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We identify the complex plane C with the open unit disc D = {z ∈ C : |z| < 1}
by the homeomorphism C � z �→ z

1+|z| ∈ D. This leads to a compactification

C of C, homeomorphic to D = {z ∈ C : |z| ≤ 1}. The Euclidean metric on D
induces a metric d on C. We identify all uniform limits of polynomials on D with
respect to the metric d . The class of the above limits is an extension of the disc
algebra and it is denoted by A(D). We study properties of the elements of A(D)
and topological properties of the class A(D) endowed with its natural topology.
The class A(D) is different and, from the geometric point of view, richer than the
class Ã(D) introduced, on the basis of the chordal metric χ .

Keywords: disc algebra; Mergelyan’s Theorem; polynomial approximation

AMS Subject Classifications: Primary 30J99; secondary 46A99; 30E10

1. Introduction

The uniform limits of the polynomials on the closed unit disc D = {z ∈ C : |z| ≤ 1}
with respect to the usual Euclidean metric on C are exactly all functions f : D → C,
continuous on D and holomorphic in D = {z ∈ C : |z| < 1}. The class of the above
functions is the disc algebra A(D). In [1,2], the Euclidean metric on C is replaced by the
chordal metric χ on the one-point compactification C̃ = C ∪ {∞} of C. The set of uniform
limits of polynomials, with respect to χ , is an extension of A(D) and it is denoted by Ã(D).
It contains the constant function equal to ∞ and the following functions: f : D → C̃

continuous, such that f (D) ⊂ C and f|D is holomorphic. The class Ã(D) remains the same
if we replace the chordal metric χ by any other metric on C̃ generating the same topology –
the reason is that any two such metrics are uniformly equivalent, because C̃ = C ∪ {∞}
is compact. In this sense, the set of χ -uniform polynomial limits is an invariant set, i.e.
independent of the specific metric one chooses for generating it.

Instead of the one-point compactification C̃ = C∪{∞} we shall consider another, more
rich from the geometric viewpoint, compactification, as follows: We identify the complex
plane C with the open unit disc D by the homeomorphism
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1004 V. Nestoridis and N. Papadatos

C � z �→ z

1 + |z| ∈ D.

In the Euclidean setting, the natural compactification of D is D. This leads to a compactifi-
cation C = C ∪ C

∞ of C, where the set of infinite points C
∞ is homeomorphic to the unit

circle T = ∂ D = {z ∈ C : |z| = 1}; more precisely, we write C
∞ = {∞eiθ : θ ∈ R}. The

usual Euclidean metric on D induces the metric d on C, defined as follows:

d(z1, z2) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∣∣∣∣ z1

1 + |z1| − z2

1 + |z2|
∣∣∣∣ , for z1, z2 ∈ C,∣∣∣∣ z1

1 + |z1| − eiθ
∣∣∣∣ , for z1 ∈ C, z2 = ∞eiθ (θ ∈ R),∣∣∣eiθ1 − eiθ2

∣∣∣ , for z1 = ∞eiθ1 , z2 = ∞eiθ2 (θ1, θ2 ∈ R).

(1.1)
We shall investigate the uniform limits (on D) of the polynomials, with respect to the metric
d . The class of limit functions is another extension of the disc algebra, different from Ã(D),
which is denoted by A(D). It will be shown that it contains exactly two types of functions.
The first type, the finite type, consists of all continuous functions f : D → C such that
f (D) ⊂ C and f|D is holomorphic. The second type, the infinite type, consists of all
functions f : D → C

∞ ⊂ C of the form f (z) = ∞eiθ(z) where the function θ : D → R

is continuous on D and harmonic in D.
To highlight the difference between Ã(D) and A(D), we mention that, e.g. the function

f (z) = 1
1−z , with f (1) = ∞, belongs to Ã(D) but not to A(D). An example of an element

of A(D) of finite type, not belonging to A(D), is given by f (z) = log 1
1−z (here f (1) = +∞

corresponds to the infinite element ∞eiθ ∈ C
∞ ⊂ C with θ = 0).

Furthermore, we shall investigate some properties of the elements of A(D) and some
of its topological properties when it is endowed with its natural metric. Finally, we shall
consider uniform approximation with respect to the metric d on other compact sets, different
from D. Of course, due to the compactness of C, all the above results remain valid if we
replace d by any equivalent metric on C.

Several open questions are naturally posed and new directions of investigation are
indicated. In particular, any result on A(D) and any approximation result with respect
to the usual Euclidean metric are worth to be examined in A(D) and with respect to d ,
respectively.

A first version of the present paper can be found in [3].

2. Preliminaries

Let C̃ = C∪{∞} be the one-point compactification of the complex plane C, endowed with
the chordal metric χ , defined by χ(z1, z2) = |z1−z2|√

1+|z1|2
√

1+|z2|2
for z1, z2 ∈ C, χ(z1,∞) =

1√
1+|z1|2

for z1 ∈ C and, certainly, χ(∞,∞) = 0.

We can also define another compactification C of C with infinitely many points at
infinity, as follows: first consider the homomorphism G : C → {w ∈ C : |w| < 1} = D
given by G(z) = z

1+|z| . Since D is a compactification of D, it induces a compactification C

of C. The set C
∞, which consists of all points at infinity, is homeomorphic with the circle

T = ∂ D = {w ∈ C : |w| = 1}; thus, C = C ∪ C
∞. Every element of C

∞ is determined by
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Complex Variables and Elliptic Equations 1005

a unimodular complex number eiθ , θ ∈ R, and we shall denote the corresponding element
of C

∞ ⊂ C by ∞eiθ . In particular, this compactification contains the usual two points of
infinity of the real numbers (±∞), in the sense that +∞ corresponds to θ = 0 while −∞
is related to θ = π . The Euclidean metric on D induces the metric d on C, which is defined
in (1.1). The definition of the metric d can be simplified if we extend G(z) = z

1+|z| , defined
for z ∈ C, to the points at infinity z = ∞eiθ ∈ C

∞ (θ ∈ R), as G(z) = G(∞eiθ ) = eiθ .
Then, d(z1, z2) = |G(z1) − G(z2)| for all z1, z2 ∈ C.

Both metrics χ and d induce the usual topology on C. For if W ⊂ C is compact, then
χ , d and the Euclidean metric (all restricted on W ) are two-by-two uniformly equivalent.
Thus, if S is any set and f, fn : S → W (n = 1, 2, . . .) are functions, then the uniform
convergence on S, fn → f , as n → ∞, with respect to any one of these metrics, implies
uniform convergence with respect to the other two. Further, we have the following

Lemma 2.1 If S is any set and f, fn : S → C (n = 1, 2, . . .) are functions, then the
uniform convergence fn → f , as n → ∞, with respect to the usual Euclidean metric on
C, implies the uniform convergence fn → f , as n → ∞, with respect to the metric d.

Proof The result is implied by the fact that for all z1, z2 ∈ C,

d(z1, z2) ≤ |z1 − z2|. (2.1)

This inequality can be proved as follows. Write

d(z1, z2) = |z1 − z2 + w|
1 + |z1| + |z2| + |z1z2| , where w = z1|z2| − z2|z1|,

and observe that w = |z1| + |z2|
2

(z1 − z2) − z1 + z2

2
(|z1| − |z2|). It follows that

|z1−z2+w| ≤
(

1 + |z1| + |z2|
2

)
|z1−z2|+|z1| + |z2|

2

∣∣∣|z1|−|z2|
∣∣∣ ≤ (1+|z1|+|z2|)|z1−z2|,

and thus,

d(z1, z2) ≤
(

1 + |z1| + |z2|
1 + |z1| + |z2| + |z1z2|

)
|z1 − z2| ≤ |z1 − z2|.

�

Clearly, the converse implication of Lemma 2.1 is not true; e.g. consider S = [0,+∞),
fn(x) = (1 + 1/n)x , f (x) = x .

Consider now the map � : (C, d) → (C̃, χ), defined for all z ∈ C = C ∪ C
∞ by

�(z) =
{

z, if z ∈ C,

∞, if z = ∞eiθ ∈ C
∞ (θ ∈ R).

(2.2)

One can easily see that � is continuous and, therefore, uniformly continuous, because C is
compact. This immediately implies the following

Lemma 2.2 If S is any set and f, fn : S → C (n = 1, 2, . . .) are functions, then the
uniform convergence (on S) fn → f , as n → ∞, with respect to the metric d, implies the
uniform convergence � ◦ fn → � ◦ f , as n → ∞, with respect to the metric χ .
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1006 V. Nestoridis and N. Papadatos

Remark 2.1 Alternatively, one can prove Lemma 2.2 by making use of the easily proved
inequality χ(�(z1),�(z2)) ≤ 2d(z1, z2), which is valid for all z1, z2 ∈ C.

Corollary 2.1 If S is any set and f, fn : S → C (n = 1, 2, . . .) are functions, then
the uniform convergence (on S) fn → f , as n → ∞, with respect to the usual Euclidean
metric on C implies the uniform convergence fn → f , as n → ∞, with respect to the
metric χ .

Proof It suffices to combine Lemmas 2.1 and 2.2, or to observe the trivial inequality
χ(z1, z2) ≤ |z1 − z2|, z1, z2 ∈ C. �

Another useful fact that will be used in the sequel is the following; its simple proof is
omitted.

Lemma 2.3 Let R > 0 be a positive real number and define the map �R : C → C by

�R(z) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

z, if z ∈ C and |z| < R,

R z
|z| , if z ∈ C and |z| ≥ R,

Reiθ , if z = ∞eiθ ∈ C
∞ (θ ∈ R).

Then, �R is (uniformly) continuous.

3. The definition

In this section, we consider the closed unit disc S = D = {z ∈ C : |z| ≤ 1} and we identify
the set of uniform limits on D of polynomial functions with respect to the metric d . Note
that the polynomials are continuous with respect to the new metric. Indeed, since for every
polynomial P the set P(D) is a compact subset of C, and on each compact subset of C the
Euclidean metric and the metric d are (uniformly) equivalent, it follows trivially that any
polynomial function P : D → P(D) is uniformly continuous with respect to d .

Suppose fn , n = 1, 2, . . ., is a sequence of complex polynomials. Let f : D → C be
a function, where C = C ∪ C

∞, endowed with the metric d , is the compactification of C

introduced previously. We assume that the sequence fn , n = 1, 2, . . ., converges uniformly
on D towards f with respect to the metric d . Since polynomial functions are continuous and
uniform convergence preserves continuity, it follows that the limiting function f : D → C

has to be continuous. Furthermore, according to Lemma 2.2, the sequence � ◦ fn = fn ,
n = 1, 2, . . ., converges uniformly (with resect to χ ) to the function � ◦ f : D → C̃ =
C ∪ {∞}. Here, � is the map defined by (2.2) and χ is the chordal metric on C̃ = C ∪ {∞}
(see section 2). It follows that the function � ◦ f belongs to the class Ã(D) introduced in
[1,2]. Thus, according to the definition of Ã(D), the function � ◦ f can be of the following
two types:

The first type contains the holomorphic functions � ◦ f : D → C, such that for every
boundary point ζ ∈ ∂ D = T = {w ∈ C : |w| = 1}, the limit

lim
z→ζ , z∈D

�( f (z))
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Complex Variables and Elliptic Equations 1007

exists in C̃ = C ∪ {∞}. In this case, we conclude that the continuous function f : D → C

satisfies f (D) ⊂ C and f|D is holomorphic. This is the first type, the finite type of A(D).
The second type of elements of Ã(D) is the constant function � ◦ f ≡ ∞; this means

that for every z ∈ D, the value f (z) is a point at infinity of C. In this case, the continuous
function f : D → C satisfies f (D) ⊂ C

∞. Thus, f is of the form f (z) = ∞eiθ(z) for some
function θ : D → R. Observe that the continuity of the function f (z) = ∞eiθ(z), with
respect to the metric d , is equivalent to the continuity of the function eiθ(z), with respect to
the usual Euclidean metric. Thus, the function

D � z �→ eiθ(z) ∈ T = ∂ D

has to be continuous. Since D is simply connected, it follows from Theorem 5.1 of [4] (see
p.128) that the real function D � z �→ θ(z) ∈ R can be chosen to be continuous. Now,
we shall show that any continuous version of the function D � z �→ θ(z) ∈ R is, in fact,
harmonic in the open unit disc D.

Indeed, the uniform convergence to the C
∞-valued function f (with respect to the metric

d) shows that | fn(z)| → +∞, as n → ∞, uniformly on D. Thus, | fn(z)| ≥ 1 for all z ∈ D
and for all n ≥ n0. Considering in D a branch of log fn , we conclude that Arg fn(z) =
Im[log fn(z)] is a harmonic function in D. We also have fn(z)

| fn(z)| → eiθ(z), uniformly on D

(with respect to the usual Euclidean metric). Thus, the same holds on D ⊂ D. It follows
that ei[θ(z)−Arg fn(z)] → 1, as n → ∞, uniformly on D. Thus, there exists n1 ≥ n0,
such that for every natural number n ≥ n1, there exists an integer kn = kn(z) ∈ Z

such that the function wn(z) := θ(z) − Arg fn(z) − 2kn(z)π takes values in
(−π

2 , π
2

)
for all z ∈ D. Since eiwn(z) = eiθ(z)

eiArg fn (z) is continuous in D and wn(z) ∈ (−π
2 , π

2

)
, it

follows that the function D � z �→ wn(z) ∈ R is continuous (n ≥ n1). Therefore, writing
kn(z) = 1

2π
(θ(z) − wn(z) − Arg fn(z)), we see that the function D � z �→ kn(z) ∈ Z is

also continuous, and hence, constant. Thus, for z ∈ D, we may write kn(z) ≡ kn ∈ Z,
independent of z ∈ D (for n ≥ n1). Now, the uniform convergence eiwn(z) → 1, as n → ∞
(with respect to the Euclidean metric) and the fact that wn(z) ∈ (−π

2 , π
2

)
for all z ∈ D

and for all n ≥ n1, imply that wn(z) → 0, uniformly on D (with respect to the Euclidean
metric). Equivalently, 2knπ + Arg fn(z) → θ(z), as n → ∞, uniformly on D. Since the
functions 2knπ + Arg fn(z), n ≥ n1, are harmonic in D, it follows that the function θ(z),
being a uniform limit of harmonic functions, is also harmonic in D.

Therefore, we have shown that the second type of limiting functions is continuous
functions f : D → C

∞ ⊂ C, of the form f (z) = ∞eiθ(z), where the function D � z �→
θ(z) ∈ R can be chosen to be continuous on D and harmonic in D. The above C

∞-valued
functions generate the infinite type of A(D).

Conversely, we shall show that each continuous function f : D → C of the previous
two types is, indeed, the uniform limit (with respect to the metric d) of a sequence of
polynomials fn : D → C. The details are as follows:

Suppose first that f is of finite type. That is, f : D → C is continuous (with respect
to the metric d), f (D) ⊂ C and f|D is holomorphic. Since D is compact, it follows
that f is uniformly continuous. Therefore, for a given ε > 0, we can find a real number
r = r(ε), 0 < r < 1, such that d( f (z), f (r z)) < ε

2 for all z ∈ D. Since the function
f : D → C is holomorphic, a partial sum P(w) of the Taylor development of f (w)

satisfies | f (w) − P(w)| < ε
2 for all w : |w| ≤ r . Thus, | f (r z) − P(r z)| < ε

2 for all z ∈ D.
Using inequality (2.1), we see that d( f (r z), P(r z)) < ε

2 for all z ∈ D. Now, the triangle
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1008 V. Nestoridis and N. Papadatos

inequality implies that d( f (z), Q(z)) < ε, z ∈ D, where Q = Qε is the polynomial
defined by Q(z) = P(r z). Setting ε = 1/n, we conclude that the sequence of polynomials
fn = Q1/n , n = 1, 2, . . ., approximates f uniformly on D, with respect to d .

Finally, suppose that f is of infinite type. That is, assume that f : D → C
∞ ⊂ C is

continuous (with respect to d) and of the form f (z) = ∞eiθ(z), z ∈ D, where the real-
valued function θ(z), z ∈ D, is continuous on D and harmonic in D. Let ε > 0. Since
the function D � z �→ θ(z) ∈ R is uniformly continuous, there exists r = r(ε), with
0 < r < 1, such that |θ(z) − θ(r z)| < ε

3 for all z ∈ D. Therefore, from d( f (z), f (r z)) =
|eiθ(z) − eiθ(r z)| ≤ |θ(z) − θ(r z)|, we conclude that d( f (z), f (r z)) < ε

3 for all z ∈ D.
Since the function D � z �→ θ(z) ∈ R is harmonic in the simply connected domain D,
we can find a holomorphic function g ∈ H(D) such that Img(z) = θ(z), z ∈ D. Setting
δ = min{eReg(w) : |w| ≤ r}, we see that δ > 0. Thus, for any n ∈ {1, 2, . . .} and any
w ∈ C with |w| ≤ r , we have

d
(

neg(w), f (w)
)

= 1

1 + neReg(w)
≤ 1

1 + δn
.

It follows that we can fix a large enough n = n(ε) so that d(neg(r z), f (r z)) < ε
3 for

all z ∈ D. On the other hand, since the function neg(w) is holomorphic in D, it can be
approximated, uniformly over Dr = {w ∈ C : |w| ≤ r}, by a partial sum of its Taylor
expansion, with respect to the Euclidean metric. Therefore, there exists a polynomial P(w)

such that |neg(w) − P(w)| < ε
3 for all w : |w| ≤ r . Using the inequality (2.1) (cf. Lemma

2.1), we conclude that d(neg(r z), P(r z)) < ε
3 for all z ∈ D. By considering the polynomial

Q = Qε , defined by Q(z) = P(r z), we conclude that for all z ∈ D,

d
(

f (z), Qε(z)
) ≤ d

(
f (z), f (r z)

) + d
(

f (r z), neg(r z)) + d
(
neg(r z), P(r z)

)
< ε.

It follows that the sequence of polynomials fn = Q1/n , n = 1, 2, . . ., approximates f
uniformly on D, with respect to d .

Therefore, we naturally arrived at the following definition.

Definition 3.1 Let C
∞ = {∞eiθ : θ ∈ R} and set C = C ∪ C

∞, endowed with the metric
d defined in (1.1). Let also D = {z ∈ C : |z| < 1} and D = {z ∈ C : |z| ≤ 1} be, as usually,
the open and the closed unit disc, respectively. We denote by A(D) the class of continuous
functions f : D → C of the following two types.

(a) The finite type: It contains the continuous functions f : D → C such that f (D) ⊂
C and f|D is holomorphic in D.

(b) The infinite type: It contains the continuous functions f : D → C
∞ ⊂ C of

the form f (z) = ∞eiθ(z), z ∈ D, where the real-valued function θ : D → R is
harmonic in D and continuous (with respect to the usual Euclidean metric) on D.

Thus, we have shown the following

Theorem 3.1 Let D be the closed unit disc. The set of uniform limits (on D) of the
complex-valued polynomials – with respect to the metric d, defined on C = C ∪ C

∞ by
(1.1) – coincides with the class A(D).
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Complex Variables and Elliptic Equations 1009

Obviously, A(D) contains the disc algebra A(D) = { f : D → C, continuous on
D, holomorphic in D}. It is an extension of A(D), essentially different from the extension
Ã(D) obtained in [1,2], using the chordal metric χ . Indeed, it is easily seen that the function
f (z) = 1

1−z , |z| < 1, is neither a restriction in D of any element of A(D), nor a restriction
in D of any element of A(D). However, f (z) can be extended to D in an obvious manner,
so that the resulting C̃-valued function is χ -continuous and forms an element of Ã(D).
Loosely speaking, f (z) = 1

1−z belongs to Ã(D) but not to A(D).
Note that any conformal mapping of D onto an open strip (or half-strip) belongs to A(D)

and not to A(D). More generally, it is also true that for any non-zero complex numbers ck ,
k = 1, 2, . . . , n, the function

f (z) =
n∑

k=1

ck log
1

eiθk − z
, (where 0 ≤ θ1 < θ2 < · · · < θn < 2π)

is an element of A(D), and not of A(D). In fact, the above examples belong to the finite
type of A(D). It is easy to show that if f belongs to A(D) (and is of finite type) then � ◦ f
belongs to Ã(D) – see (2.2), Lemma 2.2 and Remark 2.1. On the other hand the converse
does not hold, as we can see by the example f (z) = 1

1−z ; obviously, this function cannot
be written as f = � ◦ g for some g ∈ A(D).

Some simple examples of elements of A(D) of infinite type can be constructed as
follows: consider a polynomial P not vanishing at any point of D. Then, the sequence
n P(z), n = 1, 2, . . ., converges uniformly on D, with resect to the metric d , to the function
f (z) = ∞eiArgP(z) which, of course, belongs to the infinite type of A(D). In particular,
taking P(z) = (2 + z)k with large enough k ∈ N (in fact, k = 6 suffices), we see that the
image of the limiting function f covers the whole C

∞.

4. Some properties of the elements of A(D)

Let f ∈ A(D). Then � ◦ f ∈ Ã(D) and, applying Proposition 3.1 of [1,2], we obtain the
following.

Proposition 4.1 Let T = ∂ D = {ζ ∈ C : |ζ | = 1} be the unit circle and assume that
f ∈ A(D).

(a) If for some c ∈ C the set {ζ ∈ T : f (ζ ) = c} has positive Lebesgue measure then f
is constant.

(b) If the set {ζ ∈ T : f (ζ ) ∈ C
∞} has positive Lebesgue measure then f is of infinite

type.

Remark 4.1 If f (z) = ∞eiθ(z) belongs to the infinite type of A(D) then θ(z) can be
constant on a subarc of T with strictly positive length without being constant on D. In fact,
any continuous function T � ζ �→ θ(ζ ) ∈ R has a unique extension D � z �→ θ(z) ∈ R

which is continuous on D and harmonic in D; it defines a unique f ∈ A(D) of infinite type.

Proposition 4.2 Let K be a compact subset of T having Lebesgue measure zero. Then
any continuous (with respect to the metric d) function φ : K → C

∞ is the restriction of
some f ∈ A(D), of finite type, such that f −1(C∞) = K .
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1010 V. Nestoridis and N. Papadatos

Proof There exists a function g ∈ A(D) such that g(z) = 1 on K and |g(z)| < 1 on D \ K
(see [5], p.81; see also [6], p.42–43, where it is written that the first who constructed such
a function was Fatou). Also, since φ(K ) ⊂ C

∞, we can write φ(ζ ) = ∞eiθ(ζ ), ζ ∈ K ,
for some real-valued function θ : K → R. Since the function φ is continuous (on K ) with
respect to d , the function eiθ(ζ ) is continuous (on K ) with respect to the usual Euclidean
metric. It follows from [5,7,8] that there exists a function h ∈ A(D) such that h(ζ ) = eiθ(ζ )

for ζ ∈ K . Now, it is easy to verify that the function given by

f (z) =
{

h(z) log 1
1−g(z) , if z ∈ D \ K ,

φ(z), if z ∈ K ,

has the desired properties. �

If E ⊂ T is compact with positive Lebesgue measure, then E is not a compact of
interpolation for A(D). That is, there exists a continuous function η : E → C which does
not have an extension f ∈ A(D). Indeed, let ζ0 ∈ E and let V be an arc with middle point ζ0
and length less than half of the Lebesgue measure of E . We set η ≡ 0 on E \ V , η(ζ0) = 1,
and we extend η linearly on V. Assume now that for some f ∈ A(D), it is true that f|E ≡ η.
Then, f|E\V ≡ 0. Since E \ V has positive Lebesgue measure, Proposition 4.1(a) implies
that f ≡ 0, which contradicts f (ζ0) = η(ζ0) = 1.

Question 1 If E ⊂ T is a compact set with Lebesgue measure zero, is it true that E
is a compact of interpolation of A(D)? That is, is it true that every continuous function
η : E → C has an extension in A(D)?

We refer to [7,8] for the corresponding result for A(D). If Question 1 had a positive answer,
then we would have the following characterization: A compact set E ⊂ T is a compact
set of interpolation for A(D) if and only if E has Lebesgue measure zero. Certainly, one
could ask questions similar to Question 1, replacing “Lebesgue measure zero” by other
assumptions as, for instance, “logarithmic capacity zero”.

One can easily see that for any compact set E ⊂ T , every continuous function η :
E → C

∞ has an extension in A(D) of infinite type; this follows from the fact that every
continuous function θ : E → R has a continuous extension on D which is harmonic in D.
Of course, this extension is unique only in the case E = T .

Another question is as follows:

Question 2 Characterize the compact sets E ⊂ D having the property that every contin-
uous function η : E → C, with η(E ∩ D) ⊂ C, has an extension in A(D).
[We refer to [9] for the corresponding result for A(D).]

One can also pose questions on the nature of the zero set of a function f ∈ A(D) of
finite type. Also, what can be said about the nature of the set {z ∈ D : f (z) = ∞ei0} =
{z ∈ D : f (z) = +∞} = f −1(+∞), when f is of infinite type? This is related to the zero
sets (in D) of functions θ : D → R which are continuous on D and harmonic in D.

The maximum principle does not hold in A(D). Indeed, consider the polynomials
f (z) = z and g(z) = 2z, which certainly belong to A(D) ⊂ A(D). Then, d( f (z), g(z)) =
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Complex Variables and Elliptic Equations 1011

|z|
(1+|z|)(1+2|z|) . For |z| = 1 we find d( f (z), g(z)) = 1

6 < 1
3+2

√
2

= d
(

f
(

1√
2

)
, g

(
1√
2

))
.

However, we have the following:

Theorem 4.1 Let f, g ∈ A(D) and suppose that f (ζ ) = g(ζ ) for all ζ ∈ T . Then
f ≡ g.

Proof Consider the set A = {ζ ∈ T : f (ζ ) ∈ C
∞} = {ζ ∈ T : g(ζ ) ∈ C

∞}. If A has
positive Lebesgue measure then both f and g are of infinite type. Write f (z) = ∞eiθ(z) and
g(z) = ∞eiφ(z) where θ, φ : D → R are continuous functions on D, harmonic in D. Since
f (ζ ) = g(ζ ) for all ζ ∈ T , we conclude that θ(ζ ) = φ(ζ ) + 2kπ for all ζ ∈ T , where k is
an integer independent of ζ ∈ T . This implies that θ(z) = φ(z) + 2kπ for all z ∈ D and,
thus, f ≡ g.

Suppose now that A has Lebesgue measure zero. Then, f and g are both of finite type.
Thus, f (D) ⊂ C, g(D) ⊂ C and both f, g are holomorphic in D. Therefore, the function
f − g is holomorphic in D with zero limits on T \ A. Since T \ A contains a compact set of
positive Lebesgue measure, Privalov’s Theorem ([6], p.84) implies f ≡ g. This completes
the proof. �

Remark 4.2 Assume that f, g ∈ A(D) coincide on a compact set E ⊂ T with positive
Lebesgue measure. If f is of finite type then g is also of finite type and Privalov’s Theorem
([6], p.84) implies f ≡ g. If, however, f and g are of infinite type, it may happen f �= g.
For example, set θ(ζ ) = 0 on {ζ ∈ T : ζ = eit , 0 ≤ t ≤ π} and consider two different
continuous (real-valued) extensions θ1, θ2 on T . Extending θ1 and θ2 on D, using the Poisson
kernel, we find that the functions f (z) = ∞eiθ1(z) and g(z) = ∞eiθ2(z) belong to A(D),
coincide on {eit , 0 ≤ t ≤ π} but f �= g.

5. Some topological properties of A(D)

We recall that A(D) = { f : D → C, continuous on D and holomorphic in D} is a Banach
algebra if it is endowed with the usual supremum norm. Furthermore, Ã(D) = { f : D →
C̃ = C ∪ {∞}, continuous on D, f (D) ⊂ C, f|D holomorphic} ∪ { f : f ≡ ∞} is a
complete metric space if it is endowed with the metric χ̃ given by (see [1,2])

χ̃ ( f, g) = sup
|z|≤1

χ( f (z), g(z)), f, g ∈ Ã(D).

Finally, A(D) is naturally endowed with the metric

d( f, g) = sup
|z|≤1

d( f (z), g(z)), f, g ∈ A(D).

Proposition 5.1 The metric space (A(D), d) is complete. The disc algebra A(D) is an
open and dense subset of A(D). The relative topology of A(D) from A(D) coincides with
the usual topology of A(D).

Proof Consider the set B =
{

f : D → C

}
endowed with the metric

β( f, g) = sup
|z|≤1

d( f (z), g(z)), f, g ∈ B.
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1012 V. Nestoridis and N. Papadatos

Since (C, d) is complete, it follows that (B, β) is complete. According to Theorem 3.1,
A(D) is the closure in B of the set of polynomials. Thus, A(D) is a closed subset of the
complete metric space B. It follows that A(D) is also complete. Let f ∈ A(D); then
f (D) is a compact subset of C and, obviously, the compact sets f (D) and C

∞ are disjoint.
Thus, dist

(
f (D), C

∞
)

= δ > 0. It is easily seen that if a function g ∈ A(D) satisfies

d( f, g) < δ, then g(D) ⊂ C and hence, g ∈ A(D). Therefore, A(D) is an open subset of
A(D). It is also dense because it contains the set of polynomials which is dense, according to
Theorem 3.1.

Let f, fn ∈ A(D) (n = 1, 2, . . .) and assume that fn → f , as n → ∞, in A(D). From
Lemma 2.1 we easily see that fn → f , as n → ∞, in A(D). Conversely, assume that
fn → f , as n → ∞, in A(D), for some functions f, fn ∈ A(D) (n = 1, 2, . . .). Then,
the set f (D) is a compact subset of C which is disjoint from the compact set C

∞, so that
dist( f (D), C

∞) = δ > 0. Thus, for n ≥ n0, we have fn(D) ⊂ {w ∈ C : dist(w, f (D)) ≤
δ/2} = E , say, which is a compact subset of C. On E the usual Euclidean metric and the
metric d are uniformly equivalent. It follows that fn → f , as n → ∞, in A(D). This
completes the proof. �

Consider now the function F : A(D) → Ã(D) defined by F( f )(z) = �( f (z)), i.e.

A(D) � f �→ F( f ) = � ◦ f ∈ Ã(D),

(see Lemma 2.2 and (2.2) for the definition of the map � : C → C̃). According to Lemma
2.2 the function F is continuous.

A set in a complete metric space is said residual if it contains a dense Gδ set. By Baire’s
theorem dense Gδ sets are exactly the denumerable intersections of open dense sets. Under
this terminology we have the following result.

Corollary 5.1 The set F(A(D)) is a dense subset of Ã(D); in fact it is residual.

Proof Since F(A(D)) contains the set of polynomials, it is dense in Ã(D).[1,2] Also,
F(A(D)) contains A(D) which is open and dense in Ã(D).[1,2] Thus, F(A(D)) is residual
in Ã(D). �

Also, it is easily seen that the elements of finite type of A(D) form an open dense subset,
say A◦(D), of A(D). It follows that the elements of infinite type of A(D) form the closed
subset A∞(D) = A(D) \ A◦(D), which is of the first category. Since A∞(D) is closed, it
is a Gδ set.

In the following proposition we use some notation from [10].

Proposition 5.2 Let η be any Hausdorff measure function. The set of all f ∈ A◦(D)

such that η(E f ) = 0 is dense and Gδ in A(D), where E f = {ζ ∈ T : f (ζ ) /∈ f (D)}.

The proof is similar to the proof of Proposition 4.3 of [1,2], the only difference being that
one has to consider f −1(C∞) in place of f −1(∞).

Next, we define Y = { f ∈ A(D) : f (D) ⊂ f (T )} ⊂ A(D) and W = { f ∈ A(D) :
f (T ) = C} ⊂ A(D). Arguments similar to those given in Proposition 4.5 of [1,2] show
that Y is a non-empty closed subset of A(D) of the first category. With a proof similar to
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Complex Variables and Elliptic Equations 1013

the proof of Proposition 4.6 in [1,2], we can show that W is also a closed subset of A(D) of
the first category, but we do not know if W is non-empty. However, if we assume that every
compact set K ⊂ T with zero Lebesgue measure is a compact of interpolation for A(D),
then we can show that W �= ∅. Indeed, let K ⊂ T be a Cantor-type set with Lebesgue
measure zero. It is well known that there exists a continuous surjection φ : K → [0, 1].
Let � : [0, 1] → D be a Peano curve with �([0, 1]) = D. Finally, let L : D → C be a
homeomorphism. Then, L ◦� ◦φ is continuous on K with (L ◦� ◦φ)(K ) = C. Therefore,
the assumption that K is a compact of interpolation for A(D) implies that there exists an
f ∈ A(D) such that f|K = L ◦ � ◦ φ. This f belongs to W .

6. Concluding remarks and questions

In the previous sections, we considered uniform approximation by polynomials on the
compact set D. However, we can also consider uniform approximation on other compact
sets with respect to the metric D. Also, the approximating functions do not necessarily have
to be polynomials.

Proposition 6.1 Let L ⊂ C be a compact set and let z0 ∈ L0. We assume that for every
boundary point ζ ∈ ∂L the segment [z0, ζ ] satisfies [z0, ζ ] \ {ζ } ⊂ L0. Then, the uniform
limits, with respect to the metric d, of polynomials on L are exactly the functions f : L → C

of the following two types:

(a) The first type (the finite type) contains the continuous functions f : L → C with
f (L0) ⊂ C such that f|L0 is holomorphic.

(b) The second type (the infinite type) contains the continuous functions f : L → C
∞

of the form f (z) = ∞eiθ(z), where the function θ : L → R can be chosen to be
continuous on L and harmonic in L0.

For the proof, we may assume z0 = 0 and imitate the proof for the case L = D. The
difference is that when we approximate f on the compact set r L , 0 < r < 1, we have to use
Runge’s Theorem rather than considering the Taylor expansion of f. Since the approximation
is uniform on r L with respect to the Euclidean distance on C, Lemma 2.1 shows that it is
also uniform with respect to the metric d .

Theorem 6.1 Let f : T → C be any continuous function. Then, there exists a sequence
of trigonometric polynomials converging to f uniformly on T with respect to the metric d.

Proof Let ε > 0. We wish to find a complex-valued trigonometric polynomial Q = Qε

such that d( f (ζ ), Q(ζ )) < ε for all ζ ∈ T . According to Lemma 2.3, for any R > 0
the composition �R ◦ f : T → C is continuous on T . Fix a large enough R > 0 so that
d( f (ζ ),�R( f (ζ ))) < ε

2 for all ζ ∈ T . Now, since �R ◦ f takes only finite complex values,
it can be uniformly approximated on T by a trigonometric polynomial Q with respect to the
usual Euclidean metric on C ∼= R

2. According to Lemma 2.1, the approximation remains
uniform for the metric d . Thus, we have found a trigonometric polynomial Q such that
d(Q(ζ ),�R( f (ζ ))) < ε

2 for all ζ ∈ T . The triangle inequality now yields the desired
result. �
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1014 V. Nestoridis and N. Papadatos

We mention here that we do not know what is the set of the uniform limits of polynomials,
with respect to the metric d , on a circle.

Let now I be a compact segment in C or, more generally, a homeomorphic image of
the segment [0, 1] in C. Then, the uniform limits of the polynomials on I , with respect to
the metric d , are exactly all continuous functions f : I → C. The proof is similar to that of
Theorem 6.1, with the difference that we make use of the classical Mergelyan’s Theorem
to approximate �R ◦ f by a (complex) polynomial. This is possible because I 0 = ∅ and
C \ I is connected.

Fix now I to be the compact interval [−1, 1]. So far, we have seen approximations of
C-valued functions by complex-valued polynomials. However, when a continuous function
f : [−1, 1] → C is R-valued, where R = R ∪ {−∞,+∞} ⊂ C, it is reasonable to
approximate it, if possible, by real-valued polynomials, with respect to the metric d . For
the same reasoning, any χ -continuous R̃-valued function f : [−1, 1] → R̃ ⊂ C̃, where
R̃ = R ∪ {∞}, should be approximated by real-valued polynomials with respect to the
metric χ . According to [1,2], any continuous function f : [−1, 1] → C̃, and hence, any
continuous function f : [−1, 1] → R̃, can be uniformly approximated by complex-valued
polynomials with respect to the metric χ ; however, the approximating polynomials need
not be real and, sometimes, they cannot be real. Consider, for example, the χ -continuous
function f : [−1, 1] → R̃, given by

f (x) =
{ 1

x
, if x ∈ [−1, 0) ∪ (0, 1],

∞, if x = 0.

Although there exist polynomial approximations for this f, it is easily seen that the approx-
imating polynomials cannot be real-valued – the above function is χ -continuous and not
d-continuous. In fact, one can show that a function f : [−1, 1] → R̃ can be uniformly
approximated by real-valued polynomials, with respect to the metric χ , if and only if it
is of the form f = � ◦ g for some d-continuous function g : [−1, 1] → R; here, the
map � : R → R̃ is the restriction on R ⊂ C of the map � defined in (2.2). Also,
it is easy to see that a function f : [−1, 1] → R can be uniformly approximated by
real-valued polynomials, with respect to the metric d , if and only if it is d-continuous. In
other words, uniform real polynomial approximations (with respect to the metric d) can
be found for a function f : [−1, 1] → [−∞,+∞] if and only if for each x0 ∈ [−1, 1],
limx→x0 f (x) = f (x0) ∈ [−∞,+∞]. If this is true, then the same real polynomials
approximate � ◦ f in the χ -metric. For example, the function f : [−1, 0) ∪ (0, 1] → R

with f (x) = 1
x2 (for x ∈ [−1, 1], x �= 0) can be extended, in an obvious manner, to a

d-continuous function on [−1, 1] (setting f (0) = +∞) and to a χ -continuous function on
[−1, 1] (setting f (0) = ∞). It follows that this f can be uniformly approximated by real
polynomials with respect to the metric d (and, hence, also with respect to χ ).

Finally, it is natural to ask about the uniform limits of polynomials on L, with respect
to the metric d , when L is a compact subset of C with connected complement. Specifically,
we have the following:

Question 3 Let L ⊂ C be a compact set with connected complement. Let f : L → C be
a continuous function, such that for every component V of L0, the following holds: either
f (V ) ⊂ C and f|V is holomorphic, or f (V ) ⊂ C

∞ and f is of the form f (z) = ∞eiθ(z) for
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Complex Variables and Elliptic Equations 1015

all z ∈ V , where the real-valued function θ is harmonic in V. Does there exist a sequence of
(complex-valued) polynomials converging to f uniformly on L with respect to the metric d?

The existence of such a sequence of polynomials would lead to an extension of the
classical Mergelyan Theorem in the case of the metric d; we refer to [11] for the classical
Mergelyan’s Theorem.

We notice that the converse is true and the proof is the same as the one given here for
the particular case L = D. Indeed, in the proof of Theorem 3.1, we have only used the fact
that D is a simply connected domain; this is the case for every component V of L0.
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