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In this article we derive the best possible upper bound for E[maxi{Xi} − mini{Xi}] under given means and
variances on n random variables Xi. The random vector (X1, . . . , Xn) is allowed to have any dependence
structure, provided EXi = μi and Var Xi = σ 2

i , 0 < σi < ∞. We provide an explicit characterization
of the n-variate distributions that attain the equality (extremal random vectors), and the tight bound is
compared to other existing results.

Keywords: range; dependent observations; tight expectation bounds; extremal random vectors; proba-
bility matrices; characterizations
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1. Introduction

The problem of determining best possible expectation bounds on linear functions of order statis-
tics in terms of means and variances of the observations has a long history. Especially for
the sample range based on n ≥ 2 independent identically distributed (i.i.d.) random variables,
the problem goes back to Plackett,[1] Gumbel [2] and Hartley and David [3] who derived the
inequality

E

[
max
1≤i≤n

{Xi} − min
1≤i≤n

{Xi}
]

≤ nσ

√√√√ 2

2n − 1

(
1 − 1(

2n−2
n−1

)
)

, (1)

where σ 2 is the common variance of Xi. This bound is best possible in the sense that for any
given values of μ ∈ R and σ ∈ (0, ∞) there exist n i.i.d. random variables with mean μ and
variance σ 2 that attain the equality in Inequality (1).

Since then, a lot of research has been developed in order to drop the assumptions of inde-
pendence and/or identical distributions on the observations, and also to extend the results to any
L-statistic of the form L =∑n

i=1 ciXi:n, where ci are given constants and X1:n ≤ · · · ≤ Xn:n are the
order statistics corresponding to the random vector (X1, . . . , Xn). When the components Xi are
merely assumed to be i.d. (identically distributed but not necessarily independent) with mean μ
and variance σ 2, the best possible bounds for EL were established by Rychlik.[4] In particular,
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Statistics 597

setting c1 = −1, cn = 1 and ci = 0 for any other i in Rychlik’s result, we get the optimal upper
bound for the expected range:

E[Xn:n − X1:n] ≤ σ
√

2n. (2)

For a comprehensive review of related results and extensions, the reader is referred to Rychlik’s
[5] monograph; see also [6–8]. Dropping both assumptions of independence and i.d. Arnold and
Groeneveld [9] obtained the upper bound

E

(
n∑

i=1

ciXi:n

)
≤ μ̄

n∑
i=1

ci +
√√√√ n∑

i=1

(ci − c̄)2

√√√√ n∑
i=1

{(μi − μ̄)2 + σ 2
i }, (3)

which is valid for any random vector with EXi = μi and Var Xi = σ 2
i , where μ̄ = (1/n)

∑n
i=1 μi,

c̄ = (1/n)
∑n

i=1 ci. For other inequalities related to Equation (3) the reader is referred to
Nagaraja,[10] Aven,[11] Lefèvre,[12] Papadatos [13] and Kaluszka et al. [14]; see also the
monograph by Arnold and Balakrishnan.[15] Applied to the range, Inequality (3) yields the
inequality

E[Xn:n − X1:n] ≤ AGn :=
√√√√2

n∑
i=1

{(μi − μ̄)2 + σ 2
i }, (4)

which, in the homogeneous case μi = μ, σ 2
i = σ 2, reduces to Inequality (2). However, the upper

bound in Equation (4) is not tight under general mean–variance information, and the purpose of
the present work is to replace the RHS of Inequality (4) by its best possible value.

Recently, Bertsimas et al. [16,17] applied convex optimization techniques in order to replace
the RHS of Inequality (3) by its tight counterpart in some particular cases of interest. They
obtained, among other things, the best possible upper bound for the expected maximum under
any mean–variance information and any dependence structure, namely

EXn:n ≤ BNTn := −n − 2

2
y0 + 1

2

n∑
i=1

μi + 1

2

n∑
i=1

√
(μi − y0)2 + σ 2

i , (5)

where y0 is the unique solution to the equation

n∑
i=1

y0 − μi√
(μi − y0)2 + σ 2

i

= n − 2. (6)

The equality in Inequality (5) is attained by the maximally dependent random vector with

P[X1 = y0 − α1, . . . , Xj = y0 + αj, . . . , Xn = y0 − αn] = pj, j = 1, . . . , n,

where

αj =
√
(μj − y0)2 + σ 2

j , pj = 1

2

⎛
⎝1 − y0 − μj√

(μj − y0)2 + σ 2
j

⎞
⎠ , j = 1, . . . , n.

Note that pj > 0 and, by Equation (6),
∑n

j=1 pj = 1.
In the present work we extend the techniques of Lai and Robbins [18] and of Bertsimas

et al.,[17] in order to obtain the best possible upper bound for the expected range. Also, we
characterize the extremal random vectors, i.e. the vectors that attain the equality in the bound,
and we provide simple conditions (on μi and σi) under which the AGn bound of Inequality (4) is
already sharp. The main result is given in Theorem 6.1. Particular cases of interest are presented
as examples. All missing proofs are included in the appendix.
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598 N. Papadatos

2. An upper bound for the expected range

Let X = (X1, . . . , Xn) be an arbitrary random vector with EX = μ := (μ1, . . . ,μn) and
(Var X1, . . . , Var Xn) = (σ 2

1 , . . . , σ 2
n ) where 0 < σi < ∞ for all i. For notational simplicity we

write σ = (σ1, . . . , σn), σ 2 = (σ 2
1 , . . . , σ 2

n ) and Var X = σ 2; that is, Var X := diag(�) where
� is the dispersion matrix of X . The class of random vectors satisfying the above moment
requirements will be denoted by

Fn(μ, σ ) := {X : EX = μ, Var X = σ 2}.
In particular, X ∈ F1(μ, σ) means that EX = μ and Var X = σ 2.

Let X1:n ≤ · · · ≤ Xn:n be the order statistics corresponding to X and set Rn = Xn:n − X1:n for
the range. Our main interest is in calculating

inf
X∈Fn(μ,σ )

ERn, sup
X∈Fn(μ,σ )

ERn, (7)

for any given μ ∈ Rn and σ ∈ Rn
+. However, the result is known for the infimum:

inf
X∈Fn(μ,σ )

ERn = max
i

{μi} − min
i

{μi}.

Indeed, since Rn = Rn(X) is a convex function of X we have ERn(X) ≥ Rn(μ) = maxi{μi} −
mini{μi} from Jensen’s inequality. Bertsimas et al. [19] showed that this lower bound is best
possible even for the narrowed class of random vectors with given mean vector μ and (any)
given nonnegative defined dispersion matrix �. For clarity of the presentation we provide here
the construction of Bertsimas et al.[19] Define

X ε = μ + Iε√
ε

V�1/2, 0 < ε < 1,

where V = (V1, . . . , Vn)with Vi being i.i.d. with zero mean and variance one and Iε is a Bernoulli
random variable, independent of V , with probability of success equal to ε. Then it is easy to
verify that for all ε ∈ (0, 1), X ε has mean μ and dispersion matrix �. Let A ⊆ Rn be the finite
collection of vectors of the form e(i)− e(j), i 	= j, i, j ∈ {1, . . . , n}, where e(i) = (0, . . . , 1, . . . , 0)
is the unitary vector of the ith axis. With xt denoting the transpose of any 1 × n vector x, we have

Rn(X ε) = max
α∈A

{αX t
ε} ≤ max

α∈A
{αμt} + Iε√

ε
max
α∈A

{α�1/2V t}.

Clearly, maxα∈A{αμt} = maxi{μi} − mini{μi}, while

E

(
Iε√
ε

max
α∈A

{α�1/2V t}
)

= √
εE

(
max
α∈A

{α�1/2V t}
)

≤ √
ε
∑
α∈A

E|α�1/2V t| = γ
√
ε,

where γ ≥ 0 is a finite constant independent of ε. It follows that

ERn(X ε) ≤ max
i

{μi} − min
i

{μi} + γ
√
ε

and thus,

lim
ε↘0

ERn(X ε) = max
i

{μi} − min
i

{μi}.

Hence, the best possible lower bound for ERn is maxi{μi} − mini{μi}.
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Statistics 599

Regarding the supremum in Equation (7), we shall make use of the following definition.

Definition 2.1 A random vector X ∈ Fn(μ, σ ) of dimension n ≥ 2 will be called extremal ran-
dom vector (for the range) if ERn(X) = supERn, where the supremum is taken over Fn(μ, σ ).
The class of extremal random vectors is denoted by En(μ, σ ).

To the best of our knowledge, the value of the supremum and the nature of the set En(μ, σ )
have not been analysed elsewhere; it is not even known whether En(μ, σ ) in nonempty for general
μ and σ . In the present article we shall address both issues.

We start with a deterministic inequality which is the range analogue of the inequality given by
Lai and Robbins [18]:

Lemma 2.1 For any X ∈ Rn, c ∈ R and λ > 0,

Rn ≤ −(n − 2)λ+ λ

2

n∑
i=1

{∣∣∣∣Xi − c

λ
− 1

∣∣∣∣+
∣∣∣∣Xi − c

λ
+ 1

∣∣∣∣
}

. (8)

The equality in Inequality (8) is attained if and only if

X1:n ≤ c − λ ≤ X2:n ≤ · · · ≤ Xn−1:n ≤ c + λ ≤ Xn:n. (9)

The lemma entails that the use of two decision variables is sufficient for the proper handling of
Rn. Also, it suggests the investigation of supE{|X − 1| + |X + 1|} when X is a random variable
with given mean and variance:

Lemma 2.2 For any X ∈ F1(μ, σ) (0 < σ < ∞),

E{|X − 1| + |X + 1|} ≤ U(μ, σ), (10)

where

U(μ, σ) :=

⎧⎪⎪⎨
⎪⎪⎩

2
√
μ2 + σ 2 if μ2 + σ 2 ≥ 4,

2 + 1

2
(μ2 + σ 2) if 2|μ| < μ2 + σ 2 < 4,

|μ| + 1 +
√
(|μ| − 1)2 + σ 2 if μ2 + σ 2 ≤ 2|μ| < 4.

(11)

The equality in Inequality (10) is attained by a unique random variable X ∗ ∈ F1(μ, σ).
Depending on (μ, σ), X ∗ assumes two or three supporting values. More precisely:

(a) For μ2 + σ 2 ≥ 4,

P[X ∗ =
√
μ2 + σ 2] = 1

2

(
1 + μ√

μ2 + σ 2

)
= 1 − P[X ∗ = −

√
μ2 + σ 2].

(b) For 2|μ| < μ2 + σ 2 < 4,

P[X ∗ = 0] = 1 − μ2 + σ 2

4
, P[X ∗ = −2] = μ2 + σ 2 − 2μ

8
, P[X ∗ = 2] = μ2 + σ 2 + 2μ

8
.

(c) For μ2 + σ 2 ≤ 2μ (and hence, 0 < μ < 2),

P[X ∗ = 1 +
√
(μ− 1)2 + σ 2] = 1

2

(
1 + μ− 1√

(μ− 1)2 + σ 2

)

= 1 − P[X ∗ = 1 −
√
(μ− 1)2 + σ 2].
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600 N. Papadatos

(d) For μ2 + σ 2 ≤ −2μ (and hence, −2 < μ < 0),

P[X ∗ = −1 +
√
(μ+ 1)2 + σ 2] = 1

2

(
1 + μ+ 1√

(μ+ 1)2 + σ 2

)

= 1 − P[X ∗ = −1 −
√
(μ+ 1)2 + σ 2].

Remark 2.1 Isii [20] presented general results that include inequalities of the form of
Lemma 2.2; see also [21, Theorem 2.1, p. 472]. The univariate mean–variance inequality in
Isii’s paper can be stated as follows: If h : R → R is a Borel function, μ ∈ R and σ > 0
then

sup
X∈F1(μ,σ)

Eh(X ) = inf
α0,α1,α2

{α0 + α1μ+ α2(μ
2 + σ 2) : α0 + α1x + α2x2 ≥ h(x) for all x}.

Isii showed that the above infimum is attained by some α∗ = (α∗
0 ,α∗

1 ,α∗
2) ∈ A, where

A = {(α0,α1,α2) : α0 + α1x + α2x2 ≥ h(x) for all x ∈ R} ⊆ R3,

provided that the infimum is finite. However, usually it is not an easy task to specify the subset A
and the extremal point(s) α∗. Lemma 2.2 shows that this is possible for h(x) = |x − 1| + |x + 1|
and, more importantly, characterizes the case of equality.

The following corollary is a straightforward consequence of Lemma 2.2.

Corollary 2.1 Let X ∈ F1(μ, σ) (0 < σ < ∞). Fix c ∈ R and λ > 0. Then,

E{|(X − c)− λ| + |(X − c)+ λ|} ≤ λU

(
μ− c

λ
,
σ

λ

)
, (12)

with U(·, ·) given by Equation (11). The equality in Inequality (12) is attained by a unique two-
or three-valued random variable. Setting

ξ = μ− c, θ =
√
(μ− c)2 + σ 2, α =

√
(ξ − λ)2 + σ 2, β =

√
(ξ + λ)2 + σ 2,

the distribution that attains the equality is described by the following table:

No: Condition on μ, σ , c, λ value x− value xo value x+
Tight Upper Bound λU( μ−c

λ
, σ
λ
) probability p− probability po probability p+

1: (μ− c)2 + σ 2 ≥ 4λ2 c − θ c + θ

2
√
(μ− c)2 + σ 2 1

2 (1 − ξ
θ
) 1

2 (1 + ξ
θ
)

2: 2λ|μ− c| < (μ− c)2 + σ 2 < 4λ2 c − 2λ c c + 2λ

2λ+ 1
2λ [(μ− c)2 + σ 2] 1

8λ2 [θ2 − 2λξ ] 1 − 1
4λ2 θ

2 1
8λ2 [θ2 + 2λξ ]

3: (μ− c)2 + σ 2 ≤ 2λ(μ− c) c + λ− α c + λ+ α

μ− c + λ+
√
(μ− c − λ)2 + σ 2 1

2 (1 − ξ−λ
α
) 1

2 (1 + ξ−λ
α
)

4: (μ− c)2 + σ 2 ≤ 2λ(c − μ) c − λ− β c − λ+ β

c − μ+ λ+
√
(c − μ− λ)2 + σ 2 1

2 (1 − ξ+λ
β
) 1

2 (1 + ξ+λ
β
)
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Statistics 601

Proof Write |(X − c)− λ| + |(X − c)+ λ| = λ{|(X − c)/λ− 1| + |(X − c)/λ+ 1|}. Since
Y = (X − c)/λ ∈ F1((μ− c)/λ, σ/λ), Lemma 2.2 yields Inequality (12) as follows:

E{|(X − c)− λ| + |(X − c)+ λ|} = λE{|Y − 1| + |Y + 1|} ≤ λU

(
μ− c

λ
,
σ

λ

)
.

Since λ > 0, Lemma 2.2 asserts that the equality is attained by a unique random variable Y ∗ ∈
F1((μ− c)/λ, σ/λ). Thus, X ∗ = c + λY ∗ is the unique random variable in F1(μ, σ) that attains
the equality in Inequality (12). Substituting the probability function of Y ∗ in the four distinct
cases of Lemma 2.2 we obtain the probabilities and supporting points as in the table. �

It is important to observe that, whatever the values of μ, σ , c, λ are, the supporting points
satisfy the relation x− < c − λ < xo < c + λ < x+.

We can now obtain the proposed upper bound for the expected range.

Theorem 2.1 If EX = μ and Var X = σ 2 then

ERn ≤ inf
c∈R,λ>0

{
−(n − 2)λ+ λ

2

n∑
i=1

U

(
μi − c

λ
,
σi

λ

)}
, (13)

where the function U(·, ·) : R × (0, ∞) → (2, ∞) is given by Equation (11).

Proof Fix c ∈ R, λ > 0. We take expectations in Inequality (8) and then use Inequality (12) to
get

ERn ≤ −(n − 2)λ+ 1

2

n∑
i=1

E{|(Xi − c)− λ| + |(Xi − c)+ λ|}

≤ −(n − 2)λ+ λ

2

n∑
i=1

U

(
μi − c

λ
,
σi

λ

)
.

Since for all c ∈ R and λ > 0 the last quantity is an upper bound for ERn, its infimum is an upper
bound too. �

Remark 2.2 It is not clear at this stage whether the upper bound (13) is tight, and it is not an
obvious task to find c = c0 and λ = λ0 (if exist) that realize the infimum in the RHS of Inequality
(13). However, the substitution of any (convenient) arguments c and λ in the function

φn(c, λ) := −(n − 2)λ+ λ

2

n∑
i=1

U

(
μi − c

λ
,
σi

λ

)
(14)

will produce an upper bound for ERn. For example, one can choose c = μ̄ and λ = 1
4 AGn (see

Equation (4)). A simple way to produce a closed-form upper bound is the following: First observe
that

λU

(
μi − c

λ
,
σi

λ

)
≤ 2λ+ 1

2λ
[(μi − c)2 + σ 2

i ],

because the RHS is an upper bound for the expectation E{|(Xi − c)− λ| + |(Xi − c)+ λ|}
(since |(Xi − c)− λ| + |(Xi − c)+ λ| ≤ 2λ+ (1/2λ)(Xi − c)2 and E{2λ+ (1/2λ)(Xi − c)2} =
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602 N. Papadatos

2λ+ (1/2λ)[(μi − c)2 + σ 2
i ]), while the LHS is the least upper bound for the same expectation

as Xi varies in F1(μi, σi). It follows that

φn(c, λ) ≤ φ̄n(c, λ) := 2λ+ 1

4λ

n∑
i=1

{(μi − c)2 + σ 2
i }.

Minimizing φ̄n(c, λ) is a simple fact: it suffices to take c = μ̄ and λ = 1
4 AGn as before. Observing

that
∑n

i=i{(μi − μ̄)2 + σ 2
i } = 1

2 AG2
n, we get

ERn ≤ inf
c∈R,λ>0

φn(c, λ) ≤ inf
c∈R,λ>0

φ̄n(c, λ) = φ̄n

(
μ̄,

1

4
AGn

)
= 1

2
AGn + 1

2
AGn = AGn.

Now it became clear that the bound in Inequality (13) is reasonable, since it outperforms the
bound in Inequality (4) for any given values of μ and σ . As a result, the AGn bound need not
be tight; e.g. the infimum of φn(c, λ) need not be attained at (c, λ) = (μ̄, 1

4 AGn). We shall prove
in the sequel that the new bound is always tight, and (for n ≥ 3) the infimum in the RHS of
Inequality (13) is attained by a unique value (c0, λ0).

Remark 2.3 Fixing μ in Inequality (11) and taking limits for σ ↘ 0 we see that

lim
σ↘0

U(μ, σ) = 2 max{|μ|, 1} = |μ− 1| + |μ+ 1|, μ ∈ R.

Let us now set σn:n = max{σ1, . . . , σn} and fix μ = (μ1, . . . ,μn). Then,

lim
σn:n↘0

φn(c, λ) = −(n − 2)λ+ λ

2

n∑
i=1

{∣∣∣∣μi − c

λ
− 1

∣∣∣∣+
∣∣∣∣μi − c

λ
+ 1

∣∣∣∣
}

, μ ∈ Rn, c ∈ R, λ > 0.

Let μ1:n ≤ · · · ≤ μn:n be the ordered values of μ1, . . . ,μn, and assume that the μ’s are not all
equal, that is, μ1:n < μn:n. Substituting in the above limit c = c0 = (μ1:n + μn:n)/2, λ = λ0 =
(μn:n − μ1:n)/2 > 0, we obtain

lim
σn:n↘0

φn(c0, λ0) = −(n − 2)λ0 + λ0

2

n∑
i=1

{∣∣∣∣μi − c0

λ0
− 1

∣∣∣∣+
∣∣∣∣μi − c0

λ0
+ 1

∣∣∣∣
}

= μn:n − μ1:n.

Note that the last equality follows from Inequality (8) and (9), applied to X = μ (with Rn(μ) =
μn:n − μ1:n), observing that for the particular choice of (c0, λ0),

μ1:n ≤ c0 − λ0 ≤ μ2:n ≤ · · · ≤ μn−1:n ≤ c0 + λ0 ≤ μn:n.

For any X ∈ Fn(μ, σ ) it is true that μn:n − μ1:n ≤ ERn(X) ≤ infc∈R,λ>0{φn(c, λ)}. Therefore,

μn:n − μ1:n ≤ lim
σn:n↘0

ERn(X) ≤ lim
σn:n↘0

{
inf

c∈R,λ>0
φn(c, λ)

}
≤ lim

σn:n↘0
φn(c0, λ0) = μn:n − μ1:n,

and we conclude that

lim
σn:n↘0

{
inf

c∈R,λ>0
φn(c, λ)

}
= μn:n − μ1:n. (15)

The limit (15) continue to hold even if all μi’s are equal. Then μ1:n = μn:n and the inequality
infc∈R,λ>0{φn(c, λ)} ≤ AGn (see Remark 2.2) shows that

0 ≤ inf
c∈R,λ>0

{φn(c, λ)} ≤ AGn =
√√√√2

n∑
i=1

σ 2
i ≤ σn:n

√
2n → 0, as σn:n ↘ 0.
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Statistics 603

From these considerations, it is again clear that the AGn bound is not tight in general; for
example,

lim
σn:n↘0

AGn =
√√√√2

n∑
i=1

(μi − μ̄)2 > μn:n − μ1:n,

whenever (n ≥ 3 and) μ1:n + μn:n 	= 2μ̄. The AGn bound need not be tight even for equal μi’s;
see Theorem 3.1 and Example 3.2 .

3. When is the Arnold–Groeneveld bound tight?

Arnold and Groeneveld,[9] Rychlik [4] and Papadatos [13] showed that if μi = μ and σi = σ

for all i, the AGn bound of Equation (4), which reduces to Inequality (2), is attainable. In the
present section we provide an exact characterization of the attainability of the AGn bound under
any mean–variance information.

The proof of Theorem 3.1 is based on the construction of particular bivariate probability dis-
tributions supported in a subset of {1, . . . , n}2. A distribution of this kind corresponds to an n × n
matrix with nonnegative elements having sum 1; a probability matrix. Matrices of this form with
integer-valued entries have been extensively studied; for a recent review, see [22]. The actual
question, related to our problem, is whether there exist probability matrices with given marginals
and vanishing trace.

The following notation and terminology will be used in the sequel.

Definition 3.1 An n × m matrix Q = (qij) (n ≥ 1, m ≥ 1) is called a probability matrix
if it has nonnegative elements summing to 1. In particular, a n-variate probability vector
p = (p1, . . . , pn) is a probability matrix with dimension 1 × n, and X ∼ p is a convention for
P[X = i] = pi for all i. The marginals of Q, say p, q, are the probability vectors obtained by
summing the rows and columns of Q, respectively; and M(p, q) denotes the class of probability
matrices with given marginals p, q. Moreover, (X , Y ) ∼ Q is a convention for P[X = i, Y = j] =
qij for all i, j.

We now state a characterization for the AGn bound.

Theorem 3.1 Assume that EX = μ and Var X = σ 2. Then the equality in Inequality (4) is
attainable if and only if both conditions (i) and (ii) below are satisfied.

(i) |μi − μ̄| ≤
√

2[(μi − μ̄)2 + σ 2
i ]√∑n

j=1{(μj − μ̄)2 + σ 2
j }

,

(ii)
(μi − μ̄)2 + σ 2

i∑n
j=1{(μj − μ̄)2 + σ 2

j } ≤ 1

2
,

i = 1, . . . , n. (16)

Provided that (i) and (ii) are fulfilled, any extremal random vector X ∈ En(μ, σ ) has the
representation

X = g(X , Y ) := μ̄ 1 + e(X )− e(Y )√
2

√√√√ n∑
j=1

{(μj − μ̄)2 + σ 2
j }, (17)
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604 N. Papadatos

where 1 = (1, . . . , 1) ∈ Rn, e(i) = (0, . . . , 1, . . . , 0) ∈ Rn is the unitary vector of the ith axis,
and (X , Y ) is a discrete random pair satisfying P[X = Y ] = 0, with marginal distributions

p+
i = P[X = i] = (μi − μ̄)2 + σ 2

i + (1/2)(μi − μ̄)AGn∑n
j=1{(μj − μ̄)2 + σ 2

j } ,

p−
i = P[Y = i] = (μi − μ̄)2 + σ 2

i − (1/2)(μi − μ̄)AGn∑n
j=1{(μj − μ̄)2 + σ 2

j } , i = 1, . . . , n.

(18)

Moreover, if the inequalities in Conditions (16) are strict for all i, we can find infinitely many
extremal random vectors; and if Conditions (16) is satisfied and for some i we have equality in
(ii), then the extremal random vector is unique.

Remark 3.1 Let (μ1,μ2,μ3) = (−1, 0, 1), (σ 2
1 , σ 2

2 , σ 2
3 ) = (1, 3, 2), so that (16) holds. However,

Condition (16)(ii) is satisfied with strict inequalities for all i, while this is not true for Con-
dition (16)(i). We find AG3 = 4 and p+ = (0, 3

8 , 5
8 ), p− = ( 1

2 , 3
8 , 1

8 ). It is easily seen that the
distribution of (X1, X2, X3) (given in Equation (17)) is uniquely defined: it assigns probabilities
2
8 , 2

8 , 3
8 , 1

8 , to the points (−2, 2, 0), (−2, 0, 2), (0, −2, 2), (0, 2, −2), respectively. It follows that a
random vector that attains the AGn bound can be unique even if Conditions (16)(ii) is satisfied
with strict inequalities for all i.

Example 3.1 The homogeneous case μi = μ, σi = σ > 0. Conditions (16) are obviously
satisfied with strict inequalities (for n ≥ 3) and the AGn bound is sharp (see also Inequality (2)):

supERn = AGn = σ
√

2n.

Moreover, p+
i = p−

i = 1/n and from Theorem 3.1 we see that infinitely many random vectors
attain the equality. The totality of them is characterized by Equation (17) via the probability
matrices Q of (X , Y ). Recall that X and Y are, respectively, the positions where μ+ σ

√
n/2

and μ− σ
√

n/2 appears in the extremal vector (X1, . . . , Xn); the rest entries are equal to μ.
Thus, Q has uniform marginals and vanishing principal diagonal. A famous theorem of Birkhoff
on magic matrices asserts that any matrix with nonnegative elements having row/column sums
equal to 1 is a convex combination of permutation matrices, i.e. matrices with entries 0 or 1,
having exactly one 1 in each row and in each column; see [23, Theorem 2.54]. From Birkhoff’s
result it is evident that the probability matrix Q of (X , Y ), corresponding to any extremal random
vector X = μ1 + σ [e(X )− e(Y)]

√
n/2, can be written as

Q =
k∑

i=1

λiDi, λi ≥ 0,
k∑

i=1

λi = 1

n
,

where the Di’s are derangement matrices, i.e. permutation matrices with vanishing diagonal
entries. It is well known that there exist n!

∑n
k=0((−1)k/k!) ≈ e−1n! different derangement

matrices; they coincide with the extremal points of the convex polytope {D = (dij) :
∑

i dij =∑
j dij = 1, dij ≥ 0, dii = 0 for all i, j}. In general, a convex polytope has a finite (often quite

large) number of extremal points, but it is rather difficult to evaluate them exactly, since their
total number depends on the marginals in an ambiguous way (cf. Example 3.2).

Example 3.2 The case μi = μ. Assume 0 < σ1 ≤ · · · ≤ σn without loss of generality. From
Theorem 3.1, we see that if the larger variance does not dominate the sum of the other variances
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Statistics 605

then the AGn bound is tight:

supERn = AGn =
√√√√2

n∑
i=1

σ 2
i , whenever σ 2

n ≤
n−1∑
i=1

σ 2
i .

Moreover, if σ 2
n =∑n−1

i=1 σ
2
i , the equality is uniquely attained by the random vector X taking

values

xi =
(
μ, . . . ,μ,μ+ AGn

2
,μ, . . . ,μ;μ− AGn

2

)
, with probability pi,

yi =
(
μ, . . . ,μ,μ− AGn

2
,μ, . . . ,μ;μ+ AGn

2

)
, with probability pi,

where pi = σ 2
i /
∑n

j=1 σ
2
j , i = 1, . . . , n − 1. Of course, if σ 2

n <
∑n−1

i=1 σ
2
i then there exist infinitely

many extremal random vectors. They have the form g(X , Y ) (see Equation (17)), with P[X =
Y ] = 0, X ∼ p, Y ∼ p, where p = (p1, . . . , pn−1, pn).

However, if σ 2
n >

∑n−1
i=1 σ

2
i then the AGn is no longer tight: The infimum in Inequality (13) is

attained at c0 = μ, λ0 = 1
2

√∑n−1
i=1 σ

2
i <

1
4 AGn, and we get the inequality

ERn ≤ φn(c0, λ0) = σn +
√√√√n−1∑

i=1

σ 2
i

(
σ 2

n >

n−1∑
i=1

σ 2
i

)
.

From
√

x + √
y <

√
2(x + y) for x 	= y, we conclude that this bound is strictly better than AGn.

Moreover, the new bound is tight; one can verify that the equality is (uniquely) attained by the
random vector X taking values

xi =
⎛
⎝μ, . . . ,μ,μ+

√√√√n−1∑
i=1

σ 2
i ,μ, . . . ,μ;μ− σn

⎞
⎠ , with probability pi,

yi =
⎛
⎝μ, . . . ,μ,μ−

√√√√n−1∑
i=1

σ 2
i ,μ, . . . ,μ;μ+ σn

⎞
⎠ , with probability pi,

where pi = σ 2
i /2

∑n−1
j=1 σ

2
j , i = 1, . . . , n − 1. Thus, the tight upper bound on the expected range

from dependent observations with equal means admits a simple closed form:

supERn =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

√√√√2
n∑

i=1

σ 2
i if 2 max

i
{σ 2

i } ≤
n∑

i=1

σ 2
i ,

max
i

{σi} +
√√√√ n∑

i=1

σ 2
i − max

i
{σ 2

i } if 2 max
i

{σ 2
i } ≥

n∑
i=1

σ 2
i .

(19)

Assuming that one variance tends to infinity (and keeping all other variances bounded), the limit
limσi→∞(supERn/AGn) = 1√

2
≈ .707 says that we can gain of an up to 30% improvement over

the AGn bound.
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606 N. Papadatos

The following lemma will play an important role in verifying existence of extremal random
vectors.

Lemma 3.1 Let p = (p1, . . . , pn) and q = (q1, . . . , qn) be two probability vectors. A necessary
and sufficient condition for the existence of a random pair (X , Y ) with

P[X = Y ] = 0, X ∼ p, Y ∼ q (20)

is the following:

max
1≤i≤n

{pi + qi} ≤ 1. (21)

If the equality holds in Inequality (21), the random pair (X , Y ) is uniquely defined. If strict
inequality holds in Inequality (21) and, furthermore, mini{pi} > 0, mini{qi} > 0, then there exist
infinitely many random pairs satisfying Equation (20).

4. Convexity

The purpose of the present section is to verify that for any given values of μ, σ , the function
φn(c, λ) of Equation (14) is convex. For convenience we set T := R × (0, ∞) for the domain of
both functions U (of Equation (11)) and φn.

We begin with a simple lemma.

Lemma 4.1 The function U(x, y) : T → (2, ∞) of Equation (11) has continuous partial
derivatives, that is, U ∈ C1(T).

We also need another simple lemma; see, e.g. [23].

Lemma 4.2 Let K be a convex subset of Rn and f : K → R. For x and y in K consider the
function g : [0, 1] → R given by

g(t) := f (x + t(y − x)), 0 ≤ t ≤ 1.

Then, f is convex if and only if g is convex for any choice of x and y in K.

Also, we shall make use of the following lemma.

Lemma 4.3 Consider a finite interval [α,β], a partition

α = t0 < t1 < · · · < tk < tk+1 = β

and the convex functions gi : [α,β] → R (or, merely, gi : [ti−1, ti] → R), i = 1, . . . , k + 1.
Assume that

gi(ti) = gi+1(ti) and g′
i(ti−) ≤ g′

i+1(ti+), i = 1, . . . , k, (22)

where g′(t−) and g′(t+) denote, respectively, the left- and right-hand side derivatives of g at t.
Then, the function

g(t) :=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

g1(t), α ≤ t ≤ t1,

g2(t), t1 ≤ t ≤ t2,
...

gk(t), tk−1 ≤ t ≤ tk ,

gk+1(t), tk ≤ t ≤ β,

(23)

is convex.
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Statistics 607

Proof Since all gi have non-decreasing left- and right-hand side derivatives, it is easily seen
that the same is true for g. �

Now we can verify the following result.

Proposition 4.1 The function U : T → (2, ∞) in (11) is convex.

Finally, we shall make use of the following property, which seems to be of some independent
interest.

Lemma 4.4 Let f (x, y) : T → R and for fixed x0 ∈ R, y0 > 0, consider the function h(c, λ) :
T → R with

h(c, λ) := λf

(
x0 − c

λ
,

y0

λ

)
, (c, λ) ∈ R × (0, ∞).

(i) If f is convex then h is convex for all choices of x0 ∈ R, y0 > 0.
(ii) If h is convex for a particular choice of x0 ∈ R, y0 > 0, then f is convex.

We can now state and prove the final conclusion of the present section:

Theorem 4.1 For any given μ and σ , the function φn(c, λ) in Equation (14) is convex and
belongs to C1(T), T = R × (0, ∞).

Proof The fact that φn ∈ C1(T) follows by an obvious application of Lemma 4.1. Also, the
function U(x, y) in Equation (11) is convex by Proposition 4.1. Hence, by Lemma 4.4, the same is
true for the function hi(c, λ) = 1

2λU((μi − c)/λ, σi/λ) (i = 1, . . . , n). Since h(c, λ) = −(n − 2)λ
is trivially convex, φn(c, λ) is a sum of convex functions. �

5. Attainability of the infimum in Inequality (13) at a unique point

From now on we assume that n ≥ 3. The simple (but interesting) case n = 2 is deferred to the
last section, noting that the optimal upper bound for ER2 is closely related to the bound BNT2 of
Inequality (5).

In the present section we shall prove that the minimum value of φn(c, λ) is achieved at a
unique point (c0, λ0) ∈ T . Of course, since φn is differentiable, a minimizing point (if exists) has
to satisfy the system of equations

∂

∂c
φn(c, λ) = 0,

∂

∂λ
φn(c, λ) = 0. (24)

However, due to the complicated form of the derivatives (see Equations (A1), (A2)), it is not a
trivial fact to solve the System (24), or even to verify its consistency analytically. On the other
hand, as we shall see in the sequel, it is important to know the existence (and uniqueness) of
a minimizing point; it will be used in an essential way in the construction of extremal random
vectors, concluding tightness of the bound (13).
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608 N. Papadatos

The attainability of the infimum can be seen as follows:
Set ε0 := 1

4 mini{σi} > 0. For c ∈ R and λ ∈ (0, ε0], (μi − c)2 + σ 2
i ≥ 4λ2 (i = 1, . . . , n).

Thus, λU((μi − c)/λ, σi/λ) = 2
√
(μi − c)2 + σ 2

i for all i, and

φn(c, λ) = −(n − 2)λ+
n∑

i=1

√
(μi − c)2 + σ 2

i

≥ −(n − 2)ε0 +
n∑

i=1

√
(μi − c)2 + σ 2

i = φn(c, ε0).

The function c �→∑n
i=1

√
(μi − c)2 + σ 2

i is strictly convex, tending to ∞ as |c| → ∞; thus, its
minimum is attained at a unique c = c1. From φn(c, ε0) ≥ φn(c1, ε0), we get

φn(c, λ) ≥ φn(c1, ε0) = −(n − 2)ε0 +
n∑

i=1

√
(μi − c1)2 + σ 2

i , c ∈ R, 0 < λ ≤ ε0.

We now chose λ1 := 1
2 mini{σi}, so that λ1 > ε0 and (μi − c1)

2 + σ 2
i ≥ 4λ2

1 for all

i. Therefore, λ1U((μi − c1)/λ1, σi/λ1) = 2
√
(μi − c1)2 + σ 2

i (i = 1, . . . , n), and it fol-

lows that φn(c1, λ1) = −(n − 2)λ1 +∑n
i=1

√
(μi − c1)2 + σ 2

i . Since λ1 > ε0 and n ≥ 3, the
inequality −(n − 2)ε0 > −(n − 2)λ1 leads to φn(c1, ε0) > φn(c1, λ1). Moreover, U(x, y) ≥
U(0, y) = 2 + ∫ y

0 min{t, 2}dt > 2 for all x ∈ R and y > 0. We thus obtain φn(c, λ) = −(n −
2)λ+ (λ/2)

∑n
i=1 U((μi − c)/λ, σi/λ) > −(n − 2)λ+ nλ = 2λ for all c and λ > 0. Setting

M0 := 1
2φn(c1, ε0) > ε0 we see that

φn(c, λ) ≥ φn(c1, ε0) > φn(c1, λ1) for all c ∈ R, λ ∈ (0, ε0] ∪ [M0, ∞).

Assume now that λ ∈ (ε0, M0) with ε0, M0 as above. From the obvious inequality U(x, y) ≥
2 max{|x|, 1} ≥ 2|x|, we get

φn(c, λ) ≥ −(n − 2)λ+
n∑

i=1

|μi − c| ≥ −(n − 2)M0 +
n∑

i=1

|μi − c|.

The last inequality shows that φn(c, λ) → ∞ as |c| → ∞, uniformly in λ ∈ (ε0, M0); thus, we
can find a constant C0 such that

φn(c, λ) ≥ φn(c1, ε0) for all |c| ≥ C0, λ ∈ (ε0, M0).

Since φn(c1, ε0) > φn(c1, λ1), we arrived at the conclusion

φn(c, λ) > φn(c1, λ1) for all (c, λ) with |c| ≥ C0 or λ ≤ ε0 or λ ≥ M0.

This inequality shows that any minimizing point (c0, λ0) of (the continuous function) φn(c, λ)
over the compact rectangle R := [−C0, C0] × [ε0, M0] must lie in the interior of R. The convexity
of φn implies that its global minimum is attained at (c0, λ0). On the other hand, the differentia-
bility of φn shows that (c, λ) = (c0, λ0) is a solution to the System (24); and the convexity of φn

implies that any such solution is a minimizing point.
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Statistics 609

Let us now define

T0 := {(c, λ) ∈ T : (c, λ) is a solution to the System (24)}, (25)

so that T0 	= ∅. The minimizing points of the convex function φn are exactly the points of T0;
thus, T0 is a convex compact subset of T, and we have shown the following.

Proposition 5.1 If n ≥ 3 then for any given values of μ and σ , the system (24) is consistent,
and the set of solutions, T0, is a convex compact subset of T. Moreover, for any (c0, λ0) ∈ T0,

φn(c, λ) ≥ φn(c0, λ0) for all (c, λ) ∈ T = R × (0, ∞),

with equality if and only if (c, λ) ∈ T0.

We now proceed to show that T0 is a singleton. Let as fix c = c1 ∈ R. For this particular value
c1, we consider the function

ψn(λ) := φn(c1, λ) = −(n − 2)λ+
n∑

i=1

ui(λ), λ > 0,

where

ui(λ) := 1

2
λU

(
μi − c1

λ
,
σi

λ

)
, λ > 0 (i = 1, . . . , n).

The function ui can be written more precisely as follows:

ui(λ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

√
(μi − c1)2 + σ 2

i , 0 < λ ≤ ti,

λ+ 1

4λ
[(μi − c1)

2 + σ 2
i ], ti ≤ λ < γi,

1

2
{|μi − c1| + λ+

√
(|μi − c1| − λ)2 + σ 2

i }, λ ≥ γi,

where ti = ti(c1) and γi = γi(c1) are given by

ti := 1

2

√
(μi − c1)2 + σ 2

i , γi := (μi − c1)
2 + σ 2

i

2|μi − c1| , 0 < ti < γi ≤ ∞ (i = 1, . . . , n). (26)

Each function ui is continuously differentiable with derivative

u′
i(λ) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0, 0 < λ ≤ ti,

1 − (μi − c1)
2 + σ 2

i

4λ2
, ti ≤ λ < γi,

1

2

⎛
⎝1 + λ− |μi − c1|√

(λ− |μi − c1|)2 + σ 2
i

⎞
⎠ , λ ≥ γi,

i = 1, . . . , n. (27)

Obviously, ui(λ) is constant (equal to 2ti) in the interval (0, ti] and then it is strictly increasing; its
non-decreasing continuous derivative u′

i(λ) satisfies 0 ≤ u′
i(λ) < 1 for all λ, and limλ→∞ u′

i(λ) =
1. It follows that

ψ ′
n(λ) = −(n − 2)+

n∑
i=1

u′
i(λ)

is non-decreasing and, thus, ψn is convex. Let t1:n, . . . , tn:n be the ordered values of t1, . . . , tn.
Noting that n ≥ 3 and 0 < t1:n ≤ · · · ≤ tn:n < ∞, we see thatψ ′

n(λ) = −(n − 2) < 0 for λ ≤ t1:n,
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610 N. Papadatos

and the function ψn is strictly decreasing in the interval (0, t1:n]. Also, ψn(λ) is strictly convex
in the interval (t1:n, ∞), because ψ ′

n(λ) is strictly increasing in that interval. Observe that ψn is
eventually strictly increasing: limλ→∞ ψ ′

n(λ) = −(n − 2)+∑n
i=1 limλ→∞ u′

i(λ) = 2. It follows
that ψn(λ) attains its minimum value at a unique point λ = λ1 > t1:n; clearly, λ1 = λ1(c1) is the
unique solution to the equation ψ ′

n(λ) = 0, 0 < λ < ∞.
We can further verify that the unique solution, λ = λ1, of

∑n
i=1 u′

i(λ) = n − 2 lies in the inter-
val (tn−1:n,

∑n
i=1 ti). Indeed, first observe that if λ ≤ tn−1:n, then we can find two indices s 	= r

with λ ≤ ts and λ ≤ tr. Since u′
r(λ) = u′

s(λ) = 0, the sum
∑n

i=1 u′
i(λ) contains at most n − 2

strictly positive terms u′
i(λ); from u′

i(λ) < 1 it follows that
∑n

i=1 u′
i(λ) < n − 2. This shows that

λ1 > tn−1:n. Next, we observe that limλ↘0 ψn(λ) = 2
∑n

i=1 ti. Thus, ψn(λ1) ≤ 2
∑n

i=1 ti (because
λ = λ1 minimizes ψn(λ)). However, we know that φn(c, λ) > 2λ for all (c, λ) ∈ T , so that
2
∑n

i=1 ti ≥ ψn(λ1) = φn(c1, λ1) > 2λ1.
Hence, we have shown the following.

Lemma 5.1 Let n ≥ 3 and fix an arbitrary c1 ∈ R. The function ψn : (0, ∞) → (0, ∞), with
ψn(λ) := φn(c1, λ), attains its minimum value at a unique point λ1 = λ1(c1). The minimizing
point λ1 is the unique solution of the equation

n∑
i=1

u′
i(λ) = n − 2, tn−1:n < λ <

n∑
i=1

ti, (28)

where ti = ti(c1) are as in Equation (26), 0 < t1:n ≤ · · · ≤ tn:n are the ordered values of ti in
Equation (26), and the functions u′

i(λ) are given by Equation (27).

Remark 5.1 Fix a point (c1, λ1) ∈ T0 and define the following (possibly empty) sets of indices:

I1 := {i ∈ {1, . . . , n} : (μi − c1)
2 + σ 2

i ≥ 4λ2
1} = {i : λ1 ≤ ti},

I2 := {i ∈ {1, . . . , n} : 2λ1|μi − c1| < (μi − c1)
2 + σ 2

i < 4λ2
1} = {i : ti < λ1 < γi},

I3 := {i ∈ {1, . . . , n} : (μi − c1)
2 + σ 2

i ≤ 2λ1(μi − c1)} = {i : λ1 ≥ γi and μi > c1},
I4 := {i ∈ {1, . . . , n} : (μi − c1)

2 + σ 2
i ≤ 2λ1(c1 − μi)} = {i : λ1 ≥ γi and μi < c1}.

(29)

By definition, Ii ∩ Ij = ∅ for i 	= j and I1 ∪ I2 ∪ I3 ∪ I4 = {1, . . . , n}. Since (c1, λ1) ∈ T0 it
follows that λ1 must solve Equation (28) (for this particular value of c1), that is,

∑
i∈I2

{
1 − (μi − c1)

2 + σ 2
i

4λ2
1

}
+
∑

i∈I3∪I4

1

2

⎧⎨
⎩1 + λ1 − |μi − c1|√

(λ1 − |μi − c1|)2 + σ 2
i

⎫⎬
⎭ = n − 2,

where an empty sum should be treated as zero. Observe that all summands are (strictly
positive and) strictly less than 1; thus, N(I2)+ N(I3)+ N(I4) ≥ n − 1, and it follows that
N(I1) ≤ 1, where N(I) denotes the cardinality of I. Furthermore, (c, λ) = (c1, λ1) is a solution
to (∂/∂c)φn(c, λ) = 0. Using (∂/∂c)φn(c, λ) = − 1

2

∑n
i=1 U1((μi − c)/λ, σi/λ) and the explicit

form of U1, given by Equation (A1), we obtain∑
i∈I1

μi − c1√
(μi − c1)2 + σ 2

i

+
∑
i∈I2

μi − c1

2λ1

+
∑

i∈I3∪I4

sign(μi − c1)

2

⎧⎨
⎩1 + |μi − c1| − λ1√

(|μi − c1| − λ1)2 + σ 2
i

⎫⎬
⎭ = 0. (30)
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Statistics 611

This equality shows that N(I3) ≤ n − 1 and N(I4) ≤ n − 1; for if, e.g. N(I3) = n then we would
have I1 = I2 = I4 = ∅ and, since μi > c1 whenever i ∈ I3, the above equation leads to the
(obviously impossible) relation

n∑
i=1

1

2

⎧⎨
⎩1 + (μi − c1)− λ1√

((μi − c1)− λ1)2 + σ 2
i

⎫⎬
⎭ = 0.

We have thus concluded the following key-property of a minimizing point:

If (c1, λ1) ∈ T0 then max{N(I3), N(I4)} ≤ n − 1 and N(I1) ≤ 1. (31)

Most cases suggested by Relation (31) may appear for some values of μ, σ (one of the rare
exceptions is N(I1) = N(I2) = 0, max{N(I3), N(I4)} = n − 1). Note that Theorem 3.1 is, in fact,
concerned with the particular situation where N(I2) = n (thus, N(I1) = N(I3) = N(I4) = 0). It
is, essentially, the unique situation in which the AGn bound is tight (plus boundary subcases).
Due to Equation (31), it seems that this particular (but plausible) case is quite restricted.

Behind the tedious calculations, the rough meaning of the argument that led to Equation (31)
is the following: For a particular (c, λ) to be optimal (i.e. to minimize φn) it is necessary that
c is not ‘too far away’ from the μi’s and λ is not ‘too small’ or ‘too large’ compared to
1
2

∑n
i=1 σi. In particular, Equation (30) shows that an optimal c can never lie outside the inter-

val [mini{μi}, maxi{μi}], and it is located in an interior point when the μi’s are not all equal; of
course this fact is intuitively obvious.

Lemma 5.2 If the set T0 of Equation (25) contains two different elements, then it must be a
compact line segment which is not parallel to the λ-axis. That is, T0 has to be of the form T0 =
[x, y] = {x + t(y − x), 0 ≤ t ≤ 1}, for some x = (c1, λ1) ∈ T and y = (c2, λ2) ∈ T with c1 	= c2.

Lemma 5.3 Let A0 = (c0, λ0) 	= A1 = (c1, λ1) be two points in T. Fix μ ∈ R, σ > 0 and con-
sider the points B0 = ((μ− c0)/λ0, σ/λ0) ∈ T , B1 = ((μ− c1)/λ1, σ/λ1) ∈ T. Let A = (c, λ)
and B = ((μ− c)/λ, σ/λ). As the point A is moving linearly in the line segment [A0, A1] (from
A0 to A1), the point B = B(A) is moving continuously in the line segment [B0, B1] (from B0 to
B1).

We are now ready to state the conclusion of the present section.

Theorem 5.1 If n ≥ 3 then for any given values of μ and σ , there exists a unique solution
(c, λ) = (c0, λ0) of the System (24), and

φn(c, λ) ≥ φn(c0, λ0) for all (c, λ) ∈ R × (0, ∞),

with equality if and only if (c, λ) = (c0, λ0).

Remark 5.2 The AG-bound is general because it is based on the universal inequality |x − 1| +
|x + 1| ≤ 2 + 1

2 x2 (in contrast to the other ones appearing in the proof of Lemma 2.2), it is sharp
if n2 = N(I2) = n, and then always (c0, λ0) = (μ̄, 1

4 AGn). Then conditions (16) immediately
follow from these observations.

Remark 5.3 For n = 2, Theorem 5.1 (as well as several conclusions of the present section) is
no longer true. It is again true that the convex function φ2(c, λ) attains its minimum value, ρ2 =√
(μ2 − μ1)2 + (σ1 + σ2)2, at the solutions of the system (24), but now T0 is not a singleton: it
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612 N. Papadatos

contains points arbitrarily close to the boundary of the domain of φ2. More precisely, one can
verify that for n = 2, the exact set of minimizing points is the line segment T0 = {(c0, λ0); 0 <
λ0 ≤ λ∗}, where

c0 = σ1

σ1 + σ2
μ2 + σ2

σ1 + σ2
μ1, λ∗ = ρ2

2(σ1 + σ2)
min{σ1, σ2}.

However, the set E2(μ1,μ2, σ1, σ2) is a singleton, and this fact can be seen directly (see
Section 7). Also, it is worth pointing out that, for n = 2, N(I1) = 2 = n (compare with
Equation (31)).

6. Tightness and characterization of extremal random vectors

Let n ≥ 3, μ, σ be fixed (with 0 < σi < ∞ for all i). Let (c0, λ0) be the unique solution of the
System (24). With the help of (c0, λ0), we shall give a complete description of the set En(μ, σ )
of extremal random vectors in Fn(μ, σ ). These are the random vectors X satisfying EX = μ,
Var X = σ 2 and ERn(X) = ρn = ρn(μ, σ ), where

ρn := φn(c0, λ0) = −(n − 2)λ0 + λ0

2

n∑
i=1

U

(
μi − c0

λ0
,
σi

λ0

)
; (32)

recall that U(·, ·) is given by Equation (11). The construction, though more complicated, follows
parallel arguments as for the attainability of the AGn bound (Theorem 3.1).

We start by considering the partition I1, . . . , I4 of {1, . . . , n} as in Equation (29), and the cor-
responding cardinalities n1, . . . , n4. The main difference from Remark 5.1 is that, now, each Ij

has been stabilized, because (c0, λ0) is unique; thus, one has to substitute c1 = c0 and λ1 = λ0

in Equation (29). Clearly some of the sets Ij may be empty; then nj = 0. The situation with all Ij

being nonempty may also appear; this is the case, e.g. for μ = (4, 0, 4, 0), σ = (10, 5, 1, 1). From
Remark 5.1 (see Equation (31)), we know that n1 n2, n3, n4 (with nj ≥ 0,

∑
nj = n) cannot be

completely arbitrary; they have to satisfy the restrictions:

n3 = N(I3) ≤ n − 1, n4 = N(I4) ≤ n − 1, n1 = N(I1) ≤ 1. (33)

Other impossible cases are given by n3 = 1, n4 = n − 1 and n3 = n − 1, n4 = 1; this is a by-
product of Lemma 6.1 .

For notational simplicity, it is helpful to consider the following numbers ξi, θi:

ξi :=

⎧⎪⎨
⎪⎩
μi − c0, i ∈ I1 ∪ I2;

μi − c0 − λ0, i ∈ I3;

c0 − μi − λ0, i ∈ I4;

θi :=
√
ξ 2

i + σ 2
i , i = 1, . . . , n. (34)

We note that |ξi| < θi for all i and 2λ0|ξi| < θ2
i < 4λ2

0 for all i ∈ I2 (if any). Following
Corollary 2.1, we define the probabilities

p−
i := 1

2

(
1 − ξi

θi

)
, po

i := 0, p+
i := 1

2

(
1 + ξi

θi

)
, i ∈ I1;

p−
i := 1

8λ2
0

[
θ2

i − 2λ0ξi
]

, po
i := 1 − θ2

i

4λ2
0

, p+
i := 1

8λ2
0

[
θ2

i + 2λ0ξi
]

, i ∈ I2; (35)
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Statistics 613

p−
i := 0, po

i := 1

2

(
1 − ξi

θi

)
, p+

i := 1

2

(
1 + ξi

θi

)
, i ∈ I3;

p−
i := 1

2

(
1 + ξi

θi

)
, po

i := 1

2

(
1 − ξi

θi

)
, p+

i := 0, i ∈ I4,

and the corresponding (univariate) supporting points

x−
i := c0 − θi, x+

i := c0 + θi, i ∈ I1;

x−
i := c0 − 2λ0, xo

i := c0, x+
i := c0 + 2λ0, i ∈ I2;

xo
i := c0 + λ0 − θi, x+

i := c0 + λ0 + θi, i ∈ I3;

x−
i := c0 − λ0 − θi, xo

i := c0 − λ0 + θi, i ∈ I4.

(36)

By definition, each pi := (p−
i , po

i , p+
i ) is a probability vector. Clearly, one could assign an arbi-

trary value to a missing point, since its corresponding probability is 0. The most convenient
choice is to assign the respective values c0 − 2λ0, c0, c0 + 2λ0, whenever x−

i , xo
i , x+

i is not
specified from Equation (36). With this convention,

x−
i < c0 − λ0 < xo

i < c0 + λ0 < x+
i , i = 1, . . . , n. (37)

Let Xi be a random variable which assumes values x−
i , xo

i , x+
i with respective probabilities

p−
i , po

i , p+
i . Corollary 2.1 asserts that (the distribution of) Xi is characterized be the fact that

maximizes the expectation of |(X − c0)− λ0| + |(X − c0)+ λ0| as X varies in F1(μi, σi).
The following lemma provides the most fundamental tool for the main result.

Lemma 6.1 The probabilities p+
i , p−

i in Equation (35) satisfy the relation

n∑
i=1

p+
i =

n∑
i=1

p−
i = 1. (38)

Lemma 6.1 enables us to define the n-variate probability vectors

p+ = (p+
1 , . . . , p+

n ), p− = (p−
1 , . . . , p−

n ). (39)

By definition, p+ has its zero elements at exactly the positions i where i ∈ I4 (if I4 = ∅, all p+
i ’s

are positive), and p− has its zero elements at exactly the positions i where i ∈ I3 (if any).

Proposition 6.1 Assume we are given n ≥ 3, μ, σ . Then, (i) and (ii) are equivalent:

(i) We can find a random vector X ∈ Fn(μ, σ ) such that ERn = ρn.
(ii) There exists an n × n probability matrix Q ∈ M(p+, p−) such that qii = 0 for all i ∈

{1, . . . , n}.
Moreover, with L(X) denoting the probability law of the random vector X, the correspon-

dence L(X) � Q is a bijection; the explicit formula for the transformation Q = (qij) �→ L(X) is
given by

P[X = xij] = qij, where xij := (xo
1, . . . , xo

i−1, x+
i , xo

i+1, . . . , xo
j−1, x−

j , xo
j+1, . . . , xo

n),

i 	= j, i, j = 1, . . . , n. (40)
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614 N. Papadatos

The main result of the present work reads as follows:

Theorem 6.1 Let n ≥ 3, μi ∈ R, σi > 0 (i = 1, . . . , n). Then,
(a)

supERn = ρn, (41)

where the supremum is taken over X ∈ Fn(μ, σ ) and ρn = ρn(μ, σ ) is given by Equation (32),
with (c0, λ0) = (c0(μ, σ ), λ0(μ, σ )) being the unique solution to the system of Equations (24).

(b) The set En(μ, σ ) is nonempty. Any extremal X ∈ En(μ, σ ) is produced by Equation (40),
with x−

i , xo
i , x+

i as in Equation (36), and corresponds uniquely to an n × n probability matrix
Q ∈ M(p+, p−) with zero diagonal entries, where p+, p− are given by Equation (39).

Proof From Theorem 2.1 we know that ERn ≤ ρn and it suffices to prove (b). In view of
Proposition 6.1, it remains to verify that the class of n × n probability matrices with zero diag-
onal entries and marginals p+, p− is nonempty. However, this fact follows immediately from
Lemma 3.1, because maxi{p+

i + p−
i } ≤ 1 (see Equation (35)), and the proof is complete. �

Remark 6.1 Since ERn(X) = ρn for any X ∈ En(μ, σ ),

ρn =
n∑

i=1

{(x+
i − c0)p

+
i + (c0 − x−

i )p
−
i }.

Corollary 6.1 If I1 	= ∅ (see Equation (29)) then I1 = {k} for some k ∈ {1, . . . , n}, and the
equality in Inequality (41) characterizes the random vector X with probability law

P[X = xik] = p+
i , P[X = xki] = p−

i , i 	= k, i = 1, . . . , n. (42)

Proof From Equation (33) we know that N(I1) ≤ 1, and thus, I1 = {k} for some k. Since
k ∈ I1, Equation (35) shows that maxi{p+

i + p−
i } = p+

k + p−
k = 1. [Note that, by Lemma 6.1,∑

i	=k p−
i +∑i	=k p+

i = (1 − p−
k )+ (1 − p+

k ) = 1 and, hence, Equation (42) defines a probability
law.] Lemma 3.1 implies uniqueness of Q, hence of L(X) (see Equation (40)). It is easily seen
that the matrix Q, obtained by Equations (42) through (A5), is indeed the unique probability
matrix with vanishing diagonal entries and marginals p+, p−. �

Corollary 6.1 implies uniqueness (denoted by (U)) for the second counterpart of the bound (19)
in Example 3.2. It should be noted that the converse of Corollary 6.1 does not hold; that is, the
condition I1 	= ∅ is not necessary for concluding uniqueness of the extremal random vector X . A
particular example was given by Remark 3.1.

Clearly, the most interesting situations in practice arise when I1 = ∅. In such cases, it is fairly
expected that there will be infinitely many extremal vectors, as in Theorem 3.1. This is, indeed,
true in general, but not always. Lemma 3.1 guarantees infiniteness (denoted by (I)) only if all
p+

i , p−
i are nonzero, and this corresponds to the quite restricted case where I2 = {1, . . . , n}. Of

course, given the existence of two extremal vectors, one can deduce (I) by considering convex
combinations of the corresponding matrices; cf. Example 3.1. If I1 = ∅, the complete distinction
between (U) and (I) depends upon the values of n, n3 = N(I3) and n4 = N(I4) (see Equations (29)
and (33)); and if n3 = n4 = 0 we already know that (I) results.

We briefly discuss all remaining situations where I1 = ∅: If n2 = N(I2) = 0 and n3 ≥ 2, n4 ≥
2, it is obvious that (I) holds; note that n3 = 1, n4 = n − 1 and n3 = n − 1, n4 = 1 are impossible
by Lemma 6.1. If n2 = n3 = n4 = 1 or n2 = 2, n3 = 1, n4 = 0 or n2 = 2, n3 = 0, n4 = 1 then we
are in (U), while (I) results if n2 = n3 = 1, n4 ≥ 2 or n2 = n4 = 1, n3 ≥ 2. If n2 = 1, n3 ≥ 2, n4 ≥
2 then we get (I), as well as in all remaining cases where n2 ≥ 2, n3 ≥ 0, n4 ≥ 0.
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Statistics 615

The final conclusion is as follows: If I1 = ∅, the situations where the extremal distribution is
uniquely defined are described by n2 = n3 = n4 = 1 or n2 = 2, n3 = 1, n4 = 0 or n2 = 2, n3 =
0, n4 = 1 (and thus, n = 3); this provides an explanation to Remark 3.1. However, we note that
knowledge of the values nj actually requires knowledge of the region where the optimal (c0, λ0)

appears, and this may be, or may not be, an easy task for particular μ, σ .

Remark 6.2 The range Rn(X) of an extremal vector X need not be a degenerate random vari-
able. An example is provided by μ = (−2, 0, 2), σ = (1, 3, 1). Then, n1 = 0, n2 = n3 = n4 = 1
and it can be shown that

λ0 ≈ 1.737, ρ3 = 64λ3
0 − 72λ0 − 81

4λ0(4λ2
0 − 9)

≈ 6.066

(λ0 is the unique solution of 4λ2(2 − λ) = (4λ2 − 9)
√
λ2 − 4λ+ 5, and this reduces to a four-

degree polynomial equation). The range R3 of the unique extremal vector assumes values 2λ0 +
λ0(8λ0 − 9)/(4λ2

0 − 9) ≈ 5.542 and 2λ0(8λ0 − 9)/(4λ2
0 − 9) ≈ 6.245 with respective probabil-

ities 9/4λ2
0 ≈ .254 and 1 − 9/4λ2

0 ≈ .746. However, the improvement over the bound AG3 =√
38 ≈ 6.164 is negligible. As a general observation, even for small n, the value of ρn is difficult

to evaluate when more than two index sets Ij are nonempty.

Example 6.1 Homoscedastic observations from two balanced groups. Let n = 2k, σ 2
i = σ 2

and μi = −μ or μ according to i ≤ k or i > k, respectively (μ ≥ 0). The Arnold–Groeneveld
bound (4) takes here the form

ER2k ≤ AG2k = 2
√

k(μ2 + σ 2),

and it is tight if μ ≤ σ/
√

k − 1 (in particular, if n = 2 or μ = 0). Also, we know from
Theorem 3.1, the nature of the random vectors that attain the equality. However, for μ ≥
σ/

√
k − 1 one finds N(I3) = N(I4) = k, and the tight bound of Theorem 6.1 becomes

ER2k ≤ ρ2k = 2μ+ 2σ
√

k − 1

(
μ ≥ σ√

k − 1

)
;

note that ρ2k is equal to AG2k only in the boundary case σ = μ
√

k − 1. For μ ≥ σ/
√

k − 1 the
nature of extremal random vectors is different: They assume values

yij = (−x, . . . , −x, −y, −x, . . . , −x; x, . . . , x, y, x, . . . , x), i, j = 1, . . . , k,

where −y is located at the ith place and y is located at the (k + j)th place of the vector.
Here, 0 ≤ x = μ− σ/

√
k − 1 < y = μ+ σ

√
k − 1. The respective probabilities pij = P[X =

yij], i, j = 1, . . . , k, correspond to a probability matrix Pk×k with uniform marginals. Both limits

lim
μ→∞

ρ2k

AG2k
= 1√

k
(k, σ fixed), lim

k→∞
ρ2k

AG2k
= σ√

μ2 + σ 2
(μ, σ fixed)

show that, under some circumstances, the improvement that is achieved by using ρn instead of
AGn can become arbitrarily large.
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616 N. Papadatos

Example 6.2 Homoscedastic data with a single outlier. Let σ 2
i = σ 2 for all i, μi = 0 (i =

1, . . . , n − 1) and μn = μ ≥ 0. Theorem 3.1 asserts that the bound

ERn ≤ AGn =
√

2
n − 1

n
μ2 + 2nσ 2

is not tight for n ≥ 3 and μ > n/
√

n − 1σ . In this case we have I1 = {n}, I2 = {1, . . . , n − 1}, so
that n1 = 1, n2 = n − 1, and the tight bound has the form

ERn ≤ ρn =
√
(n − 1)(c2

0 + σ 2)+
√
(μ− c0)2 + σ 2,

where c0 is the unique root of the equation

c
√

n − 1√
c2 + σ 2

= μ− c√
(μ− c)2 + σ 2

, 0 < c < min

{
μ

n
,

σ√
n − 2

}
.

[It can be checked that λ0 = (
√

n − 1/2)
√

c2
0 + σ 2.] Although ρn < AGn (for μ

√
n − 1 > nσ ),

it is not easy to make direct comparisons. However, the relations c2
0 < σ 2/(n − 2) and (μ−

c0)
2 < μ2 imply that ρn < ρ ′

n := ((n − 1)/
√

n − 2)σ +
√
μ2 + σ 2. Hence, for the (non-tight)

upper bound ρ ′
n,

lim
μ→∞

ρ ′
n

AGn
=

√
n√

2n − 2
(n ≥ 3, n, σ fixed).

Remark 6.3 Example 6.2 and Remark 6.2 entail that ρn may have a rather complicated form
when the μi’s are not all equal. On the other hand, ρn becomes quite plausible in the case of
equal μi’s; see Example 3.2. This particular case is useful in concluding some facts about the
behaviour of ρn in general. Indeed, taking into account the obvious relation U(x, y) ≥ U(0, y),
we see that for any given μ and σ ,

ρn = φn(c0, λ0) ≥ −(n − 2)λ0 + λ0

2

n∑
i=1

U

(
0,
σi

λ0

)
= φ̂n(0, λ0) ≥ ρ̂n := inf

x∈R,y>0
φ̂n(x, y),

where ρ̂n is the upper bound of Theorem 2.1, calculated under μi = μ for all i, and for the given
σ . Since ρ̂n = miny>0 φ̂n(0, y) admits a simple closed form, see (19), we get the following lower
bound:

ρn ≥ ρ̂n =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

√√√√2
n∑

i=1

σ 2
i if 2 max

i
{σ 2

i } ≤
n∑

i=1

σ 2
i ,

max
i

{σi} +
√√√√ n∑

i=1

σ 2
i − max

i
{σ 2

i } if 2 max
i

{σ 2
i } ≥

n∑
i=1

σ 2
i ,

any μ, σ .

Since U(x, y) > U(0, y) for x 	= 0, the equality holds only if all the μi’s are equal. Despite its
weakness, this lower bound provides an idea of what can be expected for the actual size of ρn. It is
also helpful in giving some light to the observation that, provided the means are small compared
to the variances, the AGn bound tends to be tight. More precisely, assume that mini{σ 2

i } → ∞
and (

∑n
i=1(μi − μ̄)2)/(

∑n
i=1 σ

2
i ) → 0 (in particular, maxi |μi − μ̄| ≤ C < ∞ suffices for this).

Then, the homogeneity assumption maxi{σ 2
i } ≤ (n − 1)mini{σ 2

i } is sufficient for the asymptotic
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tightness of the AGn bound (for fixed n ≥ 3). Indeed, from this assumption we get
∑n

i=1 σ
2
i ≥

maxi{σ 2
i } + (n − 1)mini{σ 2

i } ≥ 2 max{σ 2
i }, and thus, ρ̂n =

√
2
∑n

i=1 σ
2
i . Hence,

1 ≥
(
ρn

AGn

)2

≥
(
ρ̂n

AGn

)2

=
∑n

i=1 σ
2
i∑n

i=1{(μi − μ̄)2 + σ 2
i } = 1

1 + (∑n
i=1(μi − μ̄)2)/(

∑n
i=1 σ

2
i )

→ 1.

Therefore, under the above circumstances, the improvement achieved by using ρn instead of AGn

becomes negligible.

7. The case n = 2 and further remarks

For n = 2, c ∈ R and 0 < λ ≤ λ∗(c) := 1
2 min{

√
(μ1 − c)2 + σ 2

1 ,
√
(μ2 − c)2 + σ 2

2 }, it is easily
seen that

φ2(c, λ) =
√
(μ1 − c)2 + σ 2

1 +
√
(μ2 − c)2 + σ 2

2 .

The last quantity attains its minimum value at the unique solution of the equation
(∂/∂c)φ2(c, λ) = 0, i.e. at c = c0 = (σ1/(σ1 + σ2))μ2 + (σ2/(σ1 + σ2))μ1. Thus, the bound ρ2

admits a closed form. More precisely, Theorem 2.1 shows that

ER2 ≤ ρ2, where ρ2 := inf
c∈R,λ>0

φ2(c, λ) =
√
(μ1 − μ2)2 + (σ1 + σ2)2. (43)

Observe that λ∗(c0) = (ρ2/2(σ1 + σ2))min{σ1, σ2} and that φ2(c0, λ) assumes the constant value
ρ2 for all λ ∈ (0, λ∗(c0)]. It follows that the set of minimizing points form the line segment given
in Remark 5.3. Clearly, N(I1) = 2 = n, in contrast to (31) which guaranties that N(I1) ≤ 1 for
every n ≥ 3.

The inequality (43) is tight, since the equality is attained by (and characterizes) the random
pair (X1, X2) with distribution given by

P

[
X1 = σ2μ1 + σ1μ2

σ1 + σ2
+ σ1

σ1 + σ2
ρ2, X2 = σ2μ1 + σ1μ2

σ1 + σ2
− σ2

σ1 + σ2
ρ2

]
= 1

2

(
1 + μ1 − μ2

ρ2

)
,

P

[
X1 = σ2μ1 + σ1μ2

σ1 + σ2
− σ1

σ1 + σ2
ρ2, X2 = σ2μ1 + σ1μ2

σ1 + σ2
+ σ2

σ1 + σ2
ρ2

]
= 1

2

(
1 + μ2 − μ1

ρ2

)
.

(44)

Therefore, E2(μ, σ ) is a singleton. Also, AG2 =
√
(μ1 − μ2)2 + 2σ 2

1 + 2σ 2
2 , and it is worth

pointing out that the bound AG2 is tight if and only if σ1 = σ2. Another observation is that
the extremal random vector for the expected range coincides with the (unique) extremal random
vector for the expected maximum (see Inequality (5)). However, this is not a coincidence. In
view of the obvious relationship

R2 = |X1 − X2| = 2 max{X1, X2} − X1 − X2 = 2X2:2 − X1 − X2, (45)

a bound for the maximum can be translated to a bound for the range, and vice-versa (provided
that the expectations, μ1,μ2, of X1, X2, are known). In this sense, the bound ρ2 turns to be a
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618 N. Papadatos

particular case of the results given by Bertsimas et al.,[16,17] namely

ρ2 = supER2 = supE{2X2:2 − X1 − X2} = 2 supEX2:2 − μ1 − μ2 = 2BNT2 − μ1 − μ2,

and the equality characterizes the same extremal distribution as for the maximum. Consequently,
it is of some interest to observe that the bound BNT2 admits a closed form, namely

BNT2 = 1
2 (μ1 + μ2)+ 1

2

√
(μ1 − μ2)2 + (σ1 + σ2)2.

Note also that the BNT2–bound improves the corresponding Arnold–Groeneveld bound (3) for
the expected maximum only in the case where σ1 	= σ2.

It is also worth pointing out that a particular application of the main result in [13] yields an
even better (than BNT2, AG2 and ρ2) bound. Indeed, setting ρ := Corr (X1, X2), it follows from
Papadatos’ results that for any (X1, X2) ∈ F2(μ, σ ),

ER2 ≤ γ2 :=
√
(μ1 − μ2)2 + (σ1 + σ2)2 − 2(1 + ρ)σ1σ2. (46)

Obviously, γ2 ≤ ρ2 with equality if and only if ρ = −1. This inequality explains the fact that the
extremal random pair (X1, X2) (that attains the bounds ρ2 and BNT2) has correlation ρ = −1;
see Equation (44).

The preceding inequalities have some interest because they provide a basis for the investi-
gation of the dependence structure of an ordered pair. This kind of investigation is particularly
useful for its application to reliability systems; see [24]. On the other hand, in view of the obvious
facts X1:2 + X2:2 = X1 + X2 and X1:2X2:2 = X1X2, we get the relation

Cov [X1:2, X2:2] = ρσ1σ2 − 1
4 (μ2 − μ1)

2 + 1
4 (ER2)

2, (X1, X2) ∈ F2(μ, σ ), (47)

where ρ = Corr (X1, X2). Thus, any bound (upper or lower) for ER2 can be translated to a bound
for Cov (X1:2, X2:2) as well as for EX2:2; see [25,26]. Therefore, it is of some interest to know
whether the bound in (46) is tight for given ρ. This is indeed the case but, to the best of our
knowledge, this elementary fact does not seem to be well known, and we shall provide a simple
proof here. To this end, let μ = (μ1,μ2), σ = (σ1, σ2) (with σ1 > 0, σ2 > 0), −1 ≤ ρ ≤ 1, and
define the section

F2(μ, σ ; ρ) := {(X1, X2) ∈ F2(μ, σ ) : Corr (X1, X2) = ρ}.
Then we have the following.

Theorem 7.1 As (X1, X2) varies in F2(μ, σ ; ρ),

infER2 = |μ2 − μ1|, supER2 =
√
(μ2 − μ1)2 + (σ1 + σ2)2 − 2(1 + ρ)σ1σ2.

Remark 7.1 From the proof it follows that (the probability law of) the extremal vector (X1, X2)

∈ F2(μ, σ ; ρ) that attains the equality in Inequality (46) is unique if and only if either (i)
ρ = −1 or (ii) σ1 	= σ2 and ρ = 1. With this in mind, let us keep μ1,μ2, σ1, σ2 constant, and
write γ2 = γ2(ρ) for the quantity defined by (46). Then, γ2(ρ) is strictly decreasing in ρ (recall
that σ1 > 0, σ2 > 0), attaining its maximum value at ρ = −1. By definition, γ2(−1) = ρ2 (see
Equation (43)), and thus, for the equality ER2 = ρ2 it is necessary that ρ = −1. This obser-
vation verifies that the unique distribution that attains the equality in Inequality (43) is the
BNT2–distribution, given by Equation (44).

In view of (45), (47), the following result is straightforward from Theorem 7.1.
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Corollary 7.1 Let (X1, X2) ∈ F2(μ1,μ2, σ1, σ2; ρ) with σ1 > 0, σ2 > 0. Then,

max{μ1,μ2} ≤ E{max{X1, X2}} ≤ 1
2 (μ1 + μ2)+ 1

2

√
(μ2 − μ1)2 + σ 2

1 + σ 2
2 − 2ρσ1σ2,

ρσ1σ2 ≤ Cov [min{X1, X2}, max{X1, X2}] ≤ 1
4 (σ

2
1 + σ 2

2 + 2ρσ1σ2).

All bounds are best possible.

It is worth pointing out that, as Corollary 7.1 shows, the covariance of an ordered pair can
never be smaller than the covariance of the observations and, in particular, an ordered pair formed
from nonnegatively correlated observations is nonnegatively correlated. While these facts, as
well as the lower covariance bound of an ordered pair, are well-known (see [24, Equation’s (2.9),
(2.11)]), the upper bound seems to be of some interest.

There are some propositions and questions for further research. An obvious one is in extending
the main result of Theorem 6.1 and of (5) to more general L-statistics. Recall that the tight bound
for any L-statistic under the i.d. assumption is known from the work of Rychlik.[4] However,
Rychlik’s result is not applicable if arbitrary multivariate distributions are allowed for the data.

A second one concerns extension to other L-statistics of the bounds given in Corollary 7.1
and Theorem 7.1 for n ≥ 3, noting that these bounds have a different nature, because they use
covariance information from the data. It is particularly interest to know the tight bounds for the
expected range and the expected maximum under mean–variance–covariance information on the
observations. Non-tight bounds of this form are given, e.g. in [11,13]. It is worth pointing out
that some sophisticated optimization techniques (semidefinite programming) have been fruitfully
applied to this kind of problems, especially for the maximum and the range. The interested reader
is referred to Natarajan and Teo,[27] where some financial applications of the range bounds are
also included. However, note that one would hardly discover the simple formula (46) from the
(reduced) semidefinite program in Natarajan and Teo’s Section 4.

A lot of research has been devoted in deriving distribution and expectation bounds for L-
statistics based on random vectors with given marginals; see [8,28–41]. The results by Lai and
Robbins,[18] Nagaraja [10] and Arnold and Balakrishnan [15] show that some deterministic
inequalities play an important role in the derivation of tight bounds for L-statistics; see [42].
On the other hand, the deterministic inequality (8) can be viewed as a range analogue of the
inequality from Lai and Robbins.[18] Noting that the Lai-Robbins inequality yields the tight
bound for the expected maximum under completely known marginal distributions (see [17,35]),
it would not be surprising if (8) could produce the best possible bound for the expected range.
Thus, a natural question is whether it is true that for all multivariate vectors with given marginal
distributions F1, . . . , Fn and finite first moment,

supERn = inf
c∈R,λ>0

{
−(n − 2)λ+ 1

2

n∑
i=1

E[|(Xi − c)− λ| + |(Xi − c)+ λ|]
}

.

Note that the RHS is an upper bound for the LHS, and depends only on F1, . . . , Fn.
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Appendix. Proofs

Proof of Lemma 2.1. Fix c ∈ R and λ > 0 and set y1 = c − λ, y2 = c + λ, so that y1 < y2. Observe that Rn = Xn:n −
X1:n and

n∑
i=1

{|Xi − y1| + |Xi − y2|} =
n∑

i=1

{|Xi:n − y1| + |Xi:n − y2|}.

Hence,

n∑
i=1

{|Xi − y1| + |Xi − y2|} − (n − 2)(y2 − y1)− 2Rn =
n−1∑
i=2

{|Xi:n − y1| + |Xi:n − y2| − (y2 − y1)}

+ {|X1:n − y1| + |Xn:n − y1| − (Xn:n − X1:n)}
+ {|X1:n − y2| + |Xn:n − y2| − (Xn:n − X1:n)}.

For each i ∈ {2, . . . , n − 1}, we have

y2 − y1 = |y2 − y1| = |(Xi:n − y1)− (Xi:n − y2)| ≤ |Xi:n − y1| + |Xi:n − y2|,

with equality if and only if y1 ≤ Xi:n ≤ y2. Since the sum
∑n−1

i=2 {|Xi:n − y1| + |Xi:n − y2| − (y2 − y1)} contains only
nonnegative terms, it follows that

n−1∑
i=2

{|Xi:n − y1| + |Xi:n − y2| − (y2 − y1)} ≥ 0,

with equality if and only if y1 ≤ X2:n ≤ · · · ≤ Xn−1:n ≤ y2. Also, for y = y1 or y2,

Xn:n − X1:n = |(Xn:n − y)− (X1:n − y)| ≤ |X1:n − y| + |Xn:n − y|

with equality if and only if X1:n ≤ y ≤ Xn:n. Therefore,

−2Rn − (n − 2)(y2 − y1)+
n∑

i=1

{|Xi − y1| + |Xi − y2|} ≥ 0

with equality if and only if X1:n ≤ y1 ≤ X2:n ≤ · · · ≤ Xn−1:n ≤ y2 ≤ Xn:n. �
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622 N. Papadatos

Proof of Lemma 2.2. In case μ2 + σ 2 ≥ 4 it suffices to use the inequality

|X − 1| + |X + 1| ≤
√
μ2 + σ 2 + X 2√

μ2 + σ 2
,

where the equality holds if and only if X ∈ {−
√
μ2 + σ 2,

√
μ2 + σ 2}. Taking expectations, we get

E{|X − 1| + |X + 1|} ≤
√
μ2 + σ 2 + EX 2√

μ2 + σ 2
= 2
√
μ2 + σ 2.

For equality X has to assume the values ±
√
μ2 + σ 2. Set p = P[X =

√
μ2 + σ 2] so that 1 − p = P[X = −

√
μ2 + σ 2].

The relation EX 2 = μ2 + σ 2 is satisfied for any value of p ∈ [0, 1], while the condition EX = μ specifies p to be as
in (a).

Next, we assume that 2|μ| < μ2 + σ 2 < 4 and use the inequality

|X − 1| + |X + 1| ≤ 2 + 1
2 X 2,

in which the equality holds if and only if X ∈ {−2, 0, 2}. Taking expectations we again conclude Inequality (10) with
U(μ, σ) given by the second line of Equation (11). It is easy to see that the unique random variable in F1(μ, σ) that
assumes values in the set {−2, 0, 2} is the one given by (b).

Next, suppose that μ2 + σ 2 ≤ 2μ, and hence, 0 < μ < 2. Working as before, it suffices to take expectations in the
inequality

|X − 1| + |X + 1| ≤ 2 + (X − 1 +
√
(μ− 1)2 + σ 2)2

2
√
(μ− 1)2 + σ 2

,

in which the equality holds if and only if X ∈ {x1, x2}, where x1 = 1 −
√
(μ− 1)2 + σ 2, x2 = 1 +

√
(μ− 1)2 + σ 2.

Note that 0 < (μ− 1)2 + σ 2 = 1 − [2μ− (μ2 + σ 2)] ≤ 1; thus, 0 ≤ x1 < 1 < x2 ≤ 2. Now it is easily seen that the
unique random variable in F1(μ, σ) that assumes values in the set {x1, x2} is the one given by (c). Observing that |X −
1| + |X + 1| is even, the case μ2 + σ 2 ≤ −2μ is reduced to the previous one by considering −X ∈ F1(−μ, σ). �

Proof of Lemma 3.1. For n = 1 both Equations (20) and (21) are invalid, so we have nothing to prove. For n = 2, the
result is trivial (we have uniqueness if Equation (20) is satisfied; we have equality in Inequality (21) whenever it is
fulfilled). Assume n ≥ 3 and consider the set of all probability matrices with the given marginals,

M(p, q) =
⎧⎨
⎩Q = (qij) ∈ Rn×n : qij ≥ 0,

n∑
i=1

qij = qj,
n∑

j=1

qij = pi for all i, j

⎫⎬
⎭ .

The set M(p, q) is nonempty since, e.g. it contains the matrix Q = (piqj). Also, the function f (Q) := trace(Q) =∑n
i=1 qii is continuous with respect to the total variation distance, d(Q, Q̃) =∑i,j |qij − q̃ij| (or any other equivalent

metric on Rn×n). Moreover, M(p, q) is a compact subset of Rn×n, since it is obviously closed, and it is contained in a
ball with centre the null matrix On×n and (total variation) radius 1. It follows that f (Q) attains its minimum value for
some Q∗ ∈ M(p, q).

Let (X , Y) ∼ Q∗ = (q∗
ij) where Q∗ ∈ M(p, q) is a minimizing matrix. Then, X ∼ p, Y ∼ q and f (Q∗) = P[X = Y ].

A simple argument shows that the principal diagonal of any minimizing matrix Q∗ can contain at most one nonzero entry.
Indeed, if q∗

ii > 0 and q∗
jj > 0 with i 	= j, set γ = min{q∗

ii, q∗
jj} > 0, and consider the matrix Q̃ = (q̃ij) which differs from

Q∗ only in the following four entries: q̃ii = q∗
ii − γ , q̃jj = q∗

jj − γ , q̃ij = q∗
ij + γ , q̃ji = q∗

ji + γ . Since the row/column

sums are unaffected and the elements of Q̃ are nonnegative, it is clear that Q̃ ∈ M(p, q) and we arrived at the contradic-
tion f (Q̃) = f (Q∗)− 2γ < f (Q∗). Therefore, all diagonal entries of a minimizing matrix Q∗ have to be zero, with the
possible exception of at most one of them.

Sufficiency: Assume that Condition (21) is satisfied, and suppose that minQ f (Q) = f (Q∗) = θ > 0. Let q∗
kk = θ and

thus, q∗
ii = 0 for all i 	= k. Then,

P[{X = k} ∪ {Y = k}] = P[X = k] + P[Y = k] − P[X = k, Y = k] = pk + qk − θ .

Since 1 − pk − qk ≥ 0 (from Condition (21)) we thus obtain

P[X 	= k, Y 	= k] = 1 − P[{X = k} ∪ {Y = k}] = θ + (1 − pk − qk) ≥ θ > 0.

On the other hand, since q∗
ii = 0 for all i 	= k, we have

P[X 	= k, Y 	= k] =
∑

(i,j):i 	=k,j 	=k,i 	=j

q∗
ij.

The above probability is at least θ , and thus, strictly positive. It follows that the sum contains at least one positive term.
Hence, we can find two indices r, s with r 	= k, s 	= k, r 	= s, such that q∗

rs > 0. Set δ = min{θ , q∗
rs} > 0 and consider
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Statistics 623

the matrix Q̃ = (q̃ij) which differs from Q∗ only in the elements q̃kk = q∗
kk − δ = θ − δ, q̃rs = q∗

rs − δ, q̃rk = q∗
rk + δ,

q̃ks = q∗
ks + δ. Since the row/column sums are unaffected and the elements of Q̃ are nonnegative, it is clear that Q̃ ∈

M(p, q), and this results to the contradiction f (Q̃) = θ − δ < θ . Thus, f (Q∗) = P[X = Y ] = 0; this proves the existence
of random vectors satisfying (20).

Necessity: This is entirely obvious. For, if a random vector (X , Y) satisfies Equation (20) then (X , Y) ∼ Q for some
Q ∈ M(p, q) with qii = 0 for all i. Thus, for any i,

pi + qi = pi + qi − qii = P[X = i] + P[Y = i] − qii = P[{X = i} ∪ {Y = i}] ≤ 1.

Uniqueness: Assume that maxi{pi + qi} = 1 and choose k with pk + qk = 1. If (X , Y) ∼ Q satisfies Equation (20),
we have P[{X = k} ∪ {Y = k}] = pk + qk − qkk ≥ pk + qk − P[X = Y ] = pk + qk = 1. It follows that Q can have
nonzero entries only in its kth row and in its kth column. Thus, qik = pi for all i 	= k, qkj = qj for all j 	= k and qij = 0 oth-
erwise; hence, Q is uniquely determined from p, q. Note that k need not be unique, but Q is always unique. For example,
if p = (1 − p, p, 0, . . . , 0) and q = (p, 1 − p, 0, . . . , 0) with 0 ≤ p ≤ 1, we obtain the unique solution to Equation (20) as
P[X = 2, Y = 1] = p = 1 − P[X = 1, Y = 2]. In fact, one can easily verify that this example describes the most general
case (modulo the positions of p, 1 − p) where the relation pk + qk = 1 can hold for more than one index k.

Non-uniqueness: Suppose that all pi and qi are positive and that Condition (21) holds as a strict inequality, that
is, pi + qi < 1 for all i. [The last assumption is possible only if n ≥ 3.] Set β = (1/n2)[1 − maxi{pi + qi}] > 0, δ =
mini,j{piqj} > 0 and ε = min{β, δ} > 0. Define

Mε(p, q) := {Q ∈ M(p, q) : qij ≥ ε for all i, j with i 	= j}.

Observe that Mε(p, q) is a nonempty (since it contains Q = (piqj)) compact subject of Rn×n. Applying the same argu-
ments as in the beginning of the proof we see that the continuous function f (Q) = trace(Q) attains its minimum value
at a matrix Q∗

ε = (q∗
ij) ∈ Mε(p, q); Q∗

ε has at most one nonzero diagonal entry while, by the definition of Mε(p, q), all
off-diagonal entries are at least ε. Let (X , Y) ∼ Q∗

ε . Assuming P[X = Y ] = θ > 0 we can find a unique index k such
that q∗

kk = θ ; then, P[{X = k} ∪ {Y = k}] = pk + qk − θ . Since q∗
ii = 0 for i 	= k, we have

∑
(i,j):i 	=k,j 	=k,i 	=j

q∗
ij = P[X 	= k, Y 	= k] = θ + (1 − pk − qk) ≥ θ + [1 − max

i
{pi + qi}]

= θ + n2β ≥ θ + n2ε > n2ε.

This sum contains (n − 1)(n − 2) < n2 terms and the inequality shows that at least one of them is greater than ε. Thus, we
can find two indices r, s with r 	= k, s 	= k, r 	= s, such that q∗

rs > ε; say q∗
rs = ε + γ with γ > 0. Set λ = min{θ , γ } > 0

and consider the matrix Q̃ε = (q̃ij), which differs from Q∗
ε at exactly the four elements q̃kk = q∗

kk − λ = θ − λ ≥ 0, q̃rs =
q∗

rs − λ = ε + (γ − λ) ≥ ε, q̃rk = q∗
rk + λ, q̃ks = q∗

ks + λ. It is clear that Q̃ε ∈ Mε(p, q) and, once again, it contradicts

the definition of Q∗
ε : f (Q̃ε) = θ − λ < θ = f (Q∗

ε ). Thus, f (Q∗
ε ) = P[X = Y ] = 0. This shows the existence of random

vectors (X , Y) satisfying (20) with the additional property P[X = i, Y = j] ≥ ε > 0 for all i 	= j, provided that ε > 0 is
sufficiently small. Given a probability matrix Q∗

ε = (q∗
ij) of this form, it is easy to construct a second solution, Q = (qij),

to (20); e.g. set q12 = q∗
12 − ε/2, q13 = q∗

13 + ε/2, q21 = q∗
21 + ε/2, q23 = q∗

23 − ε/2, q31 = q∗
31 − ε/2, q32 = q∗

32 +
ε/2, and leave the rest entries unchanged. Finally, it is easy to see that if Q0, Q1 both solve (20), the same is true for
Qt = tQ1 + (1 − t)Q0, 0 ≤ t ≤ 1, and the proof is complete. �

Proof of Theorem 3.1. Assume that ERn = AGn for some random vector X with EX = μ and Var X = σ 2. Set c = μ̄,
λ = 1

4 AGn > 0 and take expectations in (8) to get (cf. Remark 2.2)

AGn = ERn ≤ −(n − 2)AGn

4
+ AGn

8

n∑
i=1

E

{∣∣∣∣Xi − μ̄

AGn/4
− 1

∣∣∣∣+
∣∣∣∣Xi − μ̄

AGn/4
+ 1

∣∣∣∣
}

.

Next, from |y − 1| + |y + 1| ≤ 2 + 1
2 y2 with equality if and only if y ∈ {−2, 0, 2} we get

n∑
i=1

E

{∣∣∣∣Xi − μ̄

AGn/4
− 1

∣∣∣∣+
∣∣∣∣Xi − μ̄

AGn/4
+ 1

∣∣∣∣
}

≤ 2n + 1

2

n∑
i=1

E

{(
Xi − μ̄

AGn/4

)2
}

= 2n + 4.

Since −(n − 2)AGn/4 + (AGn/8)(2n + 4) = AGn, it follows that the preceding inequalities are, in fact, equalities.
Therefore, ERn = AGn is equivalent to (9) (with c = μ̄, λ = 1

4 AGn) and (Xi − μ̄)/AGn/4 ∈ {−2, 0, 2}, i = 1, . . . , n
(of course, it suffices to hold with probability 1). Hence, ERn = AGn if and only if

(a) X1:n ≤ μ̄− 1

4
AGn ≤ X2:n ≤ · · · ≤ Xn−1:n ≤ μ̄+ 1

4
AGn ≤ Xn:n and
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624 N. Papadatos

(b) Xi ∈
{
μ̄− AGn

2
, μ̄, μ̄+ AGn

2

}
, i = 1, . . . , n,

with probability 1. Therefore, the (essential) support of any extremal random vector is a subset of

S :=
{(
μ̄, . . . , μ̄, μ̄+ AGn

2
, μ̄, . . . , μ̄, μ̄− AGn

2
, μ̄, . . . , μ̄

)}
,

where the plus and minus signs can appear at any two (different) places. Clearly, S has n(n − 1) elements and can be
written as

S =
{
μ̄ 1 + e(i)− e(j)

2
AGn : (i, j) ∈ {1, . . . , n}2, i 	= j

}
.

Let S′ := {(i, j) ∈ {1, . . . , n}2 : i 	= j}. The function g : S′ → S, that sends (i, j) to g(i, j) = μ̄ 1 + ((e(i)− e(j))/2)AGn,
is a bijection. It follows that (X , Y) := g−1(X) is a random pair with values in a subset of S′, and X = g(X , Y); this
verifies the representation (17). For i ∈ {1, . . . , n} we set

p+
i := P

[
Xi = μ̄+ AGn

2

]
= P[X = i], p−

i = P

[
Xi = μ̄− AGn

2

]
= P[Y = i],

so that P[Xi = μ̄] = 1 − p+
i − p−

i . From EXi = μi we get p+
i − p−

i = 2(μi − μ̄)/AGn and from E{(Xi − μ̄)2} = (μi −
μ̄)2 + σ 2

i we obtain p+
i + p−

i = 4[(μi − μ̄)2 + σ 2
i ]/AG2

n. Hence,

p+
i = 2[(μi − μ̄)2 + σ 2

i ] + (μi − μ̄)AGn

AG2
n

, p−
i = 2[(μi − μ̄)2 + σ 2

i ] − (μi − μ̄)AGn

AG2
n

,

and (18) follows. Therefore, we can find a random vector X with EX = μ, Var X = σ 2 and ERn = AGn if and only if
the above construction of a random pair (X , Y), with P[X = Y ] = 0, is possible. According to Lemma 3.1, this is equiv-
alent to maxi{p+

i + p−
i } ≤ 1, which gives (16)(ii) (it also guarantees that P[Xi = μ̄] = 1 − p+

i − p−
i ≥ 0), while (16)(i)

follows from p+
i ≥ 0 and p−

i ≥ 0.
Finally, the inequalities (16) are strict for all i if and only if p+

i + p−
i < 1, p+

i > 0 and p−
i > 0 for all i. Lemma 3.1

shows that there exist infinitely many vectors (X , Y) in this case. Also, if (16) is satisfied and we have equality in (16)(ii)
for some i, uniqueness follows again from Lemma 3.1. �

Proof of Lemma 4.1. The functions fi : T → (0, ∞) (i = 1, 2, 3, 4) given by f1(x, y) := 2
√

x2 + y2, f2(x, y) := 2 +
1
2 (x

2 + y2), f3(x, y) := x + 1 +
√
(x − 1)2 + y2 and f4(x, y) := 1 − x +

√
(x + 1)2 + y2 are obviously C∞(T). The func-

tion U can be defined as the restriction of f1 in A1 := {(x, y) ∈ T : x2 + y2 ≥ 4}, of f2 in A2 := {(x, y) ∈ T : 2|x| ≤
x2 + y2 ≤ 4}, of f3 in A3 := {(x, y) ∈ T : x2 + y2 ≤ 2x} and of f4 in A4 := {(x, y) ∈ T : x2 + y2 ≤ −2x}. Observe that A3
and A4 are the closed (with respect to T) semidisks T ∩ D((1, 0), 1), T ∩ D((−1, 0), 1); also, A2 = T ∩ [D((0, 0), 2)�

Ao
3 ∪ Ao

4], and A1 = T � Ao
2 ∪ A3 ∪ A4. Therefore, A1 ∩ A3 = ∅, A1 ∩ A4 = ∅, A3 ∩ A4 = ∅, ∂A1 = A1 ∩ A2 = {(x, y) ∈

T : x2 + y2 = 4}, ∂A3 = A2 ∩ A3 = {(x, y) ∈ T : (x − 1)2 + y2 = 1}, ∂A4 = A2 ∩ A4 = {(x, y) ∈ T : (x + 1)2 + y2 = 1}
and ∂A2 = ∂A1 ∪ ∂A3 ∪ ∂A4. It is easy to check that both partial derivatives of f1 and f2 coincide at ∂A1, that both partial
derivatives of f2 and f3 coincide at ∂A3 and that both partial derivatives of f2 and f4 coincide at ∂A4. We conclude that for
(x, y) ∈ T ,

U1(x, y) := ∂

∂x
U(x, y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

2x√
x2 + y2

if x2 + y2 ≥ 4,

x if 2|x| ≤ x2 + y2 ≤ 4,
x − 1√

(x − 1)2 + y2
+ 1 if (x − 1)2 + y2 ≤ 1,

x + 1√
(x + 1)2 + y2

− 1 if (x + 1)2 + y2 ≤ 1,

(A1)

and

U2(x, y) := ∂

∂y
U(x, y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

2y√
x2 + y2

if x2 + y2 ≥ 4,

y if 2|x| ≤ x2 + y2 ≤ 4,
y√

(x − 1)2 + y2
if (x − 1)2 + y2 ≤ 1,

y√
(x + 1)2 + y2

if (x + 1)2 + y2 ≤ 1,

(A2)

and the above functions are obviously continuous. �
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Statistics 625

Proof of Proposition 4.1. Fix x and y in T. The set ∂A2 (where U changes type) is a union of three disjoint semicircles,
and the line segment [x, y] = {x + t(y − x), 0 ≤ t ≤ 1} can have at most six common points with ∂A2 = {(x, y) ∈ T :
x2 + y2 = 4 or (x − 1)2 + y2 = 1 or (x + 1)2 + y2 = 1}; for the definition of A2 see the proof of Lemma 4.1. Consider
now the function g : [0, 1] → R with g(t) := U(x + t(y − x)), 0 ≤ t ≤ 1, which is continuously differentiable from
Lemma 4.1. Also, g is of the form of Equation (23) with k ∈ {0, . . . , 6}, where gi(t) = fj(x + t(y − x)), 0 ≤ t ≤ 1, for
some j = j(i) ∈ {1, 2, 3, 4} (the functions fj : T → (0, ∞) are defined in the proof of Lemma 4.1). It is easy to verify
that each fj has nonnegative definite Hessian matrix and, thus, is convex. Lemma 4.2 asserts that gi(t) : [0, 1] → (0, ∞)

(i = 1, . . . , k + 1) is convex. Since g is continuously differentiable, Condtition (22) is automatically satisfied, and we
conclude from Lemma 4.3 that g is convex. Therefore, g is convex for any choice of x and y in T, and a final application
of Lemma 4.2 completes the proof. �

Remark A.1 It is worth pointing out that the function U is C1(T), convex and not C2(T). Specifically,

U(x, y) =

⎧⎪⎨
⎪⎩

4 on A1 ∩ A2 = ∂A1,
2 + x on A2 ∩ A3 = ∂A3,
2 − x on A2 ∩ A4 = ∂A4.

Moreover,

∂

∂x
U(x, y) = x and

∂

∂y
U(x, y) = y on ∂A2,

and

H1(x, y) = 2

(x2 + y2)3/2

[
y2 −xy

−xy x2

]
,

H2(x, y) = I2, H3(x, y) = H1(x − 1, y), H4(x, y) = H1(x + 1, y), where Hi is the Hessian of U restricted to Ai, i =
1, . . . , 4.

Proof of Lemma 4.4. (i) Fix x0 ∈ R, y0 > 0 and let α ∈ (0, 1), c1, c2 ∈ R, λ1, λ2 > 0. Write β1 = αλ1/(αλ1 +
(1 − α)λ2) > 0, β2 = (1 − α)λ2/(αλ1 + (1 − α)λ2) > 0, so that β1 + β2 = 1. We have

h(αc1 + (1 − α)c2,αλ1 + (1 − α)λ2)

αλ1 + (1 − α)λ2
= f

(
x0 − [αc1 + (1 − α)c2]

αλ1 + (1 − α)λ2
,

y0

αλ1 + (1 − α)λ2

)

= f

(
β1

(
x0 − c1

λ1

)
+ β2

(
x0 − c2

λ2

)
, β1

(
y0

λ1

)
+ β2

(
y0

λ2

))

≤ β1f

(
x0 − c1

λ1
,

y0

λ1

)
+ β2f

(
x0 − c2

λ2
,

y0

λ2

)
= αh(c1, λ1)+ (1 − α)h(c2, λ2)

αλ1 + (1 − α)λ2
,

showing that h is convex.
(ii) Suppose that for a particular (x0, y0) ∈ T , the function h0(c, λ) = λf ((x0 − c)/λ, y0/λ) is convex. Set x =

(x0 − c)/λ, y = y0/λ > 0, so that

c = x0 − y0
x

y
, λ = y0

y
, y0f (x, y) = yh0

(
x − y0

x

y
,

y0

y

)
, (x, y) ∈ T .

Let α ∈ (0, 1), x1, x2 ∈ R and y1, y2 > 0. Let us now write β1 = αy1/(αy1 + (1 − α)y2) > 0, β2 = (1 − α)y2/

(αy1 + (1 − α)y2) > 0, so that β1 + β2 = 1. It follows that

y0f (αx1 + (1 − α)x2,αy1 + (1 − α)y2)

= [αy1 + (1 − α)y2]h0

(
β1

(
x1 − y0

x1

y1

)
+ β2

(
x2 − y0

x2

y2

)
,β1

(
y0

y1

)
+ β2

(
y0

y2

))

≤ [αy1 + (1 − α)y2]

{
β1h0

(
x1 − y0

x1

y1
,

y0

y1

)
+ β2h0

(
x2 − y0

x2

y2
,

y0

y2

)}

= αy1h0

(
x1 − y0

x1

y1
,

y0

y1

)
+ (1 − α)y2h0

(
x2 − y0

x2

y2
,

y0

y2

)

= y0[αf (x1, y1)+ (1 − α)f (x2, y2)],

and the proof is complete. �
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626 N. Papadatos

Proof of Lemma 5.2. If (c0, λ0) ∈ T0 then, by Proposition 5.1, φn(c, λ) ≥ φn(c0, λ0) for all (c, λ) ∈ T . On the other
hand, for this c0 we can define the function ψn(λ) = φn(c0, λ); by Lemma 5.1, the function ψn(λ) is minimized at a
unique λ = λ1 = λ1(c0). Thus,

ψn(λ0) = φn(c0, λ0) ≤ φn(c0, λ1) = ψn(λ1) ≤ ψn(λ0);

the first inequality follows from (c0, λ0) ∈ T0 and the second from the definition of λ1. Therefore, ψn(λ0) = ψn(λ1), so
that λ = λ0 is a minimizing point for ψn(λ). By uniqueness, λ1 = λ0. Thus, λ0 = λ1(c0), where λ1(·) : R → (0, ∞) is
a well-defined function; it is described (implicitly) in Lemma 5.1. Hence, if (c0, λ0) 	= (c2, λ2) are any two points in T0
then c0 	= c2; indeed, c0 = c2 implies λ0 = λ1(c0) = λ1(c2) = λ2, contradicting the assumption (c0, λ0) 	= (c2, λ2).

Let L be the straight line that passes through the points (c0, λ0) and (c2, λ2). We now verify that if (c3, λ3) ∈ T0 then
(c3, λ3) ∈ L. Indeed, assume (c3, λ3) ∈ T0 � L and let B be the convex hull of the points {(c0, λ0), (c2, λ2), (c3, λ3)} (i.e.
a triangle). Then B must be a subset of T0, because T0 is convex. Since, however, (c3, λ3) /∈ L, the triangle B contains a
line segment of positive length, parallel to the λ-axis and, by the previous argument, this is impossible. It follows that
T0 ⊆ L ∩ T , and since T0 is compact and convex, it must be a compact line segment. �

Proof of Lemma 5.3. By assumption, A is moving linearly in the line segment [A0, A1] from A0 to A1, thus we
may write A = A(t) := (c(t), λ(t)) where c(t) = c0 + t(c1 − c0), λ(t) = λ0 + t(λ1 − λ0), 0 ≤ t ≤ 1. Then B = B(t) =
((μ− c(t))/λ(t), σ/λ(t)), so that B(0) = B0, B(1) = B1 and B(t) is continuous in t. Under notation B(t) = (B(t), 1), we
have

det[B(0), B(t), B(1)] :=

∣∣∣∣∣∣∣∣∣∣

μ− c0

λ0

σ

λ0
1

μ− c(t)

λ(t)

σ

λ(t)
1

μ− c1

λ1

σ

λ1
1

∣∣∣∣∣∣∣∣∣∣
= σ

λ0λ(t)λ1

∣∣∣∣∣∣
c0 λ0 1

c(t) λ(t) 1
c1 λ1 1

∣∣∣∣∣∣ = 0,

which means that B(t) is a convex combination of B(0) = B0 and B(1) = B1. �

Proof of Theorem 5.1. According to Proposition 5.1, it remains to verify that T0 in Equation (25) is a singleton. Assume,
in contrary, that T0 contains two points (c0, λ0) 	= (c1, λ1). From Lemma 5.2, we know that c0 	= c1, and that all points
(c, λ) ∈ T0 can be written as (c, λ) = (c,αc + β), c2 ≤ c ≤ c3, for some α,β, c2, c3 ∈ R with c2 < c3. Therefore, we
can write λ(c) = αc + β, c2 ≤ c ≤ c3, and

T0 = {(c,αc + β), c2 ≤ c ≤ c3}, α,β, c2, c3 ∈ R, c2 < c3.

Note that the parameters α, β, c2, c3 have to fulfill additional restrictions so that λ(c) > 0 for all c ∈ [c2, c3]; namely,
αc2 + β > 0 and αc3 + β > 0.

Consider now the points A(c) := (c, λ(c)) and Bi(c) := ((μi − c)/λ(c), σi/λ(c)), i = 1, . . . , n, c2 ≤ c ≤ c3. As c
varies in [c2, c3], the point A = A(c) is moved from A(c2) to A(c3), generating the line segment [A(c2), A(c3)] = T0 ⊂ T .
It follows from Lemma 5.3 that each point Bi = Bi(c), i = 1, . . . , n, produces a line segment too; that is, Bi generates its
corresponding segment Li := [Bi(c2), Bi(c3)] ⊂ T . Consider now the region A2 = {(x, y) ∈ T : 2|x| ≤ x2 + y2 ≤ 4} ⊂ T .
The function U(x, y) (see Equation (11)) changes types (and it is not even C2) only at the boundary points of A2, i.e. at
those (x, y) ∈ T that belong to the set

C := {x2 + y2 = 4} ∪ {(x − 1)2 + y2 = 1} ∪ {(x + 1)2 + y2 = 1} ⊂ R2.

The set ∂A2 = C ∩ T is a union of three (disjoint) semicircles, and thus, any line segment can have at most six common
points with it. It follows that only of finite number of points of the set ∪n

i=1Li = ∪n
i=1 ∪c2≤c≤c3 Bi(c) can intersect ∂A2.

Let �1, . . . ,�k be all these points. Each �j belongs to some Li; that is, for any j ∈ {1, . . . , k} we can find an index
i = i(j) ∈ {1, . . . , n}, and then a unique number t = tij ∈ [c2, c3] such that Bi(t) = �j. Clearly, for a particular index j,
the maximal number of different t’s that can be found (satisfying Bi(t) = �j for some i) is n, because Bi(t1) 	= Bi(t2) if
t1 	= t2. Therefore, the set

N := {t ∈ [c2, c3] : Bi(t) = �j for some i and j}

is finite, say N = {t1, . . . , tm} with c2 ≤ t1 < · · · < tm ≤ c3. Fix now an interval [t, s] ⊆ (c2, c3), of positive length, such
that [t, s] ∩ N = ∅. Since [t, s] has no common points with N, it is clear that the line segment Ji := [Bi(t), Bi(s)] ⊆ Li
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Statistics 627

does not intersect ∂A2, and this is true for all i ∈ {1, . . . , n}. In this way we obtain a subset T1 of T0, namely

T1 := {(c,αc + β), t ≤ c ≤ s}, with c2 < t < s < c3.

The boundary of A2 divides T into four disjoint open regions, namely

G1 := {(x, y) ∈ T : x2 + y2 > 4}, G2 := {(x, y) ∈ T : 2|x| < x2 + y2 < 4},
G3 := {(x, y) ∈ T : (x − 1)2 + y2 < 1}, G4 := {(x, y) ∈ T : (x + 1)2 + y2 < 1}.

Compared to T0, the set T1 has the additional property that, as c varies, every line segment {Bi(c), t ≤ c ≤ s} stays in the
same open region. This means that the sets of indices I1, I2, I3, I4, defined in Remark 5.1, do not depend on c. Recall that

Bi(c) ∈ G1 ⇔ (μi − c)2 + σ 2
i > 4λ2 ⇒ i ∈ I1,

Bi(c) ∈ G2 ⇔ 2λ|μi − c| < (μi − c)2 + σ 2
i < 4λ2 ⇒ i ∈ I2,

Bi(c) ∈ G3 ⇔ (μi − c)2 + σ 2
i < 2λ(μi − c) ⇒ i ∈ I3,

Bi(c) ∈ G4 ⇔ (μi − c)2 + σ 2
i < −2λ(μi − c) ⇒ i ∈ I4,

where λ = λ(c) = αc + β.
Consider now the function gn : (t, s) → R with

gn(c) := φn(c, λ(c)) = φn(c,αc + β), t < c < s.

The explicit form of gn is quite complicated:

gn(c) = −(n − 2)(αc + β)+
∑
i∈I1

√
(μi − c)2 + σ 2

i

+
∑
i∈I2

{
(αc + β)+ 1

4(αc + β)
[(μi − c)2 + σ 2

i ]

}

+
∑
i∈I3

1

2
{μi − c + (αc + β)+

√
[μi − c − (αc + β)]2 + σ 2

i }

+
∑
i∈I4

1

2
{c − μi + (αc + β)+

√
[c − μi − (αc + β)]2 + σ 2

i }.

Since, however, the sets Ij do not depend on c, it is obvious that gn ∈ C∞(t, s). By assumption, (c, λ(c)) minimizes
φn(c, λ) for all c ∈ (t, s), and this means that gn(c) is constant, implying that g′′

n (c) = 0, t < c < s. A straightforward
computation shows that for all c ∈ (t, s),

g′′
n (c) =

∑
i∈I1

σ 2
i

[(μi − c)2 + σ 2
i ]3/2

+ 1

2[λ(c)]3

∑
i∈I2

{α2σ 2
i + (αμi + β)2}

+ (α + 1)2

2

∑
i∈I3

σ 2
i

[(β + (α + 1)c − μi)2 + σ 2
i ]3/2

+ (α − 1)2

2

∑
i∈I4

σ 2
i

[(β + (α − 1)c + μi)2 + σ 2
i ]3/2

.

Obviously, all summands are nonnegative. If α 	= 0, the only two possibilities which are compatible with g′′
n (c) = 0 are

the following: (i) either I1 = I2 = I4 = ∅ (and thus, N(I3) = n) and α = −1 or (ii) I1 = I2 = I3 = ∅ (and N(I4) = n) and
α = 1. However, because of Condition (31), neither (i) nor (ii) is allowed for a minimizing point (c, λ), and in particular
for (c, λ(c)). Finally, if α = 0 then we must have I1 = I3 = I4 = ∅ and, therefore, N(I2) = n. The condition λ(c) > 0
now yields β > 0; thus, g′′

n (c) = n/2β > 0 and gn(c) could not be a constant function in the interval t < c < s.
The resulting contradiction implies that the set T0 cannot contain two distinct elements, and the proof is complete. �

Proof of Lemma 6.1. From (Table of) Corollary 2.1 and Equation (14), and in view of Equations (34), (35),

∂

∂λ
φn(c, λ)

∣∣∣∣
c=c0,λ=λ0

= −(n − 2)+ 1

2

∑
i∈I2

{
2 − 1

2λ2
0

[(μi − c0)
2 + σ 2

i ]

}

+ 1

2

∑
i∈I3

⎧⎨
⎩1 − μi − c0 − λ0√

(μi − c0 − λ0)2 + σ 2
i

⎫⎬
⎭+ 1

2

∑
i∈I4

⎧⎨
⎩1 − c0 − μi − λ0√

(c0 − μi − λ0)2 + σ 2
i

⎫⎬
⎭

= −(n − 2)+
∑

i∈I2∪I3∪I4

po
i .

Since (∂/∂λ)φn(c, λ)|c=c0,λ=λ0 = 0 and po
i = 0 for i ∈ I1, it follows that

∑n
i=1 po

i = n − 2. Taking into account the fact
that po

i = 1 − p+
i − p−

i , we obtain
∑n

i=1 p−
i +∑n

i=1 p+
i = 2.
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628 N. Papadatos

Similarly, we have

∂

∂c
φn(c, λ)

∣∣∣∣
c=c0,λ=λ0

= −
∑
i∈I1

μi − c0√
(μi − c0)2 + σ 2

i

−
∑
i∈I2

μi − c0

2λ0

−
∑
i∈I3

1

2

⎧⎨
⎩1 + μi − c0 − λ0√

(μi − c0 − λ0)2 + σ 2
i

⎫⎬
⎭+

∑
i∈I4

1

2

⎧⎨
⎩1 + c0 − μi − λ0√

(c0 − μi − λ0)2 + σ 2
i

⎫⎬
⎭

= −
∑
i∈I1

(p+
i − p−

i )−
∑
i∈I2

(p+
i − p−

i )−
∑
i∈I3

p+
i +

∑
i∈I4

p−
i ,

that is, (∂/∂c)φn(c, λ)|c=c0,λ=λ0 = −∑i∈I1∪I2∪I3
p+

i +∑i∈I1∪I2∪I4
p−

i . From the fact that p+
i = 0 for i ∈ I4 and p−

i = 0

for i ∈ I3 (see Equation (35)), the relation (∂/∂c)φn(c, λ)|c=c0,λ=λ0 = 0 implies the equality
∑n

i=1 p+
i =∑n

i=1 p−
i , and

Equation (38) follows. �

Proof of Proposition 6.1. [(ii) ⇒ (i)]. Suppose we are given a probability matrix Q satisfying (ii). By assumption, Q
has vanishing principal diagonal. Define X = (X1, . . . , Xn) as in Equation (40). Since

∑
(i,j): i 	=j qij =∑i,j qij = 1, this

procedure maps Q to a well-defined probability law L(X) on Rn, and the map Q �→ L(X) is, obviously, one to one. Due
to Inequalities (37), the order statistics of X satisfy

X1:n < c0 − λ0 < X2:n ≤ · · · ≤ Xn−1:n < c0 + λ0 < Xn:n with probability 1.

Thus, from Lemma 2.1 it follows that, with probability 1,

Rn = −(n − 2)λ0 + 1

2

n∑
i=1

{|(Xi − c0)− λ0| + |(Xi − c0)+ λ0|}. (A3)

The assumptions Q ∈ M(p+, p−) and qii = 0 for all i now show that for any fixed j, P[Xj = x−
j ] =∑i 	=j qij =∑n

i=1 qij = p−
j . Similarly we conclude that for any fixed i, P[Xi = x+

i ] =∑j 	=i qij =∑n
j=1 qij = p+

i . Thus, P[Xi =
xo

i ] = 1 − p−
i − p+

i = po
i , and the marginal Xi of X is the extremal random variable in F1(μi, σi). That is, it has mean

μi, variance σ 2
i , and maximizes E{|(X − c0)− λ0| + |(X − c0)+ λ0|} as X varies in F1(μi, σi). Since this holds for all

i, taking expectations in Equation (A3) we see that

ERn = −(n − 2)λ0 + λ0

2

n∑
i=1

U

(
μi − c0

λ0
,
σi

λ0

)
= ρn,

completing the proof.
[(i) ⇒ (ii)]. Assumptions X ∈ Fn(μ, σ ) and ERn = ρn imply that (repeat the proof of Theorem 2.1)

ρn = ERn ≤ E

{
−(n − 2)λ0 + 1

2

n∑
i=1

[|(Xi − c0)− λ0| + |(Xi − c0)+ λ0|]
}

= −(n − 2)λ0 + 1

2

n∑
i=1

E{|(Xi − c0)− λ0| + |(Xi − c0)+ λ0|}

≤ −(n − 2)λ0 + λ0

2

n∑
i=1

U

(
μi − c0

λ0
,
σi

λ0

)
= φn(c0, λ0) = ρn.

Thus, all displayed inequalities are attained as equalities. In view of Lemma 2.1 and Corollary 2.1, this can happen only
if the law L(X) of the given random vector X = (X1, . . . , Xn) satisfies

(a) P[X1:n ≤ c0 − λ0 ≤ X2:n ≤ · · · ≤ Xn−1:n ≤ c0 + λ0 ≤ Xn:n] = 1 and

(b) Xi is extremal in F1(μi, σi) for all i, or, equivalently,

P[Xi = x−
i ] = p−

i , P[Xi = xo
i ] = po

i , P[Xi = x+
i ] = p+

i , i = 1, . . . , n.

(A4)

Taking into account (37) we conclude that Condition (A4) can happen only if the (essential) support of X is contained in
the set

S := {xij, i 	= j, i, j = 1, . . . , n},
with xij as in Equation (40). We can thus define the n × n matrix Q as follows:

Q := (qij), with qii := 0, qij := P[X = xij], i 	= j, i, j = 1, . . . , n. (A5)

By definition, Q has vanishing principal diagonal and nonnegative entries, and the relation P[X ∈ S] = 1 implies
that Q is a probability matrix. By the assumption X ∈ Fn(μ, σ ) and ERn = ρn, the marginal Xi of X has to fulfil
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Condition (A4)(b), that is,
∑n

j=1 qij =∑j 	=i qij =∑j P[X = xij] = P[Xi = x+
i ] = p+

i ; similarly,
∑n

i=1 qij = p−
j . There-

fore, we have constructed a matrix Q ∈ M(p+, p−) with qii = 0 for all i. Clearly, if two random vectors X , Y , with
L(Y) 	= L(X), satisfy the assumptions in (i), the corresponding matrices (obtained through Equation (A5)) will be
distinct. Consequently, the above procedure determines a one to one mapping L(X) �→ Q, completing the proof. �

Proof of Theorem 7.1. For the infimum, a proof (for any n ≥ 2) is given in the beginning of Section 2, following the
arguments of Bertsimas et al.[19] Regarding the supremum: The key-observation is that Inequality (46) is a special
application of the Cauchy–Schwarz inequality,

ER2 = E|X1 − X2| ≤
√
E[(X1 − X2)2] =

√
(μ1 − μ2)2 + σ 2

1 + σ 2
2 − 2ρσ1σ2 = γ2.

This means that, in order to justify the equality, we have to construct a vector (X1, X2) ∈ F2(μ, σ ; ρ) such that the random
variable |X1 − X2| is degenerate. Let δ := Var [X1 − X2] = σ 2

1 + σ 2
2 − 2ρσ1σ2 ≥ 0. We distinguish cases δ > 0, δ = 0.

Assume δ > 0, so that γ2 > 0. First, we consider a 0–1 Bernoulli random variable Ip with probability of success p :=
1
2 (1 + (μ1 − μ2)/γ2). Next, we consider another random variable T with mean μT := μ1σ

2
2 + μ2σ

2
1 − ρσ1σ2(μ1 +

μ2) and variance σ 2
T := δσ 2

1 σ
2
2 (1 − ρ2) ≥ 0, stochastically independent of Ip. Finally, we define

(X1, X2) := 1

δ
[γ2(σ

2
1 − ρσ1σ2)(2Ip − 1)+ T , γ2(ρσ1σ2 − σ 2

2 )(2Ip − 1)+ T].

It is easily seen that (X1, X2) ∈ F2(μ, σ ; ρ) and |X1 − X2| = γ2 with probability 1.
Let us now assume δ = 0. This implies that X1 − X2 = μ1 − μ2 with probability 1, and hence, σ1 = σ2 and ρ = 1.

Let σ 2 > 0 be the common variance and consider the pair (X1, X2) := (μ1 + T ,μ2 + T), where T is any random variable
with mean zero and variance σ 2. It follows that (X1, X2) satisfies the moment requirements and |X1 − X2| = |μ1 − μ2| =
γ2 with probability 1. This completes the proof. �
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