Some facts concerning ratios of random variables

N. Papadatos

June 2010
Concerning a question of Prof. T. Cacoullos, I pointed out the following:
If X and Y are (simply) identically distributed,

$$
X \stackrel{\mathrm{~d}}{=} Y,
$$

it is not true that

$$
\frac{X}{Y} \stackrel{\mathrm{~d}}{=} \frac{Y}{X}
$$

even for positive rv's X and Y.
Counterexample 1 (Discrete). Let $\mathbb{P}(X=x, Y=y)$ be given by the following table:

x^{y}	1	2	3	$f_{X}(x)$
1	$2 / 36$	$9 / 36$	$1 / 36$	$1 / 3$
2	$1 / 36$	$2 / 36$	$9 / 36$	$1 / 3$
3	$9 / 36$	$1 / 36$	$2 / 36$	$1 / 3$
$f_{Y}(y)$	$1 / 3$	$1 / 3$	$1 / 3$	1

Obviously $X \stackrel{\text { d }}{=} Y, X \sim U(\{1,2,3\})$, but

$$
\mathbb{P}\left(\frac{X}{Y}=2\right)=\frac{1}{36} \neq \mathbb{P}\left(\frac{Y}{X}=2\right)=\frac{9}{36} .
$$

We construct a similar example for the continuous case:
Counterexample 2 (Continuous). Let U_{1}, U_{2} be i.i.d. and uniformly distributed over the interval $(0,1)$. Let I be independent of $\left(U_{1}, U_{2}\right)$ such that $I \sim$ $U(\{0,1,2\})$, that is, $\mathbb{P}(I=i)=1 / 3, i=0,1,2$. Let also $J=I+1$ if $I=0$ or $I=1$, and $J=0$ if $I=2$, so that $J \sim U(\{0,1,2\})$, i.e.,

$$
J \stackrel{\mathrm{~d}}{=} I
$$

It is clear that (I, J) and $\left(U_{1}, U_{2}\right)$ are independent random vectors. We now define

$$
(X, Y)=\left(I+U_{1}, J+U_{2}\right)
$$

Clearly X and Y have the same distribution, $U(0,3)$. The joint density of (X, Y) is

$$
f(x, y)=\left\{\begin{array}{cl}
1 / 3, & \text { if } x \in(0,1) \text { and } y \in(1,2) \\
1 / 3, & \text { if } x \in(1,2) \text { and } y \in(2,3), \\
1 / 3, & \text { if } x \in(2,3) \text { and } y \in(0,1) \\
0, & \text { otherwise }
\end{array}\right.
$$

This density is not exchangeable, $f(x, y) \neq f(y, x)$, and the ratios X / Y and Y / X are not identically distributed, e.g.,

$$
\mathbb{P}\left(\frac{X}{Y} \leqslant 1\right)=\frac{2}{3}, \quad \mathbb{P}\left(\frac{Y}{X} \leqslant 1\right)=\frac{1}{3} .
$$

In both examples given above, the vector (X, Y) fails to be exchangeable. We say that (X, Y) are exchangeable if

$$
\begin{equation*}
(X, Y) \stackrel{\mathrm{d}}{=}(Y, X) \tag{1}
\end{equation*}
$$

Clearly, if (1) holds then for any (Borel) $g: \mathbb{R}^{2} \mapsto \mathbb{R}$ we have

$$
g(X, Y) \stackrel{\mathrm{d}}{\Rightarrow} g(Y, X)
$$

and in particular, for $g(x, y)=x / y$ we get

$$
\frac{X}{Y} \stackrel{\mathrm{~d}}{=} \frac{Y}{X}
$$

provided that $\mathbb{P}(X=0)=0$. Therefore, we have the following.
Fact 1. If the vector (X, Y) is exchangeable and $\mathbb{P}(X=0)=0$ (and thus, $\mathbb{P}(Y=0)=0$, by exchangeability), then

$$
\begin{equation*}
\frac{X}{Y} \stackrel{\mathrm{~d}}{=} \frac{Y}{X} \tag{2}
\end{equation*}
$$

In particular, if X and Y are i.i.d. with $\mathbb{P}(X=0)=0$ then (2) holds.
We now pose some questions:
Question 1. If T is an rv with $\mathbb{P}(T=0)=0$ such that

$$
\begin{equation*}
T \stackrel{\mathrm{~d}}{=} \frac{1}{T} \tag{3}
\end{equation*}
$$

is it true that there exist an exchangeable vector (X, Y) with $\mathbb{P}(X=0)=0$ such that

$$
T \stackrel{\mathrm{~d}}{=} \frac{X}{Y} ?
$$

Question 2 (stronger). If T is an rv with $\mathbb{P}(T=0)=0$ such that (3) holds, is it true that there exist i.i.d. rv's X, Y with $\mathbb{P}(X=0)=0$ such that

$$
T \stackrel{\mathrm{~d}}{=} \frac{X}{Y} ?
$$

The answer to the Question 1 is in the affirmative, in contrast to the Question 2. To see this, consider a symmetric Bernoulli r.v. I with $\mathbb{P}(I=0)=\mathbb{P}(I=1)=1 / 2$, and define the random vector

$$
\begin{equation*}
(X, Y)=\left(W \cdot T^{I}, W \cdot T^{1-I}\right)=(W[(1-I)+I T], W[I+(1-I) T]) \tag{4}
\end{equation*}
$$

In (4), W is any random variable with $\mathbb{P}(W=0)=0$, for example $W \equiv 1$ or $W \sim N\left(\mu, \sigma^{2}\right)$, and the r.v.'s T, W, I are independent. Since

$$
I \stackrel{\mathrm{~d}}{=} 1-I
$$

it follows that

$$
(T, W, I) \stackrel{\mathrm{d}}{=}(T, W, 1-I)
$$

and thus, for any Borel $\boldsymbol{g}=\left(g_{1}, g_{2}\right): \mathbb{R}^{3} \mapsto \mathbb{R}^{2}$ we have

$$
\boldsymbol{g}(T, W, I) \stackrel{\mathrm{d}}{=} \boldsymbol{g}(T, W, 1-I)
$$

i.e.,

$$
\begin{equation*}
\left(g_{1}(T, W, I), g_{2}(T, W, I)\right) \stackrel{\mathrm{d}}{=}\left(g_{1}(T, W, 1-I), g_{2}(T, W, 1-I)\right) \tag{5}
\end{equation*}
$$

Applying (5) to $\boldsymbol{g}(t, w, i)=\left(w t^{i}, w t^{1-i}\right)$ we get, in view of (4), that

$$
(X, Y) \stackrel{\mathrm{d}}{=}(Y, X)
$$

so that (X, Y) is an exchangeable random vector. Moreover, by definition,

$$
\frac{X}{Y}=\frac{T^{I}}{T^{1-I}}
$$

Finally, for any $t \in \mathbb{R}$ we have

$$
\begin{aligned}
\mathbb{P}\left(\frac{X}{Y} \leqslant t\right) & =\frac{1}{2} \mathbb{P}\left(\left.\frac{T^{I}}{T^{1-I}} \leqslant t \right\rvert\, I=0\right)+\frac{1}{2} \mathbb{P}\left(\left.\frac{T^{I}}{T^{1-I}} \leqslant t \right\rvert\, I=1\right) \\
& =\frac{1}{2} \mathbb{P}\left(\frac{1}{T} \leqslant t\right)+\frac{1}{2} \mathbb{P}(T \leqslant t) \\
& =\mathbb{P}(T \leqslant t)
\end{aligned}
$$

because, from (3),

$$
\mathbb{P}\left(\frac{1}{T} \leqslant t\right)=\mathbb{P}(T \leqslant t)
$$

Therefore,

$$
\frac{X}{Y} \stackrel{\mathrm{~d}}{=} T
$$

as it was to be shown.
Note. If the r.v. W is taken to be absolutely continuous then the vector (X, Y) is absolutely continuous. This shows that there always exists an absolutely continuous exchangeable solution even if T is discrete.

We now show that there exists an r.v. T which satisfies (3), but T has not a representation of the form

$$
\begin{equation*}
T \stackrel{\mathrm{~d}}{=} \frac{X}{Y}, \quad \text { with } X, Y \text { being i.i.d. } \tag{6}
\end{equation*}
$$

Indeed, consider the positive r.v. T for which $\log (T)$ is uniformly distributed over the interval $(-1,1)$, i.e., $U=\log (T) \sim U(-1,1)-\log$-uniform. Clearly T satisfies (3). If (6) was true then U should have the representation

$$
\begin{equation*}
U \stackrel{\mathrm{~d}}{=} X_{1}-X_{2}, \quad \text { with } X_{1}=\log (|X|), X_{2}=\log (|Y|) . \tag{7}
\end{equation*}
$$

Since X and Y are i.i.d. it follows that X_{1} and X_{2} in (7) are also i.i.d., but this is impossible. Indeed, if $\phi(t)$ is the common characteristic function of X_{1} and X_{2} then the characteristic function of $X_{1}-X_{2}$ is, by independence,

$$
\phi_{X_{1}-X_{2}}(t)=\phi(t) \phi(-t)=\phi(t) \overline{\phi(t)}=|\phi(t)|^{2} \geqslant 0 .
$$

On the other hand, the characteristic function of U is

$$
\phi_{U}(t)=\frac{\sin (t)}{t},
$$

which assumes both positive and negative values.

