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UPPER BOUND FOR THE COVARIANCE OF EXTREME
ORDER STATISTICS FROM A SAMPLE OF SIZE THREE∗

By NICKOS PAPADATOS
University of Cyprus, Nicosia

SUMMARY. Papathanasiou (1990, Statist. Probab. Lett. 9 145–147) proved that the

covariance of the ordered pair from a random sample of size two does not exceed the one third

of the population variance. In the present note, by using Legendre polynomials, it is proved

that a similar result holds for minimum and maximum from a sample of size three, and the

equality characterizes the hyperbolic sine density.

1. Introduction

Terrell (1983) proved that the coefficient of correlation for the ordered pair
from a random sample of size two is at most one half and that equality char-
acterizes the rectangular (uniform over some interval) distributions. This result
was extended by Szekely and Mori (1985), who proved that for 1 ≤ i < j ≤ n,

Corr [Xi:n, Xj:n] ≤

√
i(n + 1− j)
j(n + 1− i)

, . . . (1.1)

and that equality characterizes the rectangular distributions (Xi:n, Xj:n denote
the i-th and j-th smallest order statistics from a sample of size n, respectively).
Motivated by these inequalities, Papathanasiou (1990) showed a similar result
for the covariance, namely,

Cov [X1:2, X2:2] ≤
1
3
σ2, . . . (1.2)
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where σ2 is the population variance and the equality again holds only for rectan-
gular distributions. Ma (1992) extended Papathanasiou’s result and Balakrish-
nan and Balasubramanian (1993) observed that the preceding inequality stated
by Papathanasiou (and the generalization stated by Ma) is, in fact, equivalent
to the classical Hartley-David-Gumbel bound (1954) for the expectation of Xn:n

from a sample of size n with population mean µ and population variance σ2,
namely

0 ≤ IE[Xn:n − µ] ≤ σ
n− 1√
2n− 1

,

applied for n = 2. This is so because of the simple equalities X1:2 + X2:2 =
X1+X2 and X1:2X2:2 = X1X2, in view of which we may write IE [X1:2X2:2] = µ2

and IE [X1:2] = 2µ− IE [X2:2], obtaining

Cov [X1:2, X2:2] = µ2 − (2µ− IE [X2:2]) IE [X2:2] = IE2 [X2:2 − µ] .

Unfortunately, we cannot have similar relations when n > 2, so a general result
of this kind for all i, j and n, although exists, seems difficult to be found.

In this note, by using some particular properties of the Legendre polynomials
in [0, 1], we prove that a relation, similar to (1.2) holds for the covariance of X1:3

and X3:3 (see Theorem 3.1 and Corollary 3.1, below) and we give the correspond-
ing characterization. Although the techniques used here (Legendre polynomials)
have become fairly standard in this area, the main result provides an unexpected
characterization of hyperbolic sine density, which is far from obvious.

2. Some Properties of Legendre Polynomials

Let Pn, n = 0, 1, . . . be the usual orthogonal Legendre polynomials in the
interval [−1, 1] and consider the corresponding orthonormalized Legendre poly-
nomials φn(u) =

√
2n + 1Pn(2u− 1) in [0, 1], such that φn(1) > 0 for all n (see

Terrell, 1983 and Sugiura, 1962 and 1964). For the proof of the main result we
will make use of the properties (2.1)–(2.11), listed below, which are satisfied by
φn and Pn. These properties can be found (or they are simple by-products) in
Seaborn (1991, p. 163), Luke (1969, p. 284) and Sansone (1959, p. 195).

For n = 0, 1, . . . and k = 0, . . . , n, let

ck(n) =
(n!)2

(n− k)!(n + k + 1)!
.

Then, we have

φn(u) =
√

2n + 1
n∑

k=0

(−1)n−k (n + k)!
(n− k)!(k!)2

uk, . . . (2.1)
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∫ 1

0

unφk(u)du =
√

2k + 1ck(n), for n ≥ k, . . . (2.2)∫ 1

0

(1− u)nφk(u)du =
√

2k + 1(−1)kck(n), for n ≥ k, . . . (2.3)∫ 1

0

unφk(u)du =
∫ 1

0

(1− u)nφk(u)du = 0, for n < k. . . . (2.4)

For k, s = 1, 2, . . . set

A(k, s) =
∫ ∫

0<u<v<1

(v − u)φk(u)φs(v)dvdu.

Then,
A(k, s) = A(s, k), . . . (2.5)

A(k, k) =
−1

2(2k − 1)(2k + 3)
, . . . (2.6)

A(k, k + 2) =
1

4(2k + 3)
√

(2k + 1)(2k + 5)
, . . . (2.7)

A(k, s) = 0 for all k < s, s 6= k + 2. . . . (2.8)

Finally, the following simple properties for the Pn will be used in the sequel.

P2k+1(1) = 1, P2k+1(0) = 0, . . . (2.9)

P ′2k+1(1) = (k + 1)(2k + 1), . . . (2.10)

P ′′2k+1(u) =
k∑

n=1

(4n− 1)(k − n + 1)(2k + 2n + 1)P2n−1(u). . . . (2.11)

3. Main Result

Let U be a Uniform(0, 1) r.v. and consider the order statistics U1:n < U2:n

< · · · < Un:n corresponding to a random sample of size n drawn from U . It is
well-known that any function g ∈ L2(0, 1) admits the representation

g(u) =
∞∑

k=0

akφk(u), . . . (3.1)

where ak =
∫ 1

0
g(u)φk(u)du and the polynomial series (3.1) converges in the

corresponding L2(0, 1) metric space.
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From the definition it follows immediately that the condition g ∈ L2(0, 1) is
equivalent to Var[g(U)] < ∞ and the statements IE[g(U)] = 0 and Var[g(U)] =
1 are equivalent to

a0 = 0 and
∞∑

k=1

a2
k = 1. . . . (3.2)

In the last standardized case, the following result holds.
Lemma 3.1. If IE[g(U)] = 0 and Var[g(U)] = 1, then

IE [g(U1:n)] IE [g(Un:n)] = n2

[(n−1)/2]∑
k=1

√
4k + 1a2kc2k(n− 1)

2

+ +− n2

[n/2]∑
k=1

√
4k − 1a2k−1c2k−1(n− 1)

2

.

Proof. From (3.1) and the fact that

IE [g(U1:n)] = n

∫ 1

0

(1− u)n−1g(u)du, IE [g(Un:n)] = n

∫ 1

0

un−1g(u)du,

we conclude the desired result, taking into account (2.2), (2.3) and (2.4).
Remark 3.1. Let X be any standardized (with mean zero and variance one)

r.v. with d.f. F . Let us take g(u) = F−1(u) := inf{x : F (x) ≥ u}, 0 < u < 1,
in the previous Lemma. In view of the inverse probability transformation (that
the r.v. F−1(U) is distributed like X), it follows the well-known fact that(

F−1(U1:n), . . . , F−1(Un:n)
) d= (X1:n, . . . , Xn:n) ,

where X1:n, . . . , Xn:n is an ordered sample from F (i.e., the two random vectors
have the same multivariate d.f.). It then follows from the Lemma that the
product of the expectations of the minimum and the maximum from a sample
of any standardized d.f. F depends upon F−1 only on the first n − 1 Legendre
coefficients a1, . . . , an−1 of F−1 (c.f. Terrell, 1983). For example, if n = 3, we
have the simple expression

IE [X1:3] IE [X3:3] =
1
20

a2
2 −

3
4
a2
1. . . . (3.3)

Similarly, for the expectation of the product we have the following
Lemma 3.2. Under the assumptions of Lemma 3.1,

IE [g(U1:3)g(U3:3)] = −1
2
a2
1 −

1
10

a2
2 −

3
2

∞∑
k=1

1
2k + 3

(
ak√

2k + 1
− ak+2√

2k + 5

)2

.
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Proof. Let f(u, v) = 6(v − u), 0 < u < v < 1, be the joint density of
(U1:3, U3:3). By using (3.1) we have

A = 6
∫ ∫

0<u<v<1

(v − u)g(u)g(v)dvdu = 6
∞∑

k=1

∞∑
s=1

akasA(k, s), . . . (3.4)

where A = IE [g(U1:3)g(U3:3)]. By properties (2.5), (2.6), (2.7) and (2.8), most
of the terms in the double sum (3.4) vanish and the remaining terms yield

A = 6

( ∞∑
k=1

a2
kA(k, k) + 2

∞∑
k=1

akak+2A(k, k + 2)

)
,

which reduces to the desired result if we observe that
∞∑

k=1

2a2
k

(2k − 1)(2k + 3)
=

a2
1

3
+

a2
2

15
+

∞∑
k=1

1
2k + 3

(
a2

k

2k + 1
+

a2
k+2

2k + 5

)
.

Remark 3.2. Observe that the above Lemma (if we take g = F−1) implies
that for any standardized d.f. F ,

IE [X1:3X3:3] < 0.

Combining Lemmas 3.1 and 3.2, we readily obtain the following Legendre
representation for the covariance of g(U1:3) and g(U3:3), provided that IE[g(U)] =
0 and Var[g(U)] = 1:

Cov [g(U1:3), g(U3:3)] =
1
4
a2
1 −

3
20

a2
2 −

3
2

∞∑
k=1

1
2k + 3

(
ak√

2k + 1
− ak+2√

2k + 5

)2

,

. . . (3.5)
where ak, k ≥ 0, are the Legendre coefficients of g (satisfying (3.2)). It should
be noted that (3.5) is also true even in the case where g is completely arbitrary
(provided that g ∈ L2(0, 1)), since for any constants B, C, Cov [Cg (U1:3) + B ,
Cg (U3:3) + B] = C2Cov [g (U1:3) , g (U3:3)], and the Legendre coefficients of the
function Cg +B are simply B +Ca0, Ca1, Ca2, . . ., where a0, a1, a2, . . . are the
coefficients of g.

Using this representation, we are ready now to prove the main result of this
note, stated as follows.

Theorem 3.1. Let U be a Uniform(0, 1) r.v. and suppose that U1:3 < U3:3

are the minimum and the maximum from a random sample of size three drawn
from U . Then, for any arbitrary function g ∈ L2(0, 1) we have

Cov [g(U1:3), g(U3:3)] ≤
6
a2

Var[g(U)], . . . (3.6)
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where a ≈ 5.96941 is the unique positive root of the equation tanh (a/2) = a/6.
Equality in (3.6) holds if and only if there exist some constants B, C, such that
g(u) = C sinh (a (u− 1/2)) + B for almost all u ∈ (0, 1).

In order to avoid any confusions, it should be noted that here and everywhere
in this article, a(≈ 5.96941) is a completely specified constant and not a param-
eter of a function or a distribution (see Corollary 3.1, below). More specifically,
it is easy to see that the even function h(y) = tanh(y)/y decreases continuously
from 1 to 0 as y varies from 0 to +∞, so that the equation tanh (x/2) = x/6
has exactly three solutions as x varies: x = 0 and x = ±a, where we denote
with a the unique positive one. An alternative definition could be given from
the fact that a is the unique positive number satisfying ea = (6 + a)/(6 − a).
Note also that a satisfies a number of characteristic properties that will be
used in the sequel, e.g., sinh (a/2) = a/

√
36− a2, cosh (a/2) = 6/

√
36− a2 and

sinh(a) = 12a/
(
36− a2

)
, as it can be easily seen from the elementary identities

cosh2(x)− sinh2(x) = 1 and sinh(2x) = 2 sinh(x) cosh(x). Finally, observe that
if the equality is attained in (3.6) then the constants B, C determine the values
of IE[g(U)] and Var[g(U)] (and conversely) via the relations IE[g(U)] = B and
Var[g(U)] = C2 (sinh(a)− a) / (2a) = C2

(
a2 − 24

)
/
(
2
(
36− a2

))
.

A simple implication of the above Theorem is the following Corollary, which
presents a characterization of the hyperbolic sine distribution.

Corollary 3.1. Let X1:3 ≤ X3:3 be the minimum and the maximum cor-
responding to a random sample of size three drawn from an arbitrary d.f. with
mean µ and finite variance σ2 > 0. Then,

Cov [X1:3, X3:3] ≤
6
a2

σ2 ≈ 0.16838 σ2, . . . (3.7)

and the equality in (3.7) characterizes the hyperbolic sine distribution with den-
sity

f(x) =
1/a√

(x− µ)2 + λ2σ2
, µ− aσ

√
2

a2 − 24
< x < µ + aσ

√
2

a2 − 24
,

where λ =
√

2(36− a2)/(a2 − 24) ≈ 0.25089 and a is as in Theorem 3.1.

Proof. Since (X1:3, X3:3)
d=
(
F−1(U1:3), F−1(U3:3)

)
, Theorem 3.1 (with

g = F−1) shows that

Cov [X1:3, X3:3] = Cov
[
F−1(U1:3), F−1(U3:3)

]
≤ 6

a2
Var

[
F−1(U)

]
=

6
a2

σ2,

which proves (3.7). Assume now that the equality holds in (3.7). From Theorem
3.1 follows that this is equivalent to the fact that for some constants B, C,

F−1(u) = C sinh (a(u− 1/2)) + B
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for almost all u ∈ (0, 1). Since F is non-degenerate (because σ2 > 0 by the
assumptions), C must be non-zero. Therefore, C > 0 (because F−1(u) should
be non-decreasing in u). On the other hand, since F−1 is always left-continuous,
it follows that F−1(u) = C sinh (a(u− 1/2)) + B for some C > 0 and for all
u ∈ (0, 1). Observing that F−1(0+) = B − C sinh (a/2) and F−1(1−) = B +
C sinh (a/2), we conclude that F is concentrated on the finite range |x − B| <
C sinh (a/2). Therefore, inverting F−1 we find that

F (x) =
1
2

+
1
a

log
(

1
C

(
x−B +

√
C2 + (x−B)2

))
, |x−B| < C sinh (a/2) ,

and, since this F is absolutely continuous, the desired result follows by a simple
calculation of the derivative of F , observing that

µ =
∫ 1

0

F−1(u)du = B

and

σ2 =
∫ 1

0

(
F−1(u)− µ

)2
du = C2 sinh(a)− a

2a
= C2 a2 − 24

2(36− a2)
.

Proof of theorem 3.1. If Var[g(U)] = 0 the result is obvious (and (3.6)
becomes equality in the trivial sense 0 = 0, since Var[g(U)] = 0 if and only
if there exists a constant B such that g(u) = B for almost all u ∈ (0, 1), and
this corresponds to the case C = 0). Suppose then that 0 < Var[g(U)] < ∞.
Without any loss of generality we may further assume that IE[g(U)] = 0 and
Var[g(U)] = 1 since, using standard arguments, if the result holds true in this
particular case then the general one will follow immediately if we apply it to the
function

ĝ(u) =
g(u)− IE[g(U)]√

Var[g(U)]
, 0 < u < 1,

with IE[ĝ(U)] = 0 and Var[ĝ(U)] = 1. Hence, from now on, assume that
IE[g(U)] = 0 and Var[g(U)] = 1. Then, (3.5) presents the covariance to be
maximized under (3.2).

The rest of the proof is divided in four parts as follows: (i) We show that
(3.5) attains its maximum value M for at least one a = (a1, a2, . . .) satisfying
(3.2). (ii) We show that all the even coefficients of any such maximizing a must
be zero. (iii) We find the difference equation (3.10), below, satisfied by any such

a =
(
x1

√
3, 0, x2

√
7, 0, x3

√
11, 0, . . .

)
,

which also implies the uniqueness of the solution (up to the sign). (iv) Finally,
we show that the Legendre coefficients of the L2(0, 1) function of the form h(u) =
λ sinh (a(u− 1/2)), 0 < u < 1, with a =

√
6/M and λ a suitable constant,
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satisfy the same difference equation (3.10) with the same initial conditions as
the solution does, and thus, it coincides with the unique extremal of the problem.
This will identify both the extremal function and the value of M (via the value
of a), completing the proof.

(i) For the sake of simplicity, set zk = ak/
√

2k + 1 for all k ≥ 1. Then, we
have the equivalent maximization problem:

Maximize G1(z) =
3
4
z2
1 −

3
4
z2
2 −

3
2

∞∑
k=1

(zk − zk+2)
2

2k + 3

Over S1 =

{
z = (z1, z2, . . .) :

∞∑
k=1

(2k + 1)z2
k = 1

}
.

Let M = supz∈S1
G1(z). For z =

(
1/
√

3, 0, 0, . . .
)
∈ S1 we have G1(z) = 3/20,

so that M ≥ 3/20. On the other hand, for any z ∈ S1, G1(z) ≤ (3/4) z2
1 ≤ 1/4.

Thus, M is a well-defined number in [3/20, 1/4]. In order to prove that there
exists at least one z ∈ S1 such that G1(z) = M , consider an arbitrary z ∈ S1

and observe that
∞∑

k=n

z2
k =

∞∑
k=n

2k + 1
2k + 1

z2
k ≤

1
2n + 1

∞∑
k=n

(2k + 1)z2
k ≤

1
2n + 1

,

which shows that limn→∞
∑

k≥n z2
k = 0 uniformly for z ∈ S1. It follows that S1 is

a relatively compact (i.e., its closure is compact; see for example Diestel, 1984, p.
6) subset of `2, the space of sequences z satisfying ‖z‖22 =

∑
k≥1 z2

k < ∞. Hence,
S1 is a compact subset of `2 (because it is a closed). Therefore, the continuous
function G1 : S1 → IR takes on its maximum (and minimum) value on S1 (see,
for example, Reed and Simon (1980), p. 99).

(ii) Let z = (z1, z2, . . .) ∈ S1 be any maximizing point of G1 (i.e., G1(z) =
M ≥ G1(y) for all y ∈ S1; such a z exists from (i)). Since

∑
k≥1(2k + 1)z2

k = 1,
it follows that

∑
k≥1(4k + 1)z2

2k = δ and
∑

k≥1(4k − 1)z2
2k−1 = 1 − δ for some

δ ∈ [0, 1) (observe that δ 6= 1; otherwise (since δ = 1 implies z1 = 0) we are
lead to the contradiction G1(z) = M ≤ 0). Then, we may construct a new point
z∗ = (z∗1 , z∗2 , . . .) ∈ S1 with z∗2k = 0 and z∗2k−1 = z2k−1/

√
1− δ for all k ≥ 1.

Since G1(z) ≥ G1(z∗) (because z maximizes G1 over S1 and z∗ ∈ S1), it follows
that

M = G1(z) ≥ G1(z∗) =
1

1− δ

(
3
4
z2
1 −

3
2

∞∑
k=1

(z2k−1 − z2k+1)
2

4k + 1

)

≥ 1
1− δ

(
3
4
z2
1 −

3
2

∞∑
k=1

(z2k−1 − z2k+1)
2

4k + 1

)

− 1
1− δ

(
3
4
z2
2 +

3
2

∞∑
k=1

(z2k − z2k+2)
2

4k + 3

)
=

1
1− δ

G1(z) =
M

1− δ
≥ M,
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and therefore, δ = 0 (this shows that the Legendre series of any maximizing
function g includes only odd polynomials, i.e., g is odd with respect to 1/2).

(iii) Canceling the even terms in (3.5) and using the new substitution xk =
a2k−1/

√
4k − 1, we have the equivalent maximization problem:

Maximize G(x) =
3
4
x2

1 −
3
2

∞∑
k=1

(xk − xk+1)
2

4k + 1
. . . (3.8)

Under the restriction H(x) =
∞∑

k=1

(4k − 1)x2
k = 1, . . . (3.9)

where x = (x1, x2, . . .) may again be regarded as a point of `2. Since it can be
shown, as in (i), that the set S = {x : H(x) ≤ 1} is a compact subset of `2, we
conclude that the continuous function G : `2 → IR attains its maximum and min-
imum value on S. Therefore, the supremum of G over S (= M∗, say) is attained
at some point x ∈ S, and M∗ ∈ [3/20, 1/4]. Observe that for any such maximiz-
ing point x = (x1, x2, . . .) we must have H(x) = 1; indeed, H(x) = 0 is impossi-
ble (because, in this case, x = (0, 0, . . .) and M∗ = G(x) = 0 is impossible) and
if 0 < H(x) < 1, the point z = x/

√
H(x) =

(
x1/
√

H(x), x2/
√

H(x), . . .
)

ob-
viously satisfies H(z) = 1 (hence z ∈ S) and G(z) = G(x)/H(x) > G(x) = M∗,
which is impossible since M∗ is, by definition, the supremum of G over S. There-
fore, any maximizing point x must belong to the boundary ∂S = {x : H(x) = 1}
of S. It follows then from (i) and (ii) that M = M∗. Hence, for any maximizing
point x we have G(x) = M = MH(x). In addition, one can easily show that
G(y) ≤ MH(y) for all y with H(y) < ∞. Indeed, if G(y) > MH(y) for some
y with H(y) < ∞, it would follow that H(y) > 0 (otherwise, G(y) = 0) and
the point z = y/

√
H(y) satisfies z ∈ S and G(z) = G(y)/H(y) > M = M∗,

contradicting the definition of M∗.
Fix now a maximizing point x = (x1, x2, . . .) (with H(x) = 1) and for k ≥ 1

fixed consider the quadratic in λ:

Qk(λ) = MH (x1, . . . xk−1, λ, xk+1, . . .)−G (x1, . . . xk−1, λ, xk+1, . . .) .

Easy calculations show that for k > 1,

Qk(λ) = (4k − 1)
(

M +
3

(4k − 3)(4k + 1)

)
λ2 − 3

(
xk+1

4k + 1
+

xk−1

4k − 3

)
λ

+terms independent of λ,

while for k = 1,

Q1(λ) = 3
(

M − 3
20

)
λ2 − 3x2

5
λ + terms independent of λ.
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It follows from the previous analysis that for all k ≥ 1, Qk(λ) = a(k)λ2+b(k)λ+
c(k) ≥ 0 for all λ ∈ IR, while Qk(xk) = 0. Since a(k) > 0, this implies that
xk = −b(k)/(2a(k)), yielding the following difference equation (satisfied by any
maximizing point x = (x1, x2, . . .)) for all k ≥ 1:

xk+2 =
2(4k + 3)
4k + 1

(
1 +

M

3
(4k + 1)(4k + 5)

)
xk+1 −

4k + 5
4k + 1

xk, . . . (3.10)

where x2 = 10 (M − 3/20)x1 and x1 is such that H(x) = 1. This shows that
the solution x is unique (up to the sign) and, consequently, the maximizing
function g ∈ L2(0, 1) of the initial problem is also unique (apart from the fact
that it is defined almost everywhere in (0, 1) and, also, the fact that if g is a
solution (satisfying IE[g(U)] = 0 and Var[g(U)] = 1), then −g is also a solution
(satisfying the same conditions)). Furthermore, g is odd with respect to 1/2.

(iv) Consider the function h(u) = λ sinh (a(u− 1/2)), 0 < u < 1, with
a =

√
6/M and λ an arbitrary constant to be specified later (note that a,

although well-defined from (i), is yet unknown). Since h ∈ L2(0, 1) is odd with
respect to 1/2, we can expand it as an odd-degree series of Legendre polynomials
in the form h =

∑
k≥1 b2k−1φ2k−1, where

b2k−1 = λ
√

4k − 1
∫ 1

0

sinh
(au

2

)
P2k−1(u)du, k ≥ 1.

Making, as in (iii), the substitution yk = b2k−1/
√

4k − 1, integrating twice by
parts and using (2.9), (2.10) and (2.11), we conclude that for all k ≥ 1,

y1 =
2λ

a

(
cosh (a/2)− 2

a
sinh (a/2)

)
, . . . (3.11)

yk+1 =
2λ

a

(
cosh (a/2)− 2

a
(k + 1)(2k + 1) sinh (a/2)

)

+
4
a2

k∑
n=1

(4n− 1)(k − n + 1)(2k + 2n + 1)yn. . . . (3.12)

Hence, for k ≥ 1,

yk+1 − yk =
4(4k + 1)

a2

(
k∑

n=1

(4n− 1)yn − λ sinh (a/2)

)
,

and therefore,

yk+2 − yk+1

4k + 5
− yk+1 − yk

4k + 1
=

4
a2

(4k + 3)yk+1 =
2M

3
(4k + 3)yk+1,
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i.e., the y’s satisfy the difference equation (3.10). Furthermore, y1 is given by
(3.11), while from (3.11) and (3.12),

y2 =
2λ

a

((
1 +

60
a2

)
cosh (a/2)− 2

a

(
6 +

60
a2

)
sinh (a/2)

)
. . . . (3.13)

Choose now λ such that y1 = x1, where x = (x1, x2, . . .) is any maximizing
point of G (see (iii)) with H(x) = 1 (this can be done because tanh(t) < t for
all t > 0; note also that by (iii), there are exactly two such points x, each one
opposite to the other). Then, if we prove that y2 = x2, we will have xk = yk

for all k ≥ 1; that is, if g is any maximizing function corresponding to x (i.e.,
g =

∑
k≥1

√
4k − 1xkφ2k−1) then g(u) = h(u) for almost all u ∈ (0, 1), since the

Legendre series of an L2(0, 1) function is unique. In order to prove this last detail,
suppose in contrary that x2 − y2 = ε > 0. Since the function g − h ∈ L2(0, 1)
has the Legendre representation

g − h =
∞∑

k=1

√
4k − 1(xk − yk)φ2k−1,

we have from Parseval’s identity that

∞∑
k=1

(4k − 1) (xk − yk)2 =
∫ 1

0

(g(u)− h(u))2 du < ∞.

On the other hand, since xk − yk satisfies (3.10) with x1 − y1 = 0 and x2 −
y2 = ε > 0, it is easily verified (by using (3.10) and induction on k) that
the sequence xk − yk is non-decreasing. This implies that xk − yk ≥ ε for all
k ≥ 2; a contradiction to Parseval’s identity. Similar arguments apply to the
case y2 − x2 = ε > 0.

Finally, from the relations y1 = x1 and y2 = x2 we have (see (3.10)) y2 = x2 =
10 (M − 3/20)x1 = 30

(
2/a2 − 1/20

)
y1 (note that M = 6/a2 by the definition of

a), and from (3.11) and (3.13) we get the equation tanh (a/2) = a/6, from which
we conclude the value of

√
6/M = a ≈ 5.96941 (hence M = 6/a2 ≈ 0.16838),

and the proof is complete.
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