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Abstract

Consider the multivariate splitting mod®l=N1+- - -+ Ng, whereNy, ..., N,k >3, are arbitrary
(not necessarily independent) random variables (r.v.'s) taking valu®s=0, 1, ...}, and assume
that the Rao—Rubin condition is satisfied f6y andN>. Also assume that the conditional distribution
of the vector(N1, ..., Ni) given N is a convolution type. Characterizations related to this model
(with k£ = 2) was first considered by Shanbhag (1977. J. Appl. Probab. 14, 640-646), as an extension
of the binomial damage model established by Rao and Rubin (1964. SaBldnyA 26, 295-298),
and was extended to aky> 3 by Rao and Srivastava (1979. Sanai8er. A 41, 124-128).
In the present paper we provide an alternative set of conditions, under which the distribution of
is characterized, and we apply the result to some discrete distributions.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Moran’s (1952)characterization of Poisson distribution states tha¥ifand No are
non-degenerate independent random variables (r.v.’s) taking non-negative integral values
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and if the conditional distribution o1 given {N1 + N> = n} is binomial with index
parameter € N = {0, 1, ...} and success probabiliy, < [0, 1] for all » € N for which
P[N1+4 N2=n] > 0, then the distributions @¥1, N2 andN = N1+ N2 are Poisson, provided
that for some € N, P[N; =i] >0 andP[N2 = i] > 0. Similar results were proved by
Rényi (1964)andSrivastava (197 Ifpr the Poisson process.

Rao and Rubin (1964)roved a version dfloran’s (1952)esult, in which independence
of N1 andN» was relaxed to the so-call&ho—Rubin conditio(RR for brevity), namely,

P[N2 =n2|N1 =0]=P[N2 =n2], nz e N. (1.2)

Specifically, their main result asserts that if the distributiotvet N1 + N> is not concen-
trated at O and if for alk € N with P[N =n]> 0,

P[Ny=n1|N =n] = (:1) pt@A—-p)" ™, n1=0,...,n 1.2)

for some fixedp € (0, 1), then the RR condition (1.1) implies that; and N, are in-
dependent Poisson’s with parametefsand A(1 — p), respectively, for somé > 0. In
other words, the RR condition is equivalent to the independendg aind N2, under the
binomial damage model (1.2). (AccordingRao and Rubin (1964we may viewN; as
the undamaged (observed) part, avigl= N — N3 as the damaged (unobserved) part of
a natural discrete random quantitly so that (1.2) presents a binomial destructive law—a
damage model foN.)

Similar characterizations based on variants of the RR condition are giv&nigtynaji
(1974) Patil and Ratnaparkhi (1977a, IPatil and Taillie (1979)Shanbhag and Panaretos
(1979) Panaretos (1982Panaretos and Shimizu (198&purouklis (1986)andSapatinas
and Aly (1994) among others.

Shanbhag (1977¢xtended the Rao—Rubin characterization to a general, convolution
type, bivariate model. The multivariate analogue of Shanbhag’s characterization, namely
the general multivariate splitting mod®l= N1+ - - - + Nk, k>3, was first considered by
Rao and Srivastava (19783 an extension to Shanghag's (1977) model. To this end, they
used the following definition.

Definition 1.1. Let N1, ..., Ni, k>3, be arbitrary r.v.'s (independence is not imposed)
taking values ifN, and assume tha&f = N1 + - - - + Ny has p.m.f.f (n), n € N, such that
f(0) < 1. Suppose that the functions : N — [0, 00), j =1, ..., k, satisfy the following:
(AL) az(n)>0 foralln € N,

(A2) a;(0)>0 forallj=1,...,k and

(A3) a1(1) > 0.

Lete(n) = (a1 * -+~ x ar)(n) = Y 4. pymnl 1521 a;(sj), n € N, be the convolution of
ai, ..., ag. We say that the random vect@¥s, ..., Ny) is a convolution type if for every
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n € N with f(n) >0,

k
1
PIN1=n1,..., Ny =m|N =n] = —)1_[ j(np)
]:
forallny,...,nr € Nwithni+---+ng=n (1.3)

Their main result, based on Shanbhag’s result related to the RR condition, is given here
for easy reference.

Theorem 1.1(Rao—Srivastava characterizatipnlf the random vector(Ny, ..., Ni),
k >3, is a convolution typdgaccording to the notation used in Definitidnl), and if the
random variablesv1 and N, satisfy the RR conditiofiL.1), then the random variables
N1, ..., Ny are independent with p.nig of the form

P[Nj=nj]=Aj(c)aj(nj)c”-f, anN, j=1,...,k (1.4)
(for some common> 0) if and only if the equations
1
Y —b(n—s)x,=A()c*, s=01,... (1.5)
Vo c(n)
have a unique solution forg, x1, ..., where{xo, x1, . ..} forms a probability distribution

overN andb(n) = (ag*- - ~*ak)(n)=Zs3+___+5k:n]'[’§:3 a;j(s;), n € N,isthe convolution
ofas, ..., a. ‘

Theorem 1.1 implies a multivariate versionRé&o and Rubin’s (1964)haracterization
of the Poisson distribution, thus improving the resultRéfyi (1970)Bol’'shev (1965and
Gerber (1979]see, also, Corollary 2.1). Clearly, it is not an obvious fact to check whether
Egs. (1.5) have a unique solution among the probability distributions NNyand so, the
only application of Theorem 1.2 that is available in the literature is the one related to Poisson
distribution. The purpose of this article is to present an alternative set of conditions (which
can be shown to be sufficient for (1.5) to have a unique solution among the probability
distributions), so that the conclusion of Theorem 1.1 holds true. This set of conditions
enables us to give, as particular examples, some new characterizations.

2. Main result

Theorem 2.1. Let (Ny, ..., Ni), k>3, be a convolution typéaccording to the notation
given in Definitionl.1),and suppose that; and N, satisfy the RR conditiofi.1). More-
over, assume that there exists a sequence of real-valued fungtjan®, co) — R,n € N,
such that the following three conditions hold

(B1) The functiong,, (-) are linearly independenin the sense that for any real constants
cn, n € N, and for any finite interval C [0, oo) of positive lengththe relations

o0 o0
Z lcngn(x)| <oo and chgn(x)zo forall x € I,
n=0 n=0

imply thatc, = O0for all n € N.
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(B2) If for somef > 0, 3", ax(n)0" < oo, then_, |g,(x)|" < oo for all t € [0, 0] and
x >0, and the generating functioG(r, x) =), g.(x)?" of the sequencg, (-) has the form

G(t,x) =D expxg(?)), 0<r<6, x>0,

whereg () does not depend on and D > 0O is a real constant
(B3) There exist real constanfd > 0 anda >0 such that

Z gm@)b(n —m)y=Mg,(x +a), x=20, neN,

m=0

whereb(-) is the convolution ofiz, . . ., a, as in Theoreni..1.

Under the above conditionshere exists some constant 0 such thathjo:O aj(n)c"
<oo,forall j =1,...,k, and moreover Ny, ..., Ny are independent r\& with p.m.fs
given by(1.4),whereA;(c), j =1, ..., k are the corresponding normalizers

Proof. Using the results oBhanbhag (1977)as in the proof of Theorem 2(i) iRao
and Srivastava (1979]t follows that there exist constants>0 and A >0 such that
Yo pa1n)c” <00,y as(m)c" < oo andh(n) = Ac",n € N, where

h(n) = Z %b(m —n), neN. (2.1)
m>=n

Consider a sequence of functiofis n € N, satisfying (B1)—(B3). Sincg_, a>(n)c" < oo,
it follows that) ", h(n)|g,(x)| = A", c"[g(x)| is finite for allx > 0. Therefore, by (B2),

> h(m)gn(x) = AD explxg(c))
= A exp(—ag(c)) D exp((x +a)g(c))
=A exp(—ag(c))G(c, x +a)
= A exp(—ag(c)) Z gn(x +a)c". (2.2)

On the other hand, using (2.1), (B3) and Fubini’'s Theorem, we have

D hm)gn(x) =Y gn(x) Y fm)b(m —n)/c(m)

mz=n

=Y (fm)/cm)) D gu(x)b(m —n)

0<n<m

=M Y (fn)/c(m)gn(x + a). (2.3)

Thus, equating the RHSs of (2.2) and (2.3) we get

D () /em)ga(») =) Bc"g(y) <oo forall y>a,

n=0 n=0
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whereB = A exp(—ag(c))/M > 0, and by assumption (B1) we get
f(n)=Bcn)c", neN.

This implies thafy _, c(n)c" < oo, and in combination with (1.3), yields

ni+--+ng
9

P[N1=n1,..., Ny =ni] = Bay(ny) - - - ax(ng)c ni,....ng €N,

from which the desired result follows.[]
The following results are simple by-products of Theorem 2.1.

Corollary 2.1 (Rao—Srivastava characterization of Poisson distributioBuppose that the
rv.s Ni,..., Ny, k>3, take values inN and satisfy the RR conditiofl.1), and as-
sume thatV = N1 + --- + N has p.m.f.f(n), n € N, with f(0) < 1. If there exist
p1>0, p2>0, p3>0,..., pr =>0with p1 + - - - + pr = 1 such that for every € N with
fn)>0,

k nj
p.
PINy=n1.....Ny=m|N =n]l=n] | ==
n;!
j=1"/
forallny,...,ny e Nwithny+---+ny=n

(wherep;.” should be treated &kif p; =n; =0),then there exists somie> O such that N is

Poisson with parametet, andN;, j =1, ..., k, are independent Poisson with parameters
ipj, j=1,..., k, respectivelyin the sense tha¥; = 0 a.s, wheneverp; = 0).
Proof. The assumptions of Theorem 2.1 are satisfied wijttn) = p’j?/n!, j=21 ...k,

c(n)=1/n!,b(n)=(1— p1— p2)"*/n!, and the linearly independent functiongx) =x" /n!,
x>0, neN. O

Remark 2.1. (a) The casgz =--- = py =0 (i.e. p1 + p2 = 1) in Corollary 2.1, leads to
the classical Rao—Rubin characterization of Poisson.
(b) The characterizations @ol'shev (1965) Gerber (1979Rand Rényi (1970, p. 142)
are strictly weaker than the assertion of Corollary 2.1, because they assume independence
(at least) amongv; and V.

Corollary 2.2 (Characterization of negative binomial distributipnSuppose that the r's.
N1, ..., Ni, k> 3,take values ifN and satisfy the RR conditi¢ft.1),and assume that =
Ni+---+Nihasp.m.ff(n),n € N,with (0) < 1.Ifthereexist; >0, r2 >0, r3>0, ...,
rr =0 such that for every € N with f(n) > 0,

k
P[N1=n1,..., Ny =ng|N =n] = H[ZJ} /[;:|
J

j=1
forallny,...,ny € Nwithny +---+ny =n,
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wherer =r1 +---+r; > 0and
1, if n =0,
Tl=1 12
n — J] &G+s) ifn>1
n! s=0

forall x € Randn € N, then there exists somee (0, 1) such that N is negative binomial
with parametersr, p), i.e,

fn) = [;] pPr@a-p)", neN.

Moreover for the same value of,@v;, j =1, ..., k, are independent negative binomials
with parametersr;, p), j =1, ..., k, respectivelyin the sense thaV; =0a.s, whenever
rj = O)

Proof. The assumptions of Theorem 2.1 are satisfied with
o) = | T - _|r _|r—ri—r2
aj(n)_[ni|, j=1 ...k, C(n)_|:n] and b(n)_|: " ], n e N.

Moreover, if for some) > 0, )", a2(n)0" < oo, then necessaril§ < 1. Therefore, the lin-
early independent functions

gn(x) = [z] x>0, neN,

satisfy assumptions (B1)—(B3) of Theorem 2.1 with=1 anda =r — r1 — r2 >0. Thus,
c<1,p=1-—ce(0,1) and the desired result follows.[]

Corollary 2.3. Suppose that the r'8.Ny, ..., Ni, k >3, take values irN and satisfy the
RR condition(1.1),and assume thaV = N1 + --- + Ny has p.m.f.f(n), n € N, with
f(0) < 1.Ifthere existintegera3 >0, ..., m; >0suchthatforevery € Nwith f(n) >0,

k min{m,n}

P[N1=n1,..., Ny =N =n] = ]"[(’Zf) > (’") n+1-j)
j=3 > =
forallny, ..., ny € Nwithny +--- +ni =n,

wherem =m3 + --- + my >0and
1, if n =0,
)=t 11
n — [[(x—s) ifn>1
n! s=0

forallx € Randn € N,thenNy, ..., Ny are independent and there exists sgme (0, 1)
such thatV; and N are Geometridp) with P[N; =n;]=p(1—p)",n; e N, j =12,
while for j >3, N; is Binomial(m, p/(2 — p)) (in the sense tha¥; = 0 a.s, whenever
mj = O).
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Proof. The assumptions of Theorem 2.1 are satisfied with

ar(n)=ax(n) =1, aj(n) = <m]> Jj=3....k,

n
min{m,n}
cm= Y (’7) (n+1-j) and b(n):(’:Z), neN.
j=0

Moreover, if for some) > 0, ", a2(n)0" < oo, then necessarily < 1. Therefore, the lin-
early independent functions

gn<x)=<z>, x>0, neN,

satisfy assumptions (B1)—(B3) of Theorem 2.1 with= 1 anda = m >0. Thus,c < 1,
p=1—c € (0,1) and the desired result follows.[]
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