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Abstract

Consider the multivariate splitting modelN=N1+· · ·+Nk , whereN1, . . . , Nk , k�3, are arbitrary
(not necessarily independent) random variables (r.v.’s) taking values inN = {0, 1, . . .}, and assume
that the Rao–Rubin condition is satisfied forN1 andN2. Also assume that the conditional distribution
of the vector(N1, . . . , Nk) givenN is a convolution type. Characterizations related to this model
(with k = 2) was first considered by Shanbhag (1977. J. Appl. Probab. 14, 640–646), as an extension
of the binomial damage model established by Rao and Rubin (1964. Sankhy¯a Ser. A 26, 295–298),
and was extended to anyk�3 by Rao and Srivastava (1979. Sankhy¯a Ser. A 41, 124–128).

In the present paper we provide an alternative set of conditions, under which the distribution ofN
is characterized, and we apply the result to some discrete distributions.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Moran’s (1952)characterization of Poisson distribution states that ifN1 and N2 are
non-degenerate independent random variables (r.v.’s) taking non-negative integral values
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and if the conditional distribution ofN1 given {N1 + N2 = n} is binomial with index
parametern ∈ N = {0, 1, . . .} and success probabilitypn ∈ [0, 1] for all n ∈ N for which
P[N1+N2=n] > 0, then the distributions ofN1,N2 andN =N1+N2 are Poisson, provided
that for somei ∈ N, P[N1 = i] > 0 andP[N2 = i] > 0. Similar results were proved by
Rényi (1964)andSrivastava (1971)for the Poisson process.

Rao and Rubin (1964)proved a version ofMoran’s (1952)result, in which independence
of N1 andN2 was relaxed to the so-calledRao–Rubin condition(RR for brevity), namely,

P[N2 = n2|N1 = 0] = P[N2 = n2], n2 ∈ N. (1.1)

Specifically, their main result asserts that if the distribution ofN = N1 + N2 is not concen-
trated at 0 and if for alln ∈ N with P[N = n] > 0,

P[N1 = n1|N = n] =
(

n

n1

)
pn1(1 − p)n−n1, n1 = 0, . . . , n (1.2)

for some fixedp ∈ (0, 1), then the RR condition (1.1) implies thatN1 andN2 are in-
dependent Poisson’s with parameters�p and�(1 − p), respectively, for some�> 0. In
other words, the RR condition is equivalent to the independence ofN1 andN2, under the
binomial damage model (1.2). (According toRao and Rubin (1964), we may viewN1 as
the undamaged (observed) part, andN2 = N − N1 as the damaged (unobserved) part of
a natural discrete random quantityN, so that (1.2) presents a binomial destructive law—a
damage model forN.)

Similar characterizations based on variants of the RR condition are given byKrishnaji
(1974), Patil and Ratnaparkhi (1977a, b), Patil and Taillie (1979), Shanbhag and Panaretos
(1979), Panaretos (1982), Panaretos and Shimizu (1984), Kourouklis (1986)andSapatinas
and Aly (1994), among others.

Shanbhag (1977)extended the Rao–Rubin characterization to a general, convolution
type, bivariate model. The multivariate analogue of Shanbhag’s characterization, namely
the general multivariate splitting modelN = N1 + · · · + Nk, k�3, was first considered by
Rao and Srivastava (1979)as an extension to Shanghag’s (1977) model. To this end, they
used the following definition.

Definition 1.1. Let N1, . . . , Nk, k�3, be arbitrary r.v.’s (independence is not imposed)
taking values inN, and assume thatN = N1 + · · · + Nk has p.m.f.f (n), n ∈ N, such that
f (0) < 1. Suppose that the functionsaj : N → [0, ∞), j =1, . . . , k, satisfy the following:
(A1) a2(n) > 0 for all n ∈ N,
(A2) aj (0) > 0 for all j = 1, . . . , k, and
(A3) a1(1) > 0.
Let c(n) = (a1 ∗ · · · ∗ ak)(n) = ∑

s1+···+sk=n

∏k
j=1 aj (sj ), n ∈ N, be the convolution of

a1, . . . , ak. We say that the random vector(N1, . . . , Nk) is a convolution type if for every
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n ∈ N with f (n) > 0,

P[N1 = n1, . . . , Nk = nk|N = n] = 1

c(n)

k∏
j=1

aj (nj )

for all n1, . . . , nk ∈ N with n1 + · · · + nk = n. (1.3)

Their main result, based on Shanbhag’s result related to the RR condition, is given here
for easy reference.

Theorem 1.1(Rao–Srivastava characterization). If the random vector(N1, . . . , Nk),
k�3, is a convolution type(according to the notation used in Definition1.1),and if the
random variablesN1 andN2 satisfy the RR condition(1.1), then the random variables
N1, . . . , Nk are independent with p.m.f.’s of the form

P[Nj = nj ] = Aj(c)aj (nj )c
nj , nj ∈ N, j = 1, . . . , k (1.4)

(for some commonc > 0) if and only if the equations∑
n� s

1

c(n)
b(n − s)xn = A(c)cs, s = 0, 1, . . . (1.5)

have a unique solution forx0, x1, . . . , where{x0, x1, . . .} forms a probability distribution
overN andb(n)=(a3∗· · ·∗ak)(n)=∑

s3+···+sk=n

∏k
j=3 aj (sj ), n ∈ N, is the convolution

of a3, . . . , ak.

Theorem 1.1 implies a multivariate version ofRao and Rubin’s (1964)characterization
of the Poisson distribution, thus improving the results ofRényi (1970), Bol’shev (1965)and
Gerber (1979)(see, also, Corollary 2.1). Clearly, it is not an obvious fact to check whether
Eqs. (1.5) have a unique solution among the probability distributions overN, and so, the
only application of Theorem 1.2 that is available in the literature is the one related to Poisson
distribution. The purpose of this article is to present an alternative set of conditions (which
can be shown to be sufficient for (1.5) to have a unique solution among the probability
distributions), so that the conclusion of Theorem 1.1 holds true. This set of conditions
enables us to give, as particular examples, some new characterizations.

2. Main result

Theorem 2.1. Let (N1, . . . , Nk), k�3, be a convolution type(according to the notation
given in Definition1.1),and suppose thatN1 andN2 satisfy the RR condition(1.1).More-
over,assume that there exists a sequence of real-valued functionsgn : [0, ∞) → R, n ∈ N,
such that the following three conditions hold.

(B1)The functionsgn(·) are linearly independent, in the sense that for any real constants
cn, n ∈ N, and for any finite intervalI ⊂ [0, ∞) of positive length, the relations

∞∑
n=0

|cngn(x)| < ∞ and
∞∑

n=0

cngn(x) = 0 for all x ∈ I ,

imply thatcn = 0 for all n ∈ N.
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(B2) If for some�> 0,
∑

n a2(n)�n < ∞, then
∑

n |gn(x)|tn < ∞ for all t ∈ [0, �] and
x�0,and the generating functionG(t, x)=∑

n gn(x)tn of the sequencegn(·) has the form
G(t, x) = D exp(xg(t)), 0� t ��, x�0,

whereg(t) does not depend on x, andD > 0 is a real constant.
(B3)There exist real constantsM > 0 anda�0 such that

n∑
m=0

gm(x)b(n − m) = Mgn(x + a), x�0, n ∈ N,

whereb(·) is the convolution ofa3, . . . , ak, as in Theorem1.1.
Under the above conditions, there exists some constantc > 0 such that

∑∞
n=0 aj (n)cn

< ∞, for all j = 1, . . . , k, and, moreover, N1, . . . , Nk are independent r.v.’s with p.m.f.’s
given by(1.4),whereAj(c), j = 1, . . . , k are the corresponding normalizers.

Proof. Using the results ofShanbhag (1977), as in the proof of Theorem 2(i) inRao
and Srivastava (1979), it follows that there exist constantsc > 0 and A > 0 such that∑

n a1(n)cn < ∞,
∑

n a2(n)cn < ∞ andh(n) = Acn, n ∈ N, where

h(n) =
∑
m�n

f (m)

c(m)
b(m − n), n ∈ N. (2.1)

Consider a sequence of functionsgn, n ∈ N, satisfying (B1)–(B3). Since
∑

n a2(n)cn < ∞,
it follows that

∑
n h(n)|gn(x)| = A

∑
n cn|gn(x)| is finite for allx�0. Therefore, by (B2),∑

n

h(n)gn(x) = AD exp(xg(c))

= A exp(−ag(c))D exp((x + a)g(c))

= A exp(−ag(c))G(c, x + a)

= A exp(−ag(c))
∑
n

gn(x + a)cn. (2.2)

On the other hand, using (2.1), (B3) and Fubini’s Theorem, we have∑
n

h(n)gn(x) =
∑
n

gn(x)
∑
m�n

f (m)b(m − n)/c(m)

=
∑
m

(f (m)/c(m))
∑

0�n�m

gn(x)b(m − n)

= M
∑
n

(f (n)/c(n))gn(x + a). (2.3)

Thus, equating the RHSs of (2.2) and (2.3) we get

∞∑
n=0

(f (n)/c(n))gn(y) =
∞∑

n=0

Bcngn(y) < ∞ for all y�a,
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whereB = A exp(−ag(c))/M > 0, and by assumption (B1) we get

f (n) = Bc(n)cn, n ∈ N.

This implies that
∑

n c(n)cn < ∞, and in combination with (1.3), yields

P[N1 = n1, . . . , Nk = nk] = Ba1(n1) · · · ak(nk)c
n1+···+nk , n1, . . . , nk ∈ N,

from which the desired result follows.�

The following results are simple by-products of Theorem 2.1.

Corollary 2.1 (Rao–Srivastava characterizationofPoissondistribution). Suppose that the
r.v.’s N1, . . . , Nk, k�3, take values inN and satisfy the RR condition(1.1), and as-
sume thatN = N1 + · · · + Nk has p.m.f.f (n), n ∈ N, with f (0) < 1. If there exist
p1 > 0, p2 > 0, p3�0, . . . , pk �0withp1 + · · · + pk = 1 such that for everyn ∈ N with
f (n) > 0,

P[N1 = n1, . . . , Nk = nk|N = n] = n!
k∏

j=1

p
nj

j

nj !
for all n1, . . . , nk ∈ N with n1 + · · · + nk = n

(wherep
nj

j should be treated as1 if pj =nj =0), then there exists some�> 0such that N is
Poisson with parameter�, andNj , j = 1, . . . , k, are independent Poisson with parameters
�pj , j = 1, . . . , k, respectively(in the sense thatNj = 0 a.s.,wheneverpj = 0).

Proof. The assumptions of Theorem 2.1 are satisfied withaj (n) = pn
j /n!, j = 1, . . . , k,

c(n)=1/n!,b(n)=(1−p1−p2)
n/n!, and the linearly independent functionsgn(x)=xn/n!,

x�0, n ∈ N. �

Remark 2.1. (a) The casep3 = · · · = pk = 0 (i.e.p1 + p2 = 1) in Corollary 2.1, leads to
the classical Rao–Rubin characterization of Poisson.

(b) The characterizations ofBol’shev (1965), Gerber (1979)and Rényi (1970, p. 142)
are strictly weaker than the assertion of Corollary 2.1, because they assume independence
(at least) amongN1 andN2.

Corollary 2.2 (Characterization of negative binomial distribution). Suppose that the r.v.’s
N1, . . . , Nk, k�3, take values inN and satisfy the RR condition(1.1),and assume thatN =
N1+· · ·+Nk hasp.m.f.f (n),n ∈ N,withf (0) < 1.If thereexistr1 > 0, r2 > 0, r3�0, . . . ,

rk �0 such that for everyn ∈ N with f (n) > 0,

P[N1 = n1, . . . , Nk = nk|N = n] =

 k∏

j=1

[
rj
nj

]
/ [

r

n

]

for all n1, . . . , nk ∈ Nwithn1 + · · · + nk = n,
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wherer = r1 + · · · + rk > 0 and

[
x

n

]
=




1, if n = 0,

1

n!
n−1∏
s=0

(x + s) if n�1

for all x ∈ R andn ∈ N, then there exists somep ∈ (0, 1) such that N is negative binomial
with parameters(r, p), i.e.,

f (n) =
[
r

n

]
pr(1 − p)n, n ∈ N.

Moreover, for the same value of p, Nj , j = 1, . . . , k, are independent negative binomials
with parameters(rj , p), j = 1, . . . , k, respectively(in the sense thatNj = 0 a.s.,whenever
rj = 0).

Proof. The assumptions of Theorem 2.1 are satisfied with

aj (n) =
[
rj
n

]
, j = 1, . . . , k, c(n) =

[
r

n

]
and b(n) =

[
r − r1 − r2

n

]
, n ∈ N.

Moreover, if for some�> 0,
∑

n a2(n)�n < ∞, then necessarily�< 1. Therefore, the lin-
early independent functions

gn(x) =
[
x

n

]
, x�0, n ∈ N,

satisfy assumptions (B1)–(B3) of Theorem 2.1 withM = 1 anda = r − r1 − r2�0. Thus,
c < 1, p = 1 − c ∈ (0, 1) and the desired result follows.�

Corollary 2.3. Suppose that the r.v.’sN1, . . . , Nk, k�3, take values inN and satisfy the
RR condition(1.1),and assume thatN = N1 + · · · + Nk has p.m.f.f (n), n ∈ N, with
f (0) < 1.If there exist integersm3�0, . . . , mk �0such that for everyn ∈ Nwithf (n) > 0,

P[N1 = n1, . . . , Nk = nk|N = n] =

 k∏

j=3

(
mj

nj

)
/ min{m,n}∑

j=0

(
m

j

)
(n + 1 − j)

for all n1, . . . , nk ∈ Nwithn1 + · · · + nk = n,

wherem = m3 + · · · + mk �0 and

(
x

n

)
=




1, if n = 0,

1

n!
n−1∏
s=0

(x − s) if n�1

for all x ∈ R andn ∈ N, thenN1, . . . , Nk are independent and there exists somep ∈ (0, 1)

such thatN1 andN2 are Geometric(p) withP[Nj = nj ] = p(1− p)nj , nj ∈ N, j = 1, 2,
while for j �3, Nj is Binomial(mj , p/(2 − p)) (in the sense thatNj = 0 a.s., whenever
mj = 0).
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Proof. The assumptions of Theorem 2.1 are satisfied with

a1(n) = a2(n) ≡ 1, aj (n) =
(

mj

n

)
, j = 3, . . . , k,

c(n) =
min{m,n}∑

j=0

(
m

j

)
(n + 1 − j) and b(n) =

(
m

n

)
, n ∈ N.

Moreover, if for some�> 0,
∑

n a2(n)�n < ∞, then necessarily�< 1. Therefore, the lin-
early independent functions

gn(x) =
(

x

n

)
, x�0, n ∈ N,

satisfy assumptions (B1)–(B3) of Theorem 2.1 withM = 1 anda = m�0. Thus,c < 1,
p = 1 − c ∈ (0, 1) and the desired result follows.�
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