Self-inverse and exchangeable random variables

Theophilos Cacoullos, Nickos Papadatos

Section of Statistics and O.R., Department of Mathematics, University of Athens, Panepistemiopolis, 157 84 Athens, Greece

ARTICLE INFO

Article history:
Received 4 June 2012
Received in revised form 28 June 2012
Accepted 29 June 2012
Available online 7 September 2012

MSC:
primary 60E05

Keywords:
Self-inverse random variables
Exchangeable random variables
Representation of a self-inverse random variable as a ratio

ABSTRACT

A random variable \(Z \) will be called self-inverse if it has the same distribution as its reciprocal \(Z^{-1} \). It is shown that if \(Z \) is defined as a ratio, \(X/Y \), of two rv's \(X \) and \(Y \) (with \(P[X = 0] = P[Y = 0] = 0 \)), then \(Z \) is self-inverse if and only if \(X \) and \(Y \) are (or can be chosen to be) exchangeable. In general, however, there may not exist iid \(X \) and \(Y \) in the ratio representation of \(Z \).

© 2012 Published by Elsevier B.V.

1. Introduction

The definition of a self-inverse random variable (rv) is motivated by the observation that several known classical distributions are defined as the ratio of two independent and identically distributed (iid) rv's \(X \) and \(Y \), continuous as a rule, so that \(P[X = 0] = P[Y = 0] = 0 \). Clearly, in this case \(Z \) is self-inverse, that is,

\[
Z = \frac{X}{Y} \overset{d}{=} \frac{Y}{X} = Z^{-1},
\]

where \(X_1 \overset{d}{=} X_2 \) denotes that \(X_1 \) and \(X_2 \) have the same distribution.

A classical example of a self-inverse rv \(Z \) is the Cauchy with density

\[
f_Z(z) = \frac{1}{\pi} \frac{1}{1 + z^2}, \quad z \in \mathbb{R},
\]

since \(Z \) is defined as the ratio of two iid \(N(0, \sigma^2) \) rv's. The usual symmetry of \(Z, Z \overset{d}{=} -Z \), is also obvious in (2).

It may be added that not only do such ratios of iid \(N(0, \sigma^2) \) rv's have the Cauchy density; Laha (1958) showed that if \(X \) and \(Y \) are iid rv's with common density \(f(x) = \sqrt{2}(1 + x^4)^{-1}/\pi \), their ratio also follows (2). In fact, interestingly enough, Jones (2008a) showed that the ratios \(X/Y \) for all centered elliptically symmetrically distributed random vectors \((X, Y) \) follow a
general (relocated, \(\mu \neq 0 \), and rescaled, \(\sigma \neq 1 \)) Cauchy, \(C(\mu, \sigma) \). Such is the well-known case of a bivariate normal \((X, Y)\) with \(X \sim N(0, \sigma^2) \) and \(Y \sim N(0, \sigma^2) \); the ratio \(Z = X/Y \) has the Cauchy density

\[
f_Z(z) = \frac{1}{\pi} \frac{\sqrt{1 - \rho^2}}{1 + z^2 - 2\rho z} = \frac{1}{\pi} \frac{\sqrt{1 - \rho^2}}{(1 - \rho^2) + (z - \rho)^2}, \quad z \in \mathbb{R},
\]

with \(\mu = \rho \), the correlation coefficient, and scale parameter \(\sigma = \sqrt{1 - \rho^2} \).

Arnold and Brockett (1992) showed that any random scale mixture of elliptically symmetric random vectors has a general Cauchy-type ratio from any bivariate subvectors. Along the same lines, we add the very interesting article of Jones (1999), who used simple trigonometric formulas and polar coordinates to obtain Cauchy-distributed functions of spherically symmetrically distributed random vectors \((X, Y)\).

In the present note we are not concerned with Cauchy-distributed ratios \(X/Y \), known to be self-inverse, but with the question of when a random variable \(Z \) has the same distribution as its reciprocal \(Z^{-1} \), and of whether it is representable as a ratio \(X/Y \). Seshadri (1965) considered the problem for a continuous \(\text{rv} \) \(Z > 0 \), and characterized the density \(f_Z(z) \) of \(Z \) in terms of the density \(f_W(w) \) of \(W = \log Z \); \(f_W \) should be symmetric about the origin. This coincides with what Jones (2008b) refers to as “log-symmetry” about \(\theta > 0 \):

\[
Z/\theta \overset{d}{=} \theta/Z;
\]

cf. the so-called “\(k \)-symmetry”, introduced by Mudholkar and Wang (2007). Thus, our “self-inverse” symmetry for \(Z > 0 \) coincides with log-symmetry about \(\theta = 1 \). Moreover, Seshadri (1965) showed that if \(X \) and \(Y \) are iid, then \(Z = X/Y \) is self-inverse; he also pointed out that the ratio decomposition of \(Z \) into iid \(X \) and \(Y \) is not always possible. As already stated, we show below (Propositions 1 and 2) that the ratio representation of any self-inverse \(Z \) is always possible in terms of two exchangeable \(\text{rv} \)'s \(X \) and \(Y \). Also, two simple examples, showing that \(X \) and \(Y \) cannot always be chosen to be iid \(\text{rv} \)'s, are given at the end of Section 3.

2. Examples of identically distributed \(\text{rv} \)'s whose ratio is not self-inverse

Ratios \(X/Y \) leading to (2) or the \(F \)-distributed \(F_{n,n} \overset{d}{=} F_{n,n}^{-1} \), where \(X \) and \(Y \) are iid, are clearly self-inverse. In (3), however, \(X \) and \(Y \) have the same distribution, but are not independent. One may, therefore, wrongly conclude that equidistribution of \(X \) and \(Y \) is a sufficient condition for the ratio to be self-inverse. This is not so, as shown by the following two examples, one discrete and one continuous. That \(Z \) in (3) is self-inverse is due to the fact that \(X \) and \(Y \), though not iid, are exchangeable. In Section 3, below, we show that the exchangeability of \(X \) and \(Y \) is all we need to characterize a ratio \(X/Y \) as self-inverse.

(a) Discrete \((X, Y)\). The following table gives \(f(x, y) = \mathbb{P}[X = x, Y = y] \):

<table>
<thead>
<tr>
<th>(x)</th>
<th>(y)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>(f_X(x))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2/36</td>
<td>9/36</td>
<td>1/36</td>
<td>1/3</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1/36</td>
<td>2/36</td>
<td>9/36</td>
<td>1/3</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>9/36</td>
<td>1/36</td>
<td>2/36</td>
<td>1/3</td>
<td></td>
</tr>
<tr>
<td>(f_Y(y))</td>
<td>1/3</td>
<td>1/3</td>
<td>1/3</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Clearly, \(X \overset{d}{=} Y \), with \(X \sim U(\{1, 2, 3\}) \), uniform on \(\{1, 2, 3\} \). Yet, (1) does not hold, since, for example,

\[
\mathbb{P}\left[\frac{X}{Y} = 2 \right] = \frac{1}{36} \neq \mathbb{P}\left[\frac{Y}{X} = 2 \right] = \frac{9}{36}.
\]

(b) Continuous \((X, Y)\). Let \(U_1, U_2 \) iid \(U(0, 1) \), i.e., uniform on \((0, 1)\), and \(I \) uniform on \(\{0, 1, 2\} \), independent of \((U_1, U_2) \). Define \(J = I + 1 \) if \(I = 0 \) or \(I = 1 \), and \(J = 0 \) if \(I = 2 \), so that \(J \sim U(\{0, 1, 2\}) \), that is, \(J \overset{d}{=} I \). Observing that \((I, J)\) and \((U_1, U_2)\) are independent, and defining

\[
(X, Y) = (I + U_1, J + U_2),
\]

we have \(X \overset{d}{=} Y \sim U(0, 3) \), uniform on \((0, 3)\). The joint density \(f(x, y) \) of \(X \) and \(Y \) is

\[
f(x, y) = \begin{cases}
1/3, & \text{if } x \in (0, 1) \text{ and } y \in (1, 2), \\
1/3, & \text{if } x \in (1, 2) \text{ and } y \in (2, 3), \\
1/3, & \text{if } x \in (2, 3) \text{ and } y \in (0, 1), \\
0, & \text{otherwise.}
\end{cases}
\]

Yet, the ratios \(X/Y \) and \(Y/X \) do not have the same distribution (1 does not hold), since, e.g.,

\[
\mathbb{P}\left[\frac{X}{Y} \leq 1 \right] = \frac{2}{3}, \quad \mathbb{P}\left[\frac{Y}{X} \leq 1 \right] = \frac{1}{3}.
\]

In this example too, though \(X \overset{d}{=} Y \), in fact \(U(0, 3) \), again (1) does not hold and \(Z = X/Y \) is not self-inverse.
In both examples of (4) and (5), X and Y have the same distribution, but they are not exchangeable, and (1) fails. However, if X and Y are iid they are also exchangeable, since $F_X = F_Y$ and by independence,

$$
F_{X,Y}(x, y) = F_X(x)F_Y(y) = F_Y(x)F_X(y) = F_{Y,X}(x, y).
$$

(6)

Such were the cases of (2) and $F_{n,n}$, and (1) holds; this also holds in (3) where X and Y are exchangeable, i.e., $F_{X,Y} = F_{Y,X}$.

3. Representation of a self-inverse random variable as a ratio

We have seen that if X and Y are not exchangeable, (1) may not hold, that is, the ratio $Z = X/Y$ may not be self-inverse. Here it will be shown that Z is self-inverse if and only if it can be defined, or represented, as a ratio of two exchangeable rv's X and Y.

First we show

Proposition 1. Let Z be defined as a ratio of two exchangeable rv's X and Y, i.e.

$$
Z = \frac{X}{Y}, \text{ where } (X, Y) \overset{d}{=} (Y, X) \quad \text{and} \quad P[X = 0] = P[Y = 0] = 0.
$$

(7)

Then Z is self-inverse, that is,

$$
Z = \frac{X}{Y} = \frac{Y}{X} = Z^{-1}.
$$

(8)

Proof. In the continuous case where (X, Y) has a density $f_{X,Y}(x, y)$ we may use the elementary formula for the density of $Z = X/Y$:

$$
f_Z(z) = \int_0^\infty yf_{X,Y}(yz, y)dy - \int_0^z yf_{X,Y}(yz, y)dy.
$$

(9)

But X and Y are exchangeable, hence $f_{X,Y} = f_{Y,X}$, and (9) can be written as

$$
f_Z(z) = \int_0^\infty yf_{X,Y}(yz, y)dy - \int_0^0 yf_{Y,X}(yz, y)dy.
$$

(10)

whose right hand side is the density of $Y/X = Z^{-1}$. Hence, (7) \Rightarrow (8).

In the general case, (8) is implied by the fact that if X and Y are exchangeable, then, for any (Borel) function $g : \mathbb{R}^2 \rightarrow \mathbb{R}$, we have

$$
g(X, Y) \overset{d}{=} g(Y, X).
$$

(11)

Hence, taking $g(x, y) = x/y$ (with the convention $g(x, y) = 0$ if $xy = 0$), (7) implies (8). □

We are now going to show that, roughly speaking, (8) implies (7), or more accurately:

Proposition 2. If $Z \overset{d}{=} Z^{-1}$, there are exchangeable rv's X and Y (with $P[X = 0] = P[Y = 0] = 0$) such that Z can be written as

$$
Z \overset{d}{=} \frac{X}{Y}.
$$

(12)

Proof. Consider the pair

$$(X, Y) = (WZ^i, WZ^{1-i}) = (W[1 - I + iZ], W[I + (1 - i)Z]),
$$

(13)

where I denotes the symmetric Bernoulli, with $P[I = 0] = P[I = 1] = \frac{1}{2}$, W any rv with $P[W = 0] = 0$, e.g., $W \equiv 1$ or $W \sim N(\mu, \sigma^2)$, and Z, I, W are independent. It can be shown (cf. (11), (6)) that

$$(X, Y) \overset{d}{=} (Y, X) \quad \text{and, obviously,} \quad X \overset{d}{=} \frac{Z^i}{Z^{1-i}}.
$$

Hence, for any z we have

$$
P \left[\frac{X}{Y} \leq z \right] = \frac{1}{2} P \left[\frac{Z^i}{Z^{1-i}} \leq z \mid I = 1 \right] + \frac{1}{2} P \left[\frac{Z^i}{Z^{1-i}} \leq z \mid I = 0 \right]
$$

$$
= \frac{1}{2} P[Z \leq z] + \frac{1}{2} P \left[\frac{1}{Z} \leq z \right] = P[Z \leq z].
$$
since, by hypothesis, $Z \overset{d}{=} Z^{-1}$. Hence,

$$Z \overset{d}{=} \frac{X}{Y}, \quad \text{with } (X, Y) \overset{d}{=} (Y, X) \text{ as defined by (13).}$$

Another question is whether there exist not simply exchangeable rv’s X and Y as in (12), but iid X, Y so that every self-inverse Z can be written as in (12). The answer is negative, as shown by the following counterexample:

Let $Z > 0$ with $\log Z \sim U(-1, 1)$ and suppose there are iid rv’s X, Y such that Z can be written as in (12). Then it would follow that

$$\log Z = U \overset{d}{=} X_1 - X_2 \quad \text{with } X_1 = \log |X|, \quad X_2 = \log |Y|. \quad (14)$$

Moreover, since X and Y are iid, the X_1, X_2 will also be iid, in which case, if φ is the characteristic function of X_1, X_2, we have

$$\varphi_{X_1 - X_2}(t) = \varphi(t)\varphi(-t) = \varphi(t)\overline{\varphi(t)} = |\varphi(t)|^2 \geq 0, \quad (15)$$

whereas the characteristic function of U is $\varphi_U(t) = \left(\sin t\right)/t$, taking both positive and negative values.

An analogous (simpler) counterexample is the following: Let $Z > 0$ with $\log Z = U$, U the Bernoulli $\mathbb{P}[U = -1] = \mathbb{P}[U = 1] = \frac{1}{2}$. Then, similarly as in (14) and (15),

$$\varphi_{X_1 - X_2}(t) = |\varphi(t)|^2 \quad \text{whereas } \varphi_U(t) = \cos t.$$

Acknowledgments

We thank the referee for suggesting Seshadri (1965) as an additional reference, and for comments which improved the presentation of this note.

References

