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a b s t r a c t

A randomvariable Z will be called self-inverse if it has the samedistribution as its reciprocal
Z−1. It is shown that if Z is defined as a ratio, X/Y , of two rv’s X and Y (with P[X =

0] = P[Y = 0] = 0), then Z is self-inverse if and only if X and Y are (or can be chosen
to be) exchangeable. In general, however, there may not exist iid X and Y in the ratio
representation of Z .

© 2012 Published by Elsevier B.V.

1. Introduction

The definition of a self-inverse random variable (rv) is motivated by the observation that several known classical
distributions are defined as the ratio of two independent and identically distributed (iid) rv’s X and Y , continuous as a
rule, so that P[X = 0] = P[Y = 0] = 0. Clearly, in this case Z is self-inverse, that is,

Z =
X
Y

d
=

Y
X

= Z−1, (1)

where X1
d
= X2 denotes that X1 and X2 have the same distribution.

A classical example of a self-inverse rv Z is the Cauchy with density

fZ (z) =
1
π

1
1 + z2

, z ∈ R, (2)

since Z is defined as the ratio of two iid N(0, σ 2) rv’s. The usual symmetry of Z, Z d
= −Z , is also obvious in (2).

Itmay be added that not only do such ratios of iidN(0, σ 2) rv’s have the Cauchy density; Laha (1958) showed that if X and
Y are iid rv’s with common density f (x) =

√
2(1 + x4)−1/π , their ratio also follows (2). In fact, interestingly enough, Jones

(2008a) showed that the ratios X/Y for all centered elliptically symmetrically distributed random vectors (X, Y ) follow a
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general (relocated, µ ≠ 0, and rescaled, σ ≠ 1) Cauchy, C(µ, σ ). Such is the well-known case of a bivariate normal (X, Y )
with X ∼ N(0, σ 2) and Y ∼ N(0, σ 2); the ratio Z = X/Y has the Cauchy density

fZ (z) =
1
π


1 − ρ2

1 + z2 − 2ρz
=

1
π


1 − ρ2

(1 − ρ2) + (z − ρ)2
, z ∈ R, (3)

with µ = ρ, the correlation coefficient, and scale parameter σ =

1 − ρ2.

Arnold and Brockett (1992) showed that any random scale mixture of elliptically symmetric random vectors has a
general Cauchy-type ratio (from any bivariate subvectors). Along the same lines, we add the very interesting article of Jones
(1999), who used simple trigonometric formulas and polar coordinates to obtain Cauchy-distributed functions of spherically
symmetrically distributed random vectors (X, Y ).

In the present note we are not concerned with Cauchy-distributed ratios X/Y , known to be self-inverse, but with the
question of when a random variable Z has the same distribution as its reciprocal Z−1, and of whether it is representable as
a ratio X/Y . Seshadri (1965) considered the problem for a continuous rv Z > 0, and characterized the density fZ (z) of Z in
terms of the density fW (w) ofW = log Z: fW should be symmetric about the origin. This coincides with what Jones (2008b)
refers to as ‘‘log-symmetry’’ about θ > 0:

Z/θ
d
= θ/Z;

cf. the so called ‘‘R-symmetry’’, introduced by Mudholkar and Wang (2007). Thus, our ‘‘self-inverse’’ symmetry for Z > 0
coincides with log-symmetry about θ = 1. Moreover, Seshadri (1965) showed that if X and Y are iid, then Z = X/Y is
self-inverse; he also pointed out that the ratio decomposition of Z into iid X and Y is not always possible. As already stated,
we show below (Propositions 1 and 2) that the ratio representation of any self-inverse Z is always possible in terms of two
exchangeable rv’s X and Y . Also, two simple examples, showing that X and Y cannot always be chosen to be iid rv’s, are
given at the end of Section 3.

2. Examples of identically distributed rv’s whose ratio is not self-inverse

Ratios X/Y leading to (2) or the F-distributed Fn,n
d
= F−1

n,n , where X and Y are iid, are clearly self-inverse. In (3), however,
X and Y have the same distribution, but are not independent. Onemay, therefore, wrongly conclude that equidistribution of
X and Y is a sufficient condition for the ratio to be self-inverse. This is not so, as shown by the following two examples, one
discrete and one continuous. That Z in (3) is self-inverse is due to the fact that X and Y , though not iid, are exchangeable. In
Section 3, below, we show that the exchangeability of X and Y is all we need to characterize a ratio X/Y as self-inverse.
(a) Discrete (X, Y ). The following table gives f (x, y) = P[X = x, Y = y]:

y 1 2 3
x fX (x)
1 2/36 9/36 1/36 1/3
2 1/36 2/36 9/36 1/3
3 9/36 1/36 2/36 1/3

fY (y) 1/3 1/3 1/3 1

(4)

Clearly, X d
= Y , with X ∼ U({1, 2, 3}), uniform on {1, 2, 3}. Yet, (1) does not hold, since, for example,

P

X
Y

= 2


=
1
36

≠ P

Y
X

= 2


=
9
36

.

(b) Continuous (X, Y ). LetU1,U2 iidU(0, 1), i.e., uniform on (0, 1), and I uniform on {0, 1, 2}, independent of (U1,U2). Define
J = I + 1 if I = 0 or I = 1, and J = 0 if I = 2, so that J ∼ U({0, 1, 2}), that is, J d

= I . Observing that (I, J) and (U1,U2) are
independent, and defining

(X, Y ) = (I + U1, J + U2),

we have X d
= Y ∼ U(0, 3), uniform on (0, 3). The joint density f (x, y) of X and Y is

f (x, y) =


1/3, if x ∈ (0, 1) and y ∈ (1, 2),
1/3, if x ∈ (1, 2) and y ∈ (2, 3),
1/3, if x ∈ (2, 3) and y ∈ (0, 1),
0, otherwise.

(5)

Yet, the ratios X/Y and Y/X do not have the same distribution ((1) does not hold), since, e.g.,

P

X
Y

≤ 1


=
2
3
, P


Y
X

≤ 1


=
1
3
.

In this example too, though X d
= Y , in fact U(0, 3), again (1) does not hold and Z = X/Y is not self-inverse.
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In both examples of (4) and (5), X and Y have the same distribution, but they are not exchangeable, and (1) fails. However,
if X and Y are iid they are also exchangeable, since FX = FY and by independence,

FX,Y (x, y) = FX (x)FY (y) = FY (x)FX (y) = FY ,X (x, y). (6)

Such were the cases of (2) and Fn,n, and (1) holds; this also holds in (3) where X and Y are exchangeable, i.e., FX,Y = FY ,X .

3. Representation of a self-inverse random variable as a ratio

We have seen that if X and Y are not exchangeable, (1) may not hold, that is, the ratio Z = X/Y may not be self-inverse.
Here it will be shown that Z is self-inverse if and only if it can be defined, or represented, as a ratio of two exchangeable rv’s
X and Y .

First we show

Proposition 1. Let Z be defined as a ratio of two exchangeable rv’s X and Y , i.e.

Z =
X
Y

, where (X, Y )
d
=(Y , X) and P[X = 0] = P[Y = 0] = 0. (7)

Then Z is self-inverse, that is,

Z =
X
Y

d
=

Y
X

= Z−1. (8)

Proof. In the continuous case where (X, Y ) has a density fX,Y (x, y) we may use the elementary formula for the density of
Z = X/Y :

fZ (z) =


∞

0
yfX,Y (yz, y)dy −

 0

−∞

yfX,Y (yz, y)dy. (9)

But X and Y are exchangeable, hence fX,Y = fY ,X , and (9) can be written as

fZ (z) =


∞

0
yfY ,X (yz, y)dy −

 0

−∞

yfY ,X (yz, y)dy, (10)

whose right hand side is the density of Y/X = Z−1. Hence, (7) ⇒ (8).
In the general case, (8) is implied by the fact that if X and Y are exchangeable, then, for any (Borel) function g : R2

→ R,
we have

g(X, Y )
d
= g(Y , X). (11)

Hence, taking g(x, y) = x/y (with the convention g(x, y) = 0 if xy = 0), (7) implies (8). �

We are now going to show that, roughly speaking, (8) implies (7), or more accurately:

Proposition 2. If Z d
= Z−1, there are exchangeable rv’s X and Y (with P[X = 0] = P[Y = 0] = 0) such that Z can be written as

Z d
=

X
Y

. (12)

Proof. Consider the pair

(X, Y ) = (WZ I ,WZ1−I) = (W [(1 − I) + IZ],W [I + (1 − I)Z]), (13)

where I denotes the symmetric Bernoulli, with P[I = 0] = P[I = 1] =
1
2 , W any rv with P[W = 0] = 0, e.g., W ≡ 1 or

W ∼ N(µ, σ 2), and Z, I,W are independent. It can be shown (cf. (11), (6)) that

(X, Y )
d
=(Y , X) and, obviously,

X
Y

=
Z I

Z1−I
.

Hence, for any z we have

P

X
Y

≤ z


=
1
2

P


Z I

Z1−I
≤ z

I = 1


+
1
2

P


Z I

Z1−I
≤ z

I = 0


=
1
2

P[Z ≤ z] +
1
2

P

1
Z

≤ z


= P[Z ≤ z],
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since, by hypothesis, Z d
= Z−1. Hence,

Z d
=

X
Y

, with (X, Y )
d
=(Y , X) as defined by (13). �

Another question is whether there exist not simply exchangeable rv’s X and Y as in (12), but iid X, Y so that every self-
inverse Z can be written as in (12). The answer is negative, as shown by the following counterexample:

Let Z > 0 with log Z ∼ U(−1, 1) and suppose there are iid rv’s X, Y such that Z can be written as in (12). Then it would
follow that

log Z = U d
= X1 − X2 with X1 = log |X |, X2 = log |Y |. (14)

Moreover, since X and Y are iid, the X1, X2 will also be iid, in which case, if ϕ is the characteristic function of X1, X2, we have

ϕX1−X2(t) = ϕ(t)ϕ(−t) = ϕ(t)ϕ(t) = |ϕ(t)|2 ≥ 0, (15)

whereas the characteristic function of U is ϕU(t) = (sin t)/t , taking both positive and negative values.
An analogous (simpler) counterexample is the following: Let Z > 0 with log Z = U,U the Bernoulli P[U = −1] =

P[U = 1] =
1
2 . Then, similarly as in (14) and (15),

ϕX1−X2(t) = |ϕ(t)|2 whereas ϕU(t) = cos t.
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