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Abstract

In this paper, we provide Poincaré-type upper and lower variance bounds
for a function g(X) of a discrete integer-valued random variable (r.v.) X,
in terms of the (forward) differences of g up to some order. To this end,
we investigate a discrete analogue of the Mohr and Noll inequality (1952,
Math. Nachr., vol. 7, pp. 55–59), which may be of some independent inter-
est in itself. It has been shown by Johnson (1993, Statist. Decisions, vol.
11, pp. 273–278) that for the commonly used absolutely continuous distribu-
tions that belong to the Pearson family, the somewhat complicated variance
bounds take a very pleasant and simple form. We show here that this is
also true for the commonly used discrete distributions. As an application
of the proposed inequalities, we study the variance behaviour of the UMVU
estimator of log p in Geometric distributions.
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1 Introduction and a Brief Review for the Continuous Case

For a n-times continuously differentiable function g : (0, 1) −→ IR with
derivatives g(j)(x) = djg(x)/dxj , j = 0, 1, . . . , n, Mohr and Noll (1952)
obtained, as an extension of Schwarz’s inequality for integrals, the identity(∫ 1

0
g(t)dt

)2

=
n−1∑
k=0

(−1)k

k!(k + 1)!

∫ 1

0
(g(k)(t))2tk(1 − t)kdt + (−1)nRn (1.1)

(provided that the integrals are finite), where the remainder

Rn =
∫

· · ·
∫

0<x1<···<xn<y1<···<yn<1

(∫ y1

xn

g(n)(t)dt

)2

dyn · · · dy1dxn · · · dx1

(1.2)
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is clearly nonnegative. The sum in the RHS of (1.1) (without the remainder
term (−1)nRn) provides a lower (upper) bound for the LHS if n is even
(odd), and the equality holds only for polynomials of degree at most n − 1.

Since the median of an i.i.d. standard uniform sample of odd size n =
2k + 1 has a Beta density, which is a multiple of tk(1 − t)k, the inequality
(1.1) has the following statistical representation:

Proposition 1.1. Let U = U1:1 be a r.v. uniformly distributed over the
interval (0, 1), and denote by U1:m < U2:m < · · · < Um:m the corresponding
order statistics from a sample of size m. Fix n ∈ {1, 2, . . .}, and assume that
the function g : (0, 1) −→ IR satisfies the following conditions.

(i) For k = 0, 1, . . . , n− 2, the function g(k) (where g(0) = g) is absolutely
continuous with a.s. derivative g(k+1).

(ii) The r.v.’s g(k)(Uk+1:2k+1), k = 0, 1, . . . n− 1, have finite variance, i.e.,

n−1∑
k=0

∫ 1

0
xk(1 − x)k(g(k)(x))2dx < ∞.

Then,

IE2g(U) =
n−1∑
k=0

(−1)k

(k + 1)(2k + 1)!
IE(g(k)(Uk+1:2k+1))2 + (−1)nRn, (1.3)

where
Rn =

1
(2n)!

IE
(
g(n−1)(Un+1:2n) − g(n−1)(Un:2n)

)2
. (1.4)

Clearly Rn = 0 iff g is a polynomial of degree at most n − 1. Note that
(i) does not impose any condition on g when n = 1; on the other hand,
it can be shown, with the help of the inequalities (b − a)2 ≤ 2a2 + 2b2

and max{xn(1 − x)n−1, xn−1(1 − x)n} < xn−1(1 − x)n−1, 0 < x < 1, that
the condition IE(g(n−1)(Un:2n−1))2 < ∞, imposed by (ii), suffices for the
remainder Rn, in (1.4), to be finite.

We omit the proof of Proposition 1.1, since it is just a restatement of
(1.1). However, we note that the conditions on g in Proposition 1.1 are
slightly more general than those imposed by the original proof of Mohr
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and Noll. For instance, g(n) in (1.2) may not exists, and g(n−1) need not
be continuous. In the sequel, we call (1.1) or (1.3) as the Mohr and Noll
inequality.

Papathanasiou (1988), with the help of the Mohr and Noll inequality,
derived a class of variance bounds for all absolutely continuous r.v.’s X with
density f and finite moment of order 2n + 2, where n ∈ {0, 1, . . .} is fixed.
Specifically, let g be a (n+1)-times continuously differentiable real function,
defined on (r, s) := (ess inf(X), ess sup(X)), the minimal open interval con-
taining the support of X, and assume that g(X) has finite variance. In this
case, Papathanasiou (1988) obtained the following inequality (provided that
the integrals are finite):

(−1)n[Sn−Varg(X)] ≥ 0, where Sn =
n+1∑
k=1

(−1)k−1

(k − 1)!k!

∫ s

r
ak−1(t)(g(k)(t))2dt.

(1.5)

The bound (1.5) depends on the positive functions ak(t), t ∈ (r, s), given
by

ak(t) = (−1)k[µk+1(t)Ik(t) − µk(t)Ik+1(t)], k = 0, 1, . . . , n, (1.6)

where

µk(t) = IE(X − t)k, Ik(t) =
∫ t

r
(x − t)kf(x)dx = IE[(X − t)kI(X < t)].

(1.7)
Moreover, the equality in (1.5) holds if and only if the function g is a poly-
nomial of degree at most n + 1.

Clearly, the explicit form of ak(t) is important for the calculation of the
bound Sn in (1.5) (note that a0(t) =

∫ t
−∞(µ−x)f(x)dx with µ = IEX). Pa-

pathanasiou (1988) gave explicit forms of ak(t) only for Normal and Gamma
r.v.’s, e.g., if X is N(µ, σ2), then ak(t) = k! σ2k+2f(t) so that

(−1)n[Sn−Varg(X)] ≥ 0, where Sn =
n+1∑
k=1

(−1)k−1

k!
σ2k IE(g(k)(X))2, (1.8)

and where Sn becomes equal to Varg(X) only if g is a polynomial of degree
at most n + 1. It should be noted that the bound (1.8) has been indepen-
dently obtained by Houdré and Kagan (1995), using a completely differ-
ent method based on trigonometric polynomial approximation. Multivariate
extensions, including Normal and Poisson distributions, can be found in
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Houdré and Pérez-Abreu (1995), Houdré et al. (1998), Chang and Richards
(1999), among others.

Johnson (1993) proved that the functions ak(t) have explicit forms when
X is a Pearson variate. Specifically, for the Pearson family, it has been
shown by Korwar (1991) that there exists a quadratic q(t) = δt2 + βt + γ
such that a0(t) = q(t)f(t) (none of the parameters δ, β and γ has to be
nonzero; the only restriction is that q remains strictly positive in the support
(r, s)). Repeated use of this fact in combination with the covariance identity,
Cov(X, g(X)) = IE[q(X)g′(X)], yields a recurrence in k so that ak(t) =
k!ck(δ)qk+1(t)f(t), where ck(δ) =

∏k
j=0(1 − jδ)−1 depends only on k and δ.

Note that the traditional way of describing the densities f of the Pearson
family as those satisfying f ′(t)/f(t) = −σ2p1(t)/q(t) for t ∈ (r, s), where
p1(t) is a monic linear polynomial and σ2 the variance, limits the applicability
of Johnson’s result; e.g., the standard uniform distribution does not belong
to this subclass, even though q(t) = t(1 − t)/2 for t ∈ (0, 1). A careful
reading of Johnson’s derivation shows that his results continue to hold for
such cases as well, since the simplification actually depends only upon the
“magic relation”

∫ t
−∞(µ − x)f(x)dx = q(t)f(t). Therefore, Theorem 2 of

Johnson (1993) can be restated as

(−1)n[Sn − Varg(X)] ≥ 0, (1.9)

where Sn =
n+1∑
k=1

(−1)k−1

k!
∏k−1

j=0(1 − jδ)
IE[qk(X)(g(k)(X))2].

The above bound can be applied, for instance, to Beta r.v.’s with any pa-
rameters a > 0 and b > 0 (not only with a + b > 2). Obviously, (1.8) is a
very particular case of (1.9), since q(t) = σ2 for the Normal r.v. Variance
bounds of the form (1.9) are usually called Poincaré-type (see, e.g., Chen
and Lou, 1987), and are especially useful in isoperimetric inequalities (Cher-
noff, 1981). Other applications concern characterizations and limit theorems
(Chen, 1988; Chen and Lou, 1987), and the analysis of the behavior of future
contracts (Siegel, 1993; Houdré, 1995). Similar variance inequalities for an
iterated jackknife estimate of the variance have been obtained by Houdré
(1997, Theorem 2.1).

The purpose of the present article is in deriving similar Poincaré-type
bounds for the discrete case. Specifically, in Section 2, we state and prove
a novel discrete Mohr and Noll inequality (Lemma 2.1; see also Corollary
3.1), which may be of some independent interest in itself. We also give
its statistical interpretation, which, as in the continuous case, is connected
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with some properties of the sample medians from a uniform model of various
sample sizes. In Section 3, we use this inequality to derive a discrete analogue
of the bound (1.5), satisfied by any integer-valued r.v. with finite moments
of the appropriate order.

In Section 4, we apply the discrete Mohr and Noll inequality to the Pear-
son family of integer-valued r.v.’s, and we obtain the discrete analogue of
the Poincaré-type variance bound (1.9). Although the new bounds of The-
orems 3.1 and 4.1 formally coincide with their continuous analogues (1.5)
and (1.9), the discrete bounds are quite different in nature, and the appro-
priate inequality needed for their proof (see (3.1), below) is not very easy
to recognize from its continuous counter-part. In fact, it can be shown, us-
ing Riemann integral, that the inequality of Corollary 3.1(a), applied to the
function gN (j) = g(j/N), j = 1, 2, . . . , N , implies the inequality in (1.1),
as N → ∞, while the converse is not true (see Remark 3.1). Perhaps this
provides a reason for the fact that the only known results of this kind for
the discrete case are those obtained for Poisson processes by Houdré and
Pérez-Abreu (1995), using Malliavin calculus, and the corresponding corre-
lation identities and inequalities for infinitely divisible variables, established
by Houdré et al. (1998).

Finally, in Section 5, we present an application of the bounds in a partic-
ular situation concerning statistical inference. Specifically, the main result
of Theorem 4.1 is applied in order to approximate the variance of the UMVU
estimator of log p in Geometric distributions. We show that for any fixed n,
the corresponding bounds, Sn = Sn(ν, p), behave well as the sample size, ν,
becomes large. Also, we show that for any fixed sample size ν, the bounds
Sn(ν, p) approximate the true variance as n → ∞, if and only if p ≥ 1/2.
Some numerical values of the first few bounds are also given. The order of
approximation of the bounds to the true variance seems to be quite satis-
factory in this example, for small and moderate values of ν, and for various
values of the parameter p.

2 The Discrete Mohr and Noll Inequality

Turning to the discrete case, consider a “real-valued function” (finite
sequence) g defined on {1, 2, . . . , N}, and denote its n-th forward difference
as g(n) or ∆ng, i.e.,

g(n)(x) =
n∑

j=0

(−1)n−j

(
n

j

)
g(x + j), n = 0, 1, . . . , x = 1, 2, . . . , N − n.
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For convenience, set g(n)(x) = 0 if x > max{0, N − n}. This definition is
compatible with the fact that g(n)(x) = 0 for all x = 1, 2, . . . if and only
if g(x) is a polynomial of degree at most n − 1 (it is well-known that any
function g defined on the set {1, 2, . . . , N} is the restriction of a polynomial
of degree at most N − 1). Denoting by S(g(n)) the “true support” of g(n),
i.e., the maximal set of x’s where g(n)(x) is completely defined in terms of
the values g(1), . . . , g(N), we observe that S(g(n)) = {1, 2, . . . , N − n}, if
n < N , and S(g(n)) = ∅ otherwise.

The appropriate uniform model is provided by the order statistics U
(N)
1:m <

U
(N)
2:m < · · · < U

(N)
m:m, obtained from a simple random sample of size m, taken

without replacement from the discrete uniform r.v. UN = U
(N)
1:1 , assigning

probability 1/N to each point 1, 2, . . . , N . This simple model, which clearly
is not well-defined if m > N , has been recently studied by some authors, due
to its useful connection with general order statistics from finite populations;
see, e.g., Arnold et al. (1992), Kochar and Korwar (1997), (2001), Takahasi
and Futatsuya (1998), Balakrishnan et al. (2003), Papadatos and Rychlik
(2004), López-Blázquez and Castaño-Mart́ınez (2006), among others.

In the sequel, we shall make use of the following properties:

IP [U (N)
n:2n=k1, U

(N)
n+1:2n=k2]=

(
k1−1
n−1

)(
N−k2

n−1

)/(N

2n

)
, 1≤k1 < k2≤N, (2.1)

(provided 2n≤N)

and

IP [U (N)
n−1:2n−1=k]=

(
k − 1
n − 1

)(
N−k

n−1

)/( N

2n−1

)
, 1≤k≤N, (2.2)

(provided 2n − 1≤N)

where the binomial coefficient
(
a
b

)
should be treated as 0 whenever a < b.

Assume that 2k + 1 ≤ N so that the sample median U
(N)
k+1:2k+1 is well-

defined. Clearly, k + 1 ≤ U
(N)
k+1:2k+1 ≤ N − k, and thus, the support of

U
(N)
k+1:2k+1 is strictly smaller than the “true support” S(g(k)) of g(k) when

k > 0. If we require sample medians to be supported in the set S(g(k)), as in
the continuous Mohr and Noll inequality (1.3), then a kind of standardization
should be done. To this end, we define the “sample medians”

Vk = V
(N)
k := U

(N+k)
k+1:2k+1 − k, k = 0, 1, . . . , N − 1. (2.3)
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The standardized “sample medians” Vk can now assume any value in S(g(k))
= {1, 2, . . . , N−k}, with positive probability, for all k ≤ N−1 (i.e., for those
values of k for which S(g(k)) is nonempty). Similar arguments apply to the
case of even sample sizes 2k + 2, k = 0, 1, 2, . . ., where the standardized
“sample medians” (Zk, Wk) = (Z(N)

k , W
(N)
k ) are now defined as the random

pairs

(Zk, Wk) :=
(
U

(N+k)
k+1:2k+2 − k, U

(N+k)
k+2:2k+2 − k

)
, k = 0, 1, . . . , N − 2, (2.4)

so that the support for each (Zk, Wk) is the set {(i1, i2) : 1 ≤ i1 < i2 ≤
N − k}, and thus, the r.v. g(k)(Wk)− g(k)(Zk) is well-defined for k ≤ N − 2.

We are now in a position to state and prove the discrete Mohr and Noll
inequality in its probabilistic form.

Lemma 2.1. Under the above notations, the following identity holds for
n = 1, 2, . . . and for any function g defined on {1, 2, . . . , N}:

IE2g(UN ) =
1
N

n−1∑
k=0

(−1)k

k + 1

(
N + k

2k + 1

)
IE
[
g(k)(Vk)

]2
+ (−1)n 1

N2
Rn, (2.5)

where
(

N+k
2k+1

)
IE
[
g(k)(Vk)

]2
should be treated as 0 if k > N−1. The remainder

in (2.5) is

Rn =
(

N + n − 1
2n

)
IE
[
g(n−1)(Wn−1) − g(n−1)(Zn−1)

]2
, (2.6)

and it should be treated as 0 if n > N − 1. Moreover, Rn = 0 if and only if
g is the restriction of a polynomial of degree at most n − 1.

Proof. We use induction on n. For n = 1, the identity (2.5) reduces to

IE2g(UN ) = IE[g(UN )]2 − N − 1
2N

IE
[
g(U (N)

2:2 ) − g(U (N)
1:2 )

]2
,

which can be easily verified. (Clearly, R1 = 0 if and only if g is a constant
function.) Assuming that the assertion is true for some n, the induction step
for n + 1 will be deduced if it can be shown that

Rn+1 + Rn =
N

n + 1

(
N + n

2n + 1

)
IE
[
g(n)(Vn)

]2
. (2.7)
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Thus, we have nothing to show if n ≥ N (everything vanishes in (2.7)), while
for n ≤ N − 1, using (2.1)–(2.4), we have

Rn =
∑

n≤k1<k2≤N

(
k1 − 1
n − 1

)(
N + n − k2 − 1

n − 1

) k2−n∑
j=k1−n+1

g(n)(j)

2

=
N−n∑
j1=1

N−n∑
j2=1

g(n)(j1)g(n)(j2)
(

min{j1, j2} + n − 1
n

)(
N − max{j1, j2}

n

)

=
N∑

k=n+1

(g(n)(k − n))2
(

k − 1
n

)(
N + n − k

n

)

+2
∑

k1<k2

g(n)(k1 − n)g(n)(k2 − n)
(

k1 − 1
n

)(
N + n − k2

n

)

=
(

N + n

2n + 1

)
IE
[
g(n)(Vn)

]2
+ 2

(
N + n

2n + 2

)
IE
[
g(n)(Zn)g(n)(Wn)

]
.

Using the above expression for Rn and (2.6) with n + 1 in place of n, we get

Rn+1 + Rn =
(

N + n

2n + 2

)(
IE
[
g(n)(Zn)

]2
+ IE

[
g(n)(Wn)

]2)
+
(

N + n

2n + 1

)
IE
[
g(n)(Vn)

]2
. (2.8)

Observe that the first term in the RHS of (2.8) vanishes if n = N − 1, and
thus, (2.7) follows immediately from (2.8). Otherwise, if n ≤ N − 2, the
desired equality (2.7) follows again by (2.8), if we apply for the function
h = (g(n))2 the identity

IEh(Zn) + IEh(Wn) = 2IEh(Vn), n = 0, 1, . . . , N − 2,

which can be obtained from (2.1) and (2.2), since IP [Zn = k] + IP [Wn =
k] = 2IP [Vn = k] for all k. This proves the identity (2.5) for all n.

It is now obvious from the form of the remainder that Rn = 0 if and
only if either n ≥ N and g is completely arbitrary, or n ≤ N − 1 and
g(n−1)(y) − g(n−1)(x) vanishes for all (x, y) ∈ {(i1, i2) : 1 ≤ i1 < i2 ≤
N − n + 1}, the support of (Zn−1, Wn−1). This can happen if and only
if g(n) identically vanishes in its “true support”, i.e., if and only if g is the
restriction of a polynomial of degree at most n−1, and the proof is complete.

�
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3 Application to Variance Bounds

For any x ∈ IR and k = 1, 2, . . ., we define (x)k = x(x − 1) · · · (x − k + 1),
[x]k = x(x + 1) · · · (x + k − 1) = (x + k − 1)k, and, as usual, we set (x)0 =
[x]0 = 1 for all x. The next result is evident from Lemma 2.1.

Corollary 3.1. (a) For n = 0, 1, . . . and any function g defined in
{1, 2, . . . , N}, N∑

j=1

g(j)

2

= N
n∑

k=0

(−1)k

k!(k + 1)!

N−k∑
j=1

(g(k)(j))2[j]k(N − j)k + (−1)n+1Rn+1,

where

Rn+1 =
1

(n!)2
∑

1≤j1<j2≤N−n

(g(n)(j2) − g(n)(j1))2[j1]n(N − j2)n,

and where empty sums are treated as 0.
(b) For n = 0, 1, . . . and for any function g defined on {x, x + 1, . . . , y},
where x < y are assumed to be integers,

(g(y)−g(x))2 = (y−x)
n+1∑
k=1

(−1)k−1

(k−1)!k!

y−k∑
j=x

(g(k)(j))2[j−x+1]k−1(y−j−1)k−1

+(−1)n+1Rn+1(x, y), (3.1)

where

Rn+1(x, y)=
1

(n!)2
∑

x≤j1<j2≤y−1−n

(g(n+1)(j2)−g(n+1)(j1))2[j1−x+1]n(y−j2−1)n,

and where empty sums are treated as 0.

Remark 3.1. (a) The inequality suggested by Corollary 3.1(a) can be
written as

(−1)n

1
N

N∑
j=1

h(j)

2

−
n∑

k=0

(−1)k

k!(k + 1)!

 1
N

N−k∑
j=1

[j]k
Nk

(N−j)k

Nk
(Nk∆kh(j))2




≤ 0,
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for any h : {1, 2, . . . , N} −→ IR, while the original Mohr and Noll inequality
suggests that

(−1)n

[(∫ 1

0
g(t)dt

)2

−
n∑

k=0

(−1)k

k!(k + 1)!

{∫ 1

0
tk(1 − t)k(g(k)(t))2dt

}]
≤ 0,

for all n-times continuously differentiable g : (0, 1) −→ IR. It can be shown
that the discrete inequality is stronger than the continuous one. To see
this, assume first that the functions g, g′, . . . , g(n) are defined in the compact
interval [0, 1], and are (uniformly) continuous on [0, 1]. Then apply the
discrete inequality to the function hN (j) = g(j/N), j = 1, 2 . . . , N , observing
that for any j = 1, 2, . . . , N − k and any ε > 0,

|g(k)(j/N) − Nk∆khN (j)|

= Nk

∣∣∣∣∣
∫ (j+1)/N

j/N

∫ t1+1/N

t1

· · ·
∫ tk−1+1/N

tk−1

[g(k)(j/N) − g(k)(tk)]dtk . . . dt2dt1

∣∣∣∣∣
≤ Nk

∫ (j+1)/N

j/N

∫ t1+1/N

t1

· · ·
∫ tk−1+1/N

tk−1

|g(k)(j/N) − g(k)(tk)|dtk . . . dt2dt1

≤ ε,

if N is large enough, because |tk − j/N | < k/N will be arbitrarily small as
N → ∞ (k remains fixed). This implies that g(k)(j/N) − Nk∆khN (j) → 0
uniformly in j ∈ {1, 2, . . . , N − k}, as N → ∞. Define now

Σ(k)
N =

1
N

N−k∑
j=1

[j]k
Nk

(N − j)k

Nk
(Nk∆khN (j))2,

Σ̃(k)
N =

1
N

N−k∑
j=1

[j]k
Nk

(N − j)k

Nk
(g(k)(j/N))2.

The above argument shows that Σ(k)
N −Σ̃(k)

N → 0. Obviously, from the theory
of Riemann integration, Σ̃(k)

N → ∫ 1
0 tk(1−t)k(g(k)(t))2dt and N−1

∑N
j=1 hN (j) →∫ 1

0 g(t)dt. Hence, Σ(k)
N → ∫ 1

0 tk(1 − t)k(g(k)(t))2dt for all k = 0, 1, . . . , n, and
the continuous bound follows as the limiting case of the discrete one. For the
general case (where g, g′, . . . , g(n) are merely assumed to be continuous in the
open interval (0, 1)), it suffices to apply the previous continuous bound to the
function gε(t) = g(ε + (1 − 2ε)t), t ∈ [0, 1], and its derivatives. The general
form of the inequality now follows by monotone convergence theorem, since

(t−ε)k(1−ε−t)k(g(k)(t))2I[ε,1−ε](t) ↗ tk(1−t)k(g(k)(t))2I(0,1)(t), as ε ↘ 0.
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(b) Although the continuous inequality arises as a limiting case of the dis-
crete one, it seems that no simple way exists to get the discrete form of the
inequality from the continuous one. We shall try to provide a convincing
explanation of this fact. First observe that the discrete inequality of Corol-
lary 3.1(a) is equivalent to the variance bound (see also Theorem 4.1 and
Table 1)

(−1)n[Sn − Varg(UN )] ≥ 0,

where Sn =
n+1∑
k=1

(−1)k−1

k!(k + 1)!
1
N

N−k∑
j=1

(∆kg(j))2[j]k(N − j)k.

This inequality holds for all n = 0, 1, . . ., and for any g : {1, 2, . . . , N} −→ IR,
where UN is the discrete uniform r.v. on {1, 2, . . . , N}. On the other hand,
one can consider a large class of variance bounds, as in (1.5), for a class of
continuous r.v.’s that are close to UN . Clearly, for the bound (1.5) to be
applicable, the function g should be extended to a function g̃ defined at least
in the interval [1, N ], in such a way that g̃′, g̃′′, . . . , g̃(n+1) exist in (1, N), and
the graph of g̃ is passing through the points {(j, g(j)), j = 1, 2, . . . , N}, i.e.,
g̃(1) = g(1), . . . , g̃(N) = g(N). (In the sequel we write g instead of g̃.) It
seems that the simplest way to approximate UN by a continuous r.v. is to
form the convolution Xε = UN +εV , where V is a uniform r.v. in (−1, 1) and
ε > 0 is small. Letting ε ↘ 0, we see that Varg(Xε) → Varg(UN ), since g is
assumed to be (absolutely) continuous in [1, N ]. If Sε

n(g) is the bound (1.5)
for Varg(Xε), then its limit, S̃n(g) = limε↘0 Sε

n(g), provides a “differential”
bound for Varg(UN ), and a natural question is if this procedure can obtain
the discrete variance bound of Corollary 3.1(a), for a suitable choice of g.
Surprisingly enough, the answer is negative. To see this, observe that the
variance bound Sε

n(g) depends on the functions aε
k(t), t ∈ (1 − ε, N + ε)

corresponding to the density fε(t) = (2Nε)−1
∑N

j=1 I(j−ε,j+ε)(t) of Xε (see
(1.6)). It is easy to see that aε

k(t) → ak(t) as ε ↘ 0, where

ak(t) =
1

N2

∑
j1≤[t]

∑
j2>[t]

(j2 − j1)(t − j1)k(j2 − t)k, 1 < t < N.

Thus, taking limits as ε ↘ 0 in the inequality (−1)n[Sε
n(g)− Varg(Xε)] ≥ 0,

and using dominated convergence, we get the bound

(−1)n[S̃n(g) − Varg(UN )] ≥ 0, where

S̃n(g) =
n+1∑
k=1

(−1)k−1

(k − 1)!k!

∫ N

1
ak−1(t)(g(k)(t))2dt,
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and where ak(t) is as above. [Note that under mild moment conditions on
the absolutely continuous r.v. V involved in the convolution UN + εV , the
form of ak(t) does not depend on the distribution of V , so that the specific
choice of a uniform V does not limit the applicability of the procedure.]
After some algebra, it follows that for j < t < j + 1 (j = 1, 2, . . . , N − 1),
a0(t) = j(N − j)/(2N), while

a1(t) =
j(N − j)

2N
(t−j)(j+1−t)+

[j]2(N − j)2
6N

(t−j)+
(j)2[N − j]2

6N
(j+1−t).

The above calculations suffice for obtaining the first two bounds S̃0(g) and
S̃1(g). The first one is an upper bound and the second one a lower bound
for Varg(UN ). Regarding the first discrete and continuous bounds, S0

and S̃0(g), resp., it can be seen that Varg(UN ) ≤ S0 ≤ S̃0(g), and that
infg S̃0(g) = S0, where the infimum is taken over all absolutely continuous
g passing through the points. (The infimum in this case is minimum, and
it is attained by the broken line passing through the points.) Thus, S0 can
be obtained from S̃0(g), for a suitable choice of g. However, this is not the
case for the second discrete bound S1, which cannot be recovered from its
continuous counterpart S̃1(g). Indeed, we have

S1 − S̃1(g) =
1

2N

N−1∑
j=1

j(N − j)θj(g) +
1

12N

N−2∑
j=1

[j]2(N − j)2φj(g),

where

θj(g) =
(∫ j+1

j
g′(t)dt

)2

−
∫ j+1

j
(g′(t))2dt

+
1
2

∫ j+1

j
(t − j)(j + 1 − t)(g′′(t))2dt,

φj(g) =
∫ j+1

j

∫ t1+1

t1

(g′′(t2))2dt2dt1 −
(∫ j+1

j

∫ t1+1

t1

g′′(t2)dt2dt1

)2

.

Observe that θj(g) ≥ 0 (as follows from the inequality (1.1)) and, obviously,
φj(g) ≥ 0, showing that S̃1(g) ≤ S1 ≤ Varg(UN ) for all g passing through
the given points. Moreover, if N ≥ 4, it can be shown that φj(g)+φj+1(g) ≥
[∆2g(j+1)−∆2g(j)]2/4 for all j = 1, . . . , N−3 (we omit the tedious details),
implying that

sup
g

S̃1(g) ≤ S1 − (N − 1)(N − 2)
48N

N−3∑
j=1

[∆2g(j + 1) − ∆2g(j)]2,
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where the supremum is taken over all g passing through the given points and
having an absolutely continuous derivative g′ in (1, N). Thus, S1 cannot
be recovered by S̃1(g), unless the N ≥ 4 points belong to a polynomial
curve of degree at most 2. The same is true for all bounds S̃n(g), i.e.,
infg(−1)n[S̃n(g) − Sn] ≥ 0, and in the non-trivial case, where n ≤ N − 3
(otherwise Sn is equal to Varg(UN )) and n ≥ 1, the equality is attained
if and only if the N points {(j, g(j)), j = 1, 2, . . . , N} lie on a polynomial
curve of degree at most n + 1.

The above analysis shows that the discrete inequality is strictly better
than the continuous one. The interested reader can find the details of the
present Remark in Afendras, Papadatos and Papathanasiou (2007).

The main result of the present section is stated in the following theorem,
which is the discrete analogue of Papathanasiou’s (1988) main result (cf.
(1.5)–(1.7)). Here we use the terminology “integer interval” in order to
denote any subset J of integers with the property: if j1 ∈ J and j2 ∈ J then
all integers j between j1 and j2 belong to J .

Theorem 3.1. Let X be an integer-valued r.v. with probability mass func-
tion (p.m.f.) p(x) and finite moment of order 2n + 2, and assume that g(x)
is an arbitrary function defined in the smallest integer interval J = J(X),
that contains the support of X. Then, for k = 0, 1, . . . , n, the nonnegative
functions defined by

ak(j) =
∑
x≤j

∑
y>j

(y − x)p(x)p(y)(j + k − x)k(y − j − 1)k, j ∈ J, (3.2)

can be rewritten as

ak(j) = (−1)k[µk+1(j)sk(j + 1) − µk(j + 1)sk+1(j)], j ∈ J, (3.3)

where

µk(j) = IE(X−j)k, sk(j) =
∑
x<j

p(x)(x−j)k = IE[(X−j)kI(X < j)]. (3.4)

If g(X) has finite second moment and, furthermore, the function g satisfies
the conditions∑

j∈J

ak−1(j)(g(k)(j))2 < ∞, k = 1, 2, . . . , n + 1, (3.5)
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then

(−1)n[Sn−Varg(X)] ≥ 0, where Sn =
n+1∑
k=1

(−1)k−1

(k − 1)!k!

∑
j∈J

ak−1(j)(g(k)(j))2,

(3.6)
and the equality in (3.6) holds if and only if g(x), x ∈ J , is the restriction
of a polynomial of degree at most n + 1.

Proof. First note that the finiteness of the (k + 1)-th moment is suffi-
cient for the finiteness of ak(j) for j ∈ J . Using (j+k−x)k = (−1)k(x−j−1)k

and y − x = (y − j) − (x − j), we get

(y − x)(j + k − x)k(y − j − 1)k = (−1)k(x − j − 1)k(y − j)k+1

+(−1)k+1(x − j)k+1(y − j − 1)k,

so that

ak(j) = (−1)k
∑

x<j+1

p(x)(x − (j + 1))k

∑
y≥j

p(y)(y − j)k+1

+(−1)k+1
∑
x<j

p(x)(x − j)k+1

∑
y≥j+k+1

p(y)(y − (j + 1))k

= (−1)ksk(j + 1)
∑
y≥j

p(y)(y − j)k+1

+(−1)k+1sk+1(j)
∑

y≥j+k+1

p(y)(y − (j + 1))k

= (−1)k[sk(j+1)(µk+1(j)−sk+1(j))−sk+1(j)(µk(j+1)−sk(j+1))],

and thus, (3.3) follows. If Y is an independent copy of X, we can write (cf.
Cacoullos and Papathanasiou (1985))

Varg(X) =
1
2

IE(g(Y ) − g(X))2 =
∑
x<y

p(x)p(y)(g(y) − g(x))2,

and the upper/lower bound Sn in (3.6) is immediately obtained if we estimate
{g(y) − g(x)}2 with the sum in the RHS of (3.1). Moreover, Sn = Varg(X)
if and only if ∑

x<y

p(x)p(y)Rn+1(x, y) = 0,

which implies that g(n+1) is constant, i.e., g(j), j ∈ J , is the restriction of a
polynomial g(x) of degree at most n + 1. This completes the proof. �



176 G. Afendras, N. Papadatos and V. Papathanasiou

It should be noted that a0(j) =
∑

x≤j(µ−x)p(x), where µ = IEX, and The-
orem 3.1 with n = 0 yields the upper bound of Cacoullos and Papathanasiou
(1985) for the discrete case; see also Cacoullos (1982) and Klaassen (1985).
Also, using (3.3) and the identity (x−j)k+1 = (x−j−1)k+1+(k+1)(x−j−1)k,
it follows that sk+1(j) = sk+1(j + 1) + (k + 1)sk(j + 1) and similarly for
µk+1(j), yielding

ak(j) = (−1)k[µk+1(j + 1)sk(j + 1) − µk(j + 1)sk+1(j + 1)]. (3.7)

4 Variance Bounds for the Discrete Pearson System

The functions ak(j), given in (3.2), (3.3) or (3.7), are too involved to
be useful. Johnson (1993) simplified considerably the expression for ak(t)
for the continuous case (given by (1.6), (1.7)), and obtained the general
form (1.9) of the bound (1.5), which is satisfied by the most commonly used
continuous r.v.’s. The same simplification for the discrete case is the purpose
of the present section. To this end, we have to impose on the p.m.f. p of the
integer-valued r.v. X the condition∑

x≤j

(µ − x)p(x) = q(j)p(j), j ∈ J, (4.1)

with µ = IEX, J the smallest integer interval containing the support of
X, and q(j) = δj2 + βj + γ an arbitrary quadratic. By Korwar’s (1991)
characterization, relation (4.1) entails that X belongs to the Pearson system
of discrete distributions. Independently of Korwar’s result, however, the
following lemma is needed for our applications.

Lemma 4.1. Let X be an integer-valued r.v. with p.m.f. p(x) and finite
mean µ, and let J be the smallest integer interval containing the support
of X. Assume that there exists a quadratic q(j) = δj2 + βj + γ, such that
(4.1) holds. Then, the support of X equals J and, moreover, if δ ≤ 0 then
X has finite moments of any order. Furthermore, in the case where J is
infinite and δ > 0, X has finite moments of any order a ∈ [1, 1+1/δ), while
IE |X|1+1/δ = ∞.

Proof. Obviously, the function defined in the LHS of (4.1) is unimodal
for j ∈ J . Moreover, it is strictly positive for j ∈ J , except if J has a finite
upper endpoint, say N , in which case it has a zero at j = N . This shows
that the support of X is an integer interval, and thus, it coincides with J .
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Assume first that δ 	= 0. If δ < 0 then J is finite, because q(j) has to
be nonnegative for all j ∈ J . If δ > 0, we provide a detailed proof only
for the case where J = ZZ, since the other two cases J = {. . . , N − 1, N}
and J = {m, m + 1, . . .} can be treated similarly. It can be easily seen that
J = ZZ implies that q(j) > 0 for all j ∈ ZZ, µ < minj∈ZZ{j + q(j)}, and that
the r.v. Y = −X has quadratic qY given by qY (j) = q(−j) − µ − j, j ∈ ZZ.
Define the sequences an = p(n) > 0 and bn = p(−n) > 0, n = 0, 1, . . ., with
a0 = b0 = p(0). Then, (4.1) obtains the recurrence

an+1 =
q(n)

q(n + 1) + n + 1 − µ
an, bn+1 =

q(−n) − n − µ

q(−n − 1)
bn, n = 0, 1, . . . .

It is easy to see that for any fixed a ≥ 1,

(n + 1)aan+1

naan
=

(n + 1)aq(n)
na(q(n + 1) + n + 1 − µ)

=
n2 + (a + β/δ)n + O(1)

n2 + (2 + (β + 1)/δ)n + O(1)
,

as n → ∞, and the Gauss-Bertrand-Raabe summation criterion yields

∞∑
n=0

naan < ∞ if and only if
(

2 +
β + 1

δ

)
−
(

a +
β

δ

)
> 1;

that is, if and only if a < 1 + 1/δ. Similar arguments, applied to bn, yield

∞∑
n=0

nabn < ∞ if and only if
(

2 − β

δ

)
−
(

a − β + 1
δ

)
> 1,

completing the proof in the case where J = ZZ.

Assume next that δ = β = 0 and, in order to avoid trivialities, suppose
that J contains at least two integers. It then follows that γ > 0 and that
J is bounded below; otherwise, (4.1) leads to the contradiction that p(j −
1)/p(j) = 1 + (j − µ)/γ is negative for sufficiently small j. Thus, J is
of the form {m, m + 1, . . .}, and (4.1) implies that for all large enough j,
p(j)/p(j − 1) = γ/(γ + j −µ), so that limj→+∞ jap(j)/((j − 1)ap(j − 1)) = 0
for any fixed a ≥ 1. Therefore, X has finite moments of any order.

Assume next that δ = 0 and β > 0. In this case, it is obvious that
q(j) ≥ 0 implies that j ≥ −γ/β, so that J is bounded below. Since J cannot
be bounded above (otherwise, the linear polynomial q should have 2 real
roots), it is again immediate by (4.1) that limj→+∞ jap(j)/((j−1)ap(j−1)) =
β/(β + 1) < 1, so that X has finite moments of any order.
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Finally, in the remaining case δ = 0, β < 0, it is again obvious that J
is bounded above by −γ/β, and also that if J is infinite then limj→−∞ |j −
1|ap(j−1)/(|j|ap(j)) = 1+1/β < 1 (this incidentally implies that −1 ≤ β < 0
in this case) so that X has finite moments of any order. This completes the
proof of lemma. �

It can be seen that there exist discrete r.v.’s satisfying (4.1) with δ > 0
and finite support J with cardinality |J | ≥ 3; however, the inequality δ <
(2(|J | − 2))−1 should be necessarily satisfied in this case.

Using a special case of the discrete covariance identity given in Cacoullos
and Papathanasiou (1989), namely,

Cov(X, h(X)) = IE[q(X)∆h(X)], (4.2)

for all functions h for which IE[q(X)|∆h(X)|] < ∞, we can prove the follow-
ing lemma.

Lemma 4.2. Let k ≥ 1. If X satisfies (4.1) and has k+1 finite moments,
then, under the notation (3.4), we have that for all j ∈ J ,

µk+1(j + 1) = bk(j)µk(j + 1) + dk(j)µk−1(j + 1) (4.3)

and
sk+1(j + 1) = bk(j)sk(j + 1) + dk(j)sk−1(j + 1), (4.4)

where

bk(j) =
µ − j − k − 1 + k((2j + 2k + 1)δ + β)

1 − kδ
, dk(j) =

k

1 − kδ
q(k + j),

(4.5)
provided that δ 	= 1/k.

Proof. Write q(x) as

q(x) = δ(x−j−k)(x−j−k−1)+((2j+2k+1)δ+β)(x−j−k)+q(j+k) (4.6)

and observe that

µk+1(j + 1) = IE[(X − j − k − 1)(X − j − 1)k]
= IE[((X − µ) + (µ − j − k − 1))(X − j − 1)k]
= Cov[X, (X − j − 1)k] + (µ − j − k − 1)µk(j + 1)
= k IE[q(X)(X − j − 1)k−1] + (µ − j − k − 1)µk(j + 1),
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where we applied (4.2) to the function h(x) = (x − j − 1)k. With the help
of (4.6), the expectation above is

IE[q(X)(X − j − 1)k−1] = δµk+1(j + 1) + ((2j + 2k + 1)δ + β)µk(j + 1)
+q(j + k)µk−1(j + 1),

and (4.3) follows. Since sk+1(j+1) = IE[(X−j−1)k+1I(X < j+1)], we can
apply the same procedure to sk+1(j + 1). Now, identity (4.2) will operate
on the function h(x) = (x − j − 1)kI(x < j + 1). Taking into account the
formula ∆[h1(x)h2(x)] = ∆[h1(x)]h2(x + 1) + h1(x)∆[h2(x)], we have

∆[h(x)] = ∆[(x − j − 1)k]I(x + 1 < j + 1) + (x − j − 1)k∆[I(x < j + 1)]
= k(x − j − 1)k−1I(x < j) − (x − j − 1)kI(x = j)
= k(x − j − 1)k−1I(x < j + 1).

[The last equality holds because −(x−j−1)kI(x = j) = k(x−j−1)k−1I(x =
j) = (−1)k+1k!I(x = j).] Thus, using exactly the same steps, (4.4) follows.

�

Corollary 4.1. Assume that X has k + 1 finite moments and satisfies
(4.1) with δ /∈ {1, 1/2, . . . , 1/k}. Then

ak(j) =
k!∏k

s=0(1 − sδ)
q[k+1](j)p(j), j ∈ J, (4.7)

where q[n](j) = q(j)q(j + 1) · · · q(j + n − 1).

Proof. For k = 0 the assertion is (4.1) itself, while for k ≥ 1, (3.7),
(4.4) and (4.5) yield the recurrence ak(j) = dk(j)ak−1(j), with dk(j) given
by (4.5). Thus, (4.7) is proved. �

Our main result follows immediately from Theorem 3.1 and Corollary 4.1.

Theorem 4.1. Let X be an integer-valued r.v. with finite mean µ, support
J and p.m.f. p(x) satisfying (4.1). Moreover, fix n ∈ {0, 1, . . .}, assume
that X has 2n + 2 finite moments and, if n ≥ 1, suppose further that δ /∈
{1, 1/2, . . . , 1/n}. Then, for any function g : J −→ IR satisfying

IE[q[k](X)(g(k)(X))2] < ∞, k = 0, 1, . . . , n + 1,
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where q[0](X) = 1, the following inequality holds:

(−1)n[Sn − Varg(X)] ≥ 0, (4.8)

where Sn =
n+1∑
k=1

(−1)k−1

k!
∏k−1

j=0(1 − jδ)
IE[q[k](X)(g(k)(X))2].

Equality in (4.8) holds if and only if g(x), x ∈ J , is the restriction of a
polynomial g : IR −→ IR, of degree at most n + 1.

Variance bounds for the most commonly used discrete Pearson variates
are given in Table 1.

Observe that if X is Poisson(λ), then the upper/lower variance bound

Sn =
n+1∑
k=1

(−1)k−1

k!
λk IE(g(k)(X))2

is very similar to the bound (1.8) for the Normal (cf. Houdré and Pérez-
Abreu, 1995). It should also be mentioned that since the Negative Binomial
is an example of a discrete infinite divisible r.v., similar inequalities in this
case can be obtained by an application of Corollary 2 in Houdré et al. (1998).

5 Estimation of logθ in Geometric Distributions

Let X1, X2, . . . , Xν be a random sample of size ν from Geometric(θ), so
that

IP (Xi = j) = θ(1 − θ)j , j = 0, 1, . . . , i = 1, 2, . . . , ν.

Let X = X1 + X2 + · · · + Xν be the complete sufficient statistic, and define

U(X1) =

 0, if X1 = 0,

1 +
1
2

+ · · · + 1
X1

, if X1 ∈ {1, 2, . . .}.

It is clear that 0 ≤ U(X1) ≤ X1, showing that U has finite moments of any
order. Observing that ∆U(j) = 1/(1 + j), j = 0, 1, . . ., and applying the
identity

IE[U(X1)] − U(0) =
∞∑

j=0

(∆U(j))IP (X1 > j), (5.1)
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Table 1. Specific form of αk(X), needed for computation of∑n+1
k=1

(−1)k−1

k!
IE[αk(X)(g(k)(X))2], for some

discrete Pearson variates.

name p.m.f. p(j) quadratic q(j) αk(X) =

parameters support δ, β, γ
q[k](X)∏k−1

j=0 (1 − jδ)

Poisson(λ) e−λ λj

j!
λ λk

λ > 0 j = 0, 1, . . . 0, 0, λ

Binomial(N, p)

(
N

j

)
pj(1 − p)N−j (N − j)p pk(N − X)k

0 < p < 1, j = 0, 1, . . . , N 0,−p, Np (exact if n ≥ N − 1)
N = 1, 2, . . .

Negative

Binomial(r, p)

(
r + j − 1

j

)
pr(1 − p)j 1 − p

p
(r + j)

(
1 − p

p

)k

[r + X]k

0 < p < 1, j = 0, 1, . . . 0,
1−p

p
,
r(1−p)

p
r > 0

Hyper-

geometric(r, s; N)

(
N

j

)
(r)j(s)N−j

(r + s)N

(r − j)(N − j)

r + s

(r − X)k(N − X)k

(r + s)k

r ≥ 1, s ≥ 1, j = 0, 1, . . . , N
1

r+s
,−r+N

r+s
,

Nr

r+s
(exact if n ≥ N − 1)

N = 1, 2, . . .,
N ≤ min{r, s}

Negative Hyper-

geometric(r, s; N)

(
N

j

)
(−r)j(−s)N−j

(−r − s)N

(r + j)(N − j)

r + s

[r + X]k(N − X)k

[r + s]k

r > 0, s > 0, j = 0, 1, . . . , N − 1

r+s
,
N−r

r+s
,

Nr

r+s
(exact if n ≥ N − 1)

N = 1, 2, . . .,

one finds that IE(U) = − log θ. According to the Rao-Blackwell/Lehmann-
Scheffé Theorem, the uniformly minimum variance unbiased (UMVU) esti-
mator of − log θ is given by Tν = IE(U |X), and the following Lemma shows
that it has an explicit form.



182 G. Afendras, N. Papadatos and V. Papathanasiou

Lemma 5.1. The UMVU estimator of − log θ is given by

Tν = Tν(X) =
X−1∑
j=0

1
ν + j

, (5.2)

where X = X1 + X2 + · · · + Xν , and where Tν is assumed to be 0
if X = 0.

Proof. For k ∈ {0, 1, . . .} and x ∈ IR we write
[

x
k

]
=

[x]k
k!

. Since X

follows the Negative Binomial(ν, θ) distribution, we have that for any fixed
k ∈ {0, 1, . . .},

IP (X1 = j|X = k) =

[
ν − 1
k − j

]
[

ν
k

] , j = 0, 1, . . . , k,

and thus,

IP (X1 > j|X = k) =



[
ν

k − j − 1

]
[
ν
k

] , j = 0, 1, . . . , k − 1,

0, j = k, k + 1, . . . .

Therefore, Tν(0) = 0. Also, using (5.1) we find that for any k ≥ 1,

Tν(k) = IE(U(X1)|X = k)

=
∞∑

j=0

(∆U(j))IP (X1 > j|X = k)

=

k−1∑
j=0

1
k − j

[
ν
j

]
[

ν
k

] . (5.3)
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Clearly, ∆Tν(0) = 1
ν . Also, for k ≥ 1, we have

∆Tν(k) =
(k + 1)!
[ν]k+1

k∑
j=0

[ν]j
(k + 1 − j)j!

− k!
[ν]k

k−1∑
j=0

[ν]j
(k − j)j!

=
k!

[ν]k+1

1 + (k + 1)
k−1∑
j=0

[ν]j+1

(k − j)(j + 1)!

−
k−1∑
j=0

((ν + j) + (k − j))
[ν]j

(k − j)j!


=

k!
[ν]k+1

1 +
k−1∑
j=0

((k + 1) − (j + 1))
[ν]j+1

(k − j)(j + 1)!
−

k−1∑
j=0

[ν]j
j!


=

k!
[ν]k+1

1 +
k∑

j=1

[ν]j
j!

−
k−1∑
j=0

[ν]j
j!

 =
k!

[ν]k+1

[ν]k
k!

=
1

ν + k
.

Hence,

Tν(k) = Tν(k) − Tν(0) =
k−1∑
j=0

∆Tν(j) =
k−1∑
j=0

1
ν + j

,

completing the proof. �

The variance of Tν is, clearly, quite complicated. Also, it can be shown
that it does not attain the Cramér-Rao bound,

( ∂
∂θ (− log θ))2

νIX1(θ)
=

1 − θ

ν
,

where IX1(θ) = θ−2(1−θ)−1 is the Fisher information of X1. However, since
X belongs to the Pearson family, the bounds of Theorem 4.1, namely (see
Table 1)

Sn(ν, θ) =
n+1∑
k=1

(−1)k−1

k!

(
1 − θ

θ

)k

IE[[X + ν]k(T (k)
ν (X))2], n = 0, 1, . . .

(5.4)
may provide some useful information for VarTν , due to the simple form of
the forward differences:

T (k)
ν (X) =

(−1)k−1(k − 1)!
[ν + X]k

, k = 1, 2, . . . .
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Indeed, in order to calculate the bound Sn(ν, θ) in (5.4), it suffices to obtain
explicit forms for the expectations

IE
[

1
[X + ν]k

]
= θν

∞∑
j=0

[
ν
j

]
(1 − θ)j

[ν + j]k

=
θν

xν+k−1

∞∑
j=0

[
ν
j

]
xν+j+k−1

[ν + j]k
, k = 1, 2, . . . ,

where x = 1 − θ. Using the identity

xν+j+k−1

[ν + j]k
=

1
(k − 1)!

∫ x

0
(x − y)k−1yν+j−1dy, k = 1, 2, . . . ,

and interchanging the order of summation and integration, one finds that

IE
[

1
[X + ν]k

]
=

θν+k

(k − 1)!(1 − θ)ν+k

∫ 1

θ
t−ν(1 − t)ν−1

(
t

θ
− 1

)k−1

dt. (5.5)

Therefore, expanding (1 − t)ν−1 and (t/θ − 1)k−1 according to binomial
formula, it is possible to express Sn(ν, θ) in terms of finite sums. Specifically,
we have the following.

Lemma 5.2. Let Sn(ν, θ) be the variance bound in (5.4), where Tν is
the UMVU estimator of − log θ, given in (5.2). Then, with the notation
µ = µ(θ) = (1 − θ)/θ, the following expressions are valid:

(i) Sn(ν, θ) = (−1/µ)ν−1
n∑

k=0

βk(ν, θ)
k + 1

,

where

βk(ν, θ) = (− log θ)
k∑

j=0

(
ν − 1

j

)(
k

j

)
θ−j

+
k∑

j=0

(−1)j

(
k

j

) ν−1∑
s=0, s �=j

(−1)s

(
ν − 1

s

)
θ−j − θ−s

j − s
.

In particular,

β0(ν, θ) = (− log θ) +
ν−1∑
j=1

(−µ)j

j
.
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(ii) Sn(ν, θ) = (1/µ)ν−1
n∑

k=0

(−1)k

k + 1

∫ 1

θ
t−ν(1 − t)ν−1

(
t

θ
− 1

)k

dt.

(iii) Sn(ν, θ) =
n∑

k=0

ν−k−1 (−1)k

k + 1
µk+1

∫ ν

0
yk
(
1 − y

ν

)ν−1 (
1 +

µy

ν

)−ν
dy.

Proof. (i) and (ii) follow from (5.5) using straightforward manipula-
tions. For k = 0, the form of β0(ν, θ) follows from the identity

ν−1∑
j=1

(−1)j

j

(
ν − 1

j

)
(θ−j − 1) =

ν−1∑
j=1

(−1)j

j

(
1 − θ

θ

)j

, 0 < θ < 1,

which can be verified on taking forward differences with respect to ν. Also,
(iii) follows from (ii), using the substitution y = ν(t − θ)/(1 − θ) in the
corresponding integrals. �

The form of βk(ν, θ) is quite complicated. However, with the help of
Lemma 5.2 it is possible to investigate the asymptotic behaviour of the
bounds Sn(ν, θ), as n or ν becomes large.

Lemma 5.3.

(i) For any fixed sample size ν, limn Sn(ν, θ) = Var(Tν) if and only if
θ ≥ 1/2.

(ii) For large ν and for any fixed n,

Sn(ν, θ) ≈
n∑

k=0

(−1)k

k + 1
k!
(

1 − θ

ν

)k+1

,

in the sense that there exist functions γk(ν, θ), k = 0, 1, . . ., such that

Sn(ν, θ) =
n∑

k=0

(−1)k

k + 1
γk(ν, θ)
νk+1

,

where
lim

ν→∞ γk(ν, θ) = k!(1 − θ)k+1, k = 0, 1, . . . .

In particular, limν [νSn(ν, θ)] = 1 − θ for all n = 0, 1, . . . and all θ ∈
(0, 1), and thus, limν [νVarTν ] = 1 − θ.
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Proof. (i) By Lemma 5.3(ii),

Sn(ν, θ) =
n∑

k=0

(−1)kxk,

where xk = xk(ν, θ) =
(1/µ)ν−1

k + 1

∫ 1

θ
t−ν(1 − t)ν−1

(
t

θ
− 1

)k

dt.

If θ ≥ 1/2, then the sequence xk is positive, decreasing in k, and tends to
0 as k → ∞, because 0 < t/θ − 1 < 1 for all t ∈ (θ, 1). Therefore, by
Leibnitz criterion, Sn(ν, θ) → s(ν, θ) ∈ IR, as n → ∞, and the inequalities
S2n+1 ≤ VarTν ≤ S2n show that s(ν, θ) = VarTν . Also, when θ < 1/2 it
is easy to see that there exists a constant c(ν, θ) > 0 such that for all k,
xk(ν, θ) ≥ c(ν, θ)(2θ)−k/(k + 1) → ∞, as k → ∞, so that limn Sn(ν, θ) does
not exist.

(ii) By Lemma 5.3(iii) it suffices to show that

lim
ν→∞

∫ ν

0
yk
(
1 − y

ν

)ν−1 (
1 +

µy

ν

)−ν
dy =

k!
(µ + 1)k+1

, k = 0, 1, . . . ,

where µ = (1 − θ)/θ > 0. For y > 0 define the functions

fν(y) = yk
(
1 − y

ν

)ν−1 (
1 +

µy

ν

)−ν
I(0,ν)(y), f(y) = yk exp(−(µ + 1)y),

so that limν fν(y) = f(y). Using the inequality

(
1 − y

ν

)ν−1 (
1 +

µy

ν

)−ν
I(0,ν)(y) ≤ exp

(
− µ

µ + 1
y

)
, y > 0, ν = 1, 2, . . . ,

and the facts that∫ ∞

0
yk exp

(
− µ

µ + 1
y

)
dy < ∞,

∫ ∞

0
f(y)dy =

k!
(µ + 1)k+1

,

the assertion follows from dominated convergence. �

Table 2 gives an idea on how the first few bounds behave, for small and
moderate values of ν, and for various θ-values.
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Table 2. Numerical values of the first six upper/lower variance bounds

Sn(ν, θ), n = 0, 1, . . . , 5, given in (5.4), for sample sizes ν = 2, 5, 10, 30,
and parametric values θ = 0.1, 0.3, 0.5, 0.7, 0.9

(Best recorded bounds are indicated in bold).

Lower bounds Upper bounds
ν θ S1(ν, θ) S3(ν, θ) S5(ν, θ) S0(ν, θ) S2(ν, θ) S4(ν, θ)

2 0.1 0.337022 -1.06166 -32.0592 0.744157 1.04612 7.29043
2 0.3 0.366037 0.373802 0.354041 0.484012 0.436289 0.443401
2 0.5 0.267132 0.273879 0.274889 0.306853 0.278553 0.276214
2 0.7 0.157179 0.158325 0.158368 0.167758 0.158583 0.158382
2 0.9 0.0508305 0.0508623 0.0508624 0.0517554 0.0508640 0.0508624

5 0.1 0.189473 0.191325 0.177515 0.218115 0.201580 0.205491
5 0.3 0.147183 0.149112 0.149319 0.160880 0.150395 0.149834
5 0.5 0.103976 0.104595 0.104627 0.109814 0.104765 0.104644
5 0.7 0.0614806 0.0615923 0.0615938 0.0632906 0.0616055 0.0615941
5 0.9 0.0201665 0.0201699 0.0201699 0.0203432 0.0201700 0.0201699

10 0.1 0.0934586 0.0940524 0.0940911 0.0987841 0.0942976 0.0941646
10 0.3 0.0721594 0.0724140 0.0724241 0.0750804 0.0724719 0.0724296
10 0.5 0.0511213 0.0512043 0.0512056 0.0524877 0.0512149 0.0512060
10 0.7 0.0304074 0.0304234 0.0304235 0.0308622 0.0304244 0.0304235
10 0.9 0.0100454 0.0100460 0.0100460 0.0100925 0.0100460 0.0100460

30 0.1 0.0304330 0.0304528 0.0304529 0.0309245 0.0304544 0.0304529
30 0.3 0.0235959 0.0236048 0.0236049 0.0238849 0.0236053 0.0236049
30 0.5 0.0168009 0.0168040 0.0168040 0.0169443 0.0168041 0.0168040
30 0.7 0.0100484 0.0100490 0.0100490 0.0100986 0.0100490 0.0100490
30 0.9 0.00333871 0.00333873 0.00333873 0.00334415 0.00333873 0.00333873
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