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1. Introduction

Let Z be a standard Normal random variable and assume that gj, ...,gp are absolutely continuous, real-valued, functions
of Z, each with finite variance (with respect to Z). Olkin and Shepp (2005) presented a matrix extension of Chernoff (1981)
variance inequality, which reads as follows:

Olkin and Shepp’s inequality. If D = D(g) is the covariance matrix of the random vector g = (g1 (2), ...,g(2))", where ‘t’
denotes transpose, and if [E[g;(Z)]2 <oo foralli=1,2,...,p, then (see Olkin and Shepp, 2005, p. 352)

D<H,

where H=H(g) = (E(DE[(DDpxp» and the inequality is considered in the sense of Loewner ordering, that is, the matrix
H-D is nonnegative definite.

In this note we extend and generalize this inequality for a large family of discrete and continuous random variables.
Specifically, our results apply to any random variable X according to one of the following definitions (cf. Afendras et al., 2007).

Definition 1 (Integrated Pearson family). Let X be a random variable with density function f (w.r.t. Lebesgue measure on R)
and finite mean u = E(X). We say that X follows the Integrated Pearson distribution IP(y; d,5,7), X ~ IP(u; 6,8,y), if there
exists a quadratic polynomial q(x) = 6x* + fx+7y (with $,6,7 € R, |5|+|8]+|y| > 0) such that

/X (u=0f () dt =qx)f(x) forall x € R. M
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Definition 2 (Cumulative Ord family). Let X be an integer-valued random variable with finite mean u and assume that
p(k)=P(X =k), k € Z, is the probability function of X. We say that X follows the Cumulative Ord distribution CO(u; J,f,7),
X ~ CO(w; 8,B,y), if there exists a quadratic polynomial q() = &j2+ Bj+7 (with B,6,y € R, |8|+|8]+|y| > 0) such that

> (u—=kpk)=q(pG) forallje Z. )
k<j
It is well known that the commonly used distributions are members of the above families, e.g. Normal, Gamma, Beta, F
and t distributions belong to the Integrated Pearson family, while Poisson, Binomial, Pascal (Negative Binomial) and
Hypergeometric distribution are members of the Cumulative Ord family. Therefore, the results of the present note also
improve and unify the corresponding bounds for Beta random variables, given by Prakasa Rao (2006) and Wei and Zhang
(2009). For multivariate variance inequalities involving the generalized Dirichlet distribution see, also, Chang and Richards
(1999, Theorems 3.6 and 3.9).

2. Matrix variance inequalities of Poincaré-type and of Bessel-type
2.1. Continuous case

In this subsection we shall make use of the following notations.

Assume that X ~ IP(u; 6,8,7) and denote by g(x) = 6x*> 4+ fx+7 its quadratic polynomial. It is known that, under (1), the
support J =J(X) = {x € R : f(x) > 0} is a (finite or infinite) open interval, say J(X) = («,w)—see Afendras et al. (2007, 2011).

For a fixed integer n € {1,2,...} we shall denote by H"(X) the class of functions g : (z,w)— R satisfying the following
properties:

H;: For each k € {0,1,...,n—1}, g® (with g©@ = g) is an absolutely continuous function with derivative g+,
H,: For each k € {0,1,...,n}, E[g*X)(g® (X))*] < cc.

Also, for a fixed integer n € {1,2, ...} we shall denote by B"(X) the class of functions g : («,®)— R satisfying the following
properties:

B1: Var[g(X)] < oc.
B,: For each k € {0,1,...,n—1}, g® (with g©@ = g) is an absolutely continuous function with derivative gk+1,
Bs: For each k € {0,1,...,n}, E[g*)|g®X)|] < cc.

Since E2[q*X)1g®X)[] < E[q*X)] - Elg*X)(g®(X))?] by the Cauchy-Schwarz inequality, it follows that H"(X) = B"(X) when-
ever [F|X|?" < oo (observe that H, (with k=0) yields B;).

Consider now any p functions gi, ...,g, € H*(X) and set g = (81,82, ...,&)". Then, the following p x p matrices H, = H(g)
are well-defined for k=1,2,...,n:

Hy = (hy)  where hyy = E[g*X)g{" X)g/* X)), i =1.2,....p. 3)
Similarly, for any functions gy, ...,g, € B"(X), the following p x p matrices B, = By(g) are well-defined for k=1,2,...,n:
By = (bju) where by = E[g*X)g{"(X)] - Elg*(X)g¥ (X)), ij=12,....p. 4)
Our first result concerns a class of Poincaré-type matrix variance bounds, as follows:

Theorem 1. Let X ~IP(u; §,8,y) and assume that F|X|>" < co for some fixed integer n € {1,2,...}. Let g1,...,gp be arbitrary
functions in H™(X) and denote by D = D(g) the dispersion matrix of the random vector g = g(X) = (g1(X), . ..,g,(X))". Also, denote
by S, =Sn(g) the p x p matrix

n (—1)1
S 2T )

where the matrices Hy, k=1,2,...,n, are defined by (3). Then, the matrix
A, =(-1)"(D-5Sy)

is nonnegative definite. Moreover, A, is positive definite unless there exist constants cy,...,cp € R, not all zero, such that the
function ¢181(X)+ - - - +¢pgp(X) is a polynomial (in x) of degree at most n.

Proof. Fix ¢=(cy,...,cp)" € R? and define the function he(x)=c' - g(x) = 181(X)+ - - - +cpgp(%). Since gy, ...,8p € H"(X) we
see that the function h, belongs to H"(X) and, in particular, h¢(X) has finite variance and [E[qk(X)(h‘c’”(X))z] <oo,k=1,2...,n.
Thus, we can make use of the inequality (see Afendras et al., 2007; Johnson, 1993; cf. Houdré and Kagan, 1995;
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n k-1
(=1
(—=1)"[Varhe(X)—Sn] =0 where S, = _—
e "= 2 [1=6(1-i)
in which the equality holds if and only if h, is a polynomial of degree at most n. It is well-known that Var h¢(X) = c'Dc and
it is easily seen that [E[q"(X)(h‘ck’(X))z] = c'Hc with H, (k=1,...,n) as in (3). Thus, S, = ¢'S,c and the preceding inequality
takes the form

c[(-1D)"(D-Sy)]c = 0.

Elg*X)(h& X)),

Since ¢ € R? is arbitrary it follows that the matrix (—1)"(D—S,) is nonnegative definite. Clearly the inequality is strict for all
¢ € RP for which hegspam[1,x,...,x". O

Remark 1. (a) Olkin and Shepp’s (2005) matrix inequalities are particular cases of Theorem 1 for n=1 and with X being a
standard Normal or a Gamma random variable. For example, when n=1 and X=Z~N(0,1)=1P(0;0,0,1) then
Si=H,=H-= ([E[g;(Z)g]/.(Z)])po and we get the inequality D <H (in the Loewner ordering). Moreover, for X=Z and n=2
or 3, Theorem 1 yields the new matrix variance bounds H—1H, <D and D < H-1 H, +H; where H, = (EIg{(2)g] @))pxp and
H; = (E[g]"(D)g]" D)Dpxp-

(b) Theorem 1 applies to Beta random variables. In particular, when n=1 and X~ Beta(a,b) (with density
fx)ocx=1(1-x)""1, 0 <x <1, and parameters a,b> 0) then q(x) = x(1—x)/(a+b). Theorem 1 yields the inequality D <H
(in the Loewner ordering) where H = (1/(a+b))(E[X(1 =X)g{(X)gX)Dpp- This compares with Theorem 4.1 in Prakasa Rao
(2006) and with Lemma 3.7 in Chang and Richards (1999); cf. Wei and Zhang (2009), Remark 1.

Next we show some similar Bessel-type matrix variance bounds. The particular case of a Beta random variable is
covered by Theorem 1 of Wei and Zhang (2009).

Theorem 2. Let X ~ IP(u; §,f,y) and assume that E|X|*" < co for some fixed integer n e {1,2,...}. Let g1,...,8p be arbitrary
functions in B"(X) and denote by D = D(g) the dispersion matrix of the random vector g = g(X) = (g1(X), ...,g,(X))". Also, denote
by L, =L,(g) the p x p matrix

n
1
L,= .
' k; k! E[g*COITTTE 1 (1-j6)
where the matrices By, k=1,2,...,n, are defined by (4). Then,
L,<D

By,

in the Loewner ordering. Moreover, D—L, is positive definite unless there exist constants cy, ...,cp € R, not all zero, such that the
function c181(X)+ - - - +¢pgp(X) is a polynomial (in x) of degree at most n.

Proof. Fix ¢=(cy,...,cp)" € RP and, as in the previous proof, define the function he(x)=c'-g(x) = 181(X)+ - - - +CpZp(X).
Since gi,....8p € B"(X) we see that the function hc belongs to B"(X). In particular, h¢(X) has finite variance and
Elg*X)|h¥(X)|] < oo, k=1,2...,n. Thus, we can apply the inequality (see Afendras et al., 2011)

n E*[q* )R (X)]
=kt ElgROOITT 2 1 (1-jo)

in which the equality holds if and only if he is a polynomial of degree at most n. Observe that Var h¢(X) = c'Dc and
[Ez[q"(X)|hg”(X)|] = c'Byc with By, (k=1,...,n) as in (4). Thus, L, = c'L,c and the preceding inequality takes the form

c'[D—L,]c > 0.

Varh¢(X) > L, wherelL,=

Since ¢ € R? is arbitrary it follows that the matrix D—L, is nonnegative definite. Clearly the inequality is strict for all ¢ € R?
for which he¢spam([1,x,...,x". O

2.2. Discrete case

In this subsection we shall make use of the following notations.

Assume that X ~ CO(y; o,,7). It is known (see Afendras et al., 2007, 2011) that, under (2), the support ] =J(X)={k €
7 : p(k) >0} is a (finite of infinite) interval of integers, say J(X) = {o,a+1,...,0—1,w}. Write q(x) = x>+ x+7y for the
quadratic polynomial of X and let ¢(x) = q(x)q(x+1) - - - q(x+k—1) for k=1,2,... (with g%%x) =1, q(x) = q(x)). For any
function g : Z—R we shall denote by A*[g(x)] its k-th forward difference, i.e., AX[g(x)]= A[4* '[gX)]l, k=1,2,..., with
A[g®)] = gx+1)—g(x) and 4°[gx)] =gX).

For a fixed integer n € {1,2,...} we shall denote by H}(X) the class of functions g : J(X)— R satisfying the following
property:

HD;: For each k € {0,1,...,n}, E[g¥)(A*g00D?] < co.
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Also, for a fixed integer n € {1,2, ...} we shall denote by Bj(X) the class of functions g : J(X)— R satisfying the following
properties:

BD;: Var[g(X)] < oco.
BD,: For each k e {0,1,...,n}, E[qX)|4*[g(X)]I] < oo.

Clearly, if E|X|*" < oo then H}(X) = Bi(X) (note that HD; (with k=0) yields BD;). Indeed, since P[q¥(X)>0]=1, the
Cauchy-Schwarz inequality implies that E2[q¥(X)|4¥[g(X)]I] < ElqMX)] - E[qMX)(A¥[2()])?].
Consider now any p functions gi, ...,g, € H3(X) and set g = (g1,8>, ....8)". Then, the following p x p matrices Hy = H,(g)
are well-defined for k=1,2,...,n:
Hi = (hyy)  where hyy = E[qMX0A [giX014 g0, ij=1.2,....p. )
Similarly, for any functions gy, ...,gy € Bj(X), the following p x p matrices B, = By(g) are well-defined for k=1,2,...,n:
B =(byx) where by = E[q¥00A 0T - ElQMOAg0N, ij=1.2,....p. ©6)

The matrix variance inequalities for the discrete case are summarized in the following theorem; its proof, being the
same as in the continuous case, is omitted.

Theorem 3. Let X ~ CO(u; 8,8,y) and assume that E|X|*" < oo for some fixed integer n € {1,2,...}.
(a) Let g1,....8p be arbitrary functions in Hy(X) and denote by D=D(g) the dispersion matrix of the random vector
g2=8X)=(g1(X),....gX)". Also, denote by S, = Sn(g) the p x p matrix

n (1)1
5 2T o)
where the matrices Hy, k=1,2,...,n, are defined by (5). Then, the matrix
An=(-1)"(D-Sn)
is nonnegative definite. Moreover, A, is positive definite unless there exist constants cy, ...,c, € R, not all zero, and a polynomial
P, : R—>R, of degree at most n, such that P[c1g1(X)+ - - +pgp(X) =Pr(X)] = 1.

(b) Let g1,...,8, be arbitrary functions in Bj(X) and denote by D=D(g) the dispersion matrix of the random vector
g=8X) = (g1 (X),....8(X)". Also, denote by L, = Ln(g) the p x p matrix
n
1
L,= .
" k; k! ElqROOT TS 1 (1-56)
where the matrices By, k=1,2,...,n, are defined by (6). Then,
L, <D

By,

in the Loewner ordering. Moreover, D—L, is positive definite unless there exist constants cy,...,cp, € R, not all zero, and a
polynomial P, : R— R, of degree at most n, such that P[c1g1(X)+ - - - +p&p(X) =Prn(X)] = 1.

[It should be noted that the k-th term in the sum defining the matrix S, or the matrix L,, above, should be treated as the null
matrix, Opxp, whenever E[qi¥(X)] =0.]

As an example consider the case where X ~ Poisson(4) with probability function p(k) = e*'lflk/k!, k=0,1,...(4>0). Then
X~C0(/;0,0,2) so that q(x)=/. It follows that Hj = 2(E[4[gX)]4 g0, and By = 22E[A 00N - ELA 0D psp-
Thus, for n=1 and p=2 Theorem 3(a) yields the matrix inequality

Vargi] - Covigigl) E(4igiDX  E4[g114[g]]
Covigi,g] Varlg] |~ "\ E[4[gi14[g]l  El(4[g])%]
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