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Abstract

Consider a simple random sample taken without replacement from a 4nite ordered population,
where each element of the population has equal probability to be chosen in the sample. In the
present paper, the best possible bounds for the expectation of any linear combination of order
statistics based on the sample are derived in terms of the coe6cients of the combination, the
population mean and a central absolute moment. The results are speci4ed for the trimmed means
and the quasi-ranges.
c© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Let �={x16 · · ·6 xN} be a 4nite ordered population and consider a simple random
sample X1; : : : ; Xn, drawn without replacement from �. Of course n6N (usually, n
is much smaller than N ), and the case n = N leads to an exhaustive (trivial) sample
from �. Let us consider the ordered sample X1:n6 · · ·6Xn:n, obtained from the simple
random sample X1; : : : ; Xn. Recently, Balakrishnan et al. (2003) derived the best possible
bounds for E[Xi:n], 16 i6 n, and for E[Xn:n − X1:n], when the population mean 
 and
the population variance �22 were 4xed.
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In Section 2 we extend the results of Balakrishnan et al. (2003) and derive sharp
upper and lower expectation bounds for any L-statistic of the form

L= L(c1; : : : ; cn) =
n∑
i=1

ciXi:n; (1.1)

with arbitrary real constants ci. The bounds are expressed in terms of the coe6cients ci
and the population mean and the central absolute moments of various orders. A more
detailed discussion of the cases of trimmed means T (i; j) = (j − i + 1)−1

∑j
r=i Xr:n,

16 i6 j6 n, (single order statistics, in particular), and quasi-ranges Q(i; j)=Xj:n−Xi:n,
16 i¡ j6 n, (spacings, in particular) is presented in Section 3.
Bounds on expectations of L-statistics were studied in various models. In the classic

i.i.d. case, the optimal mean-variance bounds for the sample maxima were established
independently by Gumbel (1954), and Hartley and David (1954), and those for other
order statistics by Moriguti (1953). Nagaraja (1981) analyzed extreme trimmed means
(selection diKerentials), and the other ones were evaluated by Danielak and Rychlik
(2003a). A general method of deriving bounds for arbitrary L-statistics was presented
in Rychlik (1998). Some sharper bounds for the i.i.d. samples of restricted nonparamet-
ric families of distributions were considered in Danielak (2003), Danielak and Rychlik
(2003b), Gajek and Rychlik (1998), LLopez-BlLazquez (1998, 2000), Papadatos (1997)
and Rychlik (2002). For the dependent identically distributed samples, Arnold (1980,
1985) evaluated the sample maximum and range, whereas the general L-statistics were
considered in Rychlik (1993b). The results are closely related to deterministic bounds
considered by numerous authors, and reviewed in Arnold and Balakrishnan (1989) and
Rychlik (1998). Sharper bounds for order statistics and trimmed means of restricted
families were given in Gajek and Rychlik (1996) and Rychlik (2001a). A compre-
hensive presentation of bounds on expectations of L-statistics can be found in Rychlik
(2001b). The importance of the without replacement drawing schemes from 4nite pop-
ulations follows from the fact that this is the most natural sampling method in practical
applications.

2. Expectation bounds for L-statistics

Let �= {x16 · · ·6 xN} be any ordered 4nite population of size N and X1; : : : ; Xn,
n6N , be a simple random sample drawn without replacement from �. Note that the
observations are dependent identically distributed and the population mean 
 = E[X1]
and population central absolute moments �pp = E|X1 − 
|p are 4nite, and given by


 =
1
N

N∑
k=1

xk and �pp =
1
N

N∑
k=1

|xk − 
|p; 16p¡∞: (2.1)

Natural scale units, denoted by �p, are de4ned as the pth roots of the pth moments
�pp. We also set

�∞ = ess sup |X1 − 
|=max{
 − x1; xN − 
}: (2.2)
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Let �0 ={1; : : : ; N} be the standard uniform discrete population, and consider a simple
random sample U1; : : : ; Un, n6N , drawn from �0 without replacement. It is known
(see Balakrishnan et al. (2003, Lemma 2.1)) that the ordered samples X1:n6 · · ·6Xn:n
from � and U1:n6 · · ·6Un:n from �0 are related through

(X1:n; : : : ; Xn:n)
d=(g(U1:n); : : : ; g(Un:n));

where g :�0 → � is a nondecreasing function given by g(k) = xk , k = 1; : : : ; N . To
avoid trivialities in the sequel, we assume that x1¡xN . Since any L-statistic of the
form (1.1) satis4es

L d=
n∑
i=1

cig(Ui:n);

and

pi(k) = pi(k; n; N ) = P(Ui:n = k) =

(
k − 1
i − 1

)(
N − k

n− i

)/(
N

n

)
(2.3)

(with the convention ( ab) = 0 for a¡b), we get

E[L] =
n∑
i=1

ci
N∑
k=1

xkpi(k) =
N∑
k=1

xk
n∑
i=1

cipi(k) =
N∑
k=1

Ckxk ; say:

Note that
N∑
k=1

Ck =
n∑
i=1

ci
N∑
k=1

pi(k) =
n∑
i=1

ci;

so that the 4nite sequences c1; : : : ; cn and C1; : : : ; CN sum up to the same constant. For
our purposes we need the following de4nition.

De�nition 2.1. De4ne (D1; : : : ; DN )∈RN to be the l2-projection of (C1; : : : ; CN ) onto
the convex cone of nondecreasing sequences in RN .

Note that the cone is a closed convex subset of RN , and the projection exists and is
4nite. The numbers D1; : : : ; DN are uniquely determined by C1; : : : ; CN , and the latter
depend on c1; : : : ; cn. Two alternative constructions of projections are valid:
(I) De4ne D : [0; N ] → R to be the greatest convex function such that D(0) = 0 and

D(k)6
∑k

i=1 Ci for k = 1; : : : ; N . Obviously, D is a piecewise linear function. Then
the numbers Dk are de4ned as the ‘slopes’ of the function D on the intervals [k−1; k],
i.e.,

Dk =
D(k)− D(k − 1)
k − (k − 1) = D(k)− D(k − 1); k = 1; : : : ; N:

This construction has been used by Rychlik (1993a) and Papadatos (2001); see Rychlik
(2001b) and Balakrishnan (1981) for the relevant elements of the Hilbert spaces theory.
(II) De4ne k0 = 0 and

ki+1 = max

{
k ∈ {ki + 1; : : : ; N} : 1

k − ki

k∑
i=ki+1

Ci is minimal

}
:
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This procedure ends after m steps, 16m6N , and obviously,

k0 = 0¡k1¡ · · ·¡km = N:

Then, the sequence D1; : : : ; DN is de4ned by

Dk =
1

ki − ki−1

ki∑
i=ki−1+1

Ci; k = ki−1 + 1; : : : ; ki; i = 1; : : : ; m:

In the 4rst step, the algorithm determines the minimal average of the 4rst elements
C1; : : : ; Ck1 , 16 k16N , of the sequence C1 : : : ; CN , and replaces these elements by
their average. In the next steps, the procedure is performed for the remaining parts
Cki+1; : : : ; CN of the original sequence. It is obvious that we obtain the same result,
once we calculate consecutive maximal averages starting from the right end of the
sequence, or we mix both the methods. The above algorithm, called Pool-Adjacent-
Violators-Algorithm (PAVA), has many other numerical modi4cations, and is exten-
sively used in order restricted regression problems (see, e.g., Robertson et al., 1988).
From the former construction, it follows immediately that D16 · · ·6DN . Using the

latter one, we easily observe that
∑N

k=1 Dk =
∑N

k=1 Ck , and both the sequences have
the same average PD = N−1 ∑N

k=1 Ck . It is also evident that Ck = Dk for all k iK Ck

is nondecreasing in k. In the other extremal case where Ck is nonincreasing in k, the
projection is constant: Dk = PD, 16 k6N . Note that this is not a necessary condition
for a constant projection. E.g., even if C1; : : : ; CN−1 is increasing, but CN 6 (N−1)C1+∑N−1

k=1 Ck , then all Dk are equal to PD.
In Theorem 2.1, we use the construction to establish mean-variance bounds on the

expectations of arbitrary L-statistics. The bounds are sharp except for the cases of coe6-
cients c1; : : : ; cn which generate constant projections of respective sequences C1; : : : ; CN .

Theorem 2.1. Consider a without replacement sample X1; : : : ; Xn, n6N , from a 7nite
ordered sample � = {x1; : : : ; xN}. Let 
 and �22¿ 0 denote the population mean and
variance, respectively, de7ned in (2.1). For arbitrary 7xed reals c1; : : : ; cn, de7ne the
L-statistic by (1.1). Then

E[L]6 

n∑
i=1

ci + �2N 1=2
(

N∑
k=1

D2k − N PD2
)1=2

: (2.4)

The bound is best possible if D1¡DN . If this is the case, then the equality holds
only for the population with

xk − 

�2

=
N 1=2(Dk − PD)

(
∑N

r=1 D
2
r − N PD2)1=2

; k = 1; : : : ; N: (2.5)

Proof. Set yk=(xk−
)=�2, k=1; : : : ; N . Then y16 · · ·6yN , and by (2.1),
∑N

k=1 yk=0
and

∑N
k=1 y

2
k = N . By Proposition 1 in Rychlik (1992), we have

N∑
k=1

Ckyk6
N∑
k=1

Dkyk ;
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and the equality holds iK

yki−1+1 = · · ·= yki ; i = 1; : : : ; m: (2.6)

Thus, applying 4rst the above and next the Cauchy-Schwarz inequality, we get

E
[(

L− 

n∑
i=1

ci

)/
�2

]
=

N∑
k=1

Ckyk

6
N∑
k=1

Dkyk =
N∑
k=1

(Dk − PD)yk

6

[
N∑
k=1

y2k

]1=2 [ N∑
k=1

(Dk − PD)2
]1=2

= N 1=2
[

N∑
k=1

D2k − N PD2
]1=2

; (2.7)

which proves (2.4). Regarding the case of equality, it follows easily that if D1¡DN ,
then the only sequence y16 · · ·6yN with

∑N
k=1 yk =0 and

∑N
k=1 y

2
k =N that attains

both equalities in (2.7) is given by the RHS of (2.5), and the proof is complete.

Using the HQolder inequality instead of the Cauchy-Schwarz one, we can obtain more
general bounds in terms of the pth absolute central moments �pp for p¿ 1.

Theorem 2.2. Let p¿ 1 and q = p=(p − 1). Then, under the notation of Theorem
2.1, for any population with mean 
 and pth central absolute moment �pp ¿ 0, we
have

E[L]6 

n∑
i=1

ci + �pN 1=p
(

N∑
k=1

|Dk − d|q
)1=q

; (2.8)

where d∈ [D1; DN ] is the unique solution to the equation
N∑
k=1

|Dk − d|q=p sgn(Dk − d) = 0: (2.9)

The equality holds only for the population � = {x16 · · ·6 xN} with

xk − 

�p

=
N 1=p|Dk − d|q=p sgn(Dk − d)

(
∑N

r=1 |Dr − d|q)1=p ; k = 1; : : : ; N; (2.10)

provided that D1¡DN .

Proof. The arguments are similar to those of the proof of Theorem 2.1, and so we
merely outline the main points. Solution to (2.9) minimizes the strictly convex function
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x 	→∑N
k=1 |Dk − x|q, whose derivative is the LHS of (2.9) multiplied by q. It is easy

to see that the minimizing point d cannot lie beyond the interval [D1; DN ]. (In the case
p=2, we have d= PD, but there is no simple analytic expression otherwise.) Replacing
PD by d, and applying the HQolder inequality instead of the Schwarz one in (2.7), we
obtain the bound (2.8). Equality in the HQolder inequality holds if the sequence yk ,
16 k6N , is proportional to the RHS of (2.10). The proportion coe6cient is chosen
so that

∑N
k=1 |yk |p = N . By (2.9),

∑N
k=1 yk = 0 holds then, and so both moment

conditions are satis4ed. Finally, we observe that (2.10) implies (2.6), and therefore the
former inequality in (2.7) is attained as well.

For completeness, we state without proofs analogous results for the extereme cases
p= 1 and p=∞. In the former one, we have

Theorem 2.3. Under the assumptions of Theorem 2.1, we have

E[L]6 

n∑
i=1

ci + �1N
DN − D1

2
: (2.11)

If D1¡DN , with the notation

16 r1 = #{k: Dk = D1}6 s1 = #{k: Dk ¡DN}6N − 1;

the bound (2.11) is attained if

xk − 

�1

=




− N
2r1

; for k = 1; : : : ; r1;

0; for k = r1 + 1; : : : ; s1;

N
2(N − s1)

; for k = s1 + 1; : : : ; N:

In fact, conditions of attainability are weaker if either Dr1+1 or Ds1 is equal to d=
DN+D1
2 . Then xk , 16 k6N , may take on four values. Identical values are then assigned

to the following sets of indices: {1; : : : ; r1}, {s1 +1; : : : ; N}, {r1 +16 k6 s1: Dk =d},
and {r1 + 16 k6 s1: Dk 
= d}. Only for the last one the value is strictly determined
xk=
. The other should be chosen so that monotonicity and both the moment conditions
are satis4ed.

Theorem 2.4. With the notation of Theorem 2.1, and (2.2),

d=

{
D(N+1)=2; if N is odd;

(DN=2 + DN=2+1)=2; if N is even;

06 r∞ = #{k: Dk ¡d}6 �N=2�6 s∞ = #{k: Dk6d}6N; (2.12)
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and �x� standing for the >oor of the number x, we have

E[L]6 

n∑
i=1

ci + �∞

[
N∑

k=s∞+1

Ck −
r∞∑
k=1

Ck + (r∞ + s∞ − N )d

]
: (2.13)

If D1¡DN , then the equality holds if

xk − 

�∞

=




−1; for k = 1; : : : ; r∞;

r∞ + s∞ − N
s∞ − r∞

; for k = r∞ + 1; : : : ; s∞;

+1; for k = s∞ + 1; : : : ; N:

(2.14)

Note that by (2.12), the sequence de4ned in the RHS of (2.14) is nondecreasing,
and its elements are contained in [− 1; 1].

Remark 2.1. The above upper bounds can be easily transformed to the sharp lower
ones. Indeed, if Y1; : : : ; Yn is a without replacement sample from �′={y16 · · ·6yN}
with yk =−xN+1−k , k = 1; : : : ; N , then

inf E
[

n∑
i=1

ci(Xi:n − 
)=�p

]
=−sup E

[
n∑
i=1

cn+1−i(Yi:n + 
)=�p

]
;

and E[Yi] =−
, E|Yi + 
|p = �pp. Thus, the sharp lower bounds can be determined by
the corresponding upper bounds for �′, using the constants c′

i = cn+1−i. The optimal
populations are also determined similarly.

Remark 2.2. Balakrishnan et al. (2003, Lemma 6.1) showed that every distribution
of the i.i.d. sample of 4xed size n may be approximated with arbitrary desired accu-
racy by the distribution of the sample of the same size n drawn without replacement
from a 4nite population of size N , as N becomes large. Theorem 5.1 of Balakrishnan
et al. (2003) asserts that the upper bounds for the expected sample maximum of the
without replacement models tend to the Hartley-David-Gumbel general bound for the
maximum of arbitrary i.i.d. sample, as the population size increases. One can expect
the same in the case of other L-statistics. On the other hand, Rychlik (1993b) proved
that the optimal bounds on the expectations of arbitrary L-statistics based on arbitrar-
ily dependent identically distributed samples with given marginal moments (as well as
analogous deterministic bounds) are attained by the exhaustive (with n = N ) drawing
without replacement models. In this context, the without replacement schemes, except
for their practical importance, can be treated as simple and natural transition models
between the classical i.i.d. case and the arbitrarily dependent one.

Remark 2.3. If the projection (D1; : : : ; DN ) of (C1; : : : ; CN ) is constant with Dk = PD,
16 k6N , relations (2.4), (2.8), (2.11), and (2.13) simply state that

E[L]6 

n∑
i=1

ci:
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In order to get better evaluations, one needs to use speci4c subtle tools. For instance,
Balakrishnan et al. (2003, Theorem 4.1) proved that

E[X1:n]6 
 − �2(N − 1)−1=2

is the best possible upper bound for the expectation of the sample minimum.

3. Expectation bounds for the trimmed means and the quasi-ranges

In this section we apply the previous results to evaluate the best possible upper
bounds for the expectation of the trimmed means T (i; j) = (j − i + 1)−1

∑j
r=i Xr:n,

16 i6 j6 n6N , and quasi-ranges Q(i; j)=Xj:n−Xi:n, 16 i¡ j6 n6N , when the
population mean and a given absolute central moment are 4xed.
We 4rst consider the bounds for the expectations of trimmed means

1
j − i + 1

E
j∑
r=i

Xr:n =
1

j − i + 1

N∑
k=1

xkpi; j(k); 16 i6 j6 n;

with

pi;j(k) = pi;j(k; n; N ) =
j∑
r=i

pr(k) = P(k ∈ {Ui:n; : : : ; Uj:n}): (3.1)

Therefore, in order to apply the results of the previous section, we have to evaluate
the projection Dk of the sequence

Ck = Ck(i; j; n; N ) =
1

j − i + 1
pi;j(k); k = 1; : : : ; N: (3.2)

(Note that here all Ck , 16 k6N , are nonnegative, and strictly positive iK i6 k6N−
n+ j, and they sum up to 1.) First we show the following lemma.

Lemma 3.1. For any integers r, n, N and k satisfying 16 r6 n6N and 16 k6N ,
we have the identity

k∑
s=1

(
s − 1
r − 1

)(
N − s

n− r

)
=

n∑
w=r

(
k

w

)(
N − k

n− w

)
: (3.3)

(b) The sequence Ck=Ck(i; j; n; N ) de7ned in (3.2) is unimodal, that is, there exists
an integer m∈ {1; : : : ; N} (actually m∈ {i; : : : ; N−n+j}) such that Ck is nondecreasing
in {1; : : : ; m} and nonincreasing in {m; : : : ; N}.

Proof. (a) We have(
N

n

)
P(Ur:n6 k) =

(
N

n

)
k∑

s=1

pr(s);
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which is the LHS of (3.3). The proof now follows if we observe that(
N

n

)
P(Ur:n6 k) =

(
N

n

)
P(at least r among U1; : : : ; Un are 6 k)

=

(
N

n

)
n∑

w=r

P(exactly w among U1; : : : ; Un are 6 k)

=
n∑

w=r

(
k

w

)(
N − k

n− w

)

is the RHS of (3.3).
(b) If i = 1 and j = n then, by Cauchy’s formula, Ck = 1=N for all k. In the case

where 26 i6 j = n, we have C1 = 0 and, by (2.3) and (3.3),

Ck = '
n∑
r=i

(
k − 1
r − 1

)(
N − k

n− r

)
= '

k∑
s=2

(
s − 2
i − 2

)(
N − s

n− i

)
; k¿ 2;

with

1
'
= (j − i + 1)

(
N

n

)
¿ 0:

(Observe that '¿ 0 is independent of k.) Thus, Ck is nondecreasing in this case.
Similarly, if 1 = i6 j6 n− 1, then, by de4nition,

C1 = '

(
N − 1
n− 1

)
;

while, by (3.3),

Ck = '

(
N − 1
n− 1

)
− '

k∑
s=2

(
s − 2
j − 1

)(
N − s

n− j − 1

)
; k¿ 2;

with ' as above. Thus, Ck is nonincreasing in this case. Finally, in the general case
where 26 i6 j6 n − 1, we have C1 = CN = 0, while for 26 k6N − 1 we get by
(3.3) (with ' as above)

Ck = '
n∑
r=i

(
k − 1
r − 1

)(
N − k

n− r

)
− '

n∑
r=j+1

(
k − 1
r − 1

)(
N − k

n− r

)

= '
k∑

s=2

(as − bs);

where

as =

(
s − 2
i − 2

)(
N − s

n− i

)
; bs =

(
s − 2
j − 1

)(
N − s

n− j − 1

)
; s= 2; : : : ; N − 1:
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(Observe that as, bs are nonnegative and independent of k.) Since as ¿ 0 iK i6 s6N−
n + i and bs ¿ 0 iK j + 16 s6N − n + j + 1, it follows immediately from the last
expression that Ck is unimodal if N−n+i6 j+1. On the other hand, if j+1¡N−n+i,
then as and bs are both positive in the interval j + 16 s6N − n+ i, which contains
at least two points s. If this is the case, however, we may write for s into this interval,

as
bs
= (

j∏
t=i

*t(s); where (=
(j − 1)!(n− j − 1)!
(i − 1)!(n− i)!

¿ 0

is a positive constant (not depending on s) and

*t(s) =
N − n+ 1
s − t

− 1¿ 0; t = i; : : : ; j; s= j + 1; : : : ; N − n+ i:

Since the positive function *t(s) is strictly decreasing in s∈ [j+1; N−n+i] for all 4xed
t ∈ {i; : : : ; j}, it follows that the same is true for as=bs. Therefore, into the above interval,
as ¡bs only for the last elements of the interval (if any). Since as−bs=as¿ 0 on the
left of the interval and as − bs =−bs6 0 on the right, the desired result follows.

Observe that the maximizing point m de4ned in Lemma 3.1(b) may not be unique.
In the sequel we shall use the notation m0 = m0(i; j; n; N ) for the minimal integer in
{1; : : : ; N} that maximizes Ck , i.e.,

m0 = min
{
k: Ck = max

16s6N
Cs

}
: (3.4)

Observe that m0 = 1 iK i = 1. The above properties of the sequence are necessary for
determining its projection.

Lemma 3.2. Under the notation (3.1), (3.2) and (3.4), de7ne t = t(i; j; n; N ), 16 i6
j6 n6N , as

t(1; j; n; N ) = 0; for j = 1; : : : ; n− 1;
t(i; n; n; N ) = N − 1; for i = 1; : : : ; n;

and as the greatest k ∈ {i − 1; : : : ; m0 − 1} such that

pi;j(k)¡
1

N − k

N∑
r=k+1

pi;j(r); (3.5)

if 26 i6 j6 n− 1. Then the projection of Ck =pi;j(k)=(j+1− i), 16 k6N , onto
the set of nondecreasing sequences has the form

Dk =



Ck; for k = 1; : : : ; t;

1
N − t

N∑
r=t+1

Cr; for k = t + 1; : : : ; N:
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Proof. If 16 i6 j= n, the original sequence is nondecreasing and coincides with the
projection. If 1 = i6 j¡n, then the sequence is nonincreasing, and the projection is
constant Dk = PD for all k. In the remaining cases, we construct the projection using
algorithm (II) of Section 2. In fact, we modify it looking for the consecutive greatest
means of last elements of the sequence. We start with the observation that the mean
of a set of numbers is a convex combination of means of its partition. Accordingly,
including a new element to the mean, we increase (decrease) its value iK the element
is greater (smaller) than the original mean. Therefore the consecutive means

1
N − k

N∑
r=k+1

Cr; k = N − 1; : : : ; 0;

are 4rst equal to zero, and then positive increasing till the (either unique or smaller)
maximizing point m0. Next the decreasing elements are included in the mean. First
they can still be greater than the average of the succeeding ones, which would result
in further increase of the means. However, the increase process de4nitely ends before
k= i−1, when we start including zeros in the positive means. We de4ne t= t(i; j; n; N )
as the point at which the means start decreasing. This is the greatest k for which

1
N − k + 1

N∑
r=k

pi; j(r)¡
1

N − k

N∑
r=k+1

pi;j(r);

which can be rewritten as in (3.5). This is the globally maximal mean of last elements,
and de4nes the N − t greatest elements of the projection. We deduced above that
t + 1 lies necessarily between i and m0, which correspond with the 4rst nonzero and
(4rst) maximal elements of the original sequence, respectively. It su6ces to notice now
that C1; : : : ; Ct is a nondecreasing sequence, and completing the construction procedure
results from setting Dk = Ck for k = 1; : : : ; t.

Using Lemma 3.2, we specify the results of Section 2 for the trimmed means. We
get the trivial bounds ET (i; j)6 
 if i = 1. The nontrivial bounds of Theorems 2.1
and 2.3 simplify here, because

∑n
i=1 ci =

∑N
k=1 Ck = 1 = N PD, r1 = i − 1 and s1 = t.

For 2 
= p∈ (1;∞), the formulae are more complicated, and we omit them. In case
p=+∞, for various choices of i and j the relations between r∞, s∞, and t may be
absolutely arbitrary, and the results of Theorem 2.4 cannot be much simpli4ed.

Corollary 3.1. If 26 i6 j6 n, with the notation of Lemma 3.2, we have

E
[
T (i; j)− 


�2

]
6A2;

where

A2 =


N t∑

k=1

C2k +
N

N − t

(
N∑

k=t+1

Ck

)2
− 1


1=2

: (3.6)
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The bound is tight and becomes equality if

xk − 

�2

=




N
A2

(
Ck − 1

N

)
; for k = 1; : : : ; t;

N
A2(N − t)

N∑
k=t+1

(
Ck − 1

N

)
; for k = t + 1; : : : ; N:

Moreover,

E
[
T (i; j)− 


�1

]
6A1 =

N
2(N − t)

N∑
k=t+1

Ck; (3.7)

and the equality holds if

xk − 

�1

=




− N
2(i − 1) ; for k = 1; : : : ; i − 1;

0; for k = i; : : : ; t;

N
2(N − t)

; for k = t + 1; : : : ; N:

Remark 3.1. Taking i=j¿ 1 we get the single order statistics T (i; i)=Xi:n, and the 4rst
statement of Corollary 3.1 yields the results of Theorems 2.1 and 3.1 in Balakrishnan
et al. (2003). We have also proved that the probability function of each order statistic
Ui:n from the standard uniform population is unimodal.

Remark 3.2. For the expectations of lower selection diKerentials E[T (1; j)−T (1; n)]=
E 1j

∑j
r=1 Xr:n − 
, all our bounds are trivial Ap = 0 for 16p6∞. If j = n, the

bounds are clearly attained by any (arbitrary) population. Otherwise, the bounds can
be improved.

Remark 3.3. For the upper selection diKerentials T (i; n)−T (1; n), i¿ 1, with all Dk=
Ck , we have

A2 =

(
N

N∑
k=1

C2k − 1
)1=2

=
1

n− i + 1

(
N

N∑
k=i

p2i; n(k)− (n− i + 1)2
)1=2

; (3.8)

A1 =
N
2
CN =

n
2(n− i + 1)

: (3.9)

If N =n, then
∑n

k=i p
2
i; n(k)=n− i+1=N − i+1 and we get the deterministic bounds

of Nagaraja (1981), and Rychlik (1993b) for p= 2, and the other cases, respectively.
Nagaraja (1981) also derived the best mean-variance bounds in the i.i.d. case.

Remark 3.4. Due to Remark 2.1, the negatives of the lower bounds on E[T (i; j)−
]=�p
coincide with the upper bounds for E[T (n + 1 − j; n + 1 − i) − 
]=�p. In particular,
they become 0 for the upper selection diKerentials, and we have (3.8) and (3.9) for
the lower ones.
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We now concentrate on the bounds for expectations of quasi-ranges

EQ(i; j) =
N∑
k=1

xk [pj(k)− pi(k)];

which depend on the sequence

Ck = (i; j(k) = pj(k)− pi(k) =

[(
k − 1
j − 1

)(
N − k

n− j

)

−
(
k − 1
i − 1

)(
N − k

n− i

)]/(
N

n

)
; 16 k6N: (3.10)

We easily check that
∑N

k=1 Ck =
∑N

k=1 pj(k)−
∑N

k=1 pi(k) = 0. Further properties of
(3.10) are described in Lemma 3.3, and next used in Lemma 3.4 for constructing the
projection.

Lemma 3.3. The sequence (3.10) is 7rst nonpositive and then nonnegative. Further-
more, this is 7rst nonincreasing, then nondecreasing, and ultimately nonincreasing.

Proof. Using identity (3.3) and notations (2.3) and (3.1), we obtain(
N

n

)
k∑

s=1

(i; j(s) =
k∑

s=1

(
s − 1
j − 1

)(
N − s

n− j

)
−

k∑
s=1

(
s − 1
i − 1

)(
N − s

n− i

)

=
n∑

w=j

(
k

w

)(
N − k

n− w

)
−

n∑
w=i

(
k

w

)(
N − k

n− w

)

=−
j−1∑
w=i

(
k

w

)(
N − k

n− w

)

=−
(
N + 1

n+ 1

) j∑
r=i+1

pr(k + 1; n+ 1; N + 1)

=−
(
N + 1

n+ 1

)
(j − i)Ck+1(i + 1; j; n+ 1; N + 1);

where the sequence Ck+1(i + 1; j; n + 1; N + 1) is de4ned in (3.2). Therefore, for
k = 1; : : : ; N , we have an alternative expression

(i; j(k) =−N + 1
n+ 1

(j − i)[Ck+1(i + 1; j; n+ 1; N + 1)− Ck(i + 1; j; n+ 1; N + 1)];

and unimodality of Ck(i+1; j; n+1; N+1) with respect to k (see Lemma 3.1(b) above)
implies that (i; j(k) is 4rst nonpositive and then nonnegative.
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We observe that, by (2.3), pi(k) = 0 iK k 
∈ {i; : : : ; N − n + i}. Consequently,
(i; j(k)=pj(k)−pi(k)=0 if k 
∈ {i; : : : ; N −n+ i}∪{j; : : : ; N −n+ j}. If j¿N −n+ i,
the subsets of the union do not overlap. In this case we have

(i; j(k) =




−pi(k); for k = i; : : : ; N − n+ i;

pj(k); for k = j; : : : ; N − n+ j;

0; otherwise:

In the 4rst case, the sequence is negative nonincreasing and nondecreasing (cf. Remark
3.1). In the middle one, this is positive nondecreasing and nonincreasing. Accordingly,
(3.10) satis4es the statement of the Lemma.
From now on we assume that j6N−n+i (thus, n¡N ). We examine the diKerences

,i;j(k) = (i; j(k + 1)− (i; j(k)

= [pj(k + 1)− pj(k)]− [pi(k + 1)− pi(k)];

=,[pj(k)]− ,[pi(k)]; k = 1; : : : ; N − 1:
We readily see that

,[pj(k)] = 0 iK k ¡ j − 1 or k = j − 1
n− 1 N or k ¿N − n+ j; (3.11)

,[pj(k)]¿ 0 iK j − 16 k ¡
j − 1
n− 1N; (3.12)

,[pj(k)]¡ 0 iK
j − 1
n− 1N ¡k6N − n+ j; (3.13)

,[pj(k)]6 0 iK k ¡ j − 1 or k¿ j − 1
n− 1N; (3.14)

,[pj(k)]¿ 0 iK k6
j − 1
n− 1N or k ¿N − n+ j: (3.15)

Similar relations hold for ,[pi(k)]. Therefore, all the integers k of {1; : : : ; N − 1}
(if any) belonging to the set

Hm = {k: ,[pj(k)]¿ 0 and ,[pi(k)]6 0}
∪ {k: ,[pj(k)]¿ 0 and ,[pi(k)]¡ 0}

satisfy ,i;j(k)¿ 0. Applying (3.12) to (3.15), we check that

{k: k1¡k¡k2} ⊂ Hm ⊂ PHm = {k: k16 k6 k2}
for k1=((i−1)=(n−1))N and k2=((j−1)=(n−1))N . Moreover, if k1 is an integer, then
,[pi(k1)] = 0 (cf. (3.11) with i in place of j) and ,[pj(k1)]¿ 0 (see (3.15)), imply
,i;j(k1) = ,[pj(k1)]¿ 0. Similarly, if k2 is an integer, then (see (3.11)) ,i;j(k2) =
−,[pi(k2)]¿ 0, because k2¿k1 (cf. (3.14) with i in place of j). Therefore, for any
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integer k from PHm, we have ,i;j(k)¿ 0. On the other hand, we see that the set

Hs = {k: ,[pj(k)]6 0 and ,[pi(k)]¿ 0}
can be written as Hs = Hl ∪ Hr , where

Hl = {k: k6min{j − 2; k1}}
and

Hr = {k: k¿max{N − n+ i + 1; k2}}:
Therefore, since ,i;j(k)6 0 for k ∈Hs and ,i;j(k)¿ 0 for k ∈ PHm, it su6ces to inves-
tigate the signs of ,i;j(k) in the remaining cases k ∈H+ ∪ H−, where

H+ = {k: ,[pj(k)]¿ 0 and ,[pi(k)]¿ 0};
H− = {k: ,[pj(k)]¡ 0 and ,[pi(k)]¡ 0}:

Using (3.12) and (3.13), we verify that

H+ = {k: j − 16 k ¡k1};
H− = {k: k2¡k6N − n+ i}:

Of course, H+ or H− may be empty in some cases, and otherwise H+ lies on the
left of PHm and on the right of Hl, while H− lies on the right of PHm and on the left
of Hr . If both H+ and H− contain at most one point, then the desired result follows.
Otherwise, for k ∈H+ ∪ H− we may write

%i; j(k) =
pj(k + 1)− pj(k)
pi(k + 1)− pi(k)

=
(n− j + 1) : : : (n− i)

i : : : (j − 1)
(k − j + 2) : : : (k + 1− i)

(N − n+ i + 1− k) : : : (N − n+ j − k)
k2 − k
k1 − k

:

The 4rst fraction of the last representation is positive constant, and the second one is
positive increasing. If k ∈H+ (thus, k ¡k1), then the last factor is positive increasing,
and so is the product %i; j(k). Observe that in this case the condition ,i;j(k)¿ 0 is
equivalent to %i; j(k)¿ 1. Therefore either ,i;j(k) changes the sign once in H+, and
this is from − to +, or there are no sign changes there. If k ∈H− (thus, k ¿k2), then
the last factor is also positive increasing as well as the whole product. In this case,
however, positivity of ,i;j(k) coincides with the relation %i; j(k)¡ 1. This implies that
,i;j(k) may have at most one sign change, from + to −, for k ∈H−. Summarizing the
results for all subcases (note that {1; : : : ; N −1}=Hl∪H+∪Hm∪H− ∪Hr , where each
subset (if nonempty) of this disjoint union lies on the right of the preceding one), we
conclude that the sequence ,i;j(k), 16 k6N−1, satis4es the following: If there exist
two integers 16 t1¡t26N − 1 such that ,i;j(tr)¿ 0 for r = 1; 2, then ,i;j(k)¿ 0
for all integers k ∈ [t1; t2]. This completes the proof.

In order to construct the projection of the sequence Ck de4ned in (3.10), it will be
convenient to know the locations for both extremes of the sequence. We also need to
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consider the locations of the sign change of the sequence. Thus, we de4ne the integers
w1, w2, z1 and z2 as follows:

z1 = z1(i; j; n; N ) = max{k: Ck ¡ 0}; (3.16)

z2 = z2(i; j; n; N ) = min{k: Ck ¿ 0}; (3.17)

w1 = w1(i; j; n; N ) = max
{
k: Ck = min

16s6N
Cs

}
; (3.18)

w2 = w2(i; j; n; N ) = min
{
k: Ck = max

16s6N
Cs

}
: (3.19)

By Lemma 3.3, it follows that i6w16 z1¡z26w26N − n+ j.

Lemma 3.4. Under the notation (3.10) and (3.16) to (3.19), we de7ne q1=q1(i; j; n; N )
as the smallest k ∈ {w1; : : : ; z1} such that

1
k

k∑
r=1

(i; j(r)¡(i;j(k + 1); (3.20)

and q2 = q2(i; j; n; N ) as the greatest k ∈ {z2 − 1; : : : ; w2 − 1} such that

(i; j(k)¡
1

N − k

N∑
r=k+1

(i; j(r): (3.21)

Then the projection of (3.10) onto the set of nondecreasing sequences has the form

Dk =




1
q1

q1∑
r=1

Cr; for k = 1; : : : ; q1;

Ck ; for k = q1 + 1; : : : ; q2;

1
N − q2

N∑
r=q2+1

Cr; for k = q2 + 1; : : : ; N:

(3.22)

Proof. We use algorithm (II) and reasoning similar to that of the proof of Lemma
3.2. We start with establishing the minimal mean D1 of the 4rst elements. By Lemma
3.3, the 4rst means are nonpositive and nonincreasing at least till the Ck = pi;j(k)’s
reach their global negative minimum. The means may continue to decrease if the next
Ck ’s are less than the previous means. The decrease stops before the sequence changes
sign from − to +. From that moment, they only include either increasing negative or
nonnegative elements, and hence the further means are greater. Therefore the minimal
mean with q1 elements, say, contains the (last) negative minimum at least, and the
last negative element of the sequence at most. The condition determining the index
q1 is given by (3.20). Next we look for the maximal mean of the last elements. We
similarly deduce that the positive maximal mean DN of N − q2 last elements, say,
contains no more than all positive elements with the possible zeros at the end of the
sequence, and no less than its ultimate nondecreasing part. The number q2 is precisely
de4ned in (3.21).
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Replacing the terms of both the extreme means by the respective mean values, we
obtain q1 negative constants D1 and N − q2 positive constants DN at the left and
right ends of the sequence, respectively. Besides, there are possibly some elements
Cq1+1; : : : ; Cq2 satisfying D1¡Cq1+16 · · ·6Cq2 ¡DN (cf. (3.22)). We see that the
modi4ed sequence is nondecreasing, and completing the procedure (II) does not change
it.

Combining the results of Theorems 2.1, 2.3 with Lemma 3.4, and observing that
PD = 0, r1 = q1 and s1 = q2, we are in a position to formulate Corollary 3.2.

Corollary 3.2. Under the notation of Lemma 3.4, we have

E
[
Xj:n − Xi:n

�2

]
6B2;

where

B2 = N 1=2


 1
q1

( q1∑
k=1

Ck

)2
+

q2∑
k=q1+1

C2k +
1

N − q2


 N∑

k=q2+1

Ck



2


1=2

(3.23)

(a sum of the form
∑b

r=a for a¿b should be treated as 0). The equality holds if

xk − 

�2

=




N
B2q1

q1∑
r=1

Cr; for k = 1; : : : ; q1;

N
B2

Ck; for k = q1 + 1; : : : ; q2;

N
B2(N − q2)

N∑
r=q2+1

Cr; for k = q2 + 1; : : : ; N:

Furthermore, we have the inequality

E
[
Xj:n − Xi:n

�1

]
6B1 =

N
2


 1
N − q2

N∑
k=q2+1

Ck − 1
q1

q1∑
k=1

Ck


 ; (3.24)

which becomes equality if

xk − 

�1

=




− N
2q1

; for k = 1; : : : ; q1;

0; for k = q1 + 1; : : : ; q2;

N
2(N − q2)

; for k = q2 + 1; : : : ; N:
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Table 1
Numerical values of upper bounds (3.6), (3.7), (3.23) and (3.24) on expectations of trimmed means and
quasi-ranges for varying i; j; n and N

i j n N t A2 A1 q1 q2 B2 B1

1 2 2 2 1 0.00000 0.00000 1 1 2.00000 2.00000
1 2 2 5 4 0.00000 0.00000 1 4 1.41421 2.00000
1 2 2 10 9 0.00000 0.00000 1 9 1.27657 2.00000
1 2 5 5 0 0.00000 0.00000 1 1 2.50000 3.12500
1 2 5 10 0 0.00000 0.00000 1 2 1.70783 2.84722
1 2 10 10 0 0.00000 0.00000 1 1 3.33333 5.55556
3 5 5 5 4 0.81650 0.83333 3 4 2.58199 3.33333
3 5 5 6 5 0.74536 0.83333 4 5 2.41523 3.25000
3 5 5 7 6 0.71270 0.83333 5 6 2.28869 3.16667
3 5 5 8 7 0.69253 0.83333 5 7 2.18996 3.14286
3 5 5 9 8 0.67847 0.83333 6 8 2.12459 3.12500
3 5 5 10 9 0.66799 0.83333 7 9 2.07233 3.09524
3 5 5 100 99 0.59772 0.83333 61 99 1.71492 3.01193
3 5 6 6 2 0.70711 0.75000 3 4 2.23607 2.50000
3 5 6 7 3 0.63308 0.70833 4 5 2.02661 2.12500
3 5 6 8 3 0.59590 0.70476 4 5 1.85806 1.97619
3 5 6 9 3 0.57275 0.69048 5 6 1.75449 1.91071
3 5 6 10 4 0.55503 0.68783 5 7 1.67233 1.82540
3 5 6 100 39 0.45292 0.64889 49 73 1.28111 1.43579
3 5 7 7 2 0.63246 0.70000 3 4 2.16025 2.33333
3 5 7 8 2 0.57735 0.66667 4 4 2.00000 2.00000
3 5 7 9 3 0.53468 0.64583 4 5 1.76777 1.87500
3 5 7 10 3 0.50874 0.64484 5 5 1.66667 1.66667
3 5 7 100 27 0.37804 0.59835 41 59 1.16251 1.24085
3 5 8 8 2 0.57735 0.66667 3 4 2.16025 2.33333
3 5 8 9 2 0.53452 0.64286 4 4 2.01246 2.02500
3 5 8 10 2 0.50000 0.62500 4 5 1.77951 1.86111
3 5 8 100 21 0.32943 0.57247 35 50 1.11863 1.19534
3 5 9 9 2 0.53452 0.64286 3 4 2.19089 2.40000
3 5 9 10 2 0.50000 0.62500 4 4 2.04124 2.08333
3 5 9 100 16 0.29484 0.55689 30 44 1.10548 1.20224
3 5 10 10 2 0.50000 0.62500 3 4 2.23607 2.50000
3 5 10 11 2 0.47140 0.61111 4 4 2.07880 2.16071
3 5 10 12 2 0.44721 0.60000 4 4 1.92847 2.04545
3 5 10 13 2 0.42640 0.59091 4 5 1.74275 1.92045
3 5 10 14 2 0.40825 0.58333 4 5 1.64946 1.81235
3 5 10 15 2 0.39223 0.57692 5 5 1.58940 1.68581
3 5 10 20 3 0.34639 0.56760 6 7 1.39164 1.52566
3 5 10 50 7 0.28616 0.55087 14 19 1.16333 1.29124
3 5 10 100 13 0.26882 0.54651 27 39 1.10793 1.23451
3 8 10 10 2 0.50000 0.62500 3 7 2.58199 3.33333
3 8 10 20 5 0.38746 0.59245 7 13 2.07627 2.35736
3 8 10 30 7 0.36543 0.58697 10 20 2.00501 2.24695
3 8 10 40 10 0.35536 0.58448 14 26 1.97101 2.20914
3 8 10 50 12 0.34960 0.58306 17 33 1.95100 2.18239
3 8 10 100 25 0.33852 0.58032 35 65 1.91189 2.13837
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Remark 3.5. Observe that all the upper bounds for quasi-ranges are strictly positive.
On the other hand, our projection method applied for calculating lower bounds for
quasi-ranges provides merely obvious zero evaluations.

Remark 3.6. We have q1 = 1 and q2 = N − 1 for i = 1 and j = n, respectively. For
the sample range Q(1; n) = Xn:n − X1:n in particular, the original sequence (3.10) and
its projection (3.22) coincide, and Corollary 3.2 yields the result of Theorem 2.2 in
Balakrishnan et al. (2003).

Exemplary numerical results are presented in Table 1.
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