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1. Introduction

Let Z be a standard Normal random variable and assume that g1, . . . ,gp are absolutely continuous, real-valued, functions
of Z, each with finite variance (with respect to Z). Olkin and Shepp (2005) presented a matrix extension of Chernoff (1981)
variance inequality, which reads as follows:

Olkin and Shepp’s inequality. If D¼DðgÞ is the covariance matrix of the random vector g ¼ ðg1ðZÞ, . . . ,gpðZÞÞ
t, where ‘t’

denotes transpose, and if E½g0iðZÞ�
2o1 for all i¼ 1,2, . . . ,p, then (see Olkin and Shepp, 2005, p. 352)

DrH,

where H ¼HðgÞ ¼ ðE½g0iðZÞg
0
jðZÞ�Þp�p, and the inequality is considered in the sense of Loewner ordering, that is, the matrix

H�D is nonnegative definite.
In this note we extend and generalize this inequality for a large family of discrete and continuous random variables.

Specifically, our results apply to any random variable X according to one of the following definitions (cf. Afendras et al., 2007).

Definition 1 (Integrated Pearson family). Let X be a random variable with density function f (w.r.t. Lebesgue measure on R)
and finite mean m¼ EðXÞ. We say that X follows the Integrated Pearson distribution IPðm; d,b,gÞ, X � IPðm; d,b,gÞ, if there
exists a quadratic polynomial qðxÞ ¼ dx2þbxþg (with b,d,g 2 R, jdjþjbjþjgj40) such thatZ x

�1

ðm�tÞf ðtÞ dt¼ qðxÞf ðxÞ for all x 2 R: ð1Þ
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Definition 2 (Cumulative Ord family). Let X be an integer-valued random variable with finite mean m and assume that
pðkÞ ¼PðX ¼ kÞ, k 2 Z, is the probability function of X. We say that X follows the Cumulative Ord distribution COðm; d,b,gÞ,
X � COðm; d,b,gÞ, if there exists a quadratic polynomial qðjÞ ¼ dj2þbjþg (with b,d,g 2 R, jdjþjbjþjgj40) such thatX

kr j

ðm�kÞpðkÞ ¼ qðjÞpðjÞ for all j 2 Z: ð2Þ

It is well known that the commonly used distributions are members of the above families, e.g. Normal, Gamma, Beta, F

and t distributions belong to the Integrated Pearson family, while Poisson, Binomial, Pascal (Negative Binomial) and
Hypergeometric distribution are members of the Cumulative Ord family. Therefore, the results of the present note also
improve and unify the corresponding bounds for Beta random variables, given by Prakasa Rao (2006) and Wei and Zhang
(2009). For multivariate variance inequalities involving the generalized Dirichlet distribution see, also, Chang and Richards
(1999, Theorems 3.6 and 3.9).

2. Matrix variance inequalities of Poincaré-type and of Bessel-type

2.1. Continuous case

In this subsection we shall make use of the following notations.
Assume that X � IPðm; d,b,gÞ and denote by qðxÞ ¼ dx2þbxþg its quadratic polynomial. It is known that, under (1), the

support J¼ JðXÞ ¼ fx 2 R : f ðxÞ40g is a (finite or infinite) open interval, say JðXÞ ¼ ða,oÞ—see Afendras et al. (2007, 2011).
For a fixed integer n 2 f1,2, . . .g we shall denote by HnðXÞ the class of functions g : ða,oÞ-R satisfying the following

properties:
H1:
 For each k 2 f0,1, . . . ,n�1g, gðkÞ (with gð0Þ ¼ g) is an absolutely continuous function with derivative gðkþ1Þ.

H2:
 For each k 2 f0,1, . . . ,ng, E½qkðXÞðgðkÞðXÞÞ2�o1.
Also, for a fixed integer n 2 f1,2, . . .gwe shall denote by Bn
ðXÞ the class of functions g : ða,oÞ-R satisfying the following

properties:
B1:
 Var½gðXÞ�o1.

B2:
 For each k 2 f0,1, . . . ,n�1g, gðkÞ (with gð0Þ ¼ g) is an absolutely continuous function with derivative gðkþ1Þ.

B3:
 For each k 2 f0,1, . . . ,ng, E½qkðXÞjgðkÞðXÞj�o1.
Since E2
½qkðXÞjgðkÞðXÞj�rE½qkðXÞ� � E½qkðXÞðgðkÞðXÞÞ2� by the Cauchy–Schwarz inequality, it follows that HnðXÞDBn

ðXÞ when-
ever EjXj2no1 (observe that H2 (with k¼0) yields B1).

Consider now any p functions g1, . . . ,gp 2 HnðXÞ and set g ¼ ðg1,g2, . . . ,gpÞ
t. Then, the following p�p matrices Hk ¼HkðgÞ

are well-defined for k¼ 1,2, . . . ,n:

Hk ¼ ðhij;kÞ where hij;k :¼ E½qkðXÞgðkÞi ðXÞg
ðkÞ
j ðXÞ�, i,j¼ 1,2, . . . ,p: ð3Þ

Similarly, for any functions g1, . . . ,gp 2 Bn
ðXÞ, the following p� p matrices Bk ¼ BkðgÞ are well-defined for k¼ 1,2, . . . ,n:

Bk ¼ ðbij;kÞ where bij;k :¼ E½qkðXÞgðkÞi ðXÞ� � E½q
kðXÞgðkÞj ðXÞ�, i,j¼ 1,2, . . . ,p: ð4Þ

Our first result concerns a class of Poincaré-type matrix variance bounds, as follows:

Theorem 1. Let X � IPðm; d,b,gÞ and assume that EjXj2no1 for some fixed integer n 2 f1,2, . . .g. Let g1, . . . ,gp be arbitrary

functions in HnðXÞ and denote by D¼DðgÞ the dispersion matrix of the random vector g ¼ gðXÞ ¼ ðg1ðXÞ, . . . ,gpðXÞÞ
t. Also, denote

by Sn ¼ SnðgÞ the p� p matrix

Sn ¼
Xn

k ¼ 1

ð�1Þk�1

k!
Qk�1

j ¼ 0ð1�jdÞ
� Hk,

where the matrices Hk, k¼ 1,2, . . . ,n, are defined by (3). Then, the matrix

An ¼ ð�1ÞnðD�SnÞ

is nonnegative definite. Moreover, An is positive definite unless there exist constants c1, . . . ,cp 2 R, not all zero, such that the

function c1g1ðxÞþ � � � þcpgpðxÞ is a polynomial (in x) of degree at most n.

Proof. Fix c¼ ðc1, . . . ,cpÞ
t
2 Rp and define the function hcðxÞ ¼ ct � gðxÞ ¼ c1g1ðxÞþ � � � þcpgpðxÞ. Since g1, . . . ,gp 2 HnðXÞ we

see that the function hc belongs to HnðXÞ and, in particular, hcðXÞ has finite variance and E½qkðXÞðhðkÞc ðXÞÞ
2
�o1, k¼ 1,2 . . . ,n.

Thus, we can make use of the inequality (see Afendras et al., 2007; Johnson, 1993; cf. Houdré and Kagan, 1995;
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Papathanasiou, 1988)

ð�1Þn½VarhcðXÞ�Sn�Z0 where Sn ¼
Xn

k ¼ 1

ð�1Þk�1

k!
Qk�1

j ¼ 0ð1�jdÞ
E½qkðXÞðhðkÞc ðXÞÞ

2
�,

in which the equality holds if and only if hc is a polynomial of degree at most n. It is well-known that Var hcðXÞ ¼ ctDc and
it is easily seen that E½qkðXÞðhðkÞc ðXÞÞ

2
� ¼ ctHkc with Hk (k¼1,y,n) as in (3). Thus, Sn ¼ ctSnc and the preceding inequality

takes the form

ct½ð�1ÞnðD�SnÞ�cZ0:

Since c 2 Rp is arbitrary it follows that the matrix ð�1ÞnðD�SnÞ is nonnegative definite. Clearly the inequality is strict for all
c 2 Rp for which hc=2spam½1,x, . . . ,xn�. &

Remark 1. (a) Olkin and Shepp’s (2005) matrix inequalities are particular cases of Theorem 1 for n¼1 and with X being a
standard Normal or a Gamma random variable. For example, when n¼1 and X ¼ Z �Nð0,1Þ � IPð0; 0,0,1Þ then
S1 ¼H1 ¼H ¼ ðE½g0iðZÞg

0
jðZÞ�Þp�p and we get the inequality DrH (in the Loewner ordering). Moreover, for X¼Z and n¼2

or 3, Theorem 1 yields the new matrix variance bounds H�1
2H2rD and DrH�1

2 H2þ
1
6H3 where H2 ¼ ðE½g

00
i ðZÞg

00
j ðZÞ�Þp�p and

H3 ¼ ðE½g
000
i ðZÞg

000
j ðZÞ�Þp�p.

(b) Theorem 1 applies to Beta random variables. In particular, when n¼1 and X � Beta(a,b) (with density
f ðxÞpxa�1ð1�xÞb�1, 0oxo1, and parameters a,b40) then qðxÞ ¼ xð1�xÞ=ðaþbÞ. Theorem 1 yields the inequality DrH
(in the Loewner ordering) where H ¼ ð1=ðaþbÞÞðE½Xð1�XÞg0iðXÞg

0
jðXÞ�Þp�p. This compares with Theorem 4.1 in Prakasa Rao

(2006) and with Lemma 3.7 in Chang and Richards (1999); cf. Wei and Zhang (2009), Remark 1.

Next we show some similar Bessel-type matrix variance bounds. The particular case of a Beta random variable is
covered by Theorem 1 of Wei and Zhang (2009).

Theorem 2. Let X � IPðm; d,b,gÞ and assume that EjXj2no1 for some fixed integer n 2 f1,2, . . .g. Let g1, . . . ,gp be arbitrary

functions in Bn
ðXÞ and denote by D¼DðgÞ the dispersion matrix of the random vector g ¼ gðXÞ ¼ ðg1ðXÞ, . . . ,gpðXÞÞ

t. Also, denote

by Ln ¼ LnðgÞ the p�p matrix

Ln ¼
Xn

k ¼ 1

1

k! E½qkðXÞ�
Q2k�2

j ¼ k�1ð1�jdÞ
� Bk,

where the matrices Bk, k¼ 1,2, . . . ,n, are defined by (4). Then,

LnrD

in the Loewner ordering. Moreover, D�Ln is positive definite unless there exist constants c1, . . . ,cp 2 R, not all zero, such that the

function c1g1ðxÞþ � � � þcpgpðxÞ is a polynomial (in x) of degree at most n.

Proof. Fix c¼ ðc1, . . . ,cpÞ
t
2 Rp and, as in the previous proof, define the function hcðxÞ ¼ ct � gðxÞ ¼ c1g1ðxÞþ � � � þcpgpðxÞ.

Since g1, . . . ,gp 2 Bn
ðXÞ we see that the function hc belongs to Bn

ðXÞ. In particular, hcðXÞ has finite variance and
E½qkðXÞjhðkÞc ðXÞj�o1, k¼ 1,2 . . . ,n. Thus, we can apply the inequality (see Afendras et al., 2011)

VarhcðXÞZLn where Ln ¼
Xn

k ¼ 1

E2
½qkðXÞhðkÞc ðXÞ�

k! E½qkðXÞ�
Q2k�2

j ¼ k�1ð1�jdÞ
,

in which the equality holds if and only if hc is a polynomial of degree at most n. Observe that Var hcðXÞ ¼ ctDc and
E2
½qkðXÞjhðkÞc ðXÞj� ¼ ctBkc with Bk (k¼1,y,n) as in (4). Thus, Ln ¼ ctLnc and the preceding inequality takes the form

ct½D�Ln�cZ0:

Since c 2 Rp is arbitrary it follows that the matrix D�Ln is nonnegative definite. Clearly the inequality is strict for all c 2 Rp

for which hc=2spam½1,x, . . . ,xn�. &

2.2. Discrete case

In this subsection we shall make use of the following notations.
Assume that X � COðm; d,b,gÞ. It is known (see Afendras et al., 2007, 2011) that, under (2), the support J¼ JðXÞ ¼ fk 2

Z : pðkÞ40g is a (finite of infinite) interval of integers, say JðXÞ ¼ fa,aþ1, . . . ,o�1,og. Write qðxÞ ¼ dx2þbxþg for the
quadratic polynomial of X and let q½k�ðxÞ ¼ qðxÞqðxþ1Þ � � � qðxþk�1Þ for k¼ 1,2, . . . (with q½0�ðxÞ � 1, q½1�ðxÞ � qðxÞ). For any
function g : Z-R we shall denote by Dk

½gðxÞ� its k-th forward difference, i.e., Dk
½gðxÞ� ¼D½Dk�1

½gðxÞ��, k¼ 1,2, . . ., with
D½gðxÞ� ¼ gðxþ1Þ�gðxÞ and D0

½gðxÞ� � gðxÞ.
For a fixed integer n 2 f1,2, . . .g we shall denote by Hn

dðXÞ the class of functions g : JðXÞ-R satisfying the following
property:
HD1:
 For each k 2 f0,1, . . . ,ng, E½q½k�ðXÞðDk
½gðXÞ�Þ2�o1.



G. Afendras, N. Papadatos / Journal of Statistical Planning and Inference 141 (2011) 3628–3631 3631
d

properties:

Also, for a fixed integer n 2 f1,2, . . .g we shall denote by Bn

ðXÞ the class of functions g : JðXÞ-R satisfying the following
BD1:
 Var½gðXÞ�o1.

BD2:
 For each k 2 f0,1, . . . ,ng, E½qkðXÞjDk

½gðXÞ�j�o1.
Clearly, if EjXj2no1 then Hn
dðXÞDB

n
dðXÞ (note that HD1 (with k¼0) yields BD1). Indeed, since P½q½k�ðXÞZ0� ¼ 1, the

Cauchy–Schwarz inequality implies that E2
½q½k�ðXÞjDk

½gðXÞ�j�rE½q½k�ðXÞ� � E½q½k�ðXÞðDk
½gðXÞ�Þ2�.

Consider now any p functions g1, . . . ,gp 2 Hn
dðXÞ and set g ¼ ðg1,g2, . . . ,gpÞ

t. Then, the following p�p matrices Hk ¼HkðgÞ
are well-defined for k¼ 1,2, . . . ,n:

Hk ¼ ðhij;kÞ where hij;k :¼ E½q½k�ðXÞDk
½giðXÞ�D

k
½gjðXÞ��, i,j¼ 1,2, . . . ,p: ð5Þ

Similarly, for any functions g1, . . . ,gp 2 Bn
dðXÞ, the following p� p matrices Bk ¼ BkðgÞ are well-defined for k¼ 1,2, . . . ,n:

Bk ¼ ðbij;kÞ where bij;k :¼ E½q½k�ðXÞDk
½giðXÞ�� � E½q

½k�ðXÞDk
½gjðXÞ��, i,j¼ 1,2, . . . ,p: ð6Þ

The matrix variance inequalities for the discrete case are summarized in the following theorem; its proof, being the
same as in the continuous case, is omitted.

Theorem 3. Let X � COðm; d,b,gÞ and assume that EjXj2no1 for some fixed integer n 2 f1,2, . . .g.
(a) Let g1, . . . ,gp be arbitrary functions in Hn

dðXÞ and denote by D¼DðgÞ the dispersion matrix of the random vector

g ¼ gðXÞ ¼ ðg1ðXÞ, . . . ,gpðXÞÞ
t. Also, denote by Sn ¼ SnðgÞ the p�p matrix

Sn ¼
Xn

k ¼ 1

ð�1Þk�1

k!
Qk�1

j ¼ 0ð1�jdÞ
� Hk,

where the matrices Hk, k¼ 1,2, . . . ,n, are defined by (5). Then, the matrix

An ¼ ð�1ÞnðD�SnÞ

is nonnegative definite. Moreover, An is positive definite unless there exist constants c1, . . . ,cp 2 R, not all zero, and a polynomial

Pn : R-R, of degree at most n, such that P½c1g1ðXÞþ � � � þcpgpðXÞ ¼ PnðXÞ� ¼ 1.
(b) Let g1, . . . ,gp be arbitrary functions in Bn

dðXÞ and denote by D¼DðgÞ the dispersion matrix of the random vector

g ¼ gðXÞ ¼ ðg1ðXÞ, . . . ,gpðXÞÞ
t. Also, denote by Ln ¼ LnðgÞ the p�p matrix

Ln ¼
Xn

k ¼ 1

1

k! E½q½k�ðXÞ�
Q2k�2

j ¼ k�1ð1�jdÞ
� Bk,

where the matrices Bk, k¼ 1,2, . . . ,n, are defined by (6). Then,

LnrD

in the Loewner ordering. Moreover, D�Ln is positive definite unless there exist constants c1, . . . ,cp 2 R, not all zero, and a

polynomial Pn : R-R, of degree at most n, such that P½c1g1ðXÞþ � � � þcpgpðXÞ ¼ PnðXÞ� ¼ 1.
[It should be noted that the k-th term in the sum defining the matrix Sn or the matrix Ln, above, should be treated as the null

matrix, 0p�p, whenever E½q½k�ðXÞ� ¼ 0.]

As an example consider the case where X � PoissonðlÞwith probability function pðkÞ ¼ e�llk=k!, k¼ 0,1, . . . (l40). Then
X � COðl; 0,0,lÞ so that qðxÞ � l. It follows that Hk ¼ lk

ðE½Dk
½giðXÞ�D

k
½gjðXÞ��Þp�p and Bk ¼ l2k

ðE½Dk
½giðXÞ�� � E½D

k
½gjðXÞ��Þp�p.

Thus, for n¼1 and p¼2 Theorem 3(a) yields the matrix inequality

Var½g1� Cov½g1,g2�

Cov½g1,g2� Var½g2�

 !
rl

E½ðD½g1�Þ
2
� E½D½g1�D½g2��

E½D½g1�D½g2�� E½ðD½g2�Þ
2
�

 !
:
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