

∑N
k=0 αkφk(X) to g(X) implies that
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g(X) = ∑M
k=0 αkφk(X) with probability 1, that is, g(j) = ∑M

k=0 αkφk(j) for all j ∈ S(X). Therefore,
�ig(j) = ∑M

k=0 αk�
iφk(j) = ∑M

k=i v
(i)
k−i(μ; q)αkφk−i,i(j) for all j ∈ S(Xi).

However, the same result can be derived by an alternative technique, similar to the one given in
[12]. In fact, we shall show more, namely, that an initial segment of the Fourier coefficients for the
ith difference of g, suggested by Equation (34), can be derived for any X ∼ CO(μ; δ,β , γ ) having a
sufficient number ofmoments. This result holds even if δ > 0 and |S| = ∞.We present this technique
since Lemma 8.6 and Theorem 8.8 may be of interest on their own right.

Lemma 8.5: Consider a non-negative sequence {ai}i∈Z and assume that there is a positive integer n
such that

∑
i∈Z |i|nai is finite. For each k ∈ {0, 1, . . . , n},we define the sequence {bj;k}j∈Z by the relation

bj;k
.= ∑

i≥j[j − i]kai. Then:

(a) For every k ∈ {1, 2, . . . , n},�bj;k = kbj+1;k−1,where the forward difference is taken with respect to
the index j;

(b) �rbj;n = (n)rbj+r;n−r for each r ∈ {1, 2, . . . , n}. In particular, for r = n,

�nbj;n = n!bj+n;0 = n!
∑
i≥j+n

ai.

Proof: (a) �bj;k = ∑
i≥j+1[j + 1 − i]kai −

∑
i≥j[j − i]kai = ∑

i≥j+1�[j − i]kai − [0]k. Since [0]k
= 0 (k> 0) and�[j − i]k = k[j + 1 − i]k−1, the desired result follows.

(b) It follows easily by applying (a) r times inductively. �

Lemma 8.6: Let X ∼ CO(μ; q) = CO(μ; δ,β , γ ) and consider a positive integer k ≤ M. Then, pro-
vided that E|X|2k−1 is finite,

q(j)p(j)�Pk(j) = −λk(δ)
∑
i≤j

Pk(i)p(i) = λk(δ)
∑
i>j

Pk(i)p(i),

where λk(δ)
.= k[1 − (k − 1)δ] and Pk is the orthogonal polynomial given by Equation (18). If, in

addition, E|X|2k is finite, then for the standardized polynomial φk = [EP2k(X)]
−1/2Pk, we have

q(j)p(j)�φk(j) = −λk(δ)
∑
i≤j
φk(i)p(i) = λk(δ)

∑
i>j
φk(i)p(i). (37)

Proof: Since (x)n = (−1)n[−x]n, applying Equation (21) (replacing j by j − (k − 1)),

q[k](j − (k − 1))p(j − (k − 1)) = (−1)k−1

(k − 1)!

∑
i≥j−k+2

[j − i − k − 2]k−1Pk(i)p(i). (38)

The lhs of Equation (38) can be written as (1 − 2δ)k−1q[k−1]
1 (j − (k − 1))p1(j − (k − 1))Eq(X).

Applying the operator �k−1 and using Equation (24), we obtain (−1)k−1(1 − 2δ)k−1p1(j)Pk−1,1(j)
Eq(X) = (−1)k−1(1 − 2δ)k−1q(j)p(j)Pk−1,1(j). As in Lemma 7.5, we find that�Pk(j) = Bk−1Pk−1,1
(j), where Bk−1 = lead(�Pk)/lead(Pk−1,1) = klead(Pk)/lead(Pk−1,1) = kck(δ)/ck−1(δ1) = k[1 −
(k − 1)δ](1 − 2δ)k−1. Therefore, an application of the operator �k−1 to the lhs of Equation (38)
produces the quantity (−1)k−1λ−1

k (δ)q(j)p(j)�Pk(j). Applying the operator �k−1 to the rhs of
Equation (38) and using Lemma 8.5, we arrive at the quantity (−1)k−1 ∑

i>j Pk(i)p(i), and the result
follows from the fact that the last two quantitiesmust be equal to each other. Finally, sinceEPk(X) = 0
(because k ≥ 1), we conclude that (−1)k−1 ∑

i>j Pk(i)p(i) = (−1)k
∑

i≤j Pk(i)p(i). �
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Lemma 8.7: Let the rvs X and X∗ be as in Lemma 6.1, and assume that for some integer k
with 1 ≤ k ≤ M, E|X|max{2k,3} < ∞. Then, for any function g with �g ∈ L2(R,X∗), we have the
identity

Eφ∗
k−1(X

∗)�g(X∗) = vk−1Eφk(X)g(X), (39)

where φk, φk,1 ≡ φ∗
k and vk−1 = vk−1(μ; q) are as given in Equations (22), (25) and (26),

respectively.

Proof: By an application of Cauchy-Schwarz inequality, we get E2|φ∗
k−1(X

∗)�g(X∗)| ≤
E[φ∗

k−1(X
∗)]2E[�g(X∗)]2 = E[�g(X∗)]2 < ∞. From Corollary 8.3, it follows that g ∈ L2(R,X),

and similarly, E|φk(X)g(X)| < ∞. Since Eφk(X) = 0, φk must change its sign in the support
of X. Thus, φk has real roots, say ρ1 < · · · < ρm, that lie in the interval [α,ω]. Fix now an
integer ρ ∈ {[ρ1], . . . , [ρm]} ⊂ S. Then, Eq(X)Eφ∗

k−1(X
∗)�g(X∗) = ∑ω−1

j=α �g(j)q(j)p(j)φ∗
k−1(j) =

v−1
k−1

∑ω−1
j=α �g(j)q(j)p(j)�φk(j) = −λk(δ)v−1

k−1
∑ρ−1

j=α �g(j)
∑j

i=α p(i)φk(i)+ λk(δ)v
−1
k−1

× ∑ω−1
j=ρ �g(j)

∑ω
i=j+1 p(i)φk(i). Observing that λk(δ)v−1

k−1 = vk−1Eq(X), the preceding equation
can be rewritten as

Eφ∗
k−1(X

∗)�g(X∗) = vk−1(Σ2 −Σ1), where

Σ1
.=
ρ−1∑
j=α

�g(j)
j∑

i=α
p(i)φk(i), Σ2

.=
ω−1∑
j=ρ

�g(j)
ω∑

i=j+1
p(i)φk(i). (40)

Now, we wish to change the order of summation to both sums Σ1 and Σ2. To this end, for Σ2, it
suffices to show that

Σ∗
2

.=
ω−1∑
j=ρ

|�g(j)|
ω∑

i=j+1
p(i)|φk(i)| < ∞. (41)

Similarly, for Σ1, it suffices to show that Σ∗
1

.= ∑ρ−1
j=α |�g(j)|∑j

i=α p(i)|φk(i)| < ∞. Note that,
obviously, if α > −∞, then Σ∗

1 < ∞ and if ω < ∞, then Σ∗
2 < ∞. We now proceed to verify

Equation (41)whenω = ∞.WriteΣ∗
2 = Σ∗

21 +Σ∗
22, whereΣ

∗
21

.= ∑[ρm]
j=ρ |�g(j)|∑∞

i=j+1 p(i)|φk(i)|,
and Σ∗

22
.= ∑∞

j=[ρm]+1 |�g(j)|∑∞
i=j+1 p(i)|φk(i)|. Since E|X|k < ∞,

∑∞
i=j+1 p(i)|φk(i)| < ∞ for

each j = ρ, . . . , [ρm] and thus, Σ∗
21 < ∞, being a finite sum of finite terms. On the other hand,

since the polynomial φk does not change its sign in the set {[ρm] + 1, [ρm] + 2, . . .}, we can define
the constant c .= signφk(j) ∈ {−1, 1}, j ∈ {[ρm] + 1, [ρm] + 2, . . .}. Then, cφk(j) = |φk(j)| holds
for all j ∈ {[ρm] + 1, [ρm] + 2, . . .} and from (37), we get Σ∗

22 = c
∑∞

j=[ρm]+1 |�g(j)|∑∞
i=j+1 p(i)

φk(i) = cλ−1
k (δ)

∑∞
j=[ρm]+1 |�g(j)|q(j)p(j)�φk(j) ≤ λ−1

k (δ)
∑∞

j=[ρm]+1 |�g(j)|q(j)p(j)|�φk(j)| ≤
λ−1
k (δ)

∑∞
j=α |�g(j)|q(j)p(j)|�φk(j)| = vk−1λ

−1
k (δ)Eq(X)

∑∞
j=α |�g(j)φ∗

k−1(j)|p∗(j) = v−1
k−1E|φ∗

k−1
(X∗)�g(X∗)| < ∞. Therefore, Equation (41) follows for both cases (ω < ∞ or ω = ∞). If
α = −∞, using similar arguments it can be shown that Σ∗

1 < ∞. Thus, we can indeed
interchange the order of summation to both sums Σ1 and Σ2 of Equation (40). It follows
that Σ1 = ∑ρ−1

i=α p(i)φk(i)
∑ρ−1

j=i �g(j) = g(ρ)
∑ρ−1

i=α p(i)φk(i)− ∑ρ−1
i=α g(i)p(i)φk(i) and Σ2 =∑ω

i=ρ+1 p(i)φk(i)
∑i−1

j=ρ �g(j) = ∑ω
i=ρ+1 g(i)p(i)φk(i)− g(ρ)

∑ω
i=ρ+1 p(i)φk(i) = ∑ω

i=ρ g(i)p(i)
φk(i)− g(ρ)

∑ω
i=ρ p(i)φk(i). Taking into account the fact that

∑ω
α p(i)φk(i) = Eφk(X) = 0, we get

Σ2 −Σ1 = ∑ω
α g(i)p(i)φk(i)− g(ρ)

∑ω
α p(i)φk(i) = Eφk(X)g(X), which completes the proof of the

lemma. �
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Theorem 8.8: Let X ∼ CO(μ; q) = CO(μ; δ,β , γ ) and fix an integer k with 1 ≤ k ≤ M. Assume that
E|X|2k+1 < ∞ and consider the rvs Xi, i = 0, 1, . . . , k, as in Proposition 6.2. Then:

(a) The Fourier coefficients satisfy the relation

Eφk−i,i(Xi)�
ig(Xi) = v

(i)
k−iEφk(X)g(X), i = 0, 1, . . . , k, (42)

where φk, φk,i and v
(i)
k−i = v

(i)
k−i(μ; q) are as given in Equations (22), (25) and (28), respectively;

(b) If, in addition, X ∈ X and �ng ∈ L2(R,Xn) for some fixed integer n with 1 ≤ n ≤ M, then
Equation (36) holds for all i = 0, 1, . . . , n.

Proof: (a) By Corollary 8.3, �ig ∈ L2(R,Xi) for all i = 0, 1, . . . , k. For i= 0, Equation (42) is obvi-
ous and for i= 1, it follows from Lemma 8.7. Assume that it is true for i − 1 ∈ {0, . . . , k − 1}, that is,
Eφk−i+1,i−1(Xi−1)�

i−1g(Xi−1) = v
(i−1)
k−i+1Eφk(X)g(X). Observe that the assumptions of Lemma 8.7

are satisfied for the rv Xi−1, the integer k−i+1 and the function �i−1g. Using Equation (39),
Eφk−i,i(Xi)�

ig(Xi) = Eφk−i,i(Xi)�(�
i−1g(Xi)) = vk−i(μi−1; qi−1)Eφk−i+1,i−1(Xi−1)�

i−1g(Xi−1).
Thus, we get Eφk−i,i(Xi)�

ig(Xi) = vk−i(μi−1; qi−1)v
(i−1)
k−i+1Eφk(X)g(X). Finally, vk−i(μi−1; qi−1) =

{(k − i + 1)[1 − (k − i)δi−1]/A1(μi−1; qi−1)}1/2, where A1(μi−1; qi−1) = Ai/{[1 − 2(i − 1)δ]Ai−1}
and 1 − (k − i)δi−1 = [1 − (k + i − 2)δ]/[1 − 2(i − 1)δ]. Hence, vk−i(μi−1; qi−1) = {(k − i + 1)
[1 − (k + i − 2)δ]Ai−1/Ai}1/2 and a straightforward calculation gives vk−i(μi−1; qi−1)v

(i−1)
k−i+1 =

v
(i)
k−i.
(b) Since X ∈ X , we have that Xi ∈ X and the set of polynomials {φk,i}Mi

k=0 (where Mi =
M(Xi) = M − i) is an orthonormal basis of L2(R,Xi); see Remark 8.4(b). Moreover, �ig ∈
L2(R,Xi). Thus, by Parseval’s identity, it follows thatE[�ig(Xi)]2 = ∑Mi

k=0 α
2
k,i = ∑M

k=i α
2
k−i,i, where

αk,i
.= Eφk,i(Xi)�

ig(Xi) (with αk,0 = αk) is the Fourier coefficient of �ig with respect to φk,i.
Using Equation (42), α2k−i,i = E2φk−i,i(Xi)�

ig(Xi) = [v(i)k−i]
2E2φk(X)g(X) = [v(i)k−i]

2α2k , which ver-
ifies Equation (35) and the proof is complete. �

9. Applications to variance bounds

We now use the results of Section 8 to present a wide class of variance bounds for a function g of a rv
X in the CO family.

Let X be any rv in the CO family and consider two non-negative integers m, n ≤ M such that
EX2� < ∞, where � = max{m, n}.We denote byHm,n(X) the class of functions g : S → R (S = S(X)
is the support of X) satisfying the restrictions

Eq[n](X)
[
�ng(X)

]2
< ∞ and Eq[m](X)|�mg(X)| < ∞.

From Corollary 8.3 and the fact that E2q[i](X)|�ig(X)| ≤ Eq[i](X) · Eq[i](X)[�ig(X)]2 for all i =
0, 1, . . . , n, we conclude the following:

Ifm ≤ n and if Eq[n](X)[�ng(X)]2 < ∞, then Eq[m](X)|�mg(X)| < ∞.

Note that Corollary 8.3 requiresE|X|2�+1 < ∞, but this assumption is needed only for the existence
of the pmf p�; thus, for the validity of the above observation, it is sufficient thatEX2� < ∞. It follows
thatH0,n = H1,n = · · · = Hn,n [of course,H0,0(X) = L2(R,X)].

Furthermore, when M = ∞ and X has finite moments of any order (that is, δ ≤ 0), we shall
denote by H∞,n(X) and H∞(X) the classes ∩∞

m=0Hm,n(X) = ∩∞
m=n+1Hm,n(X) and ∩∞

n=0H∞,n(X),
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respectively. That is,

H∞,n(X) =
{
g : Eq[n](X)[�ng(X)]2< ∞ and Eq[m](X)|�mg(X)| < ∞ ∀m > n

}
,

H∞(X) =
{
g : Eq[n](X)[�ng(X)]2 < ∞ ∀n ∈ N

}
.

Note that, by definition,Hm,∞(X) .= ∩∞
n=0Hm,n ≡ H∞(X) for arbitrary fixedm.

From Corollary 8.3, we conclude that the (finite or infinite) sequence Hm,n(X) is decreasing in
bothm and n. In particular, if all moments of X exist, then

L2(R,X) ≡ H0,0(X)
⊆

H1,0(X) ⊇ H1,1(X)
⊆ ⊆

H2,0(X) ⊇ H2,1(X) ⊇ H2,2(X)
⊆ ⊆ ⊆...

...
...

⊆ ⊆ ⊆
HM,0(X)⊇HM,1(X)⊇HM,2(X)⊇· · ·⊇HM,M(X).

Equations (29) and (36) are almost identical with those given in [13, eq’s (2.3) and (2.2)], for the
continuous case. Therefore, using similar arguments, the next theorem holds; cf. [13, Theorem 2.1].

Theorem 9.1: Let X ∈ X , and fix two non-negative integers m,n with 1 ≤ m + n ≤ M. Assume that
the function g ∈ Hm,n(X). Consider the quantity

Sm,n(g) =
m∑
i=1

κiE
2q[i](X)�ig(X)+

n∑
i=1
(−1)i−1νiEq[i](X)

[
�ig(X)

]2, (43)

where

κi
.=

(m
i
)
�

[n]
δ (m + i)

(m + n)i�
[i]
δ (i − 1)�[n]

δ (m)Eq[i](X)
and νi

.=
(n
i
)

(m + n)i�
[i]
δ (m)

are strictly positive constants (depending only onm,n and X), and an empty sum (whenm= 0 or n = 0)
should be treated as zero. Then, the following inequality holds:

(−1)n
[
Var g(X)− Sm,n(g)

] ≥ 0.

Moreover, Sm,n(g) becomes equal to Var g(X) if and only if g is identically equal to a polynomial of degree
at most m+n on the support of X, that is, if and only if there exists a polynomial Hm+n of degree at most
m+n such that P[g(X) = Hm+n(X)] = 1.

Proof: Let αk = Eφk(X)g(X) be the Fourier coefficients of g. From Equations (36) and (29), we get,
as in [13], that (−1)n[Varg(X)− Sm,n(g)] = Rm,n(g), where

Rm,n(g) =
M∑

k=m+n+1

rk;m,n(δ)α
2
k

.=
M∑

k=m+n+1

(k − m − 1)n�
[n]
δ (m + k)

(m + n)n�
[n]
δ (m)

α2k . (44)

If δ ≤ 0,�[n]
δ (m + k) > 0 and�[n]

δ (m) > 0 because 1 − jδ ≥ 1 for all j ∈ N, while if δ > 0, the same
follows by Remark 2.7. Therefore, the residual Rm,n(g) in Equation (44) is non-negative, and it is
equal to zero if and only if αk = 0 for all k>m+n, i.e. if and only if the function g : S(X) → R is a
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polynomial of degree at mostm+n. Note that ifm+n=M (in the case whereM is finite), the sum in
Equation (44) is empty and it is treated as zero. �

Example 9.2: Suppose X ∼ Poisson(λ) and consider a function g : N → R. Theorem 9.1 produces
the inequality (−1)n[Varg(X)− Sm,n(g)] ≥ 0, where

Sm,n(g) =
m∑
i=1

λi

i!

(m
i
)(m+n

i
)E2�ig(X)

+
n∑
i=1
(−1)i−1 λ

i

i!

(n
i
)(m+n
i

)E [
�ig(X)

]2 , n,m = 0, 1, . . . , n + m > 0,

provided E[�ng(X)]2 < ∞ and E|�mg(X)| < ∞ (of course, if m ≤ n, the second restriction is
implied by the first one). The equality holds if and only if g : N → R is a polynomial of degree at
most n+m. For n=m= 1, we get Equation (6).

Remark 9.3: (a) For fixed n and for any function g ∈ Hm̃,n(X), where m̃ can be finite or infinite, the
variance bounds {Sm,n(g)}m̃m=0 are of the same kind, i.e. upper bounds when n is odd and lower
bounds when n is even;

(b) The bounds {Sm,n(g)}nm=0 require the same condition on g, i.e. g ∈ Hn,n(X).

Remark 9.4: (a) When m= 0, the bounds S0,n(g) are the bounds Sn given by Afendras et al. [5,
Theorem 4.1, pp.179–180], see Equation (4);

(b) The results of Theorem 9.1 also apply to the special case when n= 0 (note that the second sum
is empty and is treated as zero). In this case, the lower bound Sm,0(g) is reduced to the one given
by Afendras et al. [3, Theorem 4.1, pp.518–519], see Equation (3).

Remark 9.5: Regarding the conditions of Theorem 9.1 imposed on the function g, we note that g ∈
Hmax{m,n},n−1(X)� Hmax{m,n},n(X) implies that the bound Sm,n(g) is trivial, i.e. +∞ when n is odd
and −∞ when n is even. Of course, such a g exists only when the support is infinite (with δ = 0).

When M < ∞ and m+n=M, then Rm,n(g) = 0 and the variance bound Sm,n(g) is equal to
Var g(X) for any g. In any other case, it is of some interest to find an upper bound for the residual
Rm,n(g).

Proposition 9.6: Assume the conditions of Theorem 9.1, with m + n < M, and, further, suppose that
g ∈ HT,T(X) for some T ∈ {n, . . . ,m + n + 1}. Then, the residual Rm,n(g), given by Equation (44), is
bounded above by

uτEq[τ ](X)
(
�τ g(X)

)2 , τ = n, n + 1, . . . ,T, (45)

where uτ = um,n,τ (X)
.= �

[n]
δ (2m + n + 1)/{(m+n

n
)
(m + n + 1)τ�

[n+τ ]
δ (m)}.

Proof: Using Equation (36), we write the quantity (45) in the form
∑M

k=τ πk;τ α2k . Next, consider the
sequence {wk;τ = πk;τ /rk;m,n(δ)}Mk=m+n+1, where the numbers rk;m,n(δ) are given by Equation (44),
and observe that this sequence is increasing in k, with wm+n+1;τ = 1. �

In general, the upper bounds (when there are at least two) of the residual Rm,n(g), given by
Equation (45), are not comparable.

Next, for n fixed, we investigate the bounds Sm,n(g) asm increases.



390 G. AFENDRAS ET AL.

Theorem 9.7: Suppose X ∈ X and fix a positive integer n and a function g ∈ Hm̃,n(X), where m̃ (with
m̃ ≥ n) can be finite or infinite. Then, for each m1,m2 such that 0 ≤ m1 < m2 ≤ min{m̃,M}, the
following inequality holds:∣∣Var g(X)− Sm1,n(g)

∣∣ ≥ ζm1,m2,n(μ; q)
∣∣Var g(X)− Sm2,n(g)

∣∣ , (46)

where ζm1,m2,n(μ; q) = ζm1,m2,n is given by

ζm1,m2,n
.=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(m2 + n)n(M − m1 − 1)n�

[n]
δ (m2)�

[n]
δ (m1 + M)

(m1 + n)n(M − m2 − 1)n�
[n]
δ (m1)�

[n]
δ (m2 + M)

, |M| < ∞,

(m2 + n)n�
[n]
δ (m2)

(m1 + n)n�
[n]
δ (m1)

, |M| = ∞.
(47)

For both cases, |M| < ∞ and |M| = ∞,

ζm1,m2,n > (m2 + n)n
/
(m1 + n)n. (48)

The equality in Equation (46) holds if and only if the function g : S → R is identically equal to a
polynomial of degree at most n + m1.

Proof: Note that if n + m2 = M, then Sm2,n(g) = Varg(X) for every function g and Equation (46)
holds in a trivial way. Otherwise, we consider the finite or infinite positive sequence{

ζk = rk;m1,n(δ)

rk;m2,n(δ)
= (m2 + n)n(k − m1 − 1)n�

[n]
δ (m2)�

[n]
δ (m1 + k)

(m1 + n)n(k − m2 − 1)n�
[n]
δ (m1)�

[n]
δ (m2 + k)

}M

k=m2+n+1

.

Claim: The sequence {ζk}Mk=m2+n+1 is strictly decreasing in k.

Proof: Since {rk;m1,n(δ)/rk+1;m1,n(δ)}/{rk;m2,n(δ)/rk+1;m2,n(δ)} = ζk/ζk+1, k = m2 + n + 1, . . . ,
M − 1, it is sufficient to show that the function h(m) = rk;m,n(δ)/rk+1;m,n(δ) = (k − m − n)[1 −
(m + k)δ]/{(k − m)[1 − (m + n + k)δ]}, 0 ≤ m ≤ M − n − 1, is strictly decreasing. After some
algebra, h′(m) = −n[1 − (2m + n)δ](1 − 2kδ)/{(k − m)2[1 − (m + n + k)δ]2}. If δ ≤ 0, then it is
obvious that h′(m) < 0; if δ > 0, then it is necessary that M < ∞ and, using Remark 2.7, again it
follows that h′(m) < 0 and the claim is proved. �

If M < ∞, then the Claim shows that mink∈{m2+n+1,...,M}{ζk} = ζM = ζm1,m2,n. If M = ∞, then
observe that

ζk ↘ (m2 + n)n�
[n]
δ (m2)

(m1 + n)n�
[n]
δ (m1)

= ζm1,m2,n, as k → ∞. (49)

Moreover, observing that rk;m1,n(δ) > 0 and rk;m2,n(δ) = 0 for all k = n + m1 + 1, . . . , n + m2, (46)
follows.

If δ = 0 and M = ∞, then (48) is obvious. For δ ≤ 0 and M < ∞, we observe that
ζM > (m2 + n)n�

[n]
δ (m2)

/
[(m1 + n)n�

[n]
δ (m1)], see (49), and (48) follows. Now, assume δ >

0 (M < ∞). Since �[n+M−k]
δ (m1 + k) > �

[n+M−k]
δ (m2 + k) > 0, it is sufficient to show that

(M − m1 − 1)n�
[n]
δ (m2) ≥ (M − m2 − 1)n�

[n]
δ (m1) > 0.Observing that (M − m1 − 1)n�

[n]
δ (m2)

/
{(M − m2 − 1)n�

[n]
δ (m1)} = ∏n−1

j=0 ((M − n + j − m1)n[1 − (m2 + j)δ]/(M − n + j − m2)n[1 −
(m1 + j)δ]), and putting ηj �→ M − n + j and ξj �→ 1 − jδ, it is sufficient to show that [(ηj −
m1)(ξj − m2)]/[(ηj − m2)(ξj − m1)] > 1 for all j = 0, . . . , n − 1. This is equivalent to ξj − ηjδ >
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0, that is, δ < (M − n + 2j)−1 for all j = 0, . . . , n − 1. Observe that for each j = 0, . . . , n −
1, (M − n + 2j)−1 ≥ [M − n + 2(n − 1)]−1 = (M + n − 2)−1 ≥ (2M − 2)−1 = [2(|S| − 2)]−1 >
δ; see Remark 2.7. Thus, Equation (47) holds in any case. Finally, writing |Var g(X)− Sm1,n(g)| −
ζm1,m2,n|Varg(X)− Sm2,n(g)| = ∑M

k=n+m1+1 θkα
2
k , we observe that θk > 0 for all k. Thus, the equality

in Equation (46) holds if and only if g is identified with a polynomial of degree at most n + m1. �

Remark 9.8: Assume the conditions of Theorem 9.7.

(a) In view of Remark 9.3(a), the bounds {Sm,n(g)}m̃m=0 are of the same kind. From Equation (46), it
follows that the bound Sm2,n(g) is better than the bound Sm1,n(g). Thus, writing n= 2r (when n
is even) and n= 2r+1 (when n is odd), we have

S0,2r(g) ≤ S1,2r(g) ≤ · · · ≤ Var g(X) ≤ · · · ≤ S1,2r+1(g) ≤ S0,2r+1(g);

(b) For the case m̃ = M = ∞, from Equations (33), (43) and (a), it follows that

Sm,n(g)↗Var g(X)
[when n is even]

or Sm,n(g)↘Var g(X),
[when n is odd]

as m→∞.

Now, we compare the existing variance bound S0,n(g), see Remark 9.4(a), with the best proposed
bound shown in this section, requiring the same conditions on g, i.e. with the bound Sn,n(g), see
Remark 9.3(b).

Corollary 9.9: The variance bounds Sn,n(g) and S0,n(g) are of the same kind and require the same
assumptions on g. Moreover, the new bound Sn,n(g) is better than the existing (see Remark 9.4) bound
S0,n(g). Specifically, ∣∣Var g(X)− S0,n(g)

∣∣ ≥ ζ0,n,n
∣∣Var g(X)− Sn,n(g)

∣∣ ,
with ζ0,n,n >

(2n
n
)
. The equality holds only in the trivial case when Var g(X) = Sn,n(g) = S0,n(g), i.e.

the function g : S → R is identified with a polynomial of degree at most n.

Remark 9.10: Assume that X1, . . . ,Xν is a random sample from the geometric distribution with
parameter θ ∈ (0, 1), i.e. with pmf p(j) = θ(1 − θ)j, j = 0, 1, . . ., and let X = X1 + · · · + Xν be the
complete sufficient statistic. The uniformlyminimumvariance unbiased estimator of− log(θ) isTν =
Tν(X) = ∑ν+X−1

j=ν 1/j. Variance bounds of the kind of Theorem 9.1 have been used for constructing
bounds of Var(Tν); see [5, Section 5] and [3, Application 5.1]. In the similar and easy manner, we can
use the results of Theorems 9.1 and 9.7 in regard to the approximation of Var(Tν) and its accuracy.
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